| 1 | // basisu_ssim.cpp |
| 2 | // Copyright (C) 2019 Binomial LLC. All Rights Reserved. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | // you may not use this file except in compliance with the License. |
| 6 | // You may obtain a copy of the License at |
| 7 | // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | // |
| 10 | // Unless required by applicable law or agreed to in writing, software |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | // See the License for the specific language governing permissions and |
| 14 | // limitations under the License. |
| 15 | #include "basisu_ssim.h" |
| 16 | |
| 17 | #ifndef M_PI |
| 18 | #define M_PI 3.14159265358979323846 |
| 19 | #endif |
| 20 | |
| 21 | namespace basisu |
| 22 | { |
| 23 | float gauss(int x, int y, float sigma_sqr) |
| 24 | { |
| 25 | float pow = expf(-((x * x + y * y) / (2.0f * sigma_sqr))); |
| 26 | float g = (1.0f / (sqrtf((float)(2.0f * M_PI * sigma_sqr)))) * pow; |
| 27 | return g; |
| 28 | } |
| 29 | |
| 30 | // size_x/y should be odd |
| 31 | void compute_gaussian_kernel(float *pDst, int size_x, int size_y, float sigma_sqr, uint32_t flags) |
| 32 | { |
| 33 | assert(size_x & size_y & 1); |
| 34 | |
| 35 | if (!(size_x | size_y)) |
| 36 | return; |
| 37 | |
| 38 | int mid_x = size_x / 2; |
| 39 | int mid_y = size_y / 2; |
| 40 | |
| 41 | double sum = 0; |
| 42 | for (int x = 0; x < size_x; x++) |
| 43 | { |
| 44 | for (int y = 0; y < size_y; y++) |
| 45 | { |
| 46 | float g; |
| 47 | if ((x > mid_x) && (y < mid_y)) |
| 48 | g = pDst[(size_x - x - 1) + y * size_x]; |
| 49 | else if ((x < mid_x) && (y > mid_y)) |
| 50 | g = pDst[x + (size_y - y - 1) * size_x]; |
| 51 | else if ((x > mid_x) && (y > mid_y)) |
| 52 | g = pDst[(size_x - x - 1) + (size_y - y - 1) * size_x]; |
| 53 | else |
| 54 | g = gauss(x - mid_x, y - mid_y, sigma_sqr); |
| 55 | |
| 56 | pDst[x + y * size_x] = g; |
| 57 | sum += g; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | if (flags & cComputeGaussianFlagNormalizeCenterToOne) |
| 62 | { |
| 63 | sum = pDst[mid_x + mid_y * size_x]; |
| 64 | } |
| 65 | |
| 66 | if (flags & (cComputeGaussianFlagNormalizeCenterToOne | cComputeGaussianFlagNormalize)) |
| 67 | { |
| 68 | double one_over_sum = 1.0f / sum; |
| 69 | for (int i = 0; i < size_x * size_y; i++) |
| 70 | pDst[i] = static_cast<float>(pDst[i] * one_over_sum); |
| 71 | |
| 72 | if (flags & cComputeGaussianFlagNormalizeCenterToOne) |
| 73 | pDst[mid_x + mid_y * size_x] = 1.0f; |
| 74 | } |
| 75 | |
| 76 | if (flags & cComputeGaussianFlagPrint) |
| 77 | { |
| 78 | printf("{\n" ); |
| 79 | for (int y = 0; y < size_y; y++) |
| 80 | { |
| 81 | printf(" " ); |
| 82 | for (int x = 0; x < size_x; x++) |
| 83 | { |
| 84 | printf("%f, " , pDst[x + y * size_x]); |
| 85 | } |
| 86 | printf("\n" ); |
| 87 | } |
| 88 | printf("}" ); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | void gaussian_filter(imagef &dst, const imagef &orig_img, uint32_t odd_filter_width, float sigma_sqr, bool wrapping, uint32_t width_divisor, uint32_t height_divisor) |
| 93 | { |
| 94 | assert(odd_filter_width && (odd_filter_width & 1)); |
| 95 | odd_filter_width |= 1; |
| 96 | |
| 97 | vector2D<float> kernel(odd_filter_width, odd_filter_width); |
