| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2023 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | #if !defined(ASTCENC_DECOMPRESS_ONLY) |
| 19 | |
| 20 | /** |
| 21 | * @brief Functions for color quantization. |
| 22 | * |
| 23 | * The design of the color quantization functionality requires the caller to use higher level error |
| 24 | * analysis to determine the base encoding that should be used. This earlier analysis will select |
| 25 | * the basic type of the endpoint that should be used: |
| 26 | * |
| 27 | * * Mode: LDR or HDR |
| 28 | * * Quantization level |
| 29 | * * Channel count: L, LA, RGB, or RGBA |
| 30 | * * Endpoint 2 type: Direct color endcode, or scaled from endpoint 1. |
| 31 | * |
| 32 | * However, this leaves a number of decisions about exactly how to pack the endpoints open. In |
| 33 | * particular we need to determine if blue contraction can be used, or/and if delta encoding can be |
| 34 | * used. If they can be applied these will allow us to maintain higher precision in the endpoints |
| 35 | * without needing additional storage. |
| 36 | */ |
| 37 | |
| 38 | #include <stdio.h> |
| 39 | #include <assert.h> |
| 40 | |
| 41 | #include "astcenc_internal.h" |
| 42 | |
| 43 | /** |
| 44 | * @brief Determine the quantized value given a quantization level. |
| 45 | * |
| 46 | * @param quant_level The quantization level to use. |
| 47 | * @param value The value to convert. This must be in the 0-255 range. |
| 48 | * |
| 49 | * @return The unpacked quantized value, returned in 0-255 range. |
| 50 | */ |
| 51 | static inline uint8_t quant_color( |
| 52 | quant_method quant_level, |
| 53 | int value |
| 54 | ) { |
| 55 | int index = value * 2 + 1; |
| 56 | return color_unquant_to_uquant_tables[quant_level - QUANT_6][index]; |
| 57 | } |
| 58 | |
| 59 | /** |
| 60 | * @brief Determine the quantized value given a quantization level and residual. |
| 61 | * |
| 62 | * @param quant_level The quantization level to use. |
| 63 | * @param value The value to convert. This must be in the 0-255 range. |
| 64 | * @param valuef The original value before rounding, used to compute a residual. |
| 65 | * |
| 66 | * @return The unpacked quantized value, returned in 0-255 range. |
| 67 | */ |
| 68 | static inline uint8_t quant_color( |
| 69 | quant_method quant_level, |
| 70 | int value, |
| 71 | float valuef |
| 72 | ) { |
| 73 | int index = value * 2; |
| 74 | |
| 75 | // Compute the residual to determine if we should round down or up ties. |
| 76 | // Test should be residual >= 0, but empirical testing shows small bias helps. |
| 77 | float residual = valuef - static_cast<float>(value); |
| 78 | if (residual >= -0.1f) |
| 79 | { |
| 80 | index++; |
| 81 | } |
| 82 | |
| 83 | return color_unquant_to_uquant_tables[quant_level - QUANT_6][index]; |
| 84 | } |
| 85 | |
| 86 | /** |
| 87 | * @brief Quantize an LDR RGB color. |
| 88 | * |
| 89 | * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. |
| 90 | * For this encoding @c color0 cannot be larger than @c color1. If @c color0 is actually larger |
| 91 | * than @c color1, @c color0 is reduced and @c color1 is increased until the constraint is met. |
| 92 | * |
| 93 | * @param color0 The input unquantized color0 endpoint. |
| 94 | * @param color1 The input unquantized color1 endpoint. |
| 95 | * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). |
| 96 | * @param quant_level The quantization level to use. |
| 97 | */ |
| 98 | static void quantize_rgb( |
| 99 | vfloat4 color0, |
| 100 | vfloat4 color1, |
| 101 | uint8_t output[6], |
| 102 | quant_method quant_level |
| 103 | ) { |
| 104 | float scale = 1.0f / 257.0f; |
| 105 | |
| 106 | float r0 = astc::clamp255f(color0.lane<0>() * scale); |
| 107 | float g0 = astc::clamp255f(color0.lane<1>() * scale); |
| 108 | float b0 = astc::clamp255f(color0.lane<2>() * scale); |
| 109 | |
| 110 | float r1 = astc::clamp255f(color1.lane<0>() * scale); |
| 111 | float g1 = astc::clamp255f(color1.lane<1>() * scale); |
| 112 | float b1 = astc::clamp255f(color1.lane<2>() * scale); |
| 113 | |
| 114 | int ri0, gi0, bi0, ri1, gi1, bi1; |
| 115 | float rgb0_addon = 0.0f; |
| 116 | float rgb1_addon = 0.0f; |
| 117 | do |
| 118 | { |
| 119 | ri0 = quant_color(quant_level, astc::max(astc::flt2int_rtn(r0 + rgb0_addon), 0), r0 + rgb0_addon); |
| 120 | gi0 = quant_color(quant_level, astc::max(astc::flt2int_rtn(g0 + rgb0_addon), 0), g0 + rgb0_addon); |
| 121 | bi0 = quant_color(quant_level, astc::max(astc::flt2int_rtn(b0 + rgb0_addon), 0), b0 + rgb0_addon); |
| 122 | ri1 = quant_color(quant_level, astc::min(astc::flt2int_rtn(r1 + rgb1_addon), 255), r1 + rgb1_addon); |
| 123 | gi1 = quant_color(quant_level, astc::min(astc::flt2int_rtn(g1 + rgb1_addon), 255), g1 + rgb1_addon); |
| 124 | bi1 = quant_color(quant_level, astc::min(astc::flt2int_rtn(b1 + rgb1_addon), 255), b1 + rgb1_addon); |
| 125 | |
| 126 | rgb0_addon -= 0.2f; |
| 127 | rgb1_addon += 0.2f; |
| 128 | } while (ri0 + gi0 + bi0 > ri1 + gi1 + bi1); |
| 129 | |
| 130 | output[0] = static_cast<uint8_t>(ri0); |
| 131 | output[1] = static_cast<uint8_t>(ri1); |
| 132 | output[2] = static_cast<uint8_t>(gi0); |
| 133 | output[3] = static_cast<uint8_t>(gi1); |
| 134 | output[4] = static_cast<uint8_t>(bi0); |
| 135 | output[5] = static_cast<uint8_t>(bi1); |
| 136 | } |
| 137 | |
| 138 | /** |
| 139 | * @brief Quantize an LDR RGBA color. |
| 140 | * |
| 141 | * Since this is a fall-back encoding, we cannot actually fail but must produce a sensible result. |
| 142 | * For this encoding @c color0.rgb cannot be larger than @c color1.rgb (this indicates blue |
| 143 | * contraction). If @c color0.rgb is actually larger than @c color1.rgb, @c color0.rgb is reduced |
| 144 | * and @c color1.rgb is increased until the constraint is met. |
| 145 | * |
| 146 | * @param color0 The input unquantized color0 endpoint. |
| 147 | * @param color1 The input unquantized color1 endpoint. |
| 148 | * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1, a0, a1). |
| 149 | * @param quant_level The quantization level to use. |
| 150 | */ |
| 151 | static void quantize_rgba( |
| 152 | vfloat4 color0, |
| 153 | vfloat4 color1, |
| 154 | uint8_t output[8], |
| 155 | quant_method quant_level |
| 156 | ) { |
| 157 | float scale = 1.0f / 257.0f; |
| 158 | |
| 159 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 160 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 161 | |
| 162 | output[6] = quant_color(quant_level, astc::flt2int_rtn(a0), a0); |
| 163 | output[7] = quant_color(quant_level, astc::flt2int_rtn(a1), a1); |
| 164 | |
| 165 | quantize_rgb(color0, color1, output, quant_level); |
| 166 | } |
| 167 | |
| 168 | /** |
| 169 | * @brief Try to quantize an LDR RGB color using blue-contraction. |
| 170 | * |
| 171 | * Blue-contraction is only usable if encoded color 1 is larger than color 0. |
| 172 | * |
| 173 | * @param color0 The input unquantized color0 endpoint. |
| 174 | * @param color1 The input unquantized color1 endpoint. |
| 175 | * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0). |
| 176 | * @param quant_level The quantization level to use. |
| 177 | * |
| 178 | * @return Returns @c false on failure, @c true on success. |
| 179 | */ |
| 180 | static bool try_quantize_rgb_blue_contract( |
| 181 | vfloat4 color0, |
| 182 | vfloat4 color1, |
| 183 | uint8_t output[6], |
| 184 | quant_method quant_level |
| 185 | ) { |
| 186 | float scale = 1.0f / 257.0f; |
| 187 | |
| 188 | float r0 = color0.lane<0>() * scale; |
| 189 | float g0 = color0.lane<1>() * scale; |
| 190 | float b0 = color0.lane<2>() * scale; |
| 191 | |
| 192 | float r1 = color1.lane<0>() * scale; |
| 193 | float g1 = color1.lane<1>() * scale; |
| 194 | float b1 = color1.lane<2>() * scale; |
| 195 | |
| 196 | // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. |
| 197 | r0 += (r0 - b0); |
| 198 | g0 += (g0 - b0); |
| 199 | r1 += (r1 - b1); |
| 200 | g1 += (g1 - b1); |
| 201 | |
| 202 | if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || |
| 203 | r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) |
| 204 | { |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | // Quantize the inverse-blue-contracted color |
| 209 | int ri0 = quant_color(quant_level, astc::flt2int_rtn(r0), r0); |
| 210 | int gi0 = quant_color(quant_level, astc::flt2int_rtn(g0), g0); |
| 211 | int bi0 = quant_color(quant_level, astc::flt2int_rtn(b0), b0); |
| 212 | |
| 213 | int ri1 = quant_color(quant_level, astc::flt2int_rtn(r1), r1); |
| 214 | int gi1 = quant_color(quant_level, astc::flt2int_rtn(g1), g1); |
| 215 | int bi1 = quant_color(quant_level, astc::flt2int_rtn(b1), b1); |
| 216 | |
| 217 | // If color #1 is not larger than color #0 then blue-contraction cannot be used. Note that |
| 218 | // blue-contraction and quantization change this order, which is why we must test afterwards. |
| 219 | if (ri1 + gi1 + bi1 <= ri0 + gi0 + bi0) |
| 220 | { |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | output[0] = static_cast<uint8_t>(ri1); |
