| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "bbox.h" |
| 7 | #include "range.h" |
| 8 | |
| 9 | namespace embree |
| 10 | { |
| 11 | template<typename T> |
| 12 | __forceinline std::pair<T,T> globalLinear(const std::pair<T,T>& v, const BBox1f& dt) |
| 13 | { |
| 14 | const float rcp_dt_size = float(1.0f)/dt.size(); |
| 15 | const T g0 = lerp(v.first,v.second,-dt.lower*rcp_dt_size); |
| 16 | const T g1 = lerp(v.first,v.second,(1.0f-dt.lower)*rcp_dt_size); |
| 17 | return std::make_pair(g0,g1); |
| 18 | } |
| 19 | |
| 20 | template<typename T> |
| 21 | struct LBBox |
| 22 | { |
| 23 | public: |
| 24 | __forceinline LBBox () {} |
| 25 | |
| 26 | template<typename T1> |
| 27 | __forceinline LBBox ( const LBBox<T1>& other ) |
| 28 | : bounds0(other.bounds0), bounds1(other.bounds1) {} |
| 29 | |
| 30 | __forceinline LBBox& operator= ( const LBBox& other ) { |
| 31 | bounds0 = other.bounds0; bounds1 = other.bounds1; return *this; |
| 32 | } |
| 33 | |
| 34 | __forceinline LBBox (EmptyTy) |
| 35 | : bounds0(EmptyTy()), bounds1(EmptyTy()) {} |
| 36 | |
| 37 | __forceinline explicit LBBox ( const BBox<T>& bounds) |
| 38 | : bounds0(bounds), bounds1(bounds) { } |
| 39 | |
| 40 | __forceinline LBBox ( const BBox<T>& bounds0, const BBox<T>& bounds1) |
| 41 | : bounds0(bounds0), bounds1(bounds1) { } |
| 42 | |
| 43 | LBBox ( const avector<BBox<T>>& bounds ) |
| 44 | { |
| 45 | assert(bounds.size()); |
| 46 | BBox<T> b0 = bounds.front(); |
| 47 | BBox<T> b1 = bounds.back(); |
| 48 | for (size_t i=1; i<bounds.size()-1; i++) { |
| 49 | const float f = float(i)/float(bounds.size()-1); |
| 50 | const BBox<T> bt = lerp(b0,b1,f); |
| 51 | const T dlower = min(bounds[i].lower-bt.lower,T(zero)); |
| 52 | const T dupper = max(bounds[i].upper-bt.upper,T(zero)); |
| 53 | b0.lower += dlower; b1.lower += dlower; |
| 54 | b0.upper += dupper; b1.upper += dupper; |
| 55 | } |
| 56 | bounds0 = b0; |
| 57 | bounds1 = b1; |
| 58 | } |
| 59 | |
| 60 | /*! calculates the linear bounds of a primitive for the specified time range */ |
| 61 | template<typename BoundsFunc> |
| 62 | __forceinline LBBox(const BoundsFunc& bounds, const BBox1f& time_range, float numTimeSegments) |
| 63 | { |
| 64 | const float lower = time_range.lower*numTimeSegments; |
| 65 | const float upper = time_range.upper*numTimeSegments; |
| 66 | const float ilowerf = floor(lower); |
| 67 | const float iupperf = ceil(upper); |
| 68 | const int ilower = (int)ilowerf; |
| 69 | const int iupper = (int)iupperf; |
| 70 | |
| 71 | const BBox<T> blower0 = bounds(ilower); |
| 72 | const BBox<T> bupper1 = bounds(iupper); |
| 73 | |
| 74 | if (iupper-ilower == 1) { |
| 75 | bounds0 = lerp(blower0, bupper1, lower-ilowerf); |
| 76 | bounds1 = lerp(bupper1, blower0, iupperf-upper); |
| 77 | return; |
| 78 | } |
| 79 | |
| 80 | const BBox<T> blower1 = bounds(ilower+1); |
| 81 | const BBox<T> bupper0 = bounds(iupper-1); |
