| 1 | /**************************************************************************** |
| 2 | * |
| 3 | * ftsdf.c |
| 4 | * |
| 5 | * Signed Distance Field support for outline fonts (body). |
| 6 | * |
| 7 | * Copyright (C) 2020-2023 by |
| 8 | * David Turner, Robert Wilhelm, and Werner Lemberg. |
| 9 | * |
| 10 | * Written by Anuj Verma. |
| 11 | * |
| 12 | * This file is part of the FreeType project, and may only be used, |
| 13 | * modified, and distributed under the terms of the FreeType project |
| 14 | * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| 15 | * this file you indicate that you have read the license and |
| 16 | * understand and accept it fully. |
| 17 | * |
| 18 | */ |
| 19 | |
| 20 | |
| 21 | #include <freetype/internal/ftobjs.h> |
| 22 | #include <freetype/internal/ftdebug.h> |
| 23 | #include <freetype/ftoutln.h> |
| 24 | #include <freetype/fttrigon.h> |
| 25 | #include <freetype/ftbitmap.h> |
| 26 | #include "ftsdf.h" |
| 27 | |
| 28 | #include "ftsdferrs.h" |
| 29 | |
| 30 | |
| 31 | /************************************************************************** |
| 32 | * |
| 33 | * A brief technical overview of how the SDF rasterizer works |
| 34 | * ---------------------------------------------------------- |
| 35 | * |
| 36 | * [Notes]: |
| 37 | * * SDF stands for Signed Distance Field everywhere. |
| 38 | * |
| 39 | * * This renderer generates SDF directly from outlines. There is |
| 40 | * another renderer called 'bsdf', which converts bitmaps to SDF; see |
| 41 | * file `ftbsdf.c` for more. |
| 42 | * |
| 43 | * * The basic idea of generating the SDF is taken from Viktor Chlumsky's |
| 44 | * research paper. The paper explains both single and multi-channel |
| 45 | * SDF, however, this implementation only generates single-channel SDF. |
| 46 | * |
| 47 | * Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance |
| 48 | * Fields. Master's thesis. Czech Technical University in Prague, |
| 49 | * Faculty of InformationTechnology, 2015. |
| 50 | * |
| 51 | * For more information: https://github.com/Chlumsky/msdfgen |
| 52 | * |
| 53 | * ======================================================================== |
| 54 | * |
| 55 | * Generating SDF from outlines is pretty straightforward. |
| 56 | * |
| 57 | * (1) We have a set of contours that make the outline of a shape/glyph. |
| 58 | * Each contour comprises of several edges, with three types of edges. |
| 59 | * |
| 60 | * * line segments |
| 61 | * * conic Bezier curves |
| 62 | * * cubic Bezier curves |
| 63 | * |
| 64 | * (2) Apart from the outlines we also have a two-dimensional grid, namely |
| 65 | * the bitmap that is used to represent the final SDF data. |
| 66 | * |
| 67 | * (3) In order to generate SDF, our task is to find shortest signed |
| 68 | * distance from each grid point to the outline. The 'signed |
| 69 | * distance' means that if the grid point is filled by any contour |
| 70 | * then its sign is positive, otherwise it is negative. The pseudo |
| 71 | * code is as follows. |
| 72 | * |
| 73 | * ``` |
| 74 | * foreach grid_point (x, y): |
| 75 | * { |
| 76 | * int min_dist = INT_MAX; |
| 77 | * |
| 78 | * foreach contour in outline: |
| 79 | * { |
| 80 | * foreach edge in contour: |
| 81 | * { |
| 82 | * // get shortest distance from point (x, y) to the edge |
| 83 | * d = get_min_dist(x, y, edge); |
| 84 | * |
| 85 | * if (d < min_dist) |
| 86 | * min_dist = d; |
| 87 | * } |
| 88 | * |
| 89 | * bitmap[x, y] = min_dist; |
| 90 | * } |
| 91 | * } |
| 92 | * ``` |
| 93 | * |
| 94 | * (4) After running this algorithm the bitmap contains information about |
| 95 | * the shortest distance from each point to the outline of the shape. |
| 96 | * Of course, while this is the most straightforward way of generating |
| 97 | * SDF, we use various optimizations in our implementation. See the |
| 98 | * `sdf_generate_*' functions in this file for all details. |
| 99 | * |
| 100 | * The optimization currently used by default is subdivision; see |
| 101 | * function `sdf_generate_subdivision` for more. |
| 102 | * |
| 103 | * Also, to see how we compute the shortest distance from a point to |
| 104 | * each type of edge, check out the `get_min_distance_*' functions. |
| 105 | * |
| 106 | */ |
| 107 | |
| 108 | |
| 109 | /************************************************************************** |
| 110 | * |