| 98 | compute_gaussian_kernel(kernel.get_ptr(), odd_filter_width, odd_filter_width, sigma_sqr, cComputeGaussianFlagNormalize); |
| 99 | |
| 100 | const int dst_width = orig_img.get_width() / width_divisor; |
| 101 | const int dst_height = orig_img.get_height() / height_divisor; |
| 102 | |
| 103 | const int H = odd_filter_width / 2; |
| 104 | const int L = -H; |
| 105 | |
| 106 | dst.crop(dst_width, dst_height); |
| 107 | |
| 108 | //#pragma omp parallel for |
| 109 | for (int oy = 0; oy < dst_height; oy++) |
| 110 | { |
| 111 | for (int ox = 0; ox < dst_width; ox++) |
| 112 | { |
| 113 | vec4F c(0.0f); |
| 114 | |
| 115 | for (int yd = L; yd <= H; yd++) |
| 116 | { |
| 117 | int y = oy * height_divisor + (height_divisor >> 1) + yd; |
| 118 | |
| 119 | for (int xd = L; xd <= H; xd++) |
| 120 | { |
| 121 | int x = ox * width_divisor + (width_divisor >> 1) + xd; |
| 122 | |
| 123 | const vec4F &p = orig_img.get_clamped_or_wrapped(x, y, wrapping, wrapping); |
| 124 | |
| 125 | float w = kernel(xd + H, yd + H); |
| 126 | c[0] += p[0] * w; |
| 127 | c[1] += p[1] * w; |
| 128 | c[2] += p[2] * w; |
| 129 | c[3] += p[3] * w; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | dst(ox, oy).set(c[0], c[1], c[2], c[3]); |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | void pow_image(const imagef &src, imagef &dst, const vec4F &power) |
| 139 | { |
| 140 | dst.resize(src); |
| 141 | |
| 142 | //#pragma omp parallel for |
| 143 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 144 | { |
| 145 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 146 | { |
| 147 | const vec4F &p = src(x, y); |
| 148 | |
| 149 | if ((power[0] == 2.0f) && (power[1] == 2.0f) && (power[2] == 2.0f) && (power[3] == 2.0f)) |
| 150 | dst(x, y).set(p[0] * p[0], p[1] * p[1], p[2] * p[2], p[3] * p[3]); |
| 151 | else |
| 152 | dst(x, y).set(powf(p[0], power[0]), powf(p[1], power[1]), powf(p[2], power[2]), powf(p[3], power[3])); |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | void mul_image(const imagef &src, imagef &dst, const vec4F &mul) |
| 158 | { |
| 159 | dst.resize(src); |
| 160 | |
| 161 | //#pragma omp parallel for |
| 162 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 163 | { |
| 164 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 165 | { |
| 166 | const vec4F &p = src(x, y); |
| 167 | dst(x, y).set(p[0] * mul[0], p[1] * mul[1], p[2] * mul[2], p[3] * mul[3]); |
| 168 | } |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | void scale_image(const imagef &src, imagef &dst, const vec4F &scale, const vec4F &shift) |
| 173 | { |
| 174 | dst.resize(src); |
| 175 | |
| 176 | //#pragma omp parallel for |
| 177 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 178 | { |
| 179 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 180 | { |
| 181 | const vec4F &p = src(x, y); |
| 182 | |
| 183 | vec4F d; |
| 184 | |
| 185 | for (uint32_t c = 0; c < 4; c++) |
| 186 | d[c] = scale[c] * p[c] + shift[c]; |
| 187 | |
| 188 | dst(x, y).set(d[0], d[1], d[2], d[3]); |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | void add_weighted_image(const imagef &src1, const vec4F &alpha, const imagef &src2, const vec4F &beta, const vec4F &gamma, imagef &dst) |
| 194 | { |
| 195 | dst.resize(src1); |
| 196 | |
