| 1 | // Copyright 2009-2021 Intel Corporation |
| 2 | // SPDX-License-Identifier: Apache-2.0 |
| 3 | |
| 4 | #pragma once |
| 5 | |
| 6 | #include "vec3.h" |
| 7 | #include "quaternion.h" |
| 8 | |
| 9 | namespace embree |
| 10 | { |
| 11 | //////////////////////////////////////////////////////////////////////////////// |
| 12 | /// 3D Linear Transform (3x3 Matrix) |
| 13 | //////////////////////////////////////////////////////////////////////////////// |
| 14 | |
| 15 | template<typename T> struct LinearSpace3 |
| 16 | { |
| 17 | typedef T Vector; |
| 18 | typedef typename T::Scalar Scalar; |
| 19 | |
| 20 | /*! default matrix constructor */ |
| 21 | __forceinline LinearSpace3 ( ) {} |
| 22 | __forceinline LinearSpace3 ( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; } |
| 23 | __forceinline LinearSpace3& operator=( const LinearSpace3& other ) { vx = other.vx; vy = other.vy; vz = other.vz; return *this; } |
| 24 | |
| 25 | template<typename L1> __forceinline LinearSpace3( const LinearSpace3<L1>& s ) : vx(s.vx), vy(s.vy), vz(s.vz) {} |
| 26 | |
| 27 | /*! matrix construction from column vectors */ |
| 28 | __forceinline LinearSpace3(const Vector& vx, const Vector& vy, const Vector& vz) |
| 29 | : vx(vx), vy(vy), vz(vz) {} |
| 30 | |
| 31 | /*! construction from quaternion */ |
| 32 | __forceinline LinearSpace3( const QuaternionT<Scalar>& q ) |
| 33 | : vx((q.r*q.r + q.i*q.i - q.j*q.j - q.k*q.k), 2.0f*(q.i*q.j + q.r*q.k), 2.0f*(q.i*q.k - q.r*q.j)) |
| 34 | , vy(2.0f*(q.i*q.j - q.r*q.k), (q.r*q.r - q.i*q.i + q.j*q.j - q.k*q.k), 2.0f*(q.j*q.k + q.r*q.i)) |
| 35 | , vz(2.0f*(q.i*q.k + q.r*q.j), 2.0f*(q.j*q.k - q.r*q.i), (q.r*q.r - q.i*q.i - q.j*q.j + q.k*q.k)) {} |
| 36 | |
| 37 | /*! matrix construction from row mayor data */ |
| 38 | __forceinline LinearSpace3(const Scalar& m00, const Scalar& m01, const Scalar& m02, |
| 39 | const Scalar& m10, const Scalar& m11, const Scalar& m12, |
| 40 | const Scalar& m20, const Scalar& m21, const Scalar& m22) |
| 41 | : vx(m00,m10,m20), vy(m01,m11,m21), vz(m02,m12,m22) {} |
| 42 | |
| 43 | /*! compute the determinant of the matrix */ |
| 44 | __forceinline const Scalar det() const { return dot(vx,cross(vy,vz)); } |
| 45 | |
| 46 | /*! compute adjoint matrix */ |
| 47 | __forceinline const LinearSpace3 adjoint() const { return LinearSpace3(cross(vy,vz),cross(vz,vx),cross(vx,vy)).transposed(); } |
| 48 | |
| 49 | /*! compute inverse matrix */ |
| 50 | __forceinline const LinearSpace3 inverse() const { return adjoint()/det(); } |
| 51 | |
| 52 | /*! compute transposed matrix */ |
| 53 | __forceinline const LinearSpace3 transposed() const { return LinearSpace3(vx.x,vx.y,vx.z,vy.x,vy.y,vy.z,vz.x,vz.y,vz.z); } |
| 54 | |
| 55 | /*! returns first row of matrix */ |
| 56 | __forceinline Vector row0() const { return Vector(vx.x,vy.x,vz.x); } |
| 57 | |
| 58 | /*! returns second row of matrix */ |
| 59 | __forceinline Vector row1() const { return Vector(vx.y,vy.y,vz.y); } |