| 111 | * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| 112 | * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| 113 | * messages during execution. |
| 114 | */ |
| 115 | #undef FT_COMPONENT |
| 116 | #define FT_COMPONENT sdf |
| 117 | |
| 118 | |
| 119 | /************************************************************************** |
| 120 | * |
| 121 | * definitions |
| 122 | * |
| 123 | */ |
| 124 | |
| 125 | /* |
| 126 | * If set to 1, the rasterizer uses Newton-Raphson's method for finding |
| 127 | * the shortest distance from a point to a conic curve. |
| 128 | * |
| 129 | * If set to 0, an analytical method gets used instead, which computes the |
| 130 | * roots of a cubic polynomial to find the shortest distance. However, |
| 131 | * the analytical method can currently underflow; we thus use Newton's |
| 132 | * method by default. |
| 133 | */ |
| 134 | #ifndef USE_NEWTON_FOR_CONIC |
| 135 | #define USE_NEWTON_FOR_CONIC 1 |
| 136 | #endif |
| 137 | |
| 138 | /* |
| 139 | * The number of intervals a Bezier curve gets sampled and checked to find |
| 140 | * the shortest distance. |
| 141 | */ |
| 142 | #define MAX_NEWTON_DIVISIONS 4 |
| 143 | |
| 144 | /* |
| 145 | * The number of steps of Newton's iterations in each interval of the |
| 146 | * Bezier curve. Basically, we run Newton's approximation |
| 147 | * |
| 148 | * x -= Q(t) / Q'(t) |
| 149 | * |
| 150 | * for each division to get the shortest distance. |
| 151 | */ |
| 152 | #define MAX_NEWTON_STEPS 4 |
| 153 | |
| 154 | /* |
| 155 | * The epsilon distance (in 16.16 fractional units) used for corner |
| 156 | * resolving. If the difference of two distances is less than this value |
| 157 | * they will be checked for a corner if they are ambiguous. |
| 158 | */ |
| 159 | #define CORNER_CHECK_EPSILON 32 |
| 160 | |
| 161 | #if 0 |
| 162 | /* |
| 163 | * Coarse grid dimension. Will probably be removed in the future because |
| 164 | * coarse grid optimization is the slowest algorithm. |
| 165 | */ |
| 166 | #define CG_DIMEN 8 |
| 167 | #endif |
| 168 | |
| 169 | |
| 170 | /************************************************************************** |
| 171 | * |
| 172 | * macros |
| 173 | * |
| 174 | */ |
| 175 | |
| 176 | #define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 ) |
| 177 | #define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \ |
| 178 | MUL_26D6( p.y, q.y ) ) |
| 179 | |
| 180 | |
| 181 | /************************************************************************** |
| 182 | * |
| 183 | * structures and enums |
| 184 | * |
| 185 | */ |
| 186 | |
| 187 | /************************************************************************** |
| 188 | * |
| 189 | * @Struct: |
| 190 | * SDF_TRaster |
| 191 | * |
| 192 | * @Description: |
| 193 | * This struct is used in place of @FT_Raster and is stored within the |
| 194 | * internal FreeType renderer struct. While rasterizing it is passed to |
| 195 | * the @FT_Raster_RenderFunc function, which then can be used however we |
| 196 | * want. |
| 197 | * |
| 198 | * @Fields: |
| 199 | * memory :: |
| 200 | * Used internally to allocate intermediate memory while raterizing. |
| 201 | * |
| 202 | */ |
| 203 | typedef struct SDF_TRaster_ |
| 204 | { |
| 205 | FT_Memory memory; |
| 206 | |
| 207 | } SDF_TRaster, *SDF_PRaster; |
| 208 | |
| 209 | |
| 210 | /************************************************************************** |
| 211 | * |
| 212 | * @Enum: |
| 213 | * SDF_Edge_Type |
| 214 | * |
| 215 | * @Description: |
| 216 | * Enumeration of all curve types present in fonts. |
| 217 | * |
| 218 | * @Fields: |
| 219 | * SDF_EDGE_UNDEFINED :: |
| 220 | * Undefined edge, simply used to initialize and detect errors. |
| 221 | * |
| 222 | * SDF_EDGE_LINE :: |
| 223 | * Line segment with start and end point. |
| 224 | * |
| 225 | * SDF_EDGE_CONIC :: |
| 226 | * A conic/quadratic Bezier curve with start, end, and one control |
| 227 | * point. |
| 228 | * |
| 229 | * SDF_EDGE_CUBIC :: |
| 230 | * A cubic Bezier curve with start, end, and two control points. |
| 231 | * |
| 232 | */ |
| 233 | typedef enum SDF_Edge_Type_ |
| 234 | { |
| 235 | SDF_EDGE_UNDEFINED = 0, |
| 236 | SDF_EDGE_LINE = 1, |
| 237 | SDF_EDGE_CONIC = 2, |
| 238 | SDF_EDGE_CUBIC = 3 |
| 239 | |
| 240 | } SDF_Edge_Type; |
| 241 | |
| 242 | |
| 243 | /************************************************************************** |
| 244 | * |
| 245 | * @Enum: |
| 246 | * SDF_Contour_Orientation |
| 247 | * |
| 248 | * @Description: |
