| 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2019-2022 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | /** |
| 19 | * @brief 4x32-bit vectors, implemented using SSE. |
| 20 | * |
| 21 | * This module implements 4-wide 32-bit float, int, and mask vectors for x86 |
| 22 | * SSE. The implementation requires at least SSE2, but higher levels of SSE can |
| 23 | * be selected at compile time to improve performance. |
| 24 | * |
| 25 | * There is a baseline level of functionality provided by all vector widths and |
| 26 | * implementations. This is implemented using identical function signatures, |
| 27 | * modulo data type, so we can use them as substitutable implementations in VLA |
| 28 | * code. |
| 29 | * |
| 30 | * The 4-wide vectors are also used as a fixed-width type, and significantly |
| 31 | * extend the functionality above that available to VLA code. |
| 32 | */ |
| 33 | |
| 34 | #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED |
| 35 | #define ASTC_VECMATHLIB_SSE_4_H_INCLUDED |
| 36 | |
| 37 | #ifndef ASTCENC_SIMD_INLINE |
| 38 | #error "Include astcenc_vecmathlib.h, do not include directly" |
| 39 | #endif |
| 40 | |
| 41 | #include <cstdio> |
| 42 | |
| 43 | // ============================================================================ |
| 44 | // vfloat4 data type |
| 45 | // ============================================================================ |
| 46 | |
| 47 | /** |
| 48 | * @brief Data type for 4-wide floats. |
| 49 | */ |
| 50 | struct vfloat4 |
| 51 | { |
| 52 | /** |
| 53 | * @brief Construct from zero-initialized value. |
| 54 | */ |
| 55 | ASTCENC_SIMD_INLINE vfloat4() = default; |
| 56 | |
| 57 | /** |
| 58 | * @brief Construct from 4 values loaded from an unaligned address. |
| 59 | * |
| 60 | * Consider using loada() which is better with vectors if data is aligned |
| 61 | * to vector length. |
| 62 | */ |
| 63 | ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) |
| 64 | { |
| 65 | m = _mm_loadu_ps(p); |
| 66 | } |
| 67 | |
| 68 | /** |
| 69 | * @brief Construct from 1 scalar value replicated across all lanes. |
| 70 | * |
| 71 | * Consider using zero() for constexpr zeros. |
| 72 | */ |
| 73 | ASTCENC_SIMD_INLINE explicit vfloat4(float a) |
| 74 | { |
| 75 | m = _mm_set1_ps(a); |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * @brief Construct from 4 scalar values. |
| 80 | * |
| 81 | * The value of @c a is stored to lane 0 (LSB) in the SIMD register. |
| 82 | */ |
| 83 | ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) |
| 84 | { |
| 85 | m = _mm_set_ps(d, c, b, a); |
| 86 | } |
| 87 | |
| 88 | /** |
| 89 | * @brief Construct from an existing SIMD register. |
| 90 | */ |
| 91 | ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a) |
| 92 | { |
| 93 | m = a; |
| 94 | } |
| 95 | |
| 96 | /** |
| 97 | * @brief Get the scalar value of a single lane. |
| 98 | */ |
| 99 | template <int l> ASTCENC_SIMD_INLINE float lane() const |
| 100 | { |
| 101 | return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); |
| 102 | } |
| 103 | |
| 104 | /** |
| 105 | * @brief Set the scalar value of a single lane. |
| 106 | */ |
| 107 | template <int l> ASTCENC_SIMD_INLINE void set_lane(float a) |
| 108 | { |
| 109 | #if ASTCENC_SSE >= 41 |
| 110 | __m128 v = _mm_set1_ps(a); |
| 111 | m = _mm_insert_ps(m, v, l << 6 | l << 4); |
| 112 | #else |
| 113 | alignas(16) float idx[4]; |
| 114 | _mm_store_ps(idx, m); |
| 115 | idx[l] = a; |
| 116 | m = _mm_load_ps(idx); |
| 117 | #endif |
| 118 | } |
| 119 | |
| 120 | /** |
| 121 | * @brief Factory that returns a vector of zeros. |
| 122 | */ |
| 123 | static ASTCENC_SIMD_INLINE vfloat4 zero() |
| 124 | { |
| 125 | return vfloat4(_mm_setzero_ps()); |
| 126 | } |
| 127 | |
| 128 | /** |
| 129 | * @brief Factory that returns a replicated scalar loaded from memory. |
| 130 | */ |
| 131 | static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) |
| 132 | { |
| 133 | return vfloat4(_mm_load_ps1(p)); |
| 134 | } |
| 135 | |
| 136 | /** |
| 137 | * @brief Factory that returns a vector loaded from 16B aligned memory. |
| 138 | */ |
| 139 | static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) |
| 140 | { |
| 141 | return vfloat4(_mm_load_ps(p)); |
| 142 | } |
| 143 | |
| 144 | /** |
| 145 | * @brief Factory that returns a vector containing the lane IDs. |
| 146 | */ |
| 147 | static ASTCENC_SIMD_INLINE vfloat4 lane_id() |
| 148 | { |
| 149 | return vfloat4(_mm_set_ps(3, 2, 1, 0)); |
| 150 | } |
| 151 | |
| 152 | /** |
| 153 | * @brief Return a swizzled float 2. |
| 154 | */ |
| 155 | template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const |
| 156 | { |
| 157 | vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2)); |
| 158 | result.set_lane<2>(0.0f); |
| 159 | result.set_lane<3>(0.0f); |
| 160 | return result; |
| 161 | } |
| 162 | |
| 163 | /** |
| 164 | * @brief Return a swizzled float 3. |
| 165 | */ |
| 166 | template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const |
| 167 | { |
| 168 | vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4)); |
| 169 | result.set_lane<3>(0.0f); |
| 170 | return result; |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | * @brief Return a swizzled float 4. |
| 175 | */ |
| 176 | template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const |