| 60 | |
| 61 | /*! returns third row of matrix */ |
| 62 | __forceinline Vector row2() const { return Vector(vx.z,vy.z,vz.z); } |
| 63 | |
| 64 | //////////////////////////////////////////////////////////////////////////////// |
| 65 | /// Constants |
| 66 | //////////////////////////////////////////////////////////////////////////////// |
| 67 | |
| 68 | __forceinline LinearSpace3( ZeroTy ) : vx(zero), vy(zero), vz(zero) {} |
| 69 | __forceinline LinearSpace3( OneTy ) : vx(one, zero, zero), vy(zero, one, zero), vz(zero, zero, one) {} |
| 70 | |
| 71 | /*! return matrix for scaling */ |
| 72 | static __forceinline LinearSpace3 scale(const Vector& s) { |
| 73 | return LinearSpace3(s.x, 0, 0, |
| 74 | 0 , s.y, 0, |
| 75 | 0 , 0, s.z); |
| 76 | } |
| 77 | |
| 78 | /*! return matrix for rotation around arbitrary axis */ |
| 79 | static __forceinline LinearSpace3 rotate(const Vector& _u, const Scalar& r) { |
| 80 | Vector u = normalize(_u); |
| 81 | Scalar s = sin(r), c = cos(r); |
| 82 | return LinearSpace3(u.x*u.x+(1-u.x*u.x)*c, u.x*u.y*(1-c)-u.z*s, u.x*u.z*(1-c)+u.y*s, |
| 83 | u.x*u.y*(1-c)+u.z*s, u.y*u.y+(1-u.y*u.y)*c, u.y*u.z*(1-c)-u.x*s, |
| 84 | u.x*u.z*(1-c)-u.y*s, u.y*u.z*(1-c)+u.x*s, u.z*u.z+(1-u.z*u.z)*c); |
| 85 | } |
| 86 | |
| 87 | public: |
| 88 | |
| 89 | /*! the column vectors of the matrix */ |
| 90 | Vector vx,vy,vz; |
| 91 | }; |
| 92 | |
| 93 | /*! compute transposed matrix */ |
| 94 | template<> __forceinline const LinearSpace3<Vec3fa> LinearSpace3<Vec3fa>::transposed() const { |
| 95 | vfloat4 rx,ry,rz; transpose((vfloat4&)vx,(vfloat4&)vy,(vfloat4&)vz,vfloat4(zero),rx,ry,rz); |
| 96 | return LinearSpace3<Vec3fa>(Vec3fa(rx),Vec3fa(ry),Vec3fa(rz)); |
| 97 | } |
| 98 | |
| 99 | template<typename T> |
| 100 | __forceinline const LinearSpace3<T> transposed(const LinearSpace3<T>& xfm) { |
| 101 | return xfm.transposed(); |
| 102 | } |
| 103 | |
| 104 | //////////////////////////////////////////////////////////////////////////////// |
| 105 | // Unary Operators |
| 106 | //////////////////////////////////////////////////////////////////////////////// |
| 107 | |
| 108 | template<typename T> __forceinline LinearSpace3<T> operator -( const LinearSpace3<T>& a ) { return LinearSpace3<T>(-a.vx,-a.vy,-a.vz); } |
| 109 | template<typename T> __forceinline LinearSpace3<T> operator +( const LinearSpace3<T>& a ) { return LinearSpace3<T>(+a.vx,+a.vy,+a.vz); } |
| 110 | template<typename T> __forceinline LinearSpace3<T> rcp ( const LinearSpace3<T>& a ) { return a.inverse(); } |
| 111 | |
| 112 | /* constructs a coordinate frame form a normalized normal */ |
| 113 | template<typename T> __forceinline LinearSpace3<T> frame(const T& N) |
| 114 | { |
| 115 | const T dx0(0,N.z,-N.y); |
| 116 | const T dx1(-N.z,0,N.x); |
| 117 | const T dx = normalize(select(dot(dx0,dx0) > dot(dx1,dx1),dx0,dx1)); |
| 118 | const T dy = normalize(cross(N,dx)); |