| 249 | * Enumeration of all orientation values of a contour. We determine the |
| 250 | * orientation by calculating the area covered by a contour. Contrary |
| 251 | * to values returned by @FT_Outline_Get_Orientation, |
| 252 | * `SDF_Contour_Orientation` is independent of the fill rule, which can |
| 253 | * be different for different font formats. |
| 254 | * |
| 255 | * @Fields: |
| 256 | * SDF_ORIENTATION_NONE :: |
| 257 | * Undefined orientation, used for initialization and error detection. |
| 258 | * |
| 259 | * SDF_ORIENTATION_CW :: |
| 260 | * Clockwise orientation (positive area covered). |
| 261 | * |
| 262 | * SDF_ORIENTATION_CCW :: |
| 263 | * Counter-clockwise orientation (negative area covered). |
| 264 | * |
| 265 | * @Note: |
| 266 | * See @FT_Outline_Get_Orientation for more details. |
| 267 | * |
| 268 | */ |
| 269 | typedef enum SDF_Contour_Orientation_ |
| 270 | { |
| 271 | SDF_ORIENTATION_NONE = 0, |
| 272 | SDF_ORIENTATION_CW = 1, |
| 273 | SDF_ORIENTATION_CCW = 2 |
| 274 | |
| 275 | } SDF_Contour_Orientation; |
| 276 | |
| 277 | |
| 278 | /************************************************************************** |
| 279 | * |
| 280 | * @Struct: |
| 281 | * SDF_Edge |
| 282 | * |
| 283 | * @Description: |
| 284 | * Represent an edge of a contour. |
| 285 | * |
| 286 | * @Fields: |
| 287 | * start_pos :: |
| 288 | * Start position of an edge. Valid for all types of edges. |
| 289 | * |
| 290 | * end_pos :: |
| 291 | * Etart position of an edge. Valid for all types of edges. |
| 292 | * |
| 293 | * control_a :: |
| 294 | * A control point of the edge. Valid only for `SDF_EDGE_CONIC` |
| 295 | * and `SDF_EDGE_CUBIC`. |
| 296 | * |
| 297 | * control_b :: |
| 298 | * Another control point of the edge. Valid only for |
| 299 | * `SDF_EDGE_CONIC`. |
| 300 | * |
| 301 | * edge_type :: |
| 302 | * Type of the edge, see @SDF_Edge_Type for all possible edge types. |
| 303 | * |
| 304 | * next :: |
| 305 | * Used to create a singly linked list, which can be interpreted |
| 306 | * as a contour. |
| 307 | * |
| 308 | */ |
| 309 | typedef struct SDF_Edge_ |
| 310 | { |
| 311 | FT_26D6_Vec start_pos; |
| 312 | FT_26D6_Vec end_pos; |
| 313 | FT_26D6_Vec control_a; |
| 314 | FT_26D6_Vec control_b; |
| 315 | |
| 316 | SDF_Edge_Type edge_type; |
| 317 | |
| 318 | struct SDF_Edge_* next; |
| 319 | |
| 320 | } SDF_Edge; |
| 321 | |
| 322 | |
| 323 | /************************************************************************** |
| 324 | * |
| 325 | * @Struct: |
| 326 | * SDF_Contour |
| 327 | * |
| 328 | * @Description: |
| 329 | * Represent a complete contour, which contains a list of edges. |
| 330 | * |
| 331 | * @Fields: |
| 332 | * last_pos :: |
| 333 | * Contains the value of `end_pos' of the last edge in the list of |
| 334 | * edges. Useful while decomposing the outline with |
| 335 | * @FT_Outline_Decompose. |
| 336 | * |
| 337 | * edges :: |
| 338 | * Linked list of all the edges that make the contour. |
| 339 | * |
| 340 | * next :: |
| 341 | * Used to create a singly linked list, which can be interpreted as a |
| 342 | * complete shape or @FT_Outline. |
| 343 | * |
| 344 | */ |
| 345 | typedef struct SDF_Contour_ |
| 346 | { |
| 347 | FT_26D6_Vec last_pos; |
| 348 | SDF_Edge* edges; |
| 349 | |
| 350 | struct SDF_Contour_* next; |
| 351 | |
| 352 | } SDF_Contour; |
| 353 | |
| 354 | |
| 355 | /************************************************************************** |
| 356 | * |
| 357 | * @Struct: |
| 358 | * SDF_Shape |
| 359 | * |
| 360 | * @Description: |
| 361 | * Represent a complete shape, which is the decomposition of |
| 362 | * @FT_Outline. |
| 363 | * |
| 364 | * @Fields: |
| 365 | * memory :: |
| 366 | * Used internally to allocate memory. |
| 367 | * |
| 368 | * contours :: |
| 369 | * Linked list of all the contours that make the shape. |
| 370 | * |
| 371 | */ |
| 372 | typedef struct SDF_Shape_ |
| 373 | { |
| 374 | FT_Memory memory; |
| 375 | SDF_Contour* contours; |
| 376 | |
| 377 | } SDF_Shape; |
| 378 | |
| 379 | |
| 380 | /************************************************************************** |
| 381 | * |
| 382 | * @Struct: |
| 383 | * SDF_Signed_Distance |
| 384 | * |
| 385 | * @Description: |
| 386 | * Represent signed distance of a point, i.e., the distance of the edge |
| 387 | * nearest to the point. |
| 388 | * |
| 389 | * @Fields: |
| 390 | * distance :: |
| 391 | * Distance of the point from the nearest edge. Can be squared or |