| 225 | output[1] = static_cast<uint8_t>(ri0); |
| 226 | output[2] = static_cast<uint8_t>(gi1); |
| 227 | output[3] = static_cast<uint8_t>(gi0); |
| 228 | output[4] = static_cast<uint8_t>(bi1); |
| 229 | output[5] = static_cast<uint8_t>(bi0); |
| 230 | |
| 231 | return true; |
| 232 | } |
| 233 | |
| 234 | /** |
| 235 | * @brief Try to quantize an LDR RGBA color using blue-contraction. |
| 236 | * |
| 237 | * Blue-contraction is only usable if encoded color 1 RGB is larger than color 0 RGB. |
| 238 | * |
| 239 | * @param color0 The input unquantized color0 endpoint. |
| 240 | * @param color1 The input unquantized color1 endpoint. |
| 241 | * @param[out] output The output endpoints, returned as (r1, r0, g1, g0, b1, b0, a1, a0). |
| 242 | * @param quant_level The quantization level to use. |
| 243 | * |
| 244 | * @return Returns @c false on failure, @c true on success. |
| 245 | */ |
| 246 | static bool try_quantize_rgba_blue_contract( |
| 247 | vfloat4 color0, |
| 248 | vfloat4 color1, |
| 249 | uint8_t output[8], |
| 250 | quant_method quant_level |
| 251 | ) { |
| 252 | float scale = 1.0f / 257.0f; |
| 253 | |
| 254 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 255 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 256 | |
| 257 | output[6] = quant_color(quant_level, astc::flt2int_rtn(a1), a1); |
| 258 | output[7] = quant_color(quant_level, astc::flt2int_rtn(a0), a0); |
| 259 | |
| 260 | return try_quantize_rgb_blue_contract(color0, color1, output, quant_level); |
| 261 | } |
| 262 | |
| 263 | /** |
| 264 | * @brief Try to quantize an LDR RGB color using delta encoding. |
| 265 | * |
| 266 | * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; |
| 267 | * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is |
| 268 | * non-negative, then we encode a regular delta. |
| 269 | * |
| 270 | * @param color0 The input unquantized color0 endpoint. |
| 271 | * @param color1 The input unquantized color1 endpoint. |
| 272 | * @param[out] output The output endpoints, returned as (r0, r1, g0, g1, b0, b1). |
| 273 | * @param quant_level The quantization level to use. |
| 274 | * |
| 275 | * @return Returns @c false on failure, @c true on success. |
| 276 | */ |
| 277 | static bool try_quantize_rgb_delta( |
| 278 | vfloat4 color0, |
| 279 | vfloat4 color1, |
| 280 | uint8_t output[6], |
| 281 | quant_method quant_level |
| 282 | ) { |
| 283 | float scale = 1.0f / 257.0f; |
| 284 | |
| 285 | float r0 = astc::clamp255f(color0.lane<0>() * scale); |
| 286 | float g0 = astc::clamp255f(color0.lane<1>() * scale); |
| 287 | float b0 = astc::clamp255f(color0.lane<2>() * scale); |
| 288 | |
| 289 | float r1 = astc::clamp255f(color1.lane<0>() * scale); |
| 290 | float g1 = astc::clamp255f(color1.lane<1>() * scale); |
| 291 | float b1 = astc::clamp255f(color1.lane<2>() * scale); |
| 292 | |
| 293 | // Transform r0 to unorm9 |
| 294 | int r0a = astc::flt2int_rtn(r0); |
| 295 | int g0a = astc::flt2int_rtn(g0); |
| 296 | int b0a = astc::flt2int_rtn(b0); |
| 297 | |
| 298 | r0a <<= 1; |
| 299 | g0a <<= 1; |
| 300 | b0a <<= 1; |
| 301 | |
| 302 | // Mask off the top bit |
| 303 | int r0b = r0a & 0xFF; |
| 304 | int g0b = g0a & 0xFF; |
| 305 | int b0b = b0a & 0xFF; |
| 306 | |
| 307 | // Quantize then unquantize in order to get a value that we take differences against |
| 308 | int r0be = quant_color(quant_level, r0b); |
| 309 | int g0be = quant_color(quant_level, g0b); |
| 310 | int b0be = quant_color(quant_level, b0b); |
| 311 | |
| 312 | r0b = r0be | (r0a & 0x100); |
| 313 | g0b = g0be | (g0a & 0x100); |
| 314 | b0b = b0be | (b0a & 0x100); |
| 315 | |
| 316 | // Get hold of the second value |
| 317 | int r1d = astc::flt2int_rtn(r1); |
| 318 | int g1d = astc::flt2int_rtn(g1); |
| 319 | int b1d = astc::flt2int_rtn(b1); |
| 320 | |
| 321 | r1d <<= 1; |
| 322 | g1d <<= 1; |
| 323 | b1d <<= 1; |
| 324 | |
| 325 | // ... and take differences |
| 326 | r1d -= r0b; |
| 327 | g1d -= g0b; |
| 328 | b1d -= b0b; |
| 329 | |
| 330 | // Check if the difference is too large to be encodable |
| 331 | if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) |
| 332 | { |
| 333 | return false; |
| 334 | } |
| 335 | |
| 336 | // Insert top bit of the base into the offset |
| 337 | r1d &= 0x7F; |
| 338 | g1d &= 0x7F; |
| 339 | b1d &= 0x7F; |
| 340 | |
| 341 | r1d |= (r0b & 0x100) >> 1; |
| 342 | g1d |= (g0b & 0x100) >> 1; |
| 343 | b1d |= (b0b & 0x100) >> 1; |
| 344 | |
| 345 | // Then quantize and unquantize; if this causes either top two bits to flip, then encoding fails |
| 346 | // since we have then corrupted either the top bit of the base or the sign bit of the offset |
| 347 | int r1de = quant_color(quant_level, r1d); |
| 348 | int g1de = quant_color(quant_level, g1d); |
| 349 | int b1de = quant_color(quant_level, b1d); |
| 350 | |
| 351 | if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) |
| 352 | { |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | // If the sum of offsets triggers blue-contraction then encoding fails |
| 357 | vint4 ep0(r0be, g0be, b0be, 0); |
| 358 | vint4 ep1(r1de, g1de, b1de, 0); |
| 359 | bit_transfer_signed(ep1, ep0); |
| 360 | if (hadd_rgb_s(ep1) < 0) |
| 361 | { |
| 362 | return false; |
| 363 | } |
| 364 | |
| 365 | // Check that the offsets produce legitimate sums as well |
| 366 | ep0 = ep0 + ep1; |
| 367 | if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) |
| 368 | { |
| 369 | return false; |
| 370 | } |
| 371 | |
| 372 | output[0] = static_cast<uint8_t>(r0be); |
| 373 | output[1] = static_cast<uint8_t>(r1de); |
| 374 | output[2] = static_cast<uint8_t>(g0be); |
| 375 | output[3] = static_cast<uint8_t>(g1de); |
| 376 | output[4] = static_cast<uint8_t>(b0be); |
| 377 | output[5] = static_cast<uint8_t>(b1de); |
| 378 | |
| 379 | return true; |
| 380 | } |
| 381 | |
| 382 | static bool try_quantize_rgb_delta_blue_contract( |
| 383 | vfloat4 color0, |
| 384 | vfloat4 color1, |
| 385 | uint8_t output[6], |
| 386 | quant_method quant_level |
| 387 | ) { |
| 388 | // Note: Switch around endpoint colors already at start |
| 389 | float scale = 1.0f / 257.0f; |
| 390 | |
| 391 | float r1 = color0.lane<0>() * scale; |
| 392 | float g1 = color0.lane<1>() * scale; |
| 393 | float b1 = color0.lane<2>() * scale; |
| 394 | |
| 395 | float r0 = color1.lane<0>() * scale; |
| 396 | float g0 = color1.lane<1>() * scale; |
| 397 | float b0 = color1.lane<2>() * scale; |
| 398 | |
| 399 | // Apply inverse blue-contraction. This can produce an overflow; which means BC cannot be used. |
| 400 | r0 += (r0 - b0); |
| 401 | g0 += (g0 - b0); |
| 402 | r1 += (r1 - b1); |
| 403 | g1 += (g1 - b1); |
| 404 | |
| 405 | if (r0 < 0.0f || r0 > 255.0f || g0 < 0.0f || g0 > 255.0f || b0 < 0.0f || b0 > 255.0f || |
| 406 | r1 < 0.0f || r1 > 255.0f || g1 < 0.0f || g1 > 255.0f || b1 < 0.0f || b1 > 255.0f) |
| 407 | { |
| 408 | return false; |
| 409 | } |
| 410 | |
| 411 | // Transform r0 to unorm9 |
| 412 | int r0a = astc::flt2int_rtn(r0); |
| 413 | int g0a = astc::flt2int_rtn(g0); |
| 414 | int b0a = astc::flt2int_rtn(b0); |
| 415 | r0a <<= 1; |
| 416 | g0a <<= 1; |
| 417 | b0a <<= 1; |
| 418 | |
| 419 | // Mask off the top bit |
| 420 | int r0b = r0a & 0xFF; |
| 421 | int g0b = g0a & 0xFF; |
| 422 | int b0b = b0a & 0xFF; |
| 423 | |
| 424 | // Quantize, then unquantize in order to get a value that we take differences against. |
| 425 | int r0be = quant_color(quant_level, r0b); |
| 426 | int g0be = quant_color(quant_level, g0b); |
| 427 | int b0be = quant_color(quant_level, b0b); |
| 428 | |
| 429 | r0b = r0be | (r0a & 0x100); |
| 430 | g0b = g0be | (g0a & 0x100); |
| 431 | b0b = b0be | (b0a & 0x100); |
| 432 | |
| 433 | // Get hold of the second value |
| 434 | int r1d = astc::flt2int_rtn(r1); |
| 435 | int g1d = astc::flt2int_rtn(g1); |
| 436 | int b1d = astc::flt2int_rtn(b1); |
| 437 | |
| 438 | r1d <<= 1; |
| 439 | g1d <<= 1; |
| 440 | b1d <<= 1; |
| 441 | |
| 442 | // .. and take differences! |
| 443 | r1d -= r0b; |
| 444 | g1d -= g0b; |
| 445 | b1d -= b0b; |
| 446 | |
| 447 | // Check if the difference is too large to be encodable |
| 448 | if (r1d > 63 || g1d > 63 || b1d > 63 || r1d < -64 || g1d < -64 || b1d < -64) |
| 449 | { |
| 450 | return false; |
| 451 | } |
| 452 | |
| 453 | // Insert top bit of the base into the offset |
| 454 | r1d &= 0x7F; |
| 455 | g1d &= 0x7F; |
| 456 | b1d &= 0x7F; |
| 457 | |
| 458 | r1d |= (r0b & 0x100) >> 1; |
| 459 | g1d |= (g0b & 0x100) >> 1; |
| 460 | b1d |= (b0b & 0x100) >> 1; |
| 461 | |
| 462 | // Then quantize and unquantize; if this causes any of the top two bits to flip, |
| 463 | // then encoding fails, since we have then corrupted either the top bit of the base |
| 464 | // or the sign bit of the offset. |
| 465 | int r1de = quant_color(quant_level, r1d); |
| 466 | int g1de = quant_color(quant_level, g1d); |
| 467 | int b1de = quant_color(quant_level, b1d); |
| 468 | |