| 119 | return LinearSpace3<T>(dx,dy,N); |
| 120 | } |
| 121 | |
| 122 | /* constructs a coordinate frame from a normal and approximate x-direction */ |
| 123 | template<typename T> __forceinline LinearSpace3<T> frame(const T& N, const T& dxi) |
| 124 | { |
| 125 | if (abs(dot(dxi,N)) > 0.99f) return frame(N); // fallback in case N and dxi are very parallel |
| 126 | const T dx = normalize(cross(dxi,N)); |
| 127 | const T dy = normalize(cross(N,dx)); |
| 128 | return LinearSpace3<T>(dx,dy,N); |
| 129 | } |
| 130 | |
| 131 | /* clamps linear space to range -1 to +1 */ |
| 132 | template<typename T> __forceinline LinearSpace3<T> clamp(const LinearSpace3<T>& space) { |
| 133 | return LinearSpace3<T>(clamp(space.vx,T(-1.0f),T(1.0f)), |
| 134 | clamp(space.vy,T(-1.0f),T(1.0f)), |
| 135 | clamp(space.vz,T(-1.0f),T(1.0f))); |
| 136 | } |
| 137 | |
| 138 | //////////////////////////////////////////////////////////////////////////////// |
| 139 | // Binary Operators |
| 140 | //////////////////////////////////////////////////////////////////////////////// |
| 141 | |
| 142 | template<typename T> __forceinline LinearSpace3<T> operator +( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return LinearSpace3<T>(a.vx+b.vx,a.vy+b.vy,a.vz+b.vz); } |
| 143 | template<typename T> __forceinline LinearSpace3<T> operator -( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return LinearSpace3<T>(a.vx-b.vx,a.vy-b.vy,a.vz-b.vz); } |
| 144 | |
| 145 | template<typename T> __forceinline LinearSpace3<T> operator*(const typename T::Scalar & a, const LinearSpace3<T>& b) { return LinearSpace3<T>(a*b.vx, a*b.vy, a*b.vz); } |
| 146 | template<typename T> __forceinline T operator*(const LinearSpace3<T>& a, const T & b) { return madd(T(b.x),a.vx,madd(T(b.y),a.vy,T(b.z)*a.vz)); } |
| 147 | template<typename T> __forceinline LinearSpace3<T> operator*(const LinearSpace3<T>& a, const LinearSpace3<T>& b) { return LinearSpace3<T>(a*b.vx, a*b.vy, a*b.vz); } |
| 148 | |
| 149 | template<typename T> __forceinline LinearSpace3<T> operator/(const LinearSpace3<T>& a, const typename T::Scalar & b) { return LinearSpace3<T>(a.vx/b, a.vy/b, a.vz/b); } |
| 150 | template<typename T> __forceinline LinearSpace3<T> operator/(const LinearSpace3<T>& a, const LinearSpace3<T>& b) { return a * rcp(b); } |
| 151 | |
| 152 | template<typename T> __forceinline LinearSpace3<T>& operator *=( LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a = a * b; } |
| 153 | template<typename T> __forceinline LinearSpace3<T>& operator /=( LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a = a / b; } |
| 154 | |
| 155 | template<typename T> __forceinline T xfmPoint (const LinearSpace3<T>& s, const T & a) { return madd(T(a.x),s.vx,madd(T(a.y),s.vy,T(a.z)*s.vz)); } |
| 156 | template<typename T> __forceinline T xfmVector(const LinearSpace3<T>& s, const T & a) { return madd(T(a.x),s.vx,madd(T(a.y),s.vy,T(a.z)*s.vz)); } |