| 392 | * absolute depending on the `USE_SQUARED_DISTANCES` macro defined in |
| 393 | * file `ftsdfcommon.h`. |
| 394 | * |
| 395 | * cross :: |
| 396 | * Cross product of the shortest distance vector (i.e., the vector |
| 397 | * from the point to the nearest edge) and the direction of the edge |
| 398 | * at the nearest point. This is used to resolve ambiguities of |
| 399 | * `sign`. |
| 400 | * |
| 401 | * sign :: |
| 402 | * A value used to indicate whether the distance vector is outside or |
| 403 | * inside the contour corresponding to the edge. |
| 404 | * |
| 405 | * @Note: |
| 406 | * `sign` may or may not be correct, therefore it must be checked |
| 407 | * properly in case there is an ambiguity. |
| 408 | * |
| 409 | */ |
| 410 | typedef struct SDF_Signed_Distance_ |
| 411 | { |
| 412 | FT_16D16 distance; |
| 413 | FT_16D16 cross; |
| 414 | FT_Char sign; |
| 415 | |
| 416 | } SDF_Signed_Distance; |
| 417 | |
| 418 | |
| 419 | /************************************************************************** |
| 420 | * |
| 421 | * @Struct: |
| 422 | * SDF_Params |
| 423 | * |
| 424 | * @Description: |
| 425 | * Yet another internal parameters required by the rasterizer. |
| 426 | * |
| 427 | * @Fields: |
| 428 | * orientation :: |
| 429 | * This is not the @SDF_Contour_Orientation value but @FT_Orientation, |
| 430 | * which determines whether clockwise-oriented outlines are to be |
| 431 | * filled or counter-clockwise-oriented ones. |
| 432 | * |
| 433 | * flip_sign :: |
| 434 | * If set to true, flip the sign. By default the points filled by the |
| 435 | * outline are positive. |
| 436 | * |
| 437 | * flip_y :: |
| 438 | * If set to true the output bitmap is upside-down. Can be useful |
| 439 | * because OpenGL and DirectX use different coordinate systems for |
| 440 | * textures. |
| 441 | * |
| 442 | * overload_sign :: |
| 443 | * In the subdivision and bounding box optimization, the default |
| 444 | * outside sign is taken as -1. This parameter can be used to modify |
| 445 | * that behaviour. For example, while generating SDF for a single |
| 446 | * counter-clockwise contour, the outside sign should be 1. |
| 447 | * |
| 448 | */ |
| 449 | typedef struct SDF_Params_ |
| 450 | { |
| 451 | FT_Orientation orientation; |
| 452 | FT_Bool flip_sign; |
| 453 | FT_Bool flip_y; |
| 454 | |
| 455 | FT_Int overload_sign; |
| 456 | |
| 457 | } SDF_Params; |
| 458 | |
| 459 | |
| 460 | /************************************************************************** |
| 461 | * |
| 462 | * constants, initializer, and destructor |
| 463 | * |
| 464 | */ |
| 465 | |
| 466 | static |
| 467 | const FT_Vector zero_vector = { 0, 0 }; |
| 468 | |
| 469 | static |
| 470 | const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 }, |
| 471 | { 0, 0 }, { 0, 0 }, |
| 472 | SDF_EDGE_UNDEFINED, NULL }; |
| 473 | |
| 474 | static |
| 475 | const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL }; |
| 476 | |
| 477 | static |
| 478 | const SDF_Shape null_shape = { NULL, NULL }; |
| 479 | |
| 480 | static |
| 481 | const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 }; |
| 482 | |
| 483 | |
| 484 | /* Create a new @SDF_Edge on the heap and assigns the `edge` */ |
| 485 | /* pointer to the newly allocated memory. */ |
| 486 | static FT_Error |
| 487 | sdf_edge_new( FT_Memory memory, |
| 488 | SDF_Edge** edge ) |
| 489 | { |
| 490 | FT_Error error = FT_Err_Ok; |
| 491 | SDF_Edge* ptr = NULL; |
| 492 | |
| 493 | |
| 494 | if ( !memory || !edge ) |
| 495 | { |
| 496 | error = FT_THROW( Invalid_Argument ); |
| 497 | goto Exit; |
| 498 | } |
| 499 | |
| 500 | if ( !FT_QNEW( ptr ) ) |
| 501 | { |
| 502 | *ptr = null_edge; |
| 503 | *edge = ptr; |
| 504 | } |
| 505 | |
| 506 | Exit: |
| 507 | return error; |
| 508 | } |
| 509 | |
| 510 | |
| 511 | /* Free the allocated `edge` variable. */ |
| 512 | static void |
| 513 | sdf_edge_done( FT_Memory memory, |
| 514 | SDF_Edge** edge ) |
| 515 | { |
| 516 | if ( !memory || !edge || !*edge ) |
| 517 | return; |
| 518 | |
| 519 | FT_FREE( *edge ); |
| 520 | } |
| 521 | |
| 522 | |
| 523 | /* Create a new @SDF_Contour on the heap and assign */ |
| 524 | /* the `contour` pointer to the newly allocated memory. */ |
| 525 | static FT_Error |
| 526 | sdf_contour_new( FT_Memory memory, |
| 527 | SDF_Contour** contour ) |
| 528 | { |
| 529 | FT_Error error = FT_Err_Ok; |
| 530 | SDF_Contour* ptr = NULL; |
| 531 | |