| 177 | { |
| 178 | return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6)); |
| 179 | } |
| 180 | |
| 181 | /** |
| 182 | * @brief The vector ... |
| 183 | */ |
| 184 | __m128 m; |
| 185 | }; |
| 186 | |
| 187 | // ============================================================================ |
| 188 | // vint4 data type |
| 189 | // ============================================================================ |
| 190 | |
| 191 | /** |
| 192 | * @brief Data type for 4-wide ints. |
| 193 | */ |
| 194 | struct vint4 |
| 195 | { |
| 196 | /** |
| 197 | * @brief Construct from zero-initialized value. |
| 198 | */ |
| 199 | ASTCENC_SIMD_INLINE vint4() = default; |
| 200 | |
| 201 | /** |
| 202 | * @brief Construct from 4 values loaded from an unaligned address. |
| 203 | * |
| 204 | * Consider using loada() which is better with vectors if data is aligned |
| 205 | * to vector length. |
| 206 | */ |
| 207 | ASTCENC_SIMD_INLINE explicit vint4(const int *p) |
| 208 | { |
| 209 | m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p)); |
| 210 | } |
| 211 | |
| 212 | /** |
| 213 | * @brief Construct from 4 uint8_t loaded from an unaligned address. |
| 214 | */ |
| 215 | ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) |
| 216 | { |
| 217 | // _mm_loadu_si32 would be nicer syntax, but missing on older GCC |
| 218 | __m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p)); |
| 219 | |
| 220 | #if ASTCENC_SSE >= 41 |
| 221 | m = _mm_cvtepu8_epi32(t); |
| 222 | #else |
| 223 | t = _mm_unpacklo_epi8(t, _mm_setzero_si128()); |
| 224 | m = _mm_unpacklo_epi16(t, _mm_setzero_si128()); |
| 225 | #endif |
| 226 | } |
| 227 | |
| 228 | /** |
| 229 | * @brief Construct from 1 scalar value replicated across all lanes. |
| 230 | * |
| 231 | * Consider using vfloat4::zero() for constexpr zeros. |
| 232 | */ |
| 233 | ASTCENC_SIMD_INLINE explicit vint4(int a) |
| 234 | { |
| 235 | m = _mm_set1_epi32(a); |
| 236 | } |
| 237 | |
| 238 | /** |
| 239 | * @brief Construct from 4 scalar values. |
| 240 | * |
| 241 | * The value of @c a is stored to lane 0 (LSB) in the SIMD register. |
| 242 | */ |
| 243 | ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) |
| 244 | { |
| 245 | m = _mm_set_epi32(d, c, b, a); |
| 246 | } |
| 247 | |
| 248 | /** |
| 249 | * @brief Construct from an existing SIMD register. |
| 250 | */ |
| 251 | ASTCENC_SIMD_INLINE explicit vint4(__m128i a) |
| 252 | { |
| 253 | m = a; |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * @brief Get the scalar from a single lane. |
| 258 | */ |
| 259 | template <int l> ASTCENC_SIMD_INLINE int lane() const |
| 260 | { |
| 261 | return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l)); |
| 262 | } |
| 263 | |
| 264 | /** |
| 265 | * @brief Set the scalar value of a single lane. |
| 266 | */ |
| 267 | template <int l> ASTCENC_SIMD_INLINE void set_lane(int a) |
| 268 | { |
| 269 | #if ASTCENC_SSE >= 41 |
| 270 | m = _mm_insert_epi32(m, a, l); |
| 271 | #else |
| 272 | alignas(16) int idx[4]; |
| 273 | _mm_store_si128(reinterpret_cast<__m128i*>(idx), m); |
| 274 | idx[l] = a; |
| 275 | m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx)); |
| 276 | #endif |
| 277 | } |
| 278 | |
| 279 | /** |
| 280 | * @brief Factory that returns a vector of zeros. |
| 281 | */ |
| 282 | static ASTCENC_SIMD_INLINE vint4 zero() |
| 283 | { |
| 284 | return vint4(_mm_setzero_si128()); |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * @brief Factory that returns a replicated scalar loaded from memory. |
| 289 | */ |
| 290 | static ASTCENC_SIMD_INLINE vint4 load1(const int* p) |
| 291 | { |
| 292 | return vint4(*p); |
| 293 | } |
| 294 | |
| 295 | /** |
| 296 | * @brief Factory that returns a vector loaded from 16B aligned memory. |
| 297 | */ |
| 298 | static ASTCENC_SIMD_INLINE vint4 loada(const int* p) |
| 299 | { |
| 300 | return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p))); |
| 301 | } |
| 302 | |
| 303 | /** |
| 304 | * @brief Factory that returns a vector containing the lane IDs. |
| 305 | */ |
| 306 | static ASTCENC_SIMD_INLINE vint4 lane_id() |
| 307 | { |
| 308 | return vint4(_mm_set_epi32(3, 2, 1, 0)); |
| 309 | } |
| 310 | |
| 311 | /** |
| 312 | * @brief The vector ... |
| 313 | */ |
| 314 | __m128i m; |
| 315 | }; |
| 316 | |
| 317 | // ============================================================================ |
| 318 | // vmask4 data type |
| 319 | // ============================================================================ |
| 320 | |
| 321 | /** |
| 322 | * @brief Data type for 4-wide control plane masks. |
| 323 | */ |
| 324 | struct vmask4 |
| 325 | { |
| 326 | /** |
| 327 | * @brief Construct from an existing SIMD register. |
| 328 | */ |
| 329 | ASTCENC_SIMD_INLINE explicit vmask4(__m128 a) |
| 330 | { |
| 331 | m = a; |
| 332 | } |
| 333 | |
| 334 | /** |
| 335 | * @brief Construct from an existing SIMD register. |
| 336 | */ |
| 337 | ASTCENC_SIMD_INLINE explicit vmask4(__m128i a) |
| 338 | { |
| 339 | m = _mm_castsi128_ps(a); |
| 340 | } |
| 341 | |
| 342 | /** |
| 343 | * @brief Construct from 1 scalar value. |
| 344 | */ |
| 345 | ASTCENC_SIMD_INLINE explicit vmask4(bool a) |
| 346 | { |
| 347 | vint4 mask(a == false ? 0 : -1); |
| 348 | m = _mm_castsi128_ps(mask.m); |
| 349 | } |
| 350 | |
| 351 | /** |