| 469 | if (((r1d ^ r1de) | (g1d ^ g1de) | (b1d ^ b1de)) & 0xC0) |
| 470 | { |
| 471 | return false; |
| 472 | } |
| 473 | |
| 474 | // If the sum of offsets does not trigger blue-contraction then encoding fails |
| 475 | vint4 ep0(r0be, g0be, b0be, 0); |
| 476 | vint4 ep1(r1de, g1de, b1de, 0); |
| 477 | bit_transfer_signed(ep1, ep0); |
| 478 | if (hadd_rgb_s(ep1) >= 0) |
| 479 | { |
| 480 | return false; |
| 481 | } |
| 482 | |
| 483 | // Check that the offsets produce legitimate sums as well |
| 484 | ep0 = ep0 + ep1; |
| 485 | if (any((ep0 < vint4(0)) | (ep0 > vint4(0xFF)))) |
| 486 | { |
| 487 | return false; |
| 488 | } |
| 489 | |
| 490 | output[0] = static_cast<uint8_t>(r0be); |
| 491 | output[1] = static_cast<uint8_t>(r1de); |
| 492 | output[2] = static_cast<uint8_t>(g0be); |
| 493 | output[3] = static_cast<uint8_t>(g1de); |
| 494 | output[4] = static_cast<uint8_t>(b0be); |
| 495 | output[5] = static_cast<uint8_t>(b1de); |
| 496 | |
| 497 | return true; |
| 498 | } |
| 499 | |
| 500 | /** |
| 501 | * @brief Try to quantize an LDR A color using delta encoding. |
| 502 | * |
| 503 | * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; |
| 504 | * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is |
| 505 | * non-negative, then we encode a regular delta. |
| 506 | * |
| 507 | * This function only compressed the alpha - the other elements in the output array are not touched. |
| 508 | * |
| 509 | * @param color0 The input unquantized color0 endpoint. |
| 510 | * @param color1 The input unquantized color1 endpoint. |
| 511 | * @param[out] output The output endpoints, returned as (x, x, x, x, x, x, a0, a1). |
| 512 | * @param quant_level The quantization level to use. |
| 513 | * |
| 514 | * @return Returns @c false on failure, @c true on success. |
| 515 | */ |
| 516 | static bool try_quantize_alpha_delta( |
| 517 | vfloat4 color0, |
| 518 | vfloat4 color1, |
| 519 | uint8_t output[8], |
| 520 | quant_method quant_level |
| 521 | ) { |
| 522 | float scale = 1.0f / 257.0f; |
| 523 | |
| 524 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 525 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 526 | |
| 527 | int a0a = astc::flt2int_rtn(a0); |
| 528 | a0a <<= 1; |
| 529 | int a0b = a0a & 0xFF; |
| 530 | int a0be = quant_color(quant_level, a0b); |
| 531 | a0b = a0be; |
| 532 | a0b |= a0a & 0x100; |
| 533 | int a1d = astc::flt2int_rtn(a1); |
| 534 | a1d <<= 1; |
| 535 | a1d -= a0b; |
| 536 | |
| 537 | if (a1d > 63 || a1d < -64) |
| 538 | { |
| 539 | return false; |
| 540 | } |
| 541 | |
| 542 | a1d &= 0x7F; |
| 543 | a1d |= (a0b & 0x100) >> 1; |
| 544 | |
| 545 | int a1de = quant_color(quant_level, a1d); |
| 546 | int a1du = a1de; |
| 547 | if ((a1d ^ a1du) & 0xC0) |
| 548 | { |
| 549 | return false; |
| 550 | } |
| 551 | |
| 552 | a1du &= 0x7F; |
| 553 | if (a1du & 0x40) |
| 554 | { |
| 555 | a1du -= 0x80; |
| 556 | } |
| 557 | |
| 558 | a1du += a0b; |
| 559 | if (a1du < 0 || a1du > 0x1FF) |
| 560 | { |
| 561 | return false; |
| 562 | } |
| 563 | |
| 564 | output[6] = static_cast<uint8_t>(a0be); |
| 565 | output[7] = static_cast<uint8_t>(a1de); |
| 566 | |
| 567 | return true; |
| 568 | } |
| 569 | |
| 570 | /** |
| 571 | * @brief Try to quantize an LDR LA color using delta encoding. |
| 572 | * |
| 573 | * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; |
| 574 | * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is |
| 575 | * non-negative, then we encode a regular delta. |
| 576 | * |
| 577 | * This function only compressed the alpha - the other elements in the output array are not touched. |
| 578 | * |
| 579 | * @param color0 The input unquantized color0 endpoint. |
| 580 | * @param color1 The input unquantized color1 endpoint. |
| 581 | * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). |
| 582 | * @param quant_level The quantization level to use. |
| 583 | * |
| 584 | * @return Returns @c false on failure, @c true on success. |
| 585 | */ |
| 586 | static bool try_quantize_luminance_alpha_delta( |
| 587 | vfloat4 color0, |
| 588 | vfloat4 color1, |
| 589 | uint8_t output[4], |
| 590 | quant_method quant_level |
| 591 | ) { |
| 592 | float scale = 1.0f / 257.0f; |
| 593 | |
| 594 | float l0 = astc::clamp255f(hadd_rgb_s(color0) * ((1.0f / 3.0f) * scale)); |
| 595 | float l1 = astc::clamp255f(hadd_rgb_s(color1) * ((1.0f / 3.0f) * scale)); |
| 596 | |
| 597 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 598 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 599 | |
| 600 | int l0a = astc::flt2int_rtn(l0); |
| 601 | int a0a = astc::flt2int_rtn(a0); |
| 602 | l0a <<= 1; |
| 603 | a0a <<= 1; |
| 604 | |
| 605 | int l0b = l0a & 0xFF; |
| 606 | int a0b = a0a & 0xFF; |
| 607 | int l0be = quant_color(quant_level, l0b); |
| 608 | int a0be = quant_color(quant_level, a0b); |
| 609 | l0b = l0be; |
| 610 | a0b = a0be; |
| 611 | l0b |= l0a & 0x100; |
| 612 | a0b |= a0a & 0x100; |
| 613 | |
| 614 | int l1d = astc::flt2int_rtn(l1); |
| 615 | int a1d = astc::flt2int_rtn(a1); |
| 616 | l1d <<= 1; |
| 617 | a1d <<= 1; |
| 618 | l1d -= l0b; |
| 619 | a1d -= a0b; |
| 620 | |
| 621 | if (l1d > 63 || l1d < -64) |
| 622 | { |
| 623 | return false; |
| 624 | } |
| 625 | |
| 626 | if (a1d > 63 || a1d < -64) |
| 627 | { |
| 628 | return false; |
| 629 | } |
| 630 | |
| 631 | l1d &= 0x7F; |
| 632 | a1d &= 0x7F; |
| 633 | l1d |= (l0b & 0x100) >> 1; |
| 634 | a1d |= (a0b & 0x100) >> 1; |
| 635 | |
| 636 | int l1de = quant_color(quant_level, l1d); |
| 637 | int a1de = quant_color(quant_level, a1d); |
| 638 | int l1du = l1de; |
| 639 | int a1du = a1de; |
| 640 | |
| 641 | if ((l1d ^ l1du) & 0xC0) |
| 642 | { |
| 643 | return false; |
| 644 | } |
| 645 | |
| 646 | if ((a1d ^ a1du) & 0xC0) |
| 647 | { |
| 648 | return false; |
| 649 | } |
| 650 | |
| 651 | l1du &= 0x7F; |
| 652 | a1du &= 0x7F; |
| 653 | |
| 654 | if (l1du & 0x40) |
| 655 | { |
| 656 | l1du -= 0x80; |
| 657 | } |
| 658 | |
| 659 | if (a1du & 0x40) |
| 660 | { |
| 661 | a1du -= 0x80; |
| 662 | } |
| 663 | |
| 664 | l1du += l0b; |
| 665 | a1du += a0b; |
| 666 | |
| 667 | if (l1du < 0 || l1du > 0x1FF) |
| 668 | { |
| 669 | return false; |
| 670 | } |
| 671 | |
| 672 | if (a1du < 0 || a1du > 0x1FF) |
| 673 | { |
| 674 | return false; |
| 675 | } |
| 676 | |
| 677 | output[0] = static_cast<uint8_t>(l0be); |
| 678 | output[1] = static_cast<uint8_t>(l1de); |
| 679 | output[2] = static_cast<uint8_t>(a0be); |
| 680 | output[3] = static_cast<uint8_t>(a1de); |
| 681 | |
| 682 | return true; |
| 683 | } |
| 684 | |
| 685 | /** |
| 686 | * @brief Try to quantize an LDR RGBA color using delta encoding. |
| 687 | * |
| 688 | * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; |
| 689 | * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is |
| 690 | * non-negative, then we encode a regular delta. |
| 691 | * |
| 692 | * This function only compressed the alpha - the other elements in the output array are not touched. |
| 693 | * |
| 694 | * @param color0 The input unquantized color0 endpoint. |
| 695 | * @param color1 The input unquantized color1 endpoint. |
| 696 | * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). |
| 697 | * @param quant_level The quantization level to use. |
| 698 | * |
| 699 | * @return Returns @c false on failure, @c true on success. |
| 700 | */ |
| 701 | static bool try_quantize_rgba_delta( |
| 702 | vfloat4 color0, |
| 703 | vfloat4 color1, |
| 704 | uint8_t output[8], |
| 705 | quant_method quant_level |
| 706 | ) { |
| 707 | return try_quantize_rgb_delta(color0, color1, output, quant_level) && |
| 708 | try_quantize_alpha_delta(color0, color1, output, quant_level); |
| 709 | } |
| 710 | |
| 711 | |
| 712 | /** |
| 713 | * @brief Try to quantize an LDR RGBA color using delta and blue contract encoding. |
| 714 | * |
| 715 | * At decode time we move one bit from the offset to the base and seize another bit as a sign bit; |
| 716 | * we then unquantize both values as if they contain one extra bit. If the sum of the offsets is |
| 717 | * non-negative, then we encode a regular delta. |
| 718 | * |
| 719 | * This function only compressed the alpha - the other elements in the output array are not touched. |
| 720 | * |
| 721 | * @param color0 The input unquantized color0 endpoint. |
| 722 | * @param color1 The input unquantized color1 endpoint. |
| 723 | * @param[out] output The output endpoints, returned as (r0, r1, b0, b1, g0, g1, a0, a1). |
| 724 | * @param quant_level The quantization level to use. |
| 725 | * |
| 726 | * @return Returns @c false on failure, @c true on success. |
| 727 | */ |
| 728 | static bool try_quantize_rgba_delta_blue_contract( |
| 729 | vfloat4 color0, |
| 730 | vfloat4 color1, |
| 731 | uint8_t output[8], |
| 732 | quant_method quant_level |
| 733 | ) { |
| 734 | // Note that we swap the color0 and color1 ordering for alpha to match RGB blue-contract |
| 735 | return try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level) && |
| 736 | try_quantize_alpha_delta(color1, color0, output, quant_level); |