| 532 | |
| 533 | if ( !memory || !contour ) |
| 534 | { |
| 535 | error = FT_THROW( Invalid_Argument ); |
| 536 | goto Exit; |
| 537 | } |
| 538 | |
| 539 | if ( !FT_QNEW( ptr ) ) |
| 540 | { |
| 541 | *ptr = null_contour; |
| 542 | *contour = ptr; |
| 543 | } |
| 544 | |
| 545 | Exit: |
| 546 | return error; |
| 547 | } |
| 548 | |
| 549 | |
| 550 | /* Free the allocated `contour` variable. */ |
| 551 | /* Also free the list of edges. */ |
| 552 | static void |
| 553 | sdf_contour_done( FT_Memory memory, |
| 554 | SDF_Contour** contour ) |
| 555 | { |
| 556 | SDF_Edge* edges; |
| 557 | SDF_Edge* temp; |
| 558 | |
| 559 | |
| 560 | if ( !memory || !contour || !*contour ) |
| 561 | return; |
| 562 | |
| 563 | edges = (*contour)->edges; |
| 564 | |
| 565 | /* release all edges */ |
| 566 | while ( edges ) |
| 567 | { |
| 568 | temp = edges; |
| 569 | edges = edges->next; |
| 570 | |
| 571 | sdf_edge_done( memory, &temp ); |
| 572 | } |
| 573 | |
| 574 | FT_FREE( *contour ); |
| 575 | } |
| 576 | |
| 577 | |
| 578 | /* Create a new @SDF_Shape on the heap and assign */ |
| 579 | /* the `shape` pointer to the newly allocated memory. */ |
| 580 | static FT_Error |
| 581 | sdf_shape_new( FT_Memory memory, |
| 582 | SDF_Shape** shape ) |
| 583 | { |
| 584 | FT_Error error = FT_Err_Ok; |
| 585 | SDF_Shape* ptr = NULL; |
| 586 | |
| 587 | |
| 588 | if ( !memory || !shape ) |
| 589 | { |
| 590 | error = FT_THROW( Invalid_Argument ); |
| 591 | goto Exit; |
| 592 | } |
| 593 | |
| 594 | if ( !FT_QNEW( ptr ) ) |
| 595 | { |
| 596 | *ptr = null_shape; |
| 597 | ptr->memory = memory; |
| 598 | *shape = ptr; |
| 599 | } |
| 600 | |
| 601 | Exit: |
| 602 | return error; |
| 603 | } |
| 604 | |
| 605 | |
| 606 | /* Free the allocated `shape` variable. */ |
| 607 | /* Also free the list of contours. */ |
| 608 | static void |
| 609 | sdf_shape_done( SDF_Shape** shape ) |
| 610 | { |
| 611 | FT_Memory memory; |
| 612 | SDF_Contour* contours; |
| 613 | SDF_Contour* temp; |
| 614 | |
| 615 | |
| 616 | if ( !shape || !*shape ) |
| 617 | return; |
| 618 | |
| 619 | memory = (*shape)->memory; |
| 620 | contours = (*shape)->contours; |
| 621 | |
| 622 | if ( !memory ) |
| 623 | return; |
| 624 | |
| 625 | /* release all contours */ |
| 626 | while ( contours ) |
| 627 | { |
| 628 | temp = contours; |
| 629 | contours = contours->next; |
| 630 | |
| 631 | sdf_contour_done( memory, &temp ); |
| 632 | } |
| 633 | |
| 634 | /* release the allocated shape struct */ |
| 635 | FT_FREE( *shape ); |
| 636 | } |
| 637 | |
| 638 | |
| 639 | /************************************************************************** |
| 640 | * |
| 641 | * shape decomposition functions |
| 642 | * |
| 643 | */ |
| 644 | |
| 645 | /* This function is called when starting a new contour at `to`, */ |
| 646 | /* which gets added to the shape's list. */ |
| 647 | static FT_Error |
| 648 | sdf_move_to( const FT_26D6_Vec* to, |
| 649 | void* user ) |
| 650 | { |
| 651 | SDF_Shape* shape = ( SDF_Shape* )user; |
| 652 | SDF_Contour* contour = NULL; |
| 653 | |
| 654 | FT_Error error = FT_Err_Ok; |
| 655 | FT_Memory memory = shape->memory; |
| 656 | |
| 657 | |
| 658 | if ( !to || !user ) |
| 659 | { |
| 660 | error = FT_THROW( Invalid_Argument ); |
| 661 | goto Exit; |
| 662 | } |
| 663 | |
| 664 | FT_CALL( sdf_contour_new( memory, &contour ) ); |
| 665 | |
| 666 | contour->last_pos = *to; |
| 667 | contour->next = shape->contours; |
| 668 | shape->contours = contour; |
| 669 | |
| 670 | Exit: |
| 671 | return error; |
| 672 | } |
| 673 | |
| 674 | |
| 675 | /* This function is called when there is a line in the */ |
| 676 | /* contour. The line starts at the previous edge point and */ |
| 677 | /* stops at `to`. */ |
| 678 | static FT_Error |
| 679 | sdf_line_to( const FT_26D6_Vec* to, |
| 680 | void* user ) |
| 681 | { |
| 682 | SDF_Shape* shape = ( SDF_Shape* )user; |
| 683 | SDF_Edge* edge = NULL; |
| 684 | SDF_Contour* contour = NULL; |
| 685 | |
| 686 | FT_Error error = FT_Err_Ok; |
| 687 | FT_Memory memory = shape->memory; |
| 688 | |
| 689 | |
| 690 | if ( !to || !user ) |
| 691 | { |
| 692 | error = FT_THROW( Invalid_Argument ); |
| 693 | goto Exit; |
| 694 | } |
| 695 | |
| 696 | contour = shape->contours; |
| 697 | |
| 698 | if ( contour->last_pos.x == to->x && |
| 699 | contour->last_pos.y == to->y ) |
| 700 | goto Exit; |
| 701 | |
| 702 | FT_CALL( sdf_edge_new( memory, &edge ) ); |
| 703 | |