| 352 | * @brief Construct from 4 scalar values. |
| 353 | * |
| 354 | * The value of @c a is stored to lane 0 (LSB) in the SIMD register. |
| 355 | */ |
| 356 | ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) |
| 357 | { |
| 358 | vint4 mask(a == false ? 0 : -1, |
| 359 | b == false ? 0 : -1, |
| 360 | c == false ? 0 : -1, |
| 361 | d == false ? 0 : -1); |
| 362 | |
| 363 | m = _mm_castsi128_ps(mask.m); |
| 364 | } |
| 365 | |
| 366 | /** |
| 367 | * @brief Get the scalar value of a single lane. |
| 368 | */ |
| 369 | template <int l> ASTCENC_SIMD_INLINE float lane() const |
| 370 | { |
| 371 | return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l)); |
| 372 | } |
| 373 | |
| 374 | /** |
| 375 | * @brief The vector ... |
| 376 | */ |
| 377 | __m128 m; |
| 378 | }; |
| 379 | |
| 380 | // ============================================================================ |
| 381 | // vmask4 operators and functions |
| 382 | // ============================================================================ |
| 383 | |
| 384 | /** |
| 385 | * @brief Overload: mask union (or). |
| 386 | */ |
| 387 | ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) |
| 388 | { |
| 389 | return vmask4(_mm_or_ps(a.m, b.m)); |
| 390 | } |
| 391 | |
| 392 | /** |
| 393 | * @brief Overload: mask intersect (and). |
| 394 | */ |
| 395 | ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) |
| 396 | { |
| 397 | return vmask4(_mm_and_ps(a.m, b.m)); |
| 398 | } |
| 399 | |
| 400 | /** |
| 401 | * @brief Overload: mask difference (xor). |
| 402 | */ |
| 403 | ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) |
| 404 | { |
| 405 | return vmask4(_mm_xor_ps(a.m, b.m)); |
| 406 | } |
| 407 | |
| 408 | /** |
| 409 | * @brief Overload: mask invert (not). |
| 410 | */ |
| 411 | ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) |
| 412 | { |
| 413 | return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1))); |
| 414 | } |
| 415 | |
| 416 | /** |
| 417 | * @brief Return a 4-bit mask code indicating mask status. |
| 418 | * |
| 419 | * bit0 = lane 0 |
| 420 | */ |
| 421 | ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) |
| 422 | { |
| 423 | return static_cast<unsigned int>(_mm_movemask_ps(a.m)); |
| 424 | } |
| 425 | |
| 426 | // ============================================================================ |
| 427 | // vint4 operators and functions |
| 428 | // ============================================================================ |
| 429 | |
| 430 | /** |
| 431 | * @brief Overload: vector by vector addition. |
| 432 | */ |
| 433 | ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) |
| 434 | { |
| 435 | return vint4(_mm_add_epi32(a.m, b.m)); |
| 436 | } |
| 437 | |
| 438 | /** |
| 439 | * @brief Overload: vector by vector subtraction. |
| 440 | */ |
| 441 | ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) |
| 442 | { |
| 443 | return vint4(_mm_sub_epi32(a.m, b.m)); |
| 444 | } |
| 445 | |
| 446 | /** |
| 447 | * @brief Overload: vector by vector multiplication. |
| 448 | */ |
| 449 | ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) |
| 450 | { |
| 451 | #if ASTCENC_SSE >= 41 |
| 452 | return vint4(_mm_mullo_epi32 (a.m, b.m)); |
| 453 | #else |
| 454 | __m128i t1 = _mm_mul_epu32(a.m, b.m); |
| 455 | __m128i t2 = _mm_mul_epu32( |
| 456 | _mm_srli_si128(a.m, 4), |
| 457 | _mm_srli_si128(b.m, 4)); |
| 458 | __m128i r = _mm_unpacklo_epi32( |
| 459 | _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)), |
| 460 | _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0))); |
| 461 | return vint4(r); |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | /** |
| 466 | * @brief Overload: vector bit invert. |
| 467 | */ |
| 468 | ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) |
| 469 | { |
| 470 | return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1))); |
| 471 | } |
| 472 | |
| 473 | /** |
| 474 | * @brief Overload: vector by vector bitwise or. |
| 475 | */ |
| 476 | ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) |
| 477 | { |
| 478 | return vint4(_mm_or_si128(a.m, b.m)); |
| 479 | } |
| 480 | |
| 481 | /** |
| 482 | * @brief Overload: vector by vector bitwise and. |
| 483 | */ |
| 484 | ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) |
| 485 | { |
| 486 | return vint4(_mm_and_si128(a.m, b.m)); |
| 487 | } |
| 488 | |
| 489 | /** |
| 490 | * @brief Overload: vector by vector bitwise xor. |
| 491 | */ |
| 492 | ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) |
| 493 | { |
| 494 | return vint4(_mm_xor_si128(a.m, b.m)); |
| 495 | } |
| 496 | |
| 497 | /** |
| 498 | * @brief Overload: vector by vector equality. |
| 499 | */ |
| 500 | ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) |
| 501 | { |
| 502 | return vmask4(_mm_cmpeq_epi32(a.m, b.m)); |
| 503 | } |
| 504 | |
| 505 | /** |
| 506 | * @brief Overload: vector by vector inequality. |
| 507 | */ |
| 508 | ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) |
| 509 | { |
| 510 | return ~vmask4(_mm_cmpeq_epi32(a.m, b.m)); |
| 511 | } |
| 512 | |
| 513 | /** |
| 514 | * @brief Overload: vector by vector less than. |
| 515 | */ |
| 516 | ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) |
| 517 | { |
| 518 | return vmask4(_mm_cmplt_epi32(a.m, b.m)); |
| 519 | } |
| 520 | |
| 521 | /** |