| 82 | BBox<T> b0 = lerp(blower0, blower1, lower-ilowerf); |
| 83 | BBox<T> b1 = lerp(bupper1, bupper0, iupperf-upper); |
| 84 | |
| 85 | for (int i = ilower+1; i < iupper; i++) |
| 86 | { |
| 87 | const float f = (float(i)/numTimeSegments - time_range.lower) / time_range.size(); |
| 88 | const BBox<T> bt = lerp(b0, b1, f); |
| 89 | const BBox<T> bi = bounds(i); |
| 90 | const T dlower = min(bi.lower-bt.lower, T(zero)); |
| 91 | const T dupper = max(bi.upper-bt.upper, T(zero)); |
| 92 | b0.lower += dlower; b1.lower += dlower; |
| 93 | b0.upper += dupper; b1.upper += dupper; |
| 94 | } |
| 95 | |
| 96 | bounds0 = b0; |
| 97 | bounds1 = b1; |
| 98 | } |
| 99 | |
| 100 | /*! calculates the linear bounds of a primitive for the specified time range */ |
| 101 | template<typename BoundsFunc> |
| 102 | __forceinline LBBox(const BoundsFunc& bounds, const BBox1f& time_range_in, const BBox1f& geom_time_range, float geom_time_segments) |
| 103 | { |
| 104 | /* normalize global time_range_in to local geom_time_range */ |
| 105 | const BBox1f time_range((time_range_in.lower-geom_time_range.lower)/geom_time_range.size(), |
| 106 | (time_range_in.upper-geom_time_range.lower)/geom_time_range.size()); |
| 107 | |
| 108 | const float lower = time_range.lower*geom_time_segments; |
| 109 | const float upper = time_range.upper*geom_time_segments; |
| 110 | const float ilowerf = floor(lower); |
| 111 | const float iupperf = ceil(upper); |
| 112 | const float ilowerfc = max(0.0f,ilowerf); |
| 113 | const float iupperfc = min(iupperf,geom_time_segments); |
| 114 | const int ilowerc = (int)ilowerfc; |
| 115 | const int iupperc = (int)iupperfc; |
| 116 | assert(iupperc-ilowerc > 0); |
| 117 | |
| 118 | /* this larger iteration range guarantees that we process borders of geom_time_range is (partially) inside time_range_in */ |
| 119 | const int ilower_iter = max(-1,(int)ilowerf); |
| 120 | const int iupper_iter = min((int)iupperf,(int)geom_time_segments+1); |
| 121 | |
| 122 | const BBox<T> blower0 = bounds(ilowerc); |
| 123 | const BBox<T> bupper1 = bounds(iupperc); |
| 124 | if (iupper_iter-ilower_iter == 1) { |
| 125 | bounds0 = lerp(blower0, bupper1, max(0.0f,lower-ilowerfc)); |
| 126 | bounds1 = lerp(bupper1, blower0, max(0.0f,iupperfc-upper)); |
| 127 | return; |
| 128 | } |
| 129 | |
| 130 | const BBox<T> blower1 = bounds(ilowerc+1); |
| 131 | const BBox<T> bupper0 = bounds(iupperc-1); |
| 132 | BBox<T> b0 = lerp(blower0, blower1, max(0.0f,lower-ilowerfc)); |
| 133 | BBox<T> b1 = lerp(bupper1, bupper0, max(0.0f,iupperfc-upper)); |
| 134 | |
| 135 | for (int i = ilower_iter+1; i < iupper_iter; i++) |
| 136 | { |
| 137 | const float f = (float(i)/geom_time_segments - time_range.lower) / time_range.size(); |
| 138 | const BBox<T> bt = lerp(b0, b1, f); |
| 139 | const BBox<T> bi = bounds(i); |
| 140 | const T dlower = min(bi.lower-bt.lower, T(zero)); |