| 704 | edge->edge_type = SDF_EDGE_LINE; |
| 705 | edge->start_pos = contour->last_pos; |
| 706 | edge->end_pos = *to; |
| 707 | |
| 708 | edge->next = contour->edges; |
| 709 | contour->edges = edge; |
| 710 | contour->last_pos = *to; |
| 711 | |
| 712 | Exit: |
| 713 | return error; |
| 714 | } |
| 715 | |
| 716 | |
| 717 | /* This function is called when there is a conic Bezier curve */ |
| 718 | /* in the contour. The curve starts at the previous edge point */ |
| 719 | /* and stops at `to`, with control point `control_1`. */ |
| 720 | static FT_Error |
| 721 | sdf_conic_to( const FT_26D6_Vec* control_1, |
| 722 | const FT_26D6_Vec* to, |
| 723 | void* user ) |
| 724 | { |
| 725 | SDF_Shape* shape = ( SDF_Shape* )user; |
| 726 | SDF_Edge* edge = NULL; |
| 727 | SDF_Contour* contour = NULL; |
| 728 | |
| 729 | FT_Error error = FT_Err_Ok; |
| 730 | FT_Memory memory = shape->memory; |
| 731 | |
| 732 | |
| 733 | if ( !control_1 || !to || !user ) |
| 734 | { |
| 735 | error = FT_THROW( Invalid_Argument ); |
| 736 | goto Exit; |
| 737 | } |
| 738 | |
| 739 | contour = shape->contours; |
| 740 | |
| 741 | /* If the control point coincides with any of the end points */ |
| 742 | /* then it is a line and should be treated as one to avoid */ |
| 743 | /* unnecessary complexity later in the algorithm. */ |
| 744 | if ( ( contour->last_pos.x == control_1->x && |
| 745 | contour->last_pos.y == control_1->y ) || |
| 746 | ( control_1->x == to->x && |
| 747 | control_1->y == to->y ) ) |
| 748 | { |
| 749 | sdf_line_to( to, user ); |
| 750 | goto Exit; |
| 751 | } |
| 752 | |
| 753 | FT_CALL( sdf_edge_new( memory, &edge ) ); |
| 754 | |
| 755 | edge->edge_type = SDF_EDGE_CONIC; |
| 756 | edge->start_pos = contour->last_pos; |
| 757 | edge->control_a = *control_1; |
| 758 | edge->end_pos = *to; |
| 759 | |
| 760 | edge->next = contour->edges; |
| 761 | contour->edges = edge; |
| 762 | contour->last_pos = *to; |
| 763 | |
| 764 | Exit: |
| 765 | return error; |
| 766 | } |
| 767 | |
| 768 | |
| 769 | /* This function is called when there is a cubic Bezier curve */ |
| 770 | /* in the contour. The curve starts at the previous edge point */ |
| 771 | /* and stops at `to`, with two control points `control_1` and */ |
| 772 | /* `control_2`. */ |
| 773 | static FT_Error |
| 774 | sdf_cubic_to( const FT_26D6_Vec* control_1, |
| 775 | const FT_26D6_Vec* control_2, |
| 776 | const FT_26D6_Vec* to, |
| 777 | void* user ) |
| 778 | { |
| 779 | SDF_Shape* shape = ( SDF_Shape* )user; |
| 780 | SDF_Edge* edge = NULL; |
| 781 | SDF_Contour* contour = NULL; |
| 782 | |
| 783 | FT_Error error = FT_Err_Ok; |
| 784 | FT_Memory memory = shape->memory; |
| 785 | |
| 786 | |
| 787 | if ( !control_2 || !control_1 || !to || !user ) |
| 788 | { |
| 789 | error = FT_THROW( Invalid_Argument ); |
| 790 | goto Exit; |
| 791 | } |
| 792 | |
| 793 | contour = shape->contours; |
| 794 | |
| 795 | FT_CALL( sdf_edge_new( memory, &edge ) ); |
| 796 | |
| 797 | edge->edge_type = SDF_EDGE_CUBIC; |
| 798 | edge->start_pos = contour->last_pos; |
| 799 | edge->control_a = *control_1; |
| 800 | edge->control_b = *control_2; |
| 801 | edge->end_pos = *to; |
| 802 | |
| 803 | edge->next = contour->edges; |
| 804 | contour->edges = edge; |
| 805 | contour->last_pos = *to; |
| 806 | |
| 807 | Exit: |
| 808 | return error; |
| 809 | } |
| 810 | |
| 811 | |
| 812 | /* Construct the structure to hold all four outline */ |
| 813 | /* decomposition functions. */ |
| 814 | FT_DEFINE_OUTLINE_FUNCS( |
| 815 | sdf_decompose_funcs, |
| 816 | |
| 817 | (FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */ |
| 818 | (FT_Outline_LineTo_Func) sdf_line_to, /* line_to */ |
| 819 | (FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */ |
| 820 | (FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */ |
| 821 | |
| 822 | 0, /* shift */ |
| 823 | 0 /* delta */ |
| 824 | ) |
| 825 | |
| 826 | |
| 827 | /* Decompose `outline` and put it into the `shape` structure. */ |
| 828 | static FT_Error |
| 829 | sdf_outline_decompose( FT_Outline* outline, |
| 830 | SDF_Shape* shape ) |
| 831 | { |
| 832 | FT_Error error = FT_Err_Ok; |
| 833 | |
| 834 | |
| 835 | if ( !outline || !shape ) |
| 836 | { |
| 837 | error = FT_THROW( Invalid_Argument ); |
| 838 | goto Exit; |
| 839 | } |
| 840 | |
| 841 | error = FT_Outline_Decompose( outline, |
| 842 | &sdf_decompose_funcs, |
| 843 | (void*)shape ); |
| 844 | |
| 845 | Exit: |
| 846 | return error; |
| 847 | } |