| 522 | * @brief Overload: vector by vector greater than. |
| 523 | */ |
| 524 | ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) |
| 525 | { |
| 526 | return vmask4(_mm_cmpgt_epi32(a.m, b.m)); |
| 527 | } |
| 528 | |
| 529 | /** |
| 530 | * @brief Logical shift left. |
| 531 | */ |
| 532 | template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) |
| 533 | { |
| 534 | return vint4(_mm_slli_epi32(a.m, s)); |
| 535 | } |
| 536 | |
| 537 | /** |
| 538 | * @brief Logical shift right. |
| 539 | */ |
| 540 | template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) |
| 541 | { |
| 542 | return vint4(_mm_srli_epi32(a.m, s)); |
| 543 | } |
| 544 | |
| 545 | /** |
| 546 | * @brief Arithmetic shift right. |
| 547 | */ |
| 548 | template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a) |
| 549 | { |
| 550 | return vint4(_mm_srai_epi32(a.m, s)); |
| 551 | } |
| 552 | |
| 553 | /** |
| 554 | * @brief Return the min vector of two vectors. |
| 555 | */ |
| 556 | ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) |
| 557 | { |
| 558 | #if ASTCENC_SSE >= 41 |
| 559 | return vint4(_mm_min_epi32(a.m, b.m)); |
| 560 | #else |
| 561 | vmask4 d = a < b; |
| 562 | __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); |
| 563 | __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); |
| 564 | return vint4(_mm_or_si128(ap,bp)); |
| 565 | #endif |
| 566 | } |
| 567 | |
| 568 | /** |
| 569 | * @brief Return the max vector of two vectors. |
| 570 | */ |
| 571 | ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) |
| 572 | { |
| 573 | #if ASTCENC_SSE >= 41 |
| 574 | return vint4(_mm_max_epi32(a.m, b.m)); |
| 575 | #else |
| 576 | vmask4 d = a > b; |
| 577 | __m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m); |
| 578 | __m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m); |
| 579 | return vint4(_mm_or_si128(ap,bp)); |
| 580 | #endif |
| 581 | } |
| 582 | |
| 583 | /** |
| 584 | * @brief Return the horizontal minimum of a vector. |
| 585 | */ |
| 586 | ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) |
| 587 | { |
| 588 | a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); |
| 589 | a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); |
| 590 | return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); |
| 591 | } |
| 592 | |
| 593 | /* |
| 594 | * @brief Return the horizontal maximum of a vector. |
| 595 | */ |
| 596 | ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) |
| 597 | { |
| 598 | a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2)))); |
| 599 | a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1)))); |
| 600 | return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0))); |
| 601 | } |
| 602 | |
| 603 | /** |
| 604 | * @brief Return the horizontal sum of a vector as a scalar. |
| 605 | */ |
| 606 | ASTCENC_SIMD_INLINE int hadd_s(vint4 a) |
| 607 | { |
| 608 | // Add top and bottom halves, lane 1/0 |
| 609 | __m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m), |
| 610 | _mm_castsi128_ps(a.m))); |
| 611 | __m128i t = _mm_add_epi32(a.m, fold); |
| 612 | |
| 613 | // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) |
| 614 | t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55)); |
| 615 | |
| 616 | return _mm_cvtsi128_si32(t); |
| 617 | } |
| 618 | |
| 619 | /** |
| 620 | * @brief Store a vector to a 16B aligned memory address. |
| 621 | */ |
| 622 | ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) |
| 623 | { |
| 624 | _mm_store_si128(reinterpret_cast<__m128i*>(p), a.m); |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * @brief Store a vector to an unaligned memory address. |
| 629 | */ |
| 630 | ASTCENC_SIMD_INLINE void store(vint4 a, int* p) |
| 631 | { |
| 632 | // Cast due to missing intrinsics |
| 633 | _mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * @brief Store lowest N (vector width) bytes into an unaligned address. |
| 638 | */ |
| 639 | ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) |
| 640 | { |
| 641 | // Cast due to missing intrinsics |
| 642 | _mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m)); |
| 643 | } |
| 644 | |
| 645 | /** |
| 646 | * @brief Gather N (vector width) indices from the array. |
| 647 | */ |
| 648 | ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) |
| 649 | { |
| 650 | #if ASTCENC_AVX >= 2 |
| 651 | return vint4(_mm_i32gather_epi32(base, indices.m, 4)); |
| 652 | #else |
| 653 | alignas(16) int idx[4]; |
| 654 | storea(indices, idx); |
| 655 | return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); |
| 656 | #endif |
| 657 | } |
| 658 | |
| 659 | /** |
| 660 | * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. |
| 661 | */ |
| 662 | ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) |
| 663 | { |
| 664 | #if ASTCENC_SSE >= 41 |
| 665 | __m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0); |
| 666 | return vint4(_mm_shuffle_epi8(a.m, shuf)); |
| 667 | #else |
| 668 | __m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1))); |
| 669 | __m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3))); |
| 670 | return vint4(_mm_unpacklo_epi16(va, vb)); |
| 671 | #endif |
| 672 | } |
| 673 | |
| 674 | /** |
| 675 | * @brief Return lanes from @c b if @c cond is set, else @c a. |
| 676 | */ |
| 677 | ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) |