| 141 | const T dupper = max(bi.upper-bt.upper, T(zero)); |
| 142 | b0.lower += dlower; b1.lower += dlower; |
| 143 | b0.upper += dupper; b1.upper += dupper; |
| 144 | } |
| 145 | |
| 146 | bounds0 = b0; |
| 147 | bounds1 = b1; |
| 148 | } |
| 149 | |
| 150 | /*! calculates the linear bounds of a primitive for the specified time range */ |
| 151 | template<typename BoundsFunc> |
| 152 | __forceinline LBBox(const BoundsFunc& bounds, const range<int>& time_range, int numTimeSegments) |
| 153 | { |
| 154 | const int ilower = time_range.begin(); |
| 155 | const int iupper = time_range.end(); |
| 156 | |
| 157 | BBox<T> b0 = bounds(ilower); |
| 158 | BBox<T> b1 = bounds(iupper); |
| 159 | |
| 160 | if (iupper-ilower == 1) |
| 161 | { |
| 162 | bounds0 = b0; |
| 163 | bounds1 = b1; |
| 164 | return; |
| 165 | } |
| 166 | |
| 167 | for (int i = ilower+1; i<iupper; i++) |
| 168 | { |
| 169 | const float f = float(i - time_range.begin()) / float(time_range.size()); |
| 170 | const BBox<T> bt = lerp(b0, b1, f); |
| 171 | const BBox<T> bi = bounds(i); |
| 172 | const T dlower = min(bi.lower-bt.lower, T(zero)); |
| 173 | const T dupper = max(bi.upper-bt.upper, T(zero)); |
| 174 | b0.lower += dlower; b1.lower += dlower; |
| 175 | b0.upper += dupper; b1.upper += dupper; |
| 176 | } |
| 177 | |
| 178 | bounds0 = b0; |
| 179 | bounds1 = b1; |
| 180 | } |
| 181 | |
| 182 | public: |
| 183 | |
| 184 | __forceinline bool empty() const { |
| 185 | return bounds().empty(); |
| 186 | } |
| 187 | |
| 188 | __forceinline BBox<T> bounds () const { |
| 189 | return merge(bounds0,bounds1); |
| 190 | } |
| 191 | |
| 192 | __forceinline BBox<T> interpolate( const float t ) const { |
| 193 | return lerp(bounds0,bounds1,t); |
| 194 | } |
| 195 | |
| 196 | __forceinline LBBox<T> interpolate( const BBox1f& dt ) const { |
| 197 | return LBBox<T>(interpolate(dt.lower),interpolate(dt.upper)); |
| 198 | } |
| 199 | |
| 200 | __forceinline void extend( const LBBox& other ) { |
| 201 | bounds0.extend(other.bounds0); |
| 202 | bounds1.extend(other.bounds1); |
| 203 | } |
| 204 | |
| 205 | __forceinline float expectedHalfArea() const; |
| 206 | |
| 207 | __forceinline float expectedHalfArea(const BBox1f& dt) const { |
| 208 | return interpolate(dt).expectedHalfArea(); |
| 209 | } |
| 210 | |
| 211 | __forceinline float expectedApproxHalfArea() const { |
| 212 | return 0.5f*(halfArea(bounds0) + halfArea(bounds1)); |
| 213 | } |
| 214 | |
| 215 | /* calculates bounds for [0,1] time range from bounds in dt time range */ |
| 216 | __forceinline LBBox global(const BBox1f& dt) const |
| 217 | { |
| 218 | const float rcp_dt_size = 1.0f/dt.size(); |
| 219 | const BBox<T> b0 = interpolate(-dt.lower*rcp_dt_size); |
| 220 | const BBox<T> b1 = interpolate((1.0f-dt.lower)*rcp_dt_size); |
| 221 | return LBBox(b0,b1); |
| 222 | } |
| 223 | |
| 224 | /*! Comparison Operators */ |