| 848 | |
| 849 | |
| 850 | /************************************************************************** |
| 851 | * |
| 852 | * utility functions |
| 853 | * |
| 854 | */ |
| 855 | |
| 856 | /* Return the control box of an edge. The control box is a rectangle */ |
| 857 | /* in which all the control points can fit tightly. */ |
| 858 | static FT_CBox |
| 859 | get_control_box( SDF_Edge edge ) |
| 860 | { |
| 861 | FT_CBox cbox = { 0, 0, 0, 0 }; |
| 862 | FT_Bool is_set = 0; |
| 863 | |
| 864 | |
| 865 | switch ( edge.edge_type ) |
| 866 | { |
| 867 | case SDF_EDGE_CUBIC: |
| 868 | cbox.xMin = edge.control_b.x; |
| 869 | cbox.xMax = edge.control_b.x; |
| 870 | cbox.yMin = edge.control_b.y; |
| 871 | cbox.yMax = edge.control_b.y; |
| 872 | |
| 873 | is_set = 1; |
| 874 | FALL_THROUGH; |
| 875 | |
| 876 | case SDF_EDGE_CONIC: |
| 877 | if ( is_set ) |
| 878 | { |
| 879 | cbox.xMin = edge.control_a.x < cbox.xMin |
| 880 | ? edge.control_a.x |
| 881 | : cbox.xMin; |
| 882 | cbox.xMax = edge.control_a.x > cbox.xMax |
| 883 | ? edge.control_a.x |
| 884 | : cbox.xMax; |
| 885 | |
| 886 | cbox.yMin = edge.control_a.y < cbox.yMin |
| 887 | ? edge.control_a.y |
| 888 | : cbox.yMin; |
| 889 | cbox.yMax = edge.control_a.y > cbox.yMax |
| 890 | ? edge.control_a.y |
| 891 | : cbox.yMax; |
| 892 | } |
| 893 | else |
| 894 | { |
| 895 | cbox.xMin = edge.control_a.x; |
| 896 | cbox.xMax = edge.control_a.x; |
| 897 | cbox.yMin = edge.control_a.y; |
| 898 | cbox.yMax = edge.control_a.y; |
| 899 | |
| 900 | is_set = 1; |
| 901 | } |
| 902 | FALL_THROUGH; |
| 903 | |
| 904 | case SDF_EDGE_LINE: |
| 905 | if ( is_set ) |
| 906 | { |
| 907 | cbox.xMin = edge.start_pos.x < cbox.xMin |
| 908 | ? edge.start_pos.x |
| 909 | : cbox.xMin; |
| 910 | cbox.xMax = edge.start_pos.x > cbox.xMax |
| 911 | ? edge.start_pos.x |
| 912 | : cbox.xMax; |
| 913 | |
| 914 | cbox.yMin = edge.start_pos.y < cbox.yMin |
| 915 | ? edge.start_pos.y |
| 916 | : cbox.yMin; |
| 917 | cbox.yMax = edge.start_pos.y > cbox.yMax |
| 918 | ? edge.start_pos.y |
| 919 | : cbox.yMax; |
| 920 | } |
| 921 | else |
| 922 | { |
| 923 | cbox.xMin = edge.start_pos.x; |
| 924 | cbox.xMax = edge.start_pos.x; |
| 925 | cbox.yMin = edge.start_pos.y; |
| 926 | cbox.yMax = edge.start_pos.y; |
| 927 | } |
| 928 | |
| 929 | cbox.xMin = edge.end_pos.x < cbox.xMin |
| 930 | ? edge.end_pos.x |
| 931 | : cbox.xMin; |
| 932 | cbox.xMax = edge.end_pos.x > cbox.xMax |
| 933 | ? edge.end_pos.x |
| 934 | : cbox.xMax; |
| 935 | |
| 936 | cbox.yMin = edge.end_pos.y < cbox.yMin |
| 937 | ? edge.end_pos.y |
| 938 | : cbox.yMin; |
| 939 | cbox.yMax = edge.end_pos.y > cbox.yMax |
| 940 | ? edge.end_pos.y |
| 941 | : cbox.yMax; |
| 942 | |
| 943 | break; |
| 944 | |
| 945 | default: |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | return cbox; |
| 950 | } |
| 951 | |
| 952 | |
| 953 | /* Return orientation of a single contour. */ |
| 954 | /* Note that the orientation is independent of the fill rule! */ |
| 955 | /* So, for TTF a clockwise-oriented contour has to be filled */ |
| 956 | /* and the opposite for OTF fonts. */ |
| 957 | static SDF_Contour_Orientation |
| 958 | get_contour_orientation ( SDF_Contour* contour ) |
| 959 | { |
| 960 | SDF_Edge* head = NULL; |
| 961 | FT_26D6 area = 0; |
| 962 | |
| 963 | |
| 964 | /* return none if invalid parameters */ |
| 965 | if ( !contour || !contour->edges ) |
| 966 | return SDF_ORIENTATION_NONE; |
| 967 | |
| 968 | head = contour->edges; |
| 969 | |
| 970 | /* Calculate the area of the control box for all edges. */ |
| 971 | while ( head ) |
| 972 | { |
| 973 | switch ( head->edge_type ) |
| 974 | { |
| 975 | case SDF_EDGE_LINE: |
| 976 | area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ), |
| 977 | ( head->end_pos.y + head->start_pos.y ) ); |
| 978 | break; |
| 979 | |
| 980 | case SDF_EDGE_CONIC: |
| 981 | area += MUL_26D6( head->control_a.x - head->start_pos.x, |
| 982 | head->control_a.y + head->start_pos.y ); |
| 983 | area += MUL_26D6( head->end_pos.x - head->control_a.x, |
| 984 | head->end_pos.y + head->control_a.y ); |
| 985 | break; |
| 986 | |
| 987 | case SDF_EDGE_CUBIC: |
| 988 | area += MUL_26D6( head->control_a.x - head->start_pos.x, |
| 989 | head->control_a.y + head->start_pos.y ); |
| 990 | area += MUL_26D6( head->control_b.x - head->control_a.x, |
| 991 | head->control_b.y + head->control_a.y ); |
| 992 | area += MUL_26D6( head->end_pos.x - head->control_b.x, |