| 678 | { |
| 679 | __m128i condi = _mm_castps_si128(cond.m); |
| 680 | |
| 681 | #if ASTCENC_SSE >= 41 |
| 682 | return vint4(_mm_blendv_epi8(a.m, b.m, condi)); |
| 683 | #else |
| 684 | return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m))); |
| 685 | #endif |
| 686 | } |
| 687 | |
| 688 | // ============================================================================ |
| 689 | // vfloat4 operators and functions |
| 690 | // ============================================================================ |
| 691 | |
| 692 | /** |
| 693 | * @brief Overload: vector by vector addition. |
| 694 | */ |
| 695 | ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) |
| 696 | { |
| 697 | return vfloat4(_mm_add_ps(a.m, b.m)); |
| 698 | } |
| 699 | |
| 700 | /** |
| 701 | * @brief Overload: vector by vector subtraction. |
| 702 | */ |
| 703 | ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) |
| 704 | { |
| 705 | return vfloat4(_mm_sub_ps(a.m, b.m)); |
| 706 | } |
| 707 | |
| 708 | /** |
| 709 | * @brief Overload: vector by vector multiplication. |
| 710 | */ |
| 711 | ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) |
| 712 | { |
| 713 | return vfloat4(_mm_mul_ps(a.m, b.m)); |
| 714 | } |
| 715 | |
| 716 | /** |
| 717 | * @brief Overload: vector by vector division. |
| 718 | */ |
| 719 | ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) |
| 720 | { |
| 721 | return vfloat4(_mm_div_ps(a.m, b.m)); |
| 722 | } |
| 723 | |
| 724 | /** |
| 725 | * @brief Overload: vector by vector equality. |
| 726 | */ |
| 727 | ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) |
| 728 | { |
| 729 | return vmask4(_mm_cmpeq_ps(a.m, b.m)); |
| 730 | } |
| 731 | |
| 732 | /** |
| 733 | * @brief Overload: vector by vector inequality. |
| 734 | */ |
| 735 | ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) |
| 736 | { |
| 737 | return vmask4(_mm_cmpneq_ps(a.m, b.m)); |
| 738 | } |
| 739 | |
| 740 | /** |
| 741 | * @brief Overload: vector by vector less than. |
| 742 | */ |
| 743 | ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) |
| 744 | { |
| 745 | return vmask4(_mm_cmplt_ps(a.m, b.m)); |
| 746 | } |
| 747 | |
| 748 | /** |
| 749 | * @brief Overload: vector by vector greater than. |
| 750 | */ |
| 751 | ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) |
| 752 | { |
| 753 | return vmask4(_mm_cmpgt_ps(a.m, b.m)); |
| 754 | } |
| 755 | |
| 756 | /** |
| 757 | * @brief Overload: vector by vector less than or equal. |
| 758 | */ |
| 759 | ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) |
| 760 | { |
| 761 | return vmask4(_mm_cmple_ps(a.m, b.m)); |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * @brief Overload: vector by vector greater than or equal. |
| 766 | */ |
| 767 | ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) |
| 768 | { |
| 769 | return vmask4(_mm_cmpge_ps(a.m, b.m)); |
| 770 | } |
| 771 | |
| 772 | /** |
| 773 | * @brief Return the min vector of two vectors. |
| 774 | * |
| 775 | * If either lane value is NaN, @c b will be returned for that lane. |
| 776 | */ |
| 777 | ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) |
| 778 | { |
| 779 | // Do not reorder - second operand will return if either is NaN |
| 780 | return vfloat4(_mm_min_ps(a.m, b.m)); |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | * @brief Return the max vector of two vectors. |
| 785 | * |
| 786 | * If either lane value is NaN, @c b will be returned for that lane. |
| 787 | */ |
| 788 | ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) |
| 789 | { |
| 790 | // Do not reorder - second operand will return if either is NaN |
| 791 | return vfloat4(_mm_max_ps(a.m, b.m)); |
| 792 | } |
| 793 | |
| 794 | /** |
| 795 | * @brief Return the absolute value of the float vector. |
| 796 | */ |
| 797 | ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) |
| 798 | { |
| 799 | return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m)); |
| 800 | } |
| 801 | |
| 802 | /** |
| 803 | * @brief Return a float rounded to the nearest integer value. |
| 804 | */ |
| 805 | ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) |
| 806 | { |
| 807 | #if ASTCENC_SSE >= 41 |
| 808 | constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC; |
| 809 | return vfloat4(_mm_round_ps(a.m, flags)); |
| 810 | #else |
| 811 | __m128 v = a.m; |
| 812 | __m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(static_cast<int>(0x80000000))); |
| 813 | __m128 no_fraction = _mm_set1_ps(8388608.0f); |
| 814 | __m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF)); |
| 815 | __m128 sign = _mm_and_ps(v, neg_zero); |
| 816 | __m128 s_magic = _mm_or_ps(no_fraction, sign); |
| 817 | __m128 r1 = _mm_add_ps(v, s_magic); |
| 818 | r1 = _mm_sub_ps(r1, s_magic); |
| 819 | __m128 r2 = _mm_and_ps(v, abs_mask); |
| 820 | __m128 mask = _mm_cmple_ps(r2, no_fraction); |
| 821 | r2 = _mm_andnot_ps(mask, v); |
| 822 | r1 = _mm_and_ps(r1, mask); |
| 823 | return vfloat4(_mm_xor_ps(r1, r2)); |
| 824 | #endif |
| 825 | } |
| 826 | |
| 827 | /** |
| 828 | * @brief Return the horizontal minimum of a vector. |
| 829 | */ |
| 830 | ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) |
| 831 | { |
| 832 | a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); |
| 833 | a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); |