| 737 | } |
| 738 | |
| 739 | /** |
| 740 | * @brief Quantize an LDR RGB color using scale encoding. |
| 741 | * |
| 742 | * @param color The input unquantized color endpoint and scale factor. |
| 743 | * @param[out] output The output endpoints, returned as (r0, g0, b0, s). |
| 744 | * @param quant_level The quantization level to use. |
| 745 | */ |
| 746 | static void quantize_rgbs( |
| 747 | vfloat4 color, |
| 748 | uint8_t output[4], |
| 749 | quant_method quant_level |
| 750 | ) { |
| 751 | float scale = 1.0f / 257.0f; |
| 752 | |
| 753 | float r = astc::clamp255f(color.lane<0>() * scale); |
| 754 | float g = astc::clamp255f(color.lane<1>() * scale); |
| 755 | float b = astc::clamp255f(color.lane<2>() * scale); |
| 756 | |
| 757 | int ri = quant_color(quant_level, astc::flt2int_rtn(r), r); |
| 758 | int gi = quant_color(quant_level, astc::flt2int_rtn(g), g); |
| 759 | int bi = quant_color(quant_level, astc::flt2int_rtn(b), b); |
| 760 | |
| 761 | float oldcolorsum = hadd_rgb_s(color) * scale; |
| 762 | float newcolorsum = static_cast<float>(ri + gi + bi); |
| 763 | |
| 764 | float scalea = astc::clamp1f(color.lane<3>() * (oldcolorsum + 1e-10f) / (newcolorsum + 1e-10f)); |
| 765 | int scale_idx = astc::flt2int_rtn(scalea * 256.0f); |
| 766 | scale_idx = astc::clamp(scale_idx, 0, 255); |
| 767 | |
| 768 | output[0] = static_cast<uint8_t>(ri); |
| 769 | output[1] = static_cast<uint8_t>(gi); |
| 770 | output[2] = static_cast<uint8_t>(bi); |
| 771 | output[3] = quant_color(quant_level, scale_idx); |
| 772 | } |
| 773 | |
| 774 | /** |
| 775 | * @brief Quantize an LDR RGBA color using scale encoding. |
| 776 | * |
| 777 | * @param color The input unquantized color endpoint and scale factor. |
| 778 | * @param[out] output The output endpoints, returned as (r0, g0, b0, s, a0, a1). |
| 779 | * @param quant_level The quantization level to use. |
| 780 | */ |
| 781 | static void quantize_rgbs_alpha( |
| 782 | vfloat4 color0, |
| 783 | vfloat4 color1, |
| 784 | vfloat4 color, |
| 785 | uint8_t output[6], |
| 786 | quant_method quant_level |
| 787 | ) { |
| 788 | float scale = 1.0f / 257.0f; |
| 789 | |
| 790 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 791 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 792 | |
| 793 | output[4] = quant_color(quant_level, astc::flt2int_rtn(a0), a0); |
| 794 | output[5] = quant_color(quant_level, astc::flt2int_rtn(a1), a1); |
| 795 | |
| 796 | quantize_rgbs(color, output, quant_level); |
| 797 | } |
| 798 | |
| 799 | /** |
| 800 | * @brief Quantize a LDR L color. |
| 801 | * |
| 802 | * @param color0 The input unquantized color0 endpoint. |
| 803 | * @param color1 The input unquantized color1 endpoint. |
| 804 | * @param[out] output The output endpoints, returned as (l0, l1). |
| 805 | * @param quant_level The quantization level to use. |
| 806 | */ |
| 807 | static void quantize_luminance( |
| 808 | vfloat4 color0, |
| 809 | vfloat4 color1, |
| 810 | uint8_t output[2], |
| 811 | quant_method quant_level |
| 812 | ) { |
| 813 | float scale = 1.0f / 257.0f; |
| 814 | |
| 815 | color0 = color0 * scale; |
| 816 | color1 = color1 * scale; |
| 817 | |
| 818 | float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); |
| 819 | float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); |
| 820 | |
| 821 | if (lum0 > lum1) |
| 822 | { |
| 823 | float avg = (lum0 + lum1) * 0.5f; |
| 824 | lum0 = avg; |
| 825 | lum1 = avg; |
| 826 | } |
| 827 | |
| 828 | output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0), lum0); |
| 829 | output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1), lum1); |
| 830 | } |
| 831 | |
| 832 | /** |
| 833 | * @brief Quantize a LDR LA color. |
| 834 | * |
| 835 | * @param color0 The input unquantized color0 endpoint. |
| 836 | * @param color1 The input unquantized color1 endpoint. |
| 837 | * @param[out] output The output endpoints, returned as (l0, l1, a0, a1). |
| 838 | * @param quant_level The quantization level to use. |
| 839 | */ |
| 840 | static void quantize_luminance_alpha( |
| 841 | vfloat4 color0, |
| 842 | vfloat4 color1, |
| 843 | uint8_t output[4], |
| 844 | quant_method quant_level |
| 845 | ) { |
| 846 | float scale = 1.0f / 257.0f; |
| 847 | |
| 848 | color0 = color0 * scale; |
| 849 | color1 = color1 * scale; |
| 850 | |
| 851 | float lum0 = astc::clamp255f(hadd_rgb_s(color0) * (1.0f / 3.0f)); |
| 852 | float lum1 = astc::clamp255f(hadd_rgb_s(color1) * (1.0f / 3.0f)); |
| 853 | |
| 854 | float a0 = astc::clamp255f(color0.lane<3>()); |
| 855 | float a1 = astc::clamp255f(color1.lane<3>()); |
| 856 | |
| 857 | output[0] = quant_color(quant_level, astc::flt2int_rtn(lum0), lum0); |
| 858 | output[1] = quant_color(quant_level, astc::flt2int_rtn(lum1), lum1); |
| 859 | output[2] = quant_color(quant_level, astc::flt2int_rtn(a0), a0); |
| 860 | output[3] = quant_color(quant_level, astc::flt2int_rtn(a1), a1); |
| 861 | } |
| 862 | |
| 863 | /** |
| 864 | * @brief Quantize and unquantize a value ensuring top two bits are the same. |
| 865 | * |
| 866 | * @param quant_level The quantization level to use. |
| 867 | * @param value The input unquantized value. |
| 868 | * @param[out] quant_value The quantized value. |
| 869 | */ |
| 870 | static inline void quantize_and_unquantize_retain_top_two_bits( |
| 871 | quant_method quant_level, |
| 872 | uint8_t value, |
| 873 | uint8_t& quant_value |
| 874 | ) { |
| 875 | int perform_loop; |
| 876 | uint8_t quantval; |
| 877 | |
| 878 | do |
| 879 | { |
| 880 | quantval = quant_color(quant_level, value); |
| 881 | |
| 882 | // Perform looping if the top two bits were modified by quant/unquant |
| 883 | perform_loop = (value & 0xC0) != (quantval & 0xC0); |
| 884 | |
| 885 | if ((quantval & 0xC0) > (value & 0xC0)) |
| 886 | { |
| 887 | // Quant/unquant rounded UP so that the top two bits changed; |
| 888 | // decrement the input in hopes that this will avoid rounding up. |
| 889 | value--; |
| 890 | } |
| 891 | else if ((quantval & 0xC0) < (value & 0xC0)) |
| 892 | { |
| 893 | // Quant/unquant rounded DOWN so that the top two bits changed; |
| 894 | // decrement the input in hopes that this will avoid rounding down. |
| 895 | value--; |
| 896 | } |
| 897 | } while (perform_loop); |
| 898 | |
| 899 | quant_value = quantval; |
| 900 | } |
| 901 | |
| 902 | /** |
| 903 | * @brief Quantize and unquantize a value ensuring top four bits are the same. |
| 904 | * |
| 905 | * @param quant_level The quantization level to use. |
| 906 | * @param value The input unquantized value. |
| 907 | * @param[out] quant_value The quantized value in 0-255 range. |
| 908 | */ |
| 909 | static inline void quantize_and_unquantize_retain_top_four_bits( |
| 910 | quant_method quant_level, |
| 911 | uint8_t value, |
| 912 | uint8_t& quant_value |
| 913 | ) { |
| 914 | uint8_t perform_loop; |
| 915 | uint8_t quantval; |
| 916 | |
| 917 | do |
| 918 | { |
| 919 | quantval = quant_color(quant_level, value); |
| 920 | // Perform looping if the top four bits were modified by quant/unquant |
| 921 | perform_loop = (value & 0xF0) != (quantval & 0xF0); |
| 922 | |
| 923 | if ((quantval & 0xF0) > (value & 0xF0)) |
| 924 | { |
| 925 | // Quant/unquant rounded UP so that the top four bits changed; |
| 926 | // decrement the input value in hopes that this will avoid rounding up. |
| 927 | value--; |
| 928 | } |
| 929 | else if ((quantval & 0xF0) < (value & 0xF0)) |
| 930 | { |
| 931 | // Quant/unquant rounded DOWN so that the top four bits changed; |
| 932 | // decrement the input value in hopes that this will avoid rounding down. |
| 933 | value--; |
| 934 | } |
| 935 | } while (perform_loop); |
| 936 | |
| 937 | quant_value = quantval; |
| 938 | } |
| 939 | |
| 940 | /** |
| 941 | * @brief Quantize a HDR RGB color using RGB + offset. |
| 942 | * |
| 943 | * @param color The input unquantized color endpoint and offset. |
| 944 | * @param[out] output The output endpoints, returned as packed RGBS with some mode bits. |
| 945 | * @param quant_level The quantization level to use. |
| 946 | */ |
| 947 | static void quantize_hdr_rgbo( |
| 948 | vfloat4 color, |
| 949 | uint8_t output[4], |
| 950 | quant_method quant_level |
| 951 | ) { |
| 952 | color.set_lane<0>(color.lane<0>() + color.lane<3>()); |
| 953 | color.set_lane<1>(color.lane<1>() + color.lane<3>()); |
| 954 | color.set_lane<2>(color.lane<2>() + color.lane<3>()); |
| 955 | |
| 956 | color = clamp(0.0f, 65535.0f, color); |
| 957 | |
| 958 | vfloat4 color_bak = color; |
| 959 | |
| 960 | int majcomp; |
| 961 | if (color.lane<0>() > color.lane<1>() && color.lane<0>() > color.lane<2>()) |
| 962 | { |
| 963 | majcomp = 0; // red is largest component |
| 964 | } |
| 965 | else if (color.lane<1>() > color.lane<2>()) |
| 966 | { |
| 967 | majcomp = 1; // green is largest component |
| 968 | } |
| 969 | else |
| 970 | { |
| 971 | majcomp = 2; // blue is largest component |
| 972 | } |
| 973 | |
| 974 | // swap around the red component and the largest component. |