| 197 | //#pragma omp parallel for |
| 198 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 199 | { |
| 200 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 201 | { |
| 202 | const vec4F &s1 = src1(x, y); |
| 203 | const vec4F &s2 = src2(x, y); |
| 204 | |
| 205 | dst(x, y).set( |
| 206 | s1[0] * alpha[0] + s2[0] * beta[0] + gamma[0], |
| 207 | s1[1] * alpha[1] + s2[1] * beta[1] + gamma[1], |
| 208 | s1[2] * alpha[2] + s2[2] * beta[2] + gamma[2], |
| 209 | s1[3] * alpha[3] + s2[3] * beta[3] + gamma[3]); |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | void add_image(const imagef &src1, const imagef &src2, imagef &dst) |
| 215 | { |
| 216 | dst.resize(src1); |
| 217 | |
| 218 | //#pragma omp parallel for |
| 219 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 220 | { |
| 221 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 222 | { |
| 223 | const vec4F &s1 = src1(x, y); |
| 224 | const vec4F &s2 = src2(x, y); |
| 225 | |
| 226 | dst(x, y).set(s1[0] + s2[0], s1[1] + s2[1], s1[2] + s2[2], s1[3] + s2[3]); |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | void adds_image(const imagef &src, const vec4F &value, imagef &dst) |
| 232 | { |
| 233 | dst.resize(src); |
| 234 | |
| 235 | //#pragma omp parallel for |
| 236 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 237 | { |
| 238 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 239 | { |
| 240 | const vec4F &p = src(x, y); |
| 241 | |
| 242 | dst(x, y).set(p[0] + value[0], p[1] + value[1], p[2] + value[2], p[3] + value[3]); |
| 243 | } |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | void mul_image(const imagef &src1, const imagef &src2, imagef &dst, const vec4F &scale) |
| 248 | { |
| 249 | dst.resize(src1); |
| 250 | |
| 251 | //#pragma omp parallel for |
| 252 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 253 | { |
| 254 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 255 | { |
| 256 | const vec4F &s1 = src1(x, y); |
| 257 | const vec4F &s2 = src2(x, y); |
| 258 | |
| 259 | vec4F d; |
| 260 | |
| 261 | for (uint32_t c = 0; c < 4; c++) |
| 262 | { |
| 263 | float v1 = s1[c]; |
| 264 | float v2 = s2[c]; |
| 265 | d[c] = v1 * v2 * scale[c]; |
| 266 | } |
| 267 | |
| 268 | dst(x, y) = d; |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | void div_image(const imagef &src1, const imagef &src2, imagef &dst, const vec4F &scale) |
| 274 | { |
| 275 | dst.resize(src1); |
| 276 | |
| 277 | //#pragma omp parallel for |
| 278 | for (int y = 0; y < (int)dst.get_height(); y++) |
| 279 | { |
| 280 | for (uint32_t x = 0; x < dst.get_width(); x++) |
| 281 | { |
| 282 | const vec4F &s1 = src1(x, y); |
| 283 | const vec4F &s2 = src2(x, y); |
| 284 | |
| 285 | vec4F d; |
| 286 | |
| 287 | for (uint32_t c = 0; c < 4; c++) |
| 288 | { |
| 289 | float v = s2[c]; |
| 290 | if (v == 0.0f) |
| 291 | d[c] = 0.0f; |
| 292 | else |
| 293 | d[c] = (s1[c] * scale[c]) / v; |
| 294 | } |
| 295 | |
| 296 | dst(x, y) = d; |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | vec4F avg_image(const imagef &src) |
| 302 | { |
| 303 | vec4F avg(0.0f); |
| 304 | |
| 305 | for (uint32_t y = 0; y < src.get_height(); y++) |
| 306 | { |
| 307 | for (uint32_t x = 0; x < src.get_width(); x++) |
| 308 | { |
| 309 | const vec4F &s = src(x, y); |