| 834 | return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); |
| 835 | } |
| 836 | |
| 837 | /** |
| 838 | * @brief Return the horizontal maximum of a vector. |
| 839 | */ |
| 840 | ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) |
| 841 | { |
| 842 | a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2)))); |
| 843 | a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1)))); |
| 844 | return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0))); |
| 845 | } |
| 846 | |
| 847 | /** |
| 848 | * @brief Return the horizontal sum of a vector as a scalar. |
| 849 | */ |
| 850 | ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) |
| 851 | { |
| 852 | // Add top and bottom halves, lane 1/0 |
| 853 | __m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m)); |
| 854 | |
| 855 | // Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow) |
| 856 | t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55)); |
| 857 | |
| 858 | return _mm_cvtss_f32(t); |
| 859 | } |
| 860 | |
| 861 | /** |
| 862 | * @brief Return the sqrt of the lanes in the vector. |
| 863 | */ |
| 864 | ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) |
| 865 | { |
| 866 | return vfloat4(_mm_sqrt_ps(a.m)); |
| 867 | } |
| 868 | |
| 869 | /** |
| 870 | * @brief Return lanes from @c b if @c cond is set, else @c a. |
| 871 | */ |
| 872 | ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) |
| 873 | { |
| 874 | #if ASTCENC_SSE >= 41 |
| 875 | return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); |
| 876 | #else |
| 877 | return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m))); |
| 878 | #endif |
| 879 | } |
| 880 | |
| 881 | /** |
| 882 | * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. |
| 883 | */ |
| 884 | ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) |
| 885 | { |
| 886 | #if ASTCENC_SSE >= 41 |
| 887 | return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m)); |
| 888 | #else |
| 889 | __m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31)); |
| 890 | return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m))); |
| 891 | #endif |
| 892 | } |
| 893 | |
| 894 | /** |
| 895 | * @brief Load a vector of gathered results from an array; |
| 896 | */ |
| 897 | ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) |
| 898 | { |
| 899 | #if ASTCENC_AVX >= 2 |
| 900 | return vfloat4(_mm_i32gather_ps(base, indices.m, 4)); |
| 901 | #else |
| 902 | alignas(16) int idx[4]; |
| 903 | storea(indices, idx); |
| 904 | return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]); |
| 905 | #endif |
| 906 | } |
| 907 | |
| 908 | /** |
| 909 | * @brief Store a vector to an unaligned memory address. |
| 910 | */ |
| 911 | ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) |
| 912 | { |
| 913 | _mm_storeu_ps(p, a.m); |
| 914 | } |
| 915 | |
| 916 | /** |
| 917 | * @brief Store a vector to a 16B aligned memory address. |
| 918 | */ |
| 919 | ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) |
| 920 | { |
| 921 | _mm_store_ps(p, a.m); |
| 922 | } |
| 923 | |
| 924 | /** |
| 925 | * @brief Return a integer value for a float vector, using truncation. |
| 926 | */ |
| 927 | ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) |
| 928 | { |
| 929 | return vint4(_mm_cvttps_epi32(a.m)); |
| 930 | } |
| 931 | |
| 932 | /** |
| 933 | * @brief Return a integer value for a float vector, using round-to-nearest. |
| 934 | */ |
| 935 | ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) |
| 936 | { |
| 937 | a = round(a); |
| 938 | return vint4(_mm_cvttps_epi32(a.m)); |
| 939 | } |
| 940 | |
| 941 | /** |
| 942 | * @brief Return a float value for an integer vector. |
| 943 | */ |
| 944 | ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) |
| 945 | { |
| 946 | return vfloat4(_mm_cvtepi32_ps(a.m)); |
| 947 | } |
| 948 | |
| 949 | /** |
| 950 | * @brief Return a float16 value for a float vector, using round-to-nearest. |
| 951 | */ |
| 952 | ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) |
| 953 | { |
| 954 | #if ASTCENC_F16C >= 1 |
| 955 | __m128i packedf16 = _mm_cvtps_ph(a.m, 0); |
| 956 | __m128i f16 = _mm_cvtepu16_epi32(packedf16); |
| 957 | return vint4(f16); |
| 958 | #else |
| 959 | return vint4( |
| 960 | float_to_sf16(a.lane<0>()), |
| 961 | float_to_sf16(a.lane<1>()), |
| 962 | float_to_sf16(a.lane<2>()), |
| 963 | float_to_sf16(a.lane<3>())); |
| 964 | #endif |
| 965 | } |
| 966 | |
| 967 | /** |
| 968 | * @brief Return a float16 value for a float scalar, using round-to-nearest. |
| 969 | */ |
| 970 | static inline uint16_t float_to_float16(float a) |
| 971 | { |
| 972 | #if ASTCENC_F16C >= 1 |
| 973 | __m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0); |
| 974 | return static_cast<uint16_t>(_mm_cvtsi128_si32(f16)); |
| 975 | #else |
| 976 | return float_to_sf16(a); |
| 977 | #endif |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * @brief Return a float value for a float16 vector. |
| 982 | */ |
| 983 | ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) |
| 984 | { |
| 985 | #if ASTCENC_F16C >= 1 |
| 986 | __m128i packed = _mm_packs_epi32(a.m, a.m); |
| 987 | __m128 f32 = _mm_cvtph_ps(packed); |
| 988 | return vfloat4(f32); |
| 989 | #else |
| 990 | return vfloat4( |
| 991 | sf16_to_float(static_cast<uint16_t>(a.lane<0>())), |