| 975 | switch (majcomp) |
| 976 | { |
| 977 | case 1: |
| 978 | color = color.swz<1, 0, 2, 3>(); |
| 979 | break; |
| 980 | case 2: |
| 981 | color = color.swz<2, 1, 0, 3>(); |
| 982 | break; |
| 983 | default: |
| 984 | break; |
| 985 | } |
| 986 | |
| 987 | static const int mode_bits[5][3] { |
| 988 | {11, 5, 7}, |
| 989 | {11, 6, 5}, |
| 990 | {10, 5, 8}, |
| 991 | {9, 6, 7}, |
| 992 | {8, 7, 6} |
| 993 | }; |
| 994 | |
| 995 | static const float mode_cutoffs[5][2] { |
| 996 | {1024, 4096}, |
| 997 | {2048, 1024}, |
| 998 | {2048, 16384}, |
| 999 | {8192, 16384}, |
| 1000 | {32768, 16384} |
| 1001 | }; |
| 1002 | |
| 1003 | static const float mode_rscales[5] { |
| 1004 | 32.0f, |
| 1005 | 32.0f, |
| 1006 | 64.0f, |
| 1007 | 128.0f, |
| 1008 | 256.0f, |
| 1009 | }; |
| 1010 | |
| 1011 | static const float mode_scales[5] { |
| 1012 | 1.0f / 32.0f, |
| 1013 | 1.0f / 32.0f, |
| 1014 | 1.0f / 64.0f, |
| 1015 | 1.0f / 128.0f, |
| 1016 | 1.0f / 256.0f, |
| 1017 | }; |
| 1018 | |
| 1019 | float r_base = color.lane<0>(); |
| 1020 | float g_base = color.lane<0>() - color.lane<1>() ; |
| 1021 | float b_base = color.lane<0>() - color.lane<2>() ; |
| 1022 | float s_base = color.lane<3>() ; |
| 1023 | |
| 1024 | for (int mode = 0; mode < 5; mode++) |
| 1025 | { |
| 1026 | if (g_base > mode_cutoffs[mode][0] || b_base > mode_cutoffs[mode][0] || s_base > mode_cutoffs[mode][1]) |
| 1027 | { |
| 1028 | continue; |
| 1029 | } |
| 1030 | |
| 1031 | // Encode the mode into a 4-bit vector |
| 1032 | int mode_enc = mode < 4 ? (mode | (majcomp << 2)) : (majcomp | 0xC); |
| 1033 | |
| 1034 | float mode_scale = mode_scales[mode]; |
| 1035 | float mode_rscale = mode_rscales[mode]; |
| 1036 | |
| 1037 | int gb_intcutoff = 1 << mode_bits[mode][1]; |
| 1038 | int s_intcutoff = 1 << mode_bits[mode][2]; |
| 1039 | |
| 1040 | // Quantize and unquantize R |
| 1041 | int r_intval = astc::flt2int_rtn(r_base * mode_scale); |
| 1042 | |
| 1043 | int r_lowbits = r_intval & 0x3f; |
| 1044 | |
| 1045 | r_lowbits |= (mode_enc & 3) << 6; |
| 1046 | |
| 1047 | uint8_t r_quantval; |
| 1048 | quantize_and_unquantize_retain_top_two_bits( |
| 1049 | quant_level, static_cast<uint8_t>(r_lowbits), r_quantval); |
| 1050 | |
| 1051 | r_intval = (r_intval & ~0x3f) | (r_quantval & 0x3f); |
| 1052 | float r_fval = static_cast<float>(r_intval) * mode_rscale; |
| 1053 | |
| 1054 | // Recompute G and B, then quantize and unquantize them |
| 1055 | float g_fval = r_fval - color.lane<1>() ; |
| 1056 | float b_fval = r_fval - color.lane<2>() ; |
| 1057 | |
| 1058 | g_fval = astc::clamp(g_fval, 0.0f, 65535.0f); |
| 1059 | b_fval = astc::clamp(b_fval, 0.0f, 65535.0f); |
| 1060 | |
| 1061 | int g_intval = astc::flt2int_rtn(g_fval * mode_scale); |
| 1062 | int b_intval = astc::flt2int_rtn(b_fval * mode_scale); |
| 1063 | |
| 1064 | if (g_intval >= gb_intcutoff || b_intval >= gb_intcutoff) |
| 1065 | { |
| 1066 | continue; |
| 1067 | } |
| 1068 | |
| 1069 | int g_lowbits = g_intval & 0x1f; |
| 1070 | int b_lowbits = b_intval & 0x1f; |
| 1071 | |
| 1072 | int bit0 = 0; |
| 1073 | int bit1 = 0; |
| 1074 | int bit2 = 0; |
| 1075 | int bit3 = 0; |
| 1076 | |
| 1077 | switch (mode) |
| 1078 | { |
| 1079 | case 0: |
| 1080 | case 2: |
| 1081 | bit0 = (r_intval >> 9) & 1; |
| 1082 | break; |
| 1083 | case 1: |
| 1084 | case 3: |
| 1085 | bit0 = (r_intval >> 8) & 1; |
| 1086 | break; |
| 1087 | case 4: |
| 1088 | case 5: |
| 1089 | bit0 = (g_intval >> 6) & 1; |
| 1090 | break; |
| 1091 | } |
| 1092 | |
| 1093 | switch (mode) |
| 1094 | { |
| 1095 | case 0: |
| 1096 | case 1: |
| 1097 | case 2: |
| 1098 | case 3: |
| 1099 | bit2 = (r_intval >> 7) & 1; |
| 1100 | break; |
| 1101 | case 4: |
| 1102 | case 5: |
| 1103 | bit2 = (b_intval >> 6) & 1; |
| 1104 | break; |
| 1105 | } |
| 1106 | |
| 1107 | switch (mode) |
| 1108 | { |
| 1109 | case 0: |
| 1110 | case 2: |
| 1111 | bit1 = (r_intval >> 8) & 1; |
| 1112 | break; |
| 1113 | case 1: |
| 1114 | case 3: |
| 1115 | case 4: |
| 1116 | case 5: |
| 1117 | bit1 = (g_intval >> 5) & 1; |
| 1118 | break; |
| 1119 | } |
| 1120 | |
| 1121 | switch (mode) |
| 1122 | { |
| 1123 | case 0: |
| 1124 | bit3 = (r_intval >> 10) & 1; |
| 1125 | break; |
| 1126 | case 2: |
| 1127 | bit3 = (r_intval >> 6) & 1; |
| 1128 | break; |
| 1129 | case 1: |
| 1130 | case 3: |
| 1131 | case 4: |
| 1132 | case 5: |
| 1133 | bit3 = (b_intval >> 5) & 1; |
| 1134 | break; |
| 1135 | } |
| 1136 | |
| 1137 | g_lowbits |= (mode_enc & 0x4) << 5; |
| 1138 | b_lowbits |= (mode_enc & 0x8) << 4; |
| 1139 | |
| 1140 | g_lowbits |= bit0 << 6; |
| 1141 | g_lowbits |= bit1 << 5; |
| 1142 | b_lowbits |= bit2 << 6; |
| 1143 | b_lowbits |= bit3 << 5; |
| 1144 | |
| 1145 | uint8_t g_quantval; |
| 1146 | uint8_t b_quantval; |
| 1147 | |
| 1148 | quantize_and_unquantize_retain_top_four_bits( |
| 1149 | quant_level, static_cast<uint8_t>(g_lowbits), g_quantval); |
| 1150 | quantize_and_unquantize_retain_top_four_bits( |
| 1151 | quant_level, static_cast<uint8_t>(b_lowbits), b_quantval); |
| 1152 | |
| 1153 | g_intval = (g_intval & ~0x1f) | (g_quantval & 0x1f); |
| 1154 | b_intval = (b_intval & ~0x1f) | (b_quantval & 0x1f); |
| 1155 | |
| 1156 | g_fval = static_cast<float>(g_intval) * mode_rscale; |
| 1157 | b_fval = static_cast<float>(b_intval) * mode_rscale; |
| 1158 | |
| 1159 | // Recompute the scale value, based on the errors introduced to red, green and blue |
| 1160 | |
| 1161 | // If the error is positive, then the R,G,B errors combined have raised the color |
| 1162 | // value overall; as such, the scale value needs to be increased. |
| 1163 | float rgb_errorsum = (r_fval - color.lane<0>() ) + (r_fval - g_fval - color.lane<1>() ) + (r_fval - b_fval - color.lane<2>() ); |
| 1164 | |
| 1165 | float s_fval = s_base + rgb_errorsum * (1.0f / 3.0f); |
| 1166 | s_fval = astc::clamp(s_fval, 0.0f, 1e9f); |
| 1167 | |
| 1168 | int s_intval = astc::flt2int_rtn(s_fval * mode_scale); |
| 1169 | |
| 1170 | if (s_intval >= s_intcutoff) |
| 1171 | { |
| 1172 | continue; |
| 1173 | } |
| 1174 | |
| 1175 | int s_lowbits = s_intval & 0x1f; |
| 1176 | |
| 1177 | int bit4; |
| 1178 | int bit5; |
| 1179 | int bit6; |
| 1180 | switch (mode) |
| 1181 | { |
| 1182 | case 1: |
| 1183 | bit6 = (r_intval >> 9) & 1; |
| 1184 | break; |
| 1185 | default: |
| 1186 | bit6 = (s_intval >> 5) & 1; |
| 1187 | break; |
| 1188 | } |
| 1189 | |
| 1190 | switch (mode) |
| 1191 | { |
| 1192 | case 4: |
| 1193 | bit5 = (r_intval >> 7) & 1; |
| 1194 | break; |
| 1195 | case 1: |
| 1196 | bit5 = (r_intval >> 10) & 1; |
| 1197 | break; |
| 1198 | default: |
| 1199 | bit5 = (s_intval >> 6) & 1; |
| 1200 | break; |
| 1201 | } |
| 1202 | |
| 1203 | switch (mode) |
| 1204 | { |
| 1205 | case 2: |
| 1206 | bit4 = (s_intval >> 7) & 1; |
| 1207 | break; |
| 1208 | default: |
| 1209 | bit4 = (r_intval >> 6) & 1; |
| 1210 | break; |
| 1211 | } |
| 1212 | |
| 1213 | s_lowbits |= bit6 << 5; |
| 1214 | s_lowbits |= bit5 << 6; |
| 1215 | s_lowbits |= bit4 << 7; |
| 1216 | |
| 1217 | uint8_t s_quantval; |
| 1218 | |
| 1219 | quantize_and_unquantize_retain_top_four_bits( |
| 1220 | quant_level, static_cast<uint8_t>(s_lowbits), s_quantval); |
| 1221 | |
| 1222 | output[0] = r_quantval; |
| 1223 | output[1] = g_quantval; |
| 1224 | output[2] = b_quantval; |
| 1225 | output[3] = s_quantval; |
| 1226 | return; |
| 1227 | } |
| 1228 | |
| 1229 | // Failed to encode any of the modes above? In that case encode using mode #5 |
| 1230 | float vals[4]; |
| 1231 | vals[0] = color_bak.lane<0>(); |
| 1232 | vals[1] = color_bak.lane<1>(); |
| 1233 | vals[2] = color_bak.lane<2>(); |
| 1234 | vals[3] = color_bak.lane<3>(); |
| 1235 | |
| 1236 | int ivals[4]; |
| 1237 | float cvals[3]; |
| 1238 | |
| 1239 | for (int i = 0; i < 3; i++) |
| 1240 | { |
| 1241 | vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); |
| 1242 | ivals[i] = astc::flt2int_rtn(vals[i] * (1.0f / 512.0f)); |
| 1243 | cvals[i] = static_cast<float>(ivals[i]) * 512.0f; |
| 1244 | } |
| 1245 | |
| 1246 | float rgb_errorsum = (cvals[0] - vals[0]) + (cvals[1] - vals[1]) + (cvals[2] - vals[2]); |
| 1247 | vals[3] += rgb_errorsum * (1.0f / 3.0f); |
| 1248 | |
| 1249 | vals[3] = astc::clamp(vals[3], 0.0f, 65020.0f); |
| 1250 | ivals[3] = astc::flt2int_rtn(vals[3] * (1.0f / 512.0f)); |
| 1251 | |
| 1252 | int encvals[4]; |
| 1253 | encvals[0] = (ivals[0] & 0x3f) | 0xC0; |
| 1254 | encvals[1] = (ivals[1] & 0x7f) | 0x80; |
| 1255 | encvals[2] = (ivals[2] & 0x7f) | 0x80; |
| 1256 | encvals[3] = (ivals[3] & 0x7f) | ((ivals[0] & 0x40) << 1); |
| 1257 | |
| 1258 | for (uint8_t i = 0; i < 4; i++) |
| 1259 | { |
| 1260 | quantize_and_unquantize_retain_top_four_bits( |
| 1261 | quant_level, static_cast<uint8_t>(encvals[i]), output[i]); |
| 1262 | } |
| 1263 | |
| 1264 | return; |
| 1265 | } |
| 1266 | |
| 1267 | /** |
| 1268 | * @brief Quantize a HDR RGB color using direct RGB encoding. |
| 1269 | * |