| 157 | template<typename T> __forceinline T xfmNormal(const LinearSpace3<T>& s, const T & a) { return xfmVector(s.inverse().transposed(),a); } |
| 158 | |
| 159 | //////////////////////////////////////////////////////////////////////////////// |
| 160 | /// Comparison Operators |
| 161 | //////////////////////////////////////////////////////////////////////////////// |
| 162 | |
| 163 | template<typename T> __forceinline bool operator ==( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a.vx == b.vx && a.vy == b.vy && a.vz == b.vz; } |
| 164 | template<typename T> __forceinline bool operator !=( const LinearSpace3<T>& a, const LinearSpace3<T>& b ) { return a.vx != b.vx || a.vy != b.vy || a.vz != b.vz; } |
| 165 | |
| 166 | //////////////////////////////////////////////////////////////////////////////// |
| 167 | /// Select |
| 168 | //////////////////////////////////////////////////////////////////////////////// |
| 169 | |
| 170 | template<typename T> __forceinline LinearSpace3<T> select ( const typename T::Scalar::Bool& s, const LinearSpace3<T>& t, const LinearSpace3<T>& f ) { |
| 171 | return LinearSpace3<T>(select(s,t.vx,f.vx),select(s,t.vy,f.vy),select(s,t.vz,f.vz)); |
| 172 | } |
| 173 | |
| 174 | /*! blending */ |
| 175 | template<typename T> |
| 176 | __forceinline LinearSpace3<T> lerp(const LinearSpace3<T>& l0, const LinearSpace3<T>& l1, const float t) |
| 177 | { |
| 178 | return LinearSpace3<T>(lerp(l0.vx,l1.vx,t), |
| 179 | lerp(l0.vy,l1.vy,t), |
| 180 | lerp(l0.vz,l1.vz,t)); |
| 181 | } |
| 182 | |
| 183 | //////////////////////////////////////////////////////////////////////////////// |
| 184 | /// Output Operators |
| 185 | //////////////////////////////////////////////////////////////////////////////// |
| 186 | |
| 187 | template<typename T> static embree_ostream operator<<(embree_ostream cout, const LinearSpace3<T>& m) { |
| 188 | return cout << "{ vx = " << m.vx << ", vy = " << m.vy << ", vz = " << m.vz << "}" ; |
| 189 | } |
| 190 | |
| 191 | /*! Shortcuts for common linear spaces. */ |
| 192 | typedef LinearSpace3<Vec3f> LinearSpace3f; |
| 193 | typedef LinearSpace3<Vec3fa> LinearSpace3fa; |
| 194 | typedef LinearSpace3<Vec3fx> LinearSpace3fx; |
| 195 | typedef LinearSpace3<Vec3ff> LinearSpace3ff; |
| 196 | |
| 197 | template<int N> using LinearSpace3vf = LinearSpace3<Vec3<vfloat<N>>>; |
| 198 | typedef LinearSpace3<Vec3<vfloat<4>>> LinearSpace3vf4; |
| 199 | typedef LinearSpace3<Vec3<vfloat<8>>> LinearSpace3vf8; |
| 200 | typedef LinearSpace3<Vec3<vfloat<16>>> LinearSpace3vf16; |
| 201 | |
| 202 | /*! blending */ |
| 203 | template<typename T, typename S> |
| 204 | __forceinline LinearSpace3<T> lerp(const LinearSpace3<T>& l0, |
| 205 | const LinearSpace3<T>& l1, |
| 206 | const S& t) |
| 207 | { |
| 208 | return LinearSpace3<T>(lerp(l0.vx,l1.vx,t), |
| 209 | lerp(l0.vy,l1.vy,t), |
| 210 | lerp(l0.vz,l1.vz,t)); |
| 211 | } |
| 212 | |
| 213 | } |
| 214 | |