| 992 | sf16_to_float(static_cast<uint16_t>(a.lane<1>())), |
| 993 | sf16_to_float(static_cast<uint16_t>(a.lane<2>())), |
| 994 | sf16_to_float(static_cast<uint16_t>(a.lane<3>()))); |
| 995 | #endif |
| 996 | } |
| 997 | |
| 998 | /** |
| 999 | * @brief Return a float value for a float16 scalar. |
| 1000 | */ |
| 1001 | ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) |
| 1002 | { |
| 1003 | #if ASTCENC_F16C >= 1 |
| 1004 | __m128i packed = _mm_set1_epi16(static_cast<short>(a)); |
| 1005 | __m128 f32 = _mm_cvtph_ps(packed); |
| 1006 | return _mm_cvtss_f32(f32); |
| 1007 | #else |
| 1008 | return sf16_to_float(a); |
| 1009 | #endif |
| 1010 | } |
| 1011 | |
| 1012 | /** |
| 1013 | * @brief Return a float value as an integer bit pattern (i.e. no conversion). |
| 1014 | * |
| 1015 | * It is a common trick to convert floats into integer bit patterns, perform |
| 1016 | * some bit hackery based on knowledge they are IEEE 754 layout, and then |
| 1017 | * convert them back again. This is the first half of that flip. |
| 1018 | */ |
| 1019 | ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) |
| 1020 | { |
| 1021 | return vint4(_mm_castps_si128(a.m)); |
| 1022 | } |
| 1023 | |
| 1024 | /** |
| 1025 | * @brief Return a integer value as a float bit pattern (i.e. no conversion). |
| 1026 | * |
| 1027 | * It is a common trick to convert floats into integer bit patterns, perform |
| 1028 | * some bit hackery based on knowledge they are IEEE 754 layout, and then |
| 1029 | * convert them back again. This is the second half of that flip. |
| 1030 | */ |
| 1031 | ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) |
| 1032 | { |
| 1033 | return vfloat4(_mm_castsi128_ps(v.m)); |
| 1034 | } |
| 1035 | |
| 1036 | /** |
| 1037 | * @brief Prepare a vtable lookup table for use with the native SIMD size. |
| 1038 | */ |
| 1039 | ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) |
| 1040 | { |
| 1041 | t0p = t0; |
| 1042 | } |
| 1043 | |
| 1044 | /** |
| 1045 | * @brief Prepare a vtable lookup table for use with the native SIMD size. |
| 1046 | */ |
| 1047 | ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) |
| 1048 | { |
| 1049 | #if ASTCENC_SSE >= 41 |
| 1050 | t0p = t0; |
| 1051 | t1p = t0 ^ t1; |
| 1052 | #else |
| 1053 | t0p = t0; |
| 1054 | t1p = t1; |
| 1055 | #endif |
| 1056 | } |
| 1057 | |
| 1058 | /** |
| 1059 | * @brief Prepare a vtable lookup table for use with the native SIMD size. |
| 1060 | */ |
| 1061 | ASTCENC_SIMD_INLINE void vtable_prepare( |
| 1062 | vint4 t0, vint4 t1, vint4 t2, vint4 t3, |
| 1063 | vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) |
| 1064 | { |
| 1065 | #if ASTCENC_SSE >= 41 |
| 1066 | t0p = t0; |
| 1067 | t1p = t0 ^ t1; |
| 1068 | t2p = t1 ^ t2; |
| 1069 | t3p = t2 ^ t3; |
| 1070 | #else |
| 1071 | t0p = t0; |
| 1072 | t1p = t1; |
| 1073 | t2p = t2; |
| 1074 | t3p = t3; |
| 1075 | #endif |
| 1076 | } |
| 1077 | |
| 1078 | /** |
| 1079 | * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. |
| 1080 | */ |
| 1081 | ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) |
| 1082 | { |
| 1083 | #if ASTCENC_SSE >= 41 |
| 1084 | // Set index byte MSB to 1 for unused bytes so shuffle returns zero |
| 1085 | __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); |
| 1086 | |
| 1087 | __m128i result = _mm_shuffle_epi8(t0.m, idxx); |
| 1088 | return vint4(result); |
| 1089 | #else |
| 1090 | alignas(ASTCENC_VECALIGN) uint8_t table[16]; |
| 1091 | storea(t0, reinterpret_cast<int*>(table + 0)); |
| 1092 | |
| 1093 | return vint4(table[idx.lane<0>()], |
| 1094 | table[idx.lane<1>()], |
| 1095 | table[idx.lane<2>()], |
| 1096 | table[idx.lane<3>()]); |
| 1097 | #endif |
| 1098 | } |
| 1099 | |
| 1100 | /** |
| 1101 | * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. |
| 1102 | */ |
| 1103 | ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) |
| 1104 | { |
| 1105 | #if ASTCENC_SSE >= 41 |
| 1106 | // Set index byte MSB to 1 for unused bytes so shuffle returns zero |
| 1107 | __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); |
| 1108 | |
| 1109 | __m128i result = _mm_shuffle_epi8(t0.m, idxx); |
| 1110 | idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); |
| 1111 | |
| 1112 | __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); |
| 1113 | result = _mm_xor_si128(result, result2); |
| 1114 | |
| 1115 | return vint4(result); |
| 1116 | #else |
| 1117 | alignas(ASTCENC_VECALIGN) uint8_t table[32]; |
| 1118 | storea(t0, reinterpret_cast<int*>(table + 0)); |
| 1119 | storea(t1, reinterpret_cast<int*>(table + 16)); |
| 1120 | |
| 1121 | return vint4(table[idx.lane<0>()], |
| 1122 | table[idx.lane<1>()], |
| 1123 | table[idx.lane<2>()], |
| 1124 | table[idx.lane<3>()]); |
| 1125 | #endif |
| 1126 | } |
| 1127 | |
| 1128 | /** |
| 1129 | * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. |
| 1130 | */ |
| 1131 | ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) |
| 1132 | { |
| 1133 | #if ASTCENC_SSE >= 41 |
| 1134 | // Set index byte MSB to 1 for unused bytes so shuffle returns zero |
| 1135 | __m128i idxx = _mm_or_si128(idx.m, _mm_set1_epi32(static_cast<int>(0xFFFFFF00))); |
| 1136 | |
| 1137 | __m128i result = _mm_shuffle_epi8(t0.m, idxx); |
| 1138 | idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); |
| 1139 | |