| 1270 | * @param color0 The input unquantized color0 endpoint. |
| 1271 | * @param color1 The input unquantized color1 endpoint. |
| 1272 | * @param[out] output The output endpoints, returned as packed RGB+RGB pairs with mode bits. |
| 1273 | * @param quant_level The quantization level to use. |
| 1274 | */ |
| 1275 | static void quantize_hdr_rgb( |
| 1276 | vfloat4 color0, |
| 1277 | vfloat4 color1, |
| 1278 | uint8_t output[6], |
| 1279 | quant_method quant_level |
| 1280 | ) { |
| 1281 | // Note: color*.lane<3> is not used so we can ignore it |
| 1282 | color0 = clamp(0.0f, 65535.0f, color0); |
| 1283 | color1 = clamp(0.0f, 65535.0f, color1); |
| 1284 | |
| 1285 | vfloat4 color0_bak = color0; |
| 1286 | vfloat4 color1_bak = color1; |
| 1287 | |
| 1288 | int majcomp; |
| 1289 | if (color1.lane<0>() > color1.lane<1>() && color1.lane<0>() > color1.lane<2>()) |
| 1290 | { |
| 1291 | majcomp = 0; |
| 1292 | } |
| 1293 | else if (color1.lane<1>() > color1.lane<2>()) |
| 1294 | { |
| 1295 | majcomp = 1; |
| 1296 | } |
| 1297 | else |
| 1298 | { |
| 1299 | majcomp = 2; |
| 1300 | } |
| 1301 | |
| 1302 | // Swizzle the components |
| 1303 | switch (majcomp) |
| 1304 | { |
| 1305 | case 1: // red-green swap |
| 1306 | color0 = color0.swz<1, 0, 2, 3>(); |
| 1307 | color1 = color1.swz<1, 0, 2, 3>(); |
| 1308 | break; |
| 1309 | case 2: // red-blue swap |
| 1310 | color0 = color0.swz<2, 1, 0, 3>(); |
| 1311 | color1 = color1.swz<2, 1, 0, 3>(); |
| 1312 | break; |
| 1313 | default: |
| 1314 | break; |
| 1315 | } |
| 1316 | |
| 1317 | float a_base = color1.lane<0>(); |
| 1318 | a_base = astc::clamp(a_base, 0.0f, 65535.0f); |
| 1319 | |
| 1320 | float b0_base = a_base - color1.lane<1>(); |
| 1321 | float b1_base = a_base - color1.lane<2>(); |
| 1322 | float c_base = a_base - color0.lane<0>(); |
| 1323 | float d0_base = a_base - b0_base - c_base - color0.lane<1>(); |
| 1324 | float d1_base = a_base - b1_base - c_base - color0.lane<2>(); |
| 1325 | |
| 1326 | // Number of bits in the various fields in the various modes |
| 1327 | static const int mode_bits[8][4] { |
| 1328 | {9, 7, 6, 7}, |
| 1329 | {9, 8, 6, 6}, |
| 1330 | {10, 6, 7, 7}, |
| 1331 | {10, 7, 7, 6}, |
| 1332 | {11, 8, 6, 5}, |
| 1333 | {11, 6, 8, 6}, |
| 1334 | {12, 7, 7, 5}, |
| 1335 | {12, 6, 7, 6} |
| 1336 | }; |
| 1337 | |
| 1338 | // Cutoffs to use for the computed values of a,b,c,d, assuming the |
| 1339 | // range 0..65535 are LNS values corresponding to fp16. |
| 1340 | static const float mode_cutoffs[8][4] { |
| 1341 | {16384, 8192, 8192, 8}, // mode 0: 9,7,6,7 |
| 1342 | {32768, 8192, 4096, 8}, // mode 1: 9,8,6,6 |
| 1343 | {4096, 8192, 4096, 4}, // mode 2: 10,6,7,7 |
| 1344 | {8192, 8192, 2048, 4}, // mode 3: 10,7,7,6 |
| 1345 | {8192, 2048, 512, 2}, // mode 4: 11,8,6,5 |
| 1346 | {2048, 8192, 1024, 2}, // mode 5: 11,6,8,6 |
| 1347 | {2048, 2048, 256, 1}, // mode 6: 12,7,7,5 |
| 1348 | {1024, 2048, 512, 1}, // mode 7: 12,6,7,6 |
| 1349 | }; |
| 1350 | |
| 1351 | static const float mode_scales[8] { |
| 1352 | 1.0f / 128.0f, |
| 1353 | 1.0f / 128.0f, |
| 1354 | 1.0f / 64.0f, |
| 1355 | 1.0f / 64.0f, |
| 1356 | 1.0f / 32.0f, |
| 1357 | 1.0f / 32.0f, |
| 1358 | 1.0f / 16.0f, |
| 1359 | 1.0f / 16.0f, |
| 1360 | }; |
| 1361 | |
| 1362 | // Scaling factors when going from what was encoded in the mode to 16 bits. |
| 1363 | static const float mode_rscales[8] { |
| 1364 | 128.0f, |
| 1365 | 128.0f, |
| 1366 | 64.0f, |
| 1367 | 64.0f, |
| 1368 | 32.0f, |
| 1369 | 32.0f, |
| 1370 | 16.0f, |
| 1371 | 16.0f |
| 1372 | }; |
| 1373 | |
| 1374 | // Try modes one by one, with the highest-precision mode first. |
| 1375 | for (int mode = 7; mode >= 0; mode--) |
| 1376 | { |
| 1377 | // For each mode, test if we can in fact accommodate the computed b, c, and d values. |
| 1378 | // If we clearly can't, then we skip to the next mode. |
| 1379 | |
| 1380 | float b_cutoff = mode_cutoffs[mode][0]; |
| 1381 | float c_cutoff = mode_cutoffs[mode][1]; |
| 1382 | float d_cutoff = mode_cutoffs[mode][2]; |
| 1383 | |
| 1384 | if (b0_base > b_cutoff || b1_base > b_cutoff || c_base > c_cutoff || fabsf(d0_base) > d_cutoff || fabsf(d1_base) > d_cutoff) |
| 1385 | { |
| 1386 | continue; |
| 1387 | } |
| 1388 | |
| 1389 | float mode_scale = mode_scales[mode]; |
| 1390 | float mode_rscale = mode_rscales[mode]; |
| 1391 | |
| 1392 | int b_intcutoff = 1 << mode_bits[mode][1]; |
| 1393 | int c_intcutoff = 1 << mode_bits[mode][2]; |
| 1394 | int d_intcutoff = 1 << (mode_bits[mode][3] - 1); |
| 1395 | |
| 1396 | // Quantize and unquantize A, with the assumption that its high bits can be handled safely. |
| 1397 | int a_intval = astc::flt2int_rtn(a_base * mode_scale); |
| 1398 | int a_lowbits = a_intval & 0xFF; |
| 1399 | |
| 1400 | int a_quantval = quant_color(quant_level, a_lowbits); |
| 1401 | int a_uquantval = a_quantval; |
| 1402 | a_intval = (a_intval & ~0xFF) | a_uquantval; |
| 1403 | float a_fval = static_cast<float>(a_intval) * mode_rscale; |
| 1404 | |
| 1405 | // Recompute C, then quantize and unquantize it |
| 1406 | float c_fval = a_fval - color0.lane<0>(); |
| 1407 | c_fval = astc::clamp(c_fval, 0.0f, 65535.0f); |
| 1408 | |
| 1409 | int c_intval = astc::flt2int_rtn(c_fval * mode_scale); |
| 1410 | |
| 1411 | if (c_intval >= c_intcutoff) |
| 1412 | { |
| 1413 | continue; |
| 1414 | } |
| 1415 | |
| 1416 | int c_lowbits = c_intval & 0x3f; |
| 1417 | |
| 1418 | c_lowbits |= (mode & 1) << 7; |
| 1419 | c_lowbits |= (a_intval & 0x100) >> 2; |
| 1420 | |
| 1421 | uint8_t c_quantval; |
| 1422 | |
| 1423 | quantize_and_unquantize_retain_top_two_bits( |
| 1424 | quant_level, static_cast<uint8_t>(c_lowbits), c_quantval); |
| 1425 | |
| 1426 | c_intval = (c_intval & ~0x3F) | (c_quantval & 0x3F); |
| 1427 | c_fval = static_cast<float>(c_intval) * mode_rscale; |
| 1428 | |
| 1429 | // Recompute B0 and B1, then quantize and unquantize them |
| 1430 | float b0_fval = a_fval - color1.lane<1>(); |
| 1431 | float b1_fval = a_fval - color1.lane<2>(); |
| 1432 | |
| 1433 | b0_fval = astc::clamp(b0_fval, 0.0f, 65535.0f); |
| 1434 | b1_fval = astc::clamp(b1_fval, 0.0f, 65535.0f); |
| 1435 | int b0_intval = astc::flt2int_rtn(b0_fval * mode_scale); |
| 1436 | int b1_intval = astc::flt2int_rtn(b1_fval * mode_scale); |
| 1437 | |
| 1438 | if (b0_intval >= b_intcutoff || b1_intval >= b_intcutoff) |
| 1439 | { |
| 1440 | continue; |
| 1441 | } |
| 1442 | |
| 1443 | int b0_lowbits = b0_intval & 0x3f; |
| 1444 | int b1_lowbits = b1_intval & 0x3f; |
| 1445 | |
| 1446 | int bit0 = 0; |
| 1447 | int bit1 = 0; |
| 1448 | switch (mode) |
| 1449 | { |
| 1450 | case 0: |
| 1451 | case 1: |
| 1452 | case 3: |
| 1453 | case 4: |
| 1454 | case 6: |
| 1455 | bit0 = (b0_intval >> 6) & 1; |
| 1456 | break; |
| 1457 | case 2: |
| 1458 | case 5: |
| 1459 | case 7: |
| 1460 | bit0 = (a_intval >> 9) & 1; |
| 1461 | break; |
| 1462 | } |
| 1463 | |
| 1464 | switch (mode) |
| 1465 | { |
| 1466 | case 0: |
| 1467 | case 1: |
| 1468 | case 3: |
| 1469 | case 4: |
| 1470 | case 6: |
| 1471 | bit1 = (b1_intval >> 6) & 1; |
| 1472 | break; |
| 1473 | case 2: |
| 1474 | bit1 = (c_intval >> 6) & 1; |
| 1475 | break; |
| 1476 | case 5: |
| 1477 | case 7: |
| 1478 | bit1 = (a_intval >> 10) & 1; |
| 1479 | break; |
| 1480 | } |
| 1481 | |
| 1482 | b0_lowbits |= bit0 << 6; |
| 1483 | b1_lowbits |= bit1 << 6; |
| 1484 | |
| 1485 | b0_lowbits |= ((mode >> 1) & 1) << 7; |
| 1486 | b1_lowbits |= ((mode >> 2) & 1) << 7; |
| 1487 | |
| 1488 | uint8_t b0_quantval; |
| 1489 | uint8_t b1_quantval; |
| 1490 | |
| 1491 | quantize_and_unquantize_retain_top_two_bits( |
| 1492 | quant_level, static_cast<uint8_t>(b0_lowbits), b0_quantval); |
| 1493 | quantize_and_unquantize_retain_top_two_bits( |
| 1494 | quant_level, static_cast<uint8_t>(b1_lowbits), b1_quantval); |
| 1495 | |
| 1496 | b0_intval = (b0_intval & ~0x3f) | (b0_quantval & 0x3f); |
| 1497 | b1_intval = (b1_intval & ~0x3f) | (b1_quantval & 0x3f); |
| 1498 | b0_fval = static_cast<float>(b0_intval) * mode_rscale; |
| 1499 | b1_fval = static_cast<float>(b1_intval) * mode_rscale; |
| 1500 | |
| 1501 | // Recompute D0 and D1, then quantize and unquantize them |
| 1502 | float d0_fval = a_fval - b0_fval - c_fval - color0.lane<1>(); |
| 1503 | float d1_fval = a_fval - b1_fval - c_fval - color0.lane<2>(); |
| 1504 | |
| 1505 | d0_fval = astc::clamp(d0_fval, -65535.0f, 65535.0f); |
| 1506 | d1_fval = astc::clamp(d1_fval, -65535.0f, 65535.0f); |
| 1507 | |
| 1508 | int d0_intval = astc::flt2int_rtn(d0_fval * mode_scale); |
| 1509 | int d1_intval = astc::flt2int_rtn(d1_fval * mode_scale); |
| 1510 | |
| 1511 | if (abs(d0_intval) >= d_intcutoff || abs(d1_intval) >= d_intcutoff) |
| 1512 | { |
| 1513 | continue; |
| 1514 | } |
| 1515 | |
| 1516 | int d0_lowbits = d0_intval & 0x1f; |
| 1517 | int d1_lowbits = d1_intval & 0x1f; |
| 1518 | |
| 1519 | int bit2 = 0; |
| 1520 | int bit3 = 0; |
| 1521 | int bit4; |
| 1522 | int bit5; |
| 1523 | switch (mode) |
| 1524 | { |
| 1525 | case 0: |
| 1526 | case 2: |