| 310 | |
| 311 | avg += vec4F(s[0], s[1], s[2], s[3]); |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | avg /= static_cast<float>(src.get_total_pixels()); |
| 316 | |
| 317 | return avg; |
| 318 | } |
| 319 | |
| 320 | // Reference: https://ece.uwaterloo.ca/~z70wang/research/ssim/index.html |
| 321 | vec4F compute_ssim(const imagef &a, const imagef &b) |
| 322 | { |
| 323 | imagef axb, a_sq, b_sq, mu1, mu2, mu1_sq, mu2_sq, mu1_mu2, s1_sq, s2_sq, s12, smap, t1, t2, t3; |
| 324 | |
| 325 | const float C1 = 6.50250f, C2 = 58.52250f; |
| 326 | |
| 327 | pow_image(a, a_sq, vec4F(2)); |
| 328 | pow_image(b, b_sq, vec4F(2)); |
| 329 | mul_image(a, b, axb, vec4F(1.0f)); |
| 330 | |
| 331 | gaussian_filter(mu1, a, 11, 1.5f * 1.5f); |
| 332 | gaussian_filter(mu2, b, 11, 1.5f * 1.5f); |
| 333 | |
| 334 | pow_image(mu1, mu1_sq, vec4F(2)); |
| 335 | pow_image(mu2, mu2_sq, vec4F(2)); |
| 336 | mul_image(mu1, mu2, mu1_mu2, vec4F(1.0f)); |
| 337 | |
| 338 | gaussian_filter(s1_sq, a_sq, 11, 1.5f * 1.5f); |
| 339 | add_weighted_image(s1_sq, vec4F(1), mu1_sq, vec4F(-1), vec4F(0), s1_sq); |
| 340 | |
| 341 | gaussian_filter(s2_sq, b_sq, 11, 1.5f * 1.5f); |
| 342 | add_weighted_image(s2_sq, vec4F(1), mu2_sq, vec4F(-1), vec4F(0), s2_sq); |
| 343 | |
| 344 | gaussian_filter(s12, axb, 11, 1.5f * 1.5f); |
| 345 | add_weighted_image(s12, vec4F(1), mu1_mu2, vec4F(-1), vec4F(0), s12); |
| 346 | |
| 347 | scale_image(mu1_mu2, t1, vec4F(2), vec4F(0)); |
| 348 | adds_image(t1, vec4F(C1), t1); |
| 349 | |
| 350 | scale_image(s12, t2, vec4F(2), vec4F(0)); |
| 351 | adds_image(t2, vec4F(C2), t2); |
| 352 | |
| 353 | mul_image(t1, t2, t3, vec4F(1)); |
| 354 | |
| 355 | add_image(mu1_sq, mu2_sq, t1); |
| 356 | adds_image(t1, vec4F(C1), t1); |
| 357 | |
| 358 | add_image(s1_sq, s2_sq, t2); |
| 359 | adds_image(t2, vec4F(C2), t2); |
| 360 | |
| 361 | mul_image(t1, t2, t1, vec4F(1)); |
| 362 | |
| 363 | div_image(t3, t1, smap, vec4F(1)); |
| 364 | |
| 365 | return avg_image(smap); |
| 366 | } |
| 367 | |
| 368 | vec4F compute_ssim(const image &a, const image &b, bool luma, bool luma_601) |
| 369 | { |
| 370 | image ta(a), tb(b); |
| 371 | |
| 372 | if ((ta.get_width() != tb.get_width()) || (ta.get_height() != tb.get_height())) |
| 373 | { |
| 374 | debug_printf("compute_ssim: Cropping input images to equal dimensions\n" ); |
| 375 | |
| 376 | const uint32_t w = minimum(a.get_width(), b.get_width()); |
| 377 | const uint32_t h = minimum(a.get_height(), b.get_height()); |
| 378 | ta.crop(w, h); |
| 379 | tb.crop(w, h); |
| 380 | } |
| 381 | |
| 382 | if (!ta.get_width() || !ta.get_height()) |
| 383 | { |
| 384 | assert(0); |
| 385 | return vec4F(0); |
| 386 | } |
| 387 | |
| 388 | if (luma) |
| 389 | { |
| 390 | for (uint32_t y = 0; y < ta.get_height(); y++) |
| 391 | { |
| 392 | for (uint32_t x = 0; x < ta.get_width(); x++) |
| 393 | { |
| 394 | ta(x, y).set(ta(x, y).get_luma(luma_601), ta(x, y).a); |
| 395 | tb(x, y).set(tb(x, y).get_luma(luma_601), tb(x, y).a); |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | imagef fta, ftb; |
| 401 | |
| 402 | fta.set(ta); |
| 403 | ftb.set(tb); |
| 404 | |
| 405 | return compute_ssim(fta, ftb); |
| 406 | } |
| 407 | |
| 408 | } // namespace basisu |
| 409 | |