| 1140 | __m128i result2 = _mm_shuffle_epi8(t1.m, idxx); |
| 1141 | result = _mm_xor_si128(result, result2); |
| 1142 | idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); |
| 1143 | |
| 1144 | result2 = _mm_shuffle_epi8(t2.m, idxx); |
| 1145 | result = _mm_xor_si128(result, result2); |
| 1146 | idxx = _mm_sub_epi8(idxx, _mm_set1_epi8(16)); |
| 1147 | |
| 1148 | result2 = _mm_shuffle_epi8(t3.m, idxx); |
| 1149 | result = _mm_xor_si128(result, result2); |
| 1150 | |
| 1151 | return vint4(result); |
| 1152 | #else |
| 1153 | alignas(ASTCENC_VECALIGN) uint8_t table[64]; |
| 1154 | storea(t0, reinterpret_cast<int*>(table + 0)); |
| 1155 | storea(t1, reinterpret_cast<int*>(table + 16)); |
| 1156 | storea(t2, reinterpret_cast<int*>(table + 32)); |
| 1157 | storea(t3, reinterpret_cast<int*>(table + 48)); |
| 1158 | |
| 1159 | return vint4(table[idx.lane<0>()], |
| 1160 | table[idx.lane<1>()], |
| 1161 | table[idx.lane<2>()], |
| 1162 | table[idx.lane<3>()]); |
| 1163 | #endif |
| 1164 | } |
| 1165 | |
| 1166 | /** |
| 1167 | * @brief Return a vector of interleaved RGBA data. |
| 1168 | * |
| 1169 | * Input vectors have the value stored in the bottom 8 bits of each lane, |
| 1170 | * with high bits set to zero. |
| 1171 | * |
| 1172 | * Output vector stores a single RGBA texel packed in each lane. |
| 1173 | */ |
| 1174 | ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) |
| 1175 | { |
| 1176 | // Workaround an XCode compiler internal fault; note is slower than slli_epi32 |
| 1177 | // so we should revert this when we get the opportunity |
| 1178 | #if defined(__APPLE__) |
| 1179 | __m128i value = r.m; |
| 1180 | value = _mm_add_epi32(value, _mm_bslli_si128(g.m, 1)); |
| 1181 | value = _mm_add_epi32(value, _mm_bslli_si128(b.m, 2)); |
| 1182 | value = _mm_add_epi32(value, _mm_bslli_si128(a.m, 3)); |
| 1183 | return vint4(value); |
| 1184 | #else |
| 1185 | __m128i value = r.m; |
| 1186 | value = _mm_add_epi32(value, _mm_slli_epi32(g.m, 8)); |
| 1187 | value = _mm_add_epi32(value, _mm_slli_epi32(b.m, 16)); |
| 1188 | value = _mm_add_epi32(value, _mm_slli_epi32(a.m, 24)); |
| 1189 | return vint4(value); |
| 1190 | #endif |
| 1191 | } |
| 1192 | |
| 1193 | /** |
| 1194 | * @brief Store a vector, skipping masked lanes. |
| 1195 | * |
| 1196 | * All masked lanes must be at the end of vector, after all non-masked lanes. |
| 1197 | */ |
| 1198 | ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) |
| 1199 | { |
| 1200 | #if ASTCENC_AVX >= 2 |
| 1201 | _mm_maskstore_epi32(base, _mm_castps_si128(mask.m), data.m); |
| 1202 | #else |
| 1203 | // Note - we cannot use _mm_maskmoveu_si128 as the underlying hardware doesn't guarantee |
| 1204 | // fault suppression on masked lanes so we can get page faults at the end of an image. |
| 1205 | if (mask.lane<3>() != 0.0f) |
| 1206 | { |
| 1207 | store(data, base); |
| 1208 | } |
| 1209 | else if (mask.lane<2>() != 0.0f) |
| 1210 | { |
| 1211 | base[0] = data.lane<0>(); |
| 1212 | base[1] = data.lane<1>(); |
| 1213 | base[2] = data.lane<2>(); |
| 1214 | } |
| 1215 | else if (mask.lane<1>() != 0.0f) |
| 1216 | { |
| 1217 | base[0] = data.lane<0>(); |
| 1218 | base[1] = data.lane<1>(); |
| 1219 | } |
| 1220 | else if (mask.lane<0>() != 0.0f) |
| 1221 | { |
| 1222 | base[0] = data.lane<0>(); |
| 1223 | } |
| 1224 | #endif |
| 1225 | } |
| 1226 | |
| 1227 | #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) |
| 1228 | |
| 1229 | #define ASTCENC_USE_NATIVE_DOT_PRODUCT 1 |
| 1230 | |
| 1231 | /** |
| 1232 | * @brief Return the dot product for the full 4 lanes, returning scalar. |
| 1233 | */ |
| 1234 | ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b) |
| 1235 | { |
| 1236 | return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF)); |
| 1237 | } |
| 1238 | |
| 1239 | /** |
| 1240 | * @brief Return the dot product for the full 4 lanes, returning vector. |
| 1241 | */ |
| 1242 | ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b) |
| 1243 | { |
| 1244 | return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF)); |
| 1245 | } |
| 1246 | |
| 1247 | /** |
| 1248 | * @brief Return the dot product for the bottom 3 lanes, returning scalar. |
| 1249 | */ |
| 1250 | ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b) |
| 1251 | { |
| 1252 | return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77)); |
| 1253 | } |
| 1254 | |
| 1255 | /** |
| 1256 | * @brief Return the dot product for the bottom 3 lanes, returning vector. |
| 1257 | */ |
| 1258 | ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b) |
| 1259 | { |
| 1260 | return vfloat4(_mm_dp_ps(a.m, b.m, 0x77)); |
| 1261 | } |
| 1262 | |
| 1263 | #endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41) |
| 1264 | |
| 1265 | #if ASTCENC_POPCNT >= 1 |
| 1266 | |
| 1267 | #define ASTCENC_USE_NATIVE_POPCOUNT 1 |
| 1268 | |
| 1269 | /** |
| 1270 | * @brief Population bit count. |
| 1271 | * |
| 1272 | * @param v The value to population count. |
| 1273 | * |
| 1274 | * @return The number of 1 bits. |
| 1275 | */ |
| 1276 | ASTCENC_SIMD_INLINE int popcount(uint64_t v) |
| 1277 | { |
| 1278 | return static_cast<int>(_mm_popcnt_u64(v)); |
| 1279 | } |
| 1280 | |
| 1281 | #endif // ASTCENC_POPCNT >= 1 |
| 1282 | |
| 1283 | #endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED |
| 1284 | |