| 1527 | bit2 = (d0_intval >> 6) & 1; |
| 1528 | break; |
| 1529 | case 1: |
| 1530 | case 4: |
| 1531 | bit2 = (b0_intval >> 7) & 1; |
| 1532 | break; |
| 1533 | case 3: |
| 1534 | bit2 = (a_intval >> 9) & 1; |
| 1535 | break; |
| 1536 | case 5: |
| 1537 | bit2 = (c_intval >> 7) & 1; |
| 1538 | break; |
| 1539 | case 6: |
| 1540 | case 7: |
| 1541 | bit2 = (a_intval >> 11) & 1; |
| 1542 | break; |
| 1543 | } |
| 1544 | switch (mode) |
| 1545 | { |
| 1546 | case 0: |
| 1547 | case 2: |
| 1548 | bit3 = (d1_intval >> 6) & 1; |
| 1549 | break; |
| 1550 | case 1: |
| 1551 | case 4: |
| 1552 | bit3 = (b1_intval >> 7) & 1; |
| 1553 | break; |
| 1554 | case 3: |
| 1555 | case 5: |
| 1556 | case 6: |
| 1557 | case 7: |
| 1558 | bit3 = (c_intval >> 6) & 1; |
| 1559 | break; |
| 1560 | } |
| 1561 | |
| 1562 | switch (mode) |
| 1563 | { |
| 1564 | case 4: |
| 1565 | case 6: |
| 1566 | bit4 = (a_intval >> 9) & 1; |
| 1567 | bit5 = (a_intval >> 10) & 1; |
| 1568 | break; |
| 1569 | default: |
| 1570 | bit4 = (d0_intval >> 5) & 1; |
| 1571 | bit5 = (d1_intval >> 5) & 1; |
| 1572 | break; |
| 1573 | } |
| 1574 | |
| 1575 | d0_lowbits |= bit2 << 6; |
| 1576 | d1_lowbits |= bit3 << 6; |
| 1577 | d0_lowbits |= bit4 << 5; |
| 1578 | d1_lowbits |= bit5 << 5; |
| 1579 | |
| 1580 | d0_lowbits |= (majcomp & 1) << 7; |
| 1581 | d1_lowbits |= ((majcomp >> 1) & 1) << 7; |
| 1582 | |
| 1583 | uint8_t d0_quantval; |
| 1584 | uint8_t d1_quantval; |
| 1585 | |
| 1586 | quantize_and_unquantize_retain_top_four_bits( |
| 1587 | quant_level, static_cast<uint8_t>(d0_lowbits), d0_quantval); |
| 1588 | quantize_and_unquantize_retain_top_four_bits( |
| 1589 | quant_level, static_cast<uint8_t>(d1_lowbits), d1_quantval); |
| 1590 | |
| 1591 | output[0] = static_cast<uint8_t>(a_quantval); |
| 1592 | output[1] = c_quantval; |
| 1593 | output[2] = b0_quantval; |
| 1594 | output[3] = b1_quantval; |
| 1595 | output[4] = d0_quantval; |
| 1596 | output[5] = d1_quantval; |
| 1597 | return; |
| 1598 | } |
| 1599 | |
| 1600 | // If neither of the modes fit we will use a flat representation for storing data, using 8 bits |
| 1601 | // for red and green, and 7 bits for blue. This gives color accuracy roughly similar to LDR |
| 1602 | // 4:4:3 which is not at all great but usable. This representation is used if the light color is |
| 1603 | // more than 4x the color value of the dark color. |
| 1604 | float vals[6]; |
| 1605 | vals[0] = color0_bak.lane<0>(); |
| 1606 | vals[1] = color1_bak.lane<0>(); |
| 1607 | vals[2] = color0_bak.lane<1>(); |
| 1608 | vals[3] = color1_bak.lane<1>(); |
| 1609 | vals[4] = color0_bak.lane<2>(); |
| 1610 | vals[5] = color1_bak.lane<2>(); |
| 1611 | |
| 1612 | for (int i = 0; i < 6; i++) |
| 1613 | { |
| 1614 | vals[i] = astc::clamp(vals[i], 0.0f, 65020.0f); |
| 1615 | } |
| 1616 | |
| 1617 | for (int i = 0; i < 4; i++) |
| 1618 | { |
| 1619 | int idx = astc::flt2int_rtn(vals[i] * 1.0f / 256.0f); |
| 1620 | output[i] = quant_color(quant_level, idx); |
| 1621 | } |
| 1622 | |
| 1623 | for (int i = 4; i < 6; i++) |
| 1624 | { |
| 1625 | int idx = astc::flt2int_rtn(vals[i] * 1.0f / 512.0f) + 128; |
| 1626 | quantize_and_unquantize_retain_top_two_bits( |
| 1627 | quant_level, static_cast<uint8_t>(idx), output[i]); |
| 1628 | } |
| 1629 | |
| 1630 | return; |
| 1631 | } |
| 1632 | |
| 1633 | /** |
| 1634 | * @brief Quantize a HDR RGB + LDR A color using direct RGBA encoding. |
| 1635 | * |
| 1636 | * @param color0 The input unquantized color0 endpoint. |
| 1637 | * @param color1 The input unquantized color1 endpoint. |
| 1638 | * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. |
| 1639 | * @param quant_level The quantization level to use. |
| 1640 | */ |
| 1641 | static void quantize_hdr_rgb_ldr_alpha( |
| 1642 | vfloat4 color0, |
| 1643 | vfloat4 color1, |
| 1644 | uint8_t output[8], |
| 1645 | quant_method quant_level |
| 1646 | ) { |
| 1647 | float scale = 1.0f / 257.0f; |
| 1648 | |
| 1649 | float a0 = astc::clamp255f(color0.lane<3>() * scale); |
| 1650 | float a1 = astc::clamp255f(color1.lane<3>() * scale); |
| 1651 | |
| 1652 | output[6] = quant_color(quant_level, astc::flt2int_rtn(a0), a0); |
| 1653 | output[7] = quant_color(quant_level, astc::flt2int_rtn(a1), a1); |
| 1654 | |
| 1655 | quantize_hdr_rgb(color0, color1, output, quant_level); |
| 1656 | } |
| 1657 | |
| 1658 | /** |
| 1659 | * @brief Quantize a HDR L color using the large range encoding. |
| 1660 | * |
| 1661 | * @param color0 The input unquantized color0 endpoint. |
| 1662 | * @param color1 The input unquantized color1 endpoint. |
| 1663 | * @param[out] output The output endpoints, returned as packed (l0, l1). |
| 1664 | * @param quant_level The quantization level to use. |
| 1665 | */ |
| 1666 | static void quantize_hdr_luminance_large_range( |
| 1667 | vfloat4 color0, |
| 1668 | vfloat4 color1, |
| 1669 | uint8_t output[2], |
| 1670 | quant_method quant_level |
| 1671 | ) { |
| 1672 | float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); |
| 1673 | float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); |
| 1674 | |
| 1675 | if (lum1 < lum0) |
| 1676 | { |
| 1677 | float avg = (lum0 + lum1) * 0.5f; |
| 1678 | lum0 = avg; |
| 1679 | lum1 = avg; |
| 1680 | } |
| 1681 | |
| 1682 | int ilum1 = astc::flt2int_rtn(lum1); |
| 1683 | int ilum0 = astc::flt2int_rtn(lum0); |
| 1684 | |
| 1685 | // Find the closest encodable point in the upper half of the code-point space |
| 1686 | int upper_v0 = (ilum0 + 128) >> 8; |
| 1687 | int upper_v1 = (ilum1 + 128) >> 8; |
| 1688 | |
| 1689 | upper_v0 = astc::clamp(upper_v0, 0, 255); |
| 1690 | upper_v1 = astc::clamp(upper_v1, 0, 255); |
| 1691 | |
| 1692 | // Find the closest encodable point in the lower half of the code-point space |
| 1693 | int lower_v0 = (ilum1 + 256) >> 8; |
| 1694 | int lower_v1 = ilum0 >> 8; |
| 1695 | |
| 1696 | lower_v0 = astc::clamp(lower_v0, 0, 255); |
| 1697 | lower_v1 = astc::clamp(lower_v1, 0, 255); |
| 1698 | |
| 1699 | // Determine the distance between the point in code-point space and the input value |
| 1700 | int upper0_dec = upper_v0 << 8; |
| 1701 | int upper1_dec = upper_v1 << 8; |
| 1702 | int lower0_dec = (lower_v1 << 8) + 128; |
| 1703 | int lower1_dec = (lower_v0 << 8) - 128; |
| 1704 | |
| 1705 | int upper0_diff = upper0_dec - ilum0; |
| 1706 | int upper1_diff = upper1_dec - ilum1; |
| 1707 | int lower0_diff = lower0_dec - ilum0; |
| 1708 | int lower1_diff = lower1_dec - ilum1; |
| 1709 | |
| 1710 | int upper_error = (upper0_diff * upper0_diff) + (upper1_diff * upper1_diff); |
| 1711 | int lower_error = (lower0_diff * lower0_diff) + (lower1_diff * lower1_diff); |
| 1712 | |
| 1713 | int v0, v1; |
| 1714 | if (upper_error < lower_error) |
| 1715 | { |
| 1716 | v0 = upper_v0; |
| 1717 | v1 = upper_v1; |
| 1718 | } |
| 1719 | else |
| 1720 | { |
| 1721 | v0 = lower_v0; |
| 1722 | v1 = lower_v1; |
| 1723 | } |
| 1724 | |
| 1725 | // OK; encode |
| 1726 | output[0] = quant_color(quant_level, v0); |
| 1727 | output[1] = quant_color(quant_level, v1); |
| 1728 | } |
| 1729 | |
| 1730 | /** |
| 1731 | * @brief Quantize a HDR L color using the small range encoding. |
| 1732 | * |
| 1733 | * @param color0 The input unquantized color0 endpoint. |
| 1734 | * @param color1 The input unquantized color1 endpoint. |
| 1735 | * @param[out] output The output endpoints, returned as packed (l0, l1) with mode bits. |
| 1736 | * @param quant_level The quantization level to use. |
| 1737 | * |
| 1738 | * @return Returns @c false on failure, @c true on success. |
| 1739 | */ |
| 1740 | static bool try_quantize_hdr_luminance_small_range( |
| 1741 | vfloat4 color0, |
| 1742 | vfloat4 color1, |
| 1743 | uint8_t output[2], |
| 1744 | quant_method quant_level |
| 1745 | ) { |
| 1746 | float lum0 = hadd_rgb_s(color0) * (1.0f / 3.0f); |
| 1747 | float lum1 = hadd_rgb_s(color1) * (1.0f / 3.0f); |
| 1748 | |
| 1749 | if (lum1 < lum0) |
| 1750 | { |
| 1751 | float avg = (lum0 + lum1) * 0.5f; |
| 1752 | lum0 = avg; |
| 1753 | lum1 = avg; |
| 1754 | } |
| 1755 | |
| 1756 | int ilum1 = astc::flt2int_rtn(lum1); |
| 1757 | int ilum0 = astc::flt2int_rtn(lum0); |
| 1758 | |
| 1759 | // Difference of more than a factor-of-2 results in immediate failure |
| 1760 | if (ilum1 - ilum0 > 2048) |
| 1761 | { |
| 1762 | return false; |
| 1763 | } |
| 1764 | |
| 1765 | int lowval, highval, diffval; |
| 1766 | int v0, v1; |
| 1767 | int v0e, v1e; |
| 1768 | int v0d, v1d; |
| 1769 | |
| 1770 | // Try to encode the high-precision submode |
| 1771 | lowval = (ilum0 + 16) >> 5; |
| 1772 | highval = (ilum1 + 16) >> 5; |
| 1773 | |
| 1774 | lowval = astc::clamp(lowval, 0, 2047); |
| 1775 | highval = astc::clamp(highval, 0, 2047); |
| 1776 | |
| 1777 | v0 = lowval & 0x7F; |
| 1778 | v0e = quant_color(quant_level, v0); |
| 1779 | v0d = v0e; |
| 1780 | |
| 1781 | if (v0d < 0x80) |
| 1782 | { |
| 1783 | lowval = (lowval & ~0x7F) | v0d; |
| 1784 | diffval = highval - lowval; |
| 1785 | if (diffval >= 0 && diffval <= 15) |