| 225 | //template<typename TT> friend __forceinline bool operator==( const LBBox<TT>& a, const LBBox<TT>& b ) { return a.bounds0 == b.bounds0 && a.bounds1 == b.bounds1; } |
| 226 | //template<typename TT> friend __forceinline bool operator!=( const LBBox<TT>& a, const LBBox<TT>& b ) { return a.bounds0 != b.bounds0 || a.bounds1 != b.bounds1; } |
| 227 | friend __forceinline bool operator==( const LBBox& a, const LBBox& b ) { return a.bounds0 == b.bounds0 && a.bounds1 == b.bounds1; } |
| 228 | friend __forceinline bool operator!=( const LBBox& a, const LBBox& b ) { return a.bounds0 != b.bounds0 || a.bounds1 != b.bounds1; } |
| 229 | |
| 230 | /*! output operator */ |
| 231 | friend __forceinline embree_ostream operator<<(embree_ostream cout, const LBBox& box) { |
| 232 | return cout << "LBBox { " << box.bounds0 << "; " << box.bounds1 << " }" ; |
| 233 | } |
| 234 | |
| 235 | public: |
| 236 | BBox<T> bounds0, bounds1; |
| 237 | }; |
| 238 | |
| 239 | /*! tests if box is finite */ |
| 240 | template<typename T> |
| 241 | __forceinline bool isvalid( const LBBox<T>& v ) { |
| 242 | return isvalid(v.bounds0) && isvalid(v.bounds1); |
| 243 | } |
| 244 | |
| 245 | template<typename T> |
| 246 | __forceinline bool isvalid_non_empty( const LBBox<T>& v ) { |
| 247 | return isvalid_non_empty(v.bounds0) && isvalid_non_empty(v.bounds1); |
| 248 | } |
| 249 | |
| 250 | template<typename T> |
| 251 | __forceinline T expectedArea(const T& a0, const T& a1, const T& b0, const T& b1) |
| 252 | { |
| 253 | const T da = a1-a0; |
| 254 | const T db = b1-b0; |
| 255 | return a0*b0+(a0*db+da*b0)*T(0.5f) + da*db*T(1.0f/3.0f); |
| 256 | } |
| 257 | |
| 258 | template<> __forceinline float LBBox<Vec3fa>::expectedHalfArea() const |
| 259 | { |
| 260 | const Vec3fa d0 = bounds0.size(); |
| 261 | const Vec3fa d1 = bounds1.size(); |
| 262 | return reduce_add(expectedArea(Vec3fa(d0.x,d0.y,d0.z), |
| 263 | Vec3fa(d1.x,d1.y,d1.z), |
| 264 | Vec3fa(d0.y,d0.z,d0.x), |
| 265 | Vec3fa(d1.y,d1.z,d1.x))); |
| 266 | } |
| 267 | |
| 268 | template<typename T> |
| 269 | __forceinline float expectedApproxHalfArea(const LBBox<T>& box) { |
| 270 | return box.expectedApproxHalfArea(); |
| 271 | } |
| 272 | |
| 273 | template<typename T> |
| 274 | __forceinline LBBox<T> merge(const LBBox<T>& a, const LBBox<T>& b) { |
| 275 | return LBBox<T>(merge(a.bounds0, b.bounds0), merge(a.bounds1, b.bounds1)); |
| 276 | } |
| 277 | |
| 278 | /*! subset relation */ |
| 279 | template<typename T> __inline bool subset( const LBBox<T>& a, const LBBox<T>& b ) { |
| 280 | return subset(a.bounds0,b.bounds0) && subset(a.bounds1,b.bounds1); |
| 281 | } |
| 282 | |
| 283 | /*! default template instantiations */ |
| 284 | typedef LBBox<float> LBBox1f; |
| 285 | typedef LBBox<Vec2f> LBBox2f; |
| 286 | typedef LBBox<Vec3f> LBBox3f; |
| 287 | typedef LBBox<Vec3fa> LBBox3fa; |
| 288 | typedef LBBox<Vec3fx> LBBox3fx; |
| 289 | } |
| 290 | |