| 1786 | { |
| 1787 | v1 = ((lowval >> 3) & 0xF0) | diffval; |
| 1788 | v1e = quant_color(quant_level, v1); |
| 1789 | v1d = v1e; |
| 1790 | if ((v1d & 0xF0) == (v1 & 0xF0)) |
| 1791 | { |
| 1792 | output[0] = static_cast<uint8_t>(v0e); |
| 1793 | output[1] = static_cast<uint8_t>(v1e); |
| 1794 | return true; |
| 1795 | } |
| 1796 | } |
| 1797 | } |
| 1798 | |
| 1799 | // Try to encode the low-precision submode |
| 1800 | lowval = (ilum0 + 32) >> 6; |
| 1801 | highval = (ilum1 + 32) >> 6; |
| 1802 | |
| 1803 | lowval = astc::clamp(lowval, 0, 1023); |
| 1804 | highval = astc::clamp(highval, 0, 1023); |
| 1805 | |
| 1806 | v0 = (lowval & 0x7F) | 0x80; |
| 1807 | v0e = quant_color(quant_level, v0); |
| 1808 | v0d = v0e; |
| 1809 | if ((v0d & 0x80) == 0) |
| 1810 | { |
| 1811 | return false; |
| 1812 | } |
| 1813 | |
| 1814 | lowval = (lowval & ~0x7F) | (v0d & 0x7F); |
| 1815 | diffval = highval - lowval; |
| 1816 | if (diffval < 0 || diffval > 31) |
| 1817 | { |
| 1818 | return false; |
| 1819 | } |
| 1820 | |
| 1821 | v1 = ((lowval >> 2) & 0xE0) | diffval; |
| 1822 | v1e = quant_color(quant_level, v1); |
| 1823 | v1d = v1e; |
| 1824 | if ((v1d & 0xE0) != (v1 & 0xE0)) |
| 1825 | { |
| 1826 | return false; |
| 1827 | } |
| 1828 | |
| 1829 | output[0] = static_cast<uint8_t>(v0e); |
| 1830 | output[1] = static_cast<uint8_t>(v1e); |
| 1831 | return true; |
| 1832 | } |
| 1833 | |
| 1834 | /** |
| 1835 | * @brief Quantize a HDR A color using either delta or direct RGBA encoding. |
| 1836 | * |
| 1837 | * @param alpha0 The input unquantized color0 endpoint. |
| 1838 | * @param alpha1 The input unquantized color1 endpoint. |
| 1839 | * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. |
| 1840 | * @param quant_level The quantization level to use. |
| 1841 | */ |
| 1842 | static void quantize_hdr_alpha( |
| 1843 | float alpha0, |
| 1844 | float alpha1, |
| 1845 | uint8_t output[2], |
| 1846 | quant_method quant_level |
| 1847 | ) { |
| 1848 | alpha0 = astc::clamp(alpha0, 0.0f, 65280.0f); |
| 1849 | alpha1 = astc::clamp(alpha1, 0.0f, 65280.0f); |
| 1850 | |
| 1851 | int ialpha0 = astc::flt2int_rtn(alpha0); |
| 1852 | int ialpha1 = astc::flt2int_rtn(alpha1); |
| 1853 | |
| 1854 | int val0, val1, diffval; |
| 1855 | int v6, v7; |
| 1856 | int v6e, v7e; |
| 1857 | int v6d, v7d; |
| 1858 | |
| 1859 | // Try to encode one of the delta submodes, in decreasing-precision order |
| 1860 | for (int i = 2; i >= 0; i--) |
| 1861 | { |
| 1862 | val0 = (ialpha0 + (128 >> i)) >> (8 - i); |
| 1863 | val1 = (ialpha1 + (128 >> i)) >> (8 - i); |
| 1864 | |
| 1865 | v6 = (val0 & 0x7F) | ((i & 1) << 7); |
| 1866 | v6e = quant_color(quant_level, v6); |
| 1867 | v6d = v6e; |
| 1868 | |
| 1869 | if ((v6 ^ v6d) & 0x80) |
| 1870 | { |
| 1871 | continue; |
| 1872 | } |
| 1873 | |
| 1874 | val0 = (val0 & ~0x7f) | (v6d & 0x7f); |
| 1875 | diffval = val1 - val0; |
| 1876 | int cutoff = 32 >> i; |
| 1877 | int mask = 2 * cutoff - 1; |
| 1878 | |
| 1879 | if (diffval < -cutoff || diffval >= cutoff) |
| 1880 | { |
| 1881 | continue; |
| 1882 | } |
| 1883 | |
| 1884 | v7 = ((i & 2) << 6) | ((val0 >> 7) << (6 - i)) | (diffval & mask); |
| 1885 | v7e = quant_color(quant_level, v7); |
| 1886 | v7d = v7e; |
| 1887 | |
| 1888 | static const int testbits[3] { 0xE0, 0xF0, 0xF8 }; |
| 1889 | |
| 1890 | if ((v7 ^ v7d) & testbits[i]) |
| 1891 | { |
| 1892 | continue; |
| 1893 | } |
| 1894 | |
| 1895 | output[0] = static_cast<uint8_t>(v6e); |
| 1896 | output[1] = static_cast<uint8_t>(v7e); |
| 1897 | return; |
| 1898 | } |
| 1899 | |
| 1900 | // Could not encode any of the delta modes; instead encode a flat value |
| 1901 | val0 = (ialpha0 + 256) >> 9; |
| 1902 | val1 = (ialpha1 + 256) >> 9; |
| 1903 | v6 = val0 | 0x80; |
| 1904 | v7 = val1 | 0x80; |
| 1905 | |
| 1906 | output[0] = quant_color(quant_level, v6); |
| 1907 | output[1] = quant_color(quant_level, v7); |
| 1908 | |
| 1909 | return; |
| 1910 | } |
| 1911 | |
| 1912 | /** |
| 1913 | * @brief Quantize a HDR RGBA color using either delta or direct RGBA encoding. |
| 1914 | * |
| 1915 | * @param color0 The input unquantized color0 endpoint. |
| 1916 | * @param color1 The input unquantized color1 endpoint. |
| 1917 | * @param[out] output The output endpoints, returned as packed RGBA+RGBA pairs with mode bits. |
| 1918 | * @param quant_level The quantization level to use. |
| 1919 | */ |
| 1920 | static void quantize_hdr_rgb_alpha( |
| 1921 | vfloat4 color0, |
| 1922 | vfloat4 color1, |
| 1923 | uint8_t output[8], |
| 1924 | quant_method quant_level |
| 1925 | ) { |
| 1926 | quantize_hdr_rgb(color0, color1, output, quant_level); |
| 1927 | quantize_hdr_alpha(color0.lane<3>(), color1.lane<3>(), output + 6, quant_level); |
| 1928 | } |
| 1929 | |
| 1930 | /* See header for documentation. */ |
| 1931 | uint8_t pack_color_endpoints( |
| 1932 | vfloat4 color0, |
| 1933 | vfloat4 color1, |
| 1934 | vfloat4 rgbs_color, |
| 1935 | vfloat4 rgbo_color, |
| 1936 | int format, |
| 1937 | uint8_t* output, |
| 1938 | quant_method quant_level |
| 1939 | ) { |
| 1940 | assert(QUANT_6 <= quant_level && quant_level <= QUANT_256); |
| 1941 | |
| 1942 | // We do not support negative colors |
| 1943 | color0 = max(color0, 0.0f); |
| 1944 | color1 = max(color1, 0.0f); |
| 1945 | |
| 1946 | uint8_t retval = 0; |
| 1947 | |
| 1948 | switch (format) |
| 1949 | { |
| 1950 | case FMT_RGB: |
| 1951 | if (quant_level <= QUANT_160) |
| 1952 | { |
| 1953 | if (try_quantize_rgb_delta_blue_contract(color0, color1, output, quant_level)) |
| 1954 | { |
| 1955 | retval = FMT_RGB_DELTA; |
| 1956 | break; |
| 1957 | } |
| 1958 | if (try_quantize_rgb_delta(color0, color1, output, quant_level)) |
| 1959 | { |
| 1960 | retval = FMT_RGB_DELTA; |
| 1961 | break; |
| 1962 | } |
| 1963 | } |
| 1964 | if (quant_level < QUANT_256 && try_quantize_rgb_blue_contract(color0, color1, output, quant_level)) |
| 1965 | { |
| 1966 | retval = FMT_RGB; |
| 1967 | break; |
| 1968 | } |
| 1969 | quantize_rgb(color0, color1, output, quant_level); |
| 1970 | retval = FMT_RGB; |
| 1971 | break; |
| 1972 | |
| 1973 | case FMT_RGBA: |
| 1974 | if (quant_level <= QUANT_160) |
| 1975 | { |
| 1976 | if (try_quantize_rgba_delta_blue_contract(color0, color1, output, quant_level)) |
| 1977 | { |
| 1978 | retval = FMT_RGBA_DELTA; |
| 1979 | break; |
| 1980 | } |
| 1981 | if (try_quantize_rgba_delta(color0, color1, output, quant_level)) |
| 1982 | { |
| 1983 | retval = FMT_RGBA_DELTA; |
| 1984 | break; |
| 1985 | } |
| 1986 | } |
| 1987 | if (quant_level < QUANT_256 && try_quantize_rgba_blue_contract(color0, color1, output, quant_level)) |
| 1988 | { |
| 1989 | retval = FMT_RGBA; |
| 1990 | break; |
| 1991 | } |
| 1992 | quantize_rgba(color0, color1, output, quant_level); |
| 1993 | retval = FMT_RGBA; |
| 1994 | break; |
| 1995 | |
| 1996 | case FMT_RGB_SCALE: |
| 1997 | quantize_rgbs(rgbs_color, output, quant_level); |
| 1998 | retval = FMT_RGB_SCALE; |
| 1999 | break; |
| 2000 | |
| 2001 | case FMT_HDR_RGB_SCALE: |
| 2002 | quantize_hdr_rgbo(rgbo_color, output, quant_level); |
| 2003 | retval = FMT_HDR_RGB_SCALE; |
| 2004 | break; |
| 2005 | |
| 2006 | case FMT_HDR_RGB: |
| 2007 | quantize_hdr_rgb(color0, color1, output, quant_level); |
| 2008 | retval = FMT_HDR_RGB; |
| 2009 | break; |
| 2010 | |
| 2011 | case FMT_RGB_SCALE_ALPHA: |
| 2012 | quantize_rgbs_alpha(color0, color1, rgbs_color, output, quant_level); |
| 2013 | retval = FMT_RGB_SCALE_ALPHA; |
| 2014 | break; |
| 2015 | |
| 2016 | case FMT_HDR_LUMINANCE_SMALL_RANGE: |
| 2017 | case FMT_HDR_LUMINANCE_LARGE_RANGE: |
| 2018 | if (try_quantize_hdr_luminance_small_range(color0, color1, output, quant_level)) |
| 2019 | { |
| 2020 | retval = FMT_HDR_LUMINANCE_SMALL_RANGE; |
| 2021 | break; |
| 2022 | } |
| 2023 | quantize_hdr_luminance_large_range(color0, color1, output, quant_level); |
| 2024 | retval = FMT_HDR_LUMINANCE_LARGE_RANGE; |
| 2025 | break; |
| 2026 | |
| 2027 | case FMT_LUMINANCE: |
| 2028 | quantize_luminance(color0, color1, output, quant_level); |
| 2029 | retval = FMT_LUMINANCE; |
| 2030 | break; |
| 2031 | |
| 2032 | case FMT_LUMINANCE_ALPHA: |
| 2033 | if (quant_level <= 18) |
| 2034 | { |
| 2035 | if (try_quantize_luminance_alpha_delta(color0, color1, output, quant_level)) |
| 2036 | { |
| 2037 | retval = FMT_LUMINANCE_ALPHA_DELTA; |
| 2038 | break; |
| 2039 | } |
| 2040 | } |
| 2041 | quantize_luminance_alpha(color0, color1, output, quant_level); |
| 2042 | retval = FMT_LUMINANCE_ALPHA; |
| 2043 | break; |
| 2044 | |
| 2045 | case FMT_HDR_RGB_LDR_ALPHA: |
| 2046 | quantize_hdr_rgb_ldr_alpha(color0, color1, output, quant_level); |
| 2047 | retval = FMT_HDR_RGB_LDR_ALPHA; |
| 2048 | break; |
| 2049 | |
| 2050 | case FMT_HDR_RGBA: |
| 2051 | quantize_hdr_rgb_alpha(color0, color1, output, quant_level); |
| 2052 | retval = FMT_HDR_RGBA; |
| 2053 | break; |
| 2054 | } |
| 2055 | |
| 2056 | return retval; |
| 2057 | } |
| 2058 | |
| 2059 | #endif |
| 2060 | |