| 993 | head->end_pos.y + head->control_b.y ); |
| 994 | break; |
| 995 | |
| 996 | default: |
| 997 | return SDF_ORIENTATION_NONE; |
| 998 | } |
| 999 | |
| 1000 | head = head->next; |
| 1001 | } |
| 1002 | |
| 1003 | /* Clockwise contours cover a positive area, and counter-clockwise */ |
| 1004 | /* contours cover a negative area. */ |
| 1005 | if ( area > 0 ) |
| 1006 | return SDF_ORIENTATION_CW; |
| 1007 | else |
| 1008 | return SDF_ORIENTATION_CCW; |
| 1009 | } |
| 1010 | |
| 1011 | |
| 1012 | /* This function is exactly the same as the one */ |
| 1013 | /* in the smooth renderer. It splits a conic */ |
| 1014 | /* into two conics exactly half way at t = 0.5. */ |
| 1015 | static void |
| 1016 | split_conic( FT_26D6_Vec* base ) |
| 1017 | { |
| 1018 | FT_26D6 a, b; |
| 1019 | |
| 1020 | |
| 1021 | base[4].x = base[2].x; |
| 1022 | a = base[0].x + base[1].x; |
| 1023 | b = base[1].x + base[2].x; |
| 1024 | base[3].x = b / 2; |
| 1025 | base[2].x = ( a + b ) / 4; |
| 1026 | base[1].x = a / 2; |
| 1027 | |
| 1028 | base[4].y = base[2].y; |
| 1029 | a = base[0].y + base[1].y; |
| 1030 | b = base[1].y + base[2].y; |
| 1031 | base[3].y = b / 2; |
| 1032 | base[2].y = ( a + b ) / 4; |
| 1033 | base[1].y = a / 2; |
| 1034 | } |
| 1035 | |
| 1036 | |
| 1037 | /* This function is exactly the same as the one */ |
| 1038 | /* in the smooth renderer. It splits a cubic */ |
| 1039 | /* into two cubics exactly half way at t = 0.5. */ |
| 1040 | static void |
| 1041 | split_cubic( FT_26D6_Vec* base ) |
| 1042 | { |
| 1043 | FT_26D6 a, b, c; |
| 1044 | |
| 1045 | |
| 1046 | base[6].x = base[3].x; |
| 1047 | a = base[0].x + base[1].x; |
| 1048 | b = base[1].x + base[2].x; |
| 1049 | c = base[2].x + base[3].x; |
| 1050 | base[5].x = c / 2; |
| 1051 | c += b; |
| 1052 | base[4].x = c / 4; |
| 1053 | base[1].x = a / 2; |
| 1054 | a += b; |
| 1055 | base[2].x = a / 4; |
| 1056 | base[3].x = ( a + c ) / 8; |
| 1057 | |
| 1058 | base[6].y = base[3].y; |
| 1059 | a = base[0].y + base[1].y; |
| 1060 | b = base[1].y + base[2].y; |
| 1061 | c = base[2].y + base[3].y; |
| 1062 | base[5].y = c / 2; |
| 1063 | c += b; |
| 1064 | base[4].y = c / 4; |
| 1065 | base[1].y = a / 2; |
| 1066 | a += b; |
| 1067 | base[2].y = a / 4; |
| 1068 | base[3].y = ( a + c ) / 8; |
| 1069 | } |
| 1070 | |
| 1071 | |
| 1072 | /* Split a conic Bezier curve into a number of lines */ |
| 1073 | /* and add them to `out'. */ |
| 1074 | /* */ |
| 1075 | /* This function uses recursion; we thus need */ |
| 1076 | /* parameter `max_splits' for stopping. */ |
| 1077 | static FT_Error |
| 1078 | split_sdf_conic( FT_Memory memory, |
| 1079 | FT_26D6_Vec* control_points, |
| 1080 | FT_UInt max_splits, |
| 1081 | SDF_Edge** out ) |
| 1082 | { |
| 1083 | FT_Error error = FT_Err_Ok; |
| 1084 | FT_26D6_Vec cpos[5]; |
| 1085 | SDF_Edge* left,* right; |
| 1086 | |
| 1087 | |
| 1088 | if ( !memory || !out ) |
| 1089 | { |
| 1090 | error = FT_THROW( Invalid_Argument ); |
| 1091 | goto Exit; |
| 1092 | } |
| 1093 | |
| 1094 | /* split conic outline */ |
| 1095 | cpos[0] = control_points[0]; |
| 1096 | cpos[1] = control_points[1]; |
| 1097 | cpos[2] = control_points[2]; |
| 1098 | |
| 1099 | split_conic( cpos ); |
| 1100 | |
| 1101 | /* If max number of splits is done */ |
| 1102 | /* then stop and add the lines to */ |
| 1103 | /* the list. */ |
| 1104 | if ( max_splits <= 2 ) |
| 1105 | goto Append; |
| 1106 | |
| 1107 | /* Otherwise keep splitting. */ |
| 1108 | FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) ); |
| 1109 | FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) ); |
| 1110 | |
| 1111 | /* [NOTE]: This is not an efficient way of */ |
| 1112 | /* splitting the curve. Check the deviation */ |
| 1113 | /* instead and stop if the deviation is less */ |
| 1114 | /* than a pixel. */ |
| 1115 | |
| 1116 | goto Exit; |
| 1117 | |
| 1118 | Append: |
| 1119 | /* Do allocation and add the lines to the list. */ |
| 1120 | |
| 1121 | FT_CALL( sdf_edge_new( memory, &left ) ); |
| 1122 | FT_CALL( sdf_edge_new( memory, &right ) ); |
| 1123 | |
| 1124 | left->start_pos = cpos[0]; |
| 1125 | left->end_pos = cpos[2]; |
| 1126 | left->edge_type = SDF_EDGE_LINE; |
| 1127 | |
| 1128 | right->start_pos = cpos[2]; |
| 1129 | right->end_pos = cpos[4]; |
| 1130 | right->edge_type = SDF_EDGE_LINE; |
| 1131 | |
| 1132 | left->next = right; |
| 1133 | right->next = (*out); |
| 1134 | *out = left; |
| 1135 | |
| 1136 | Exit: |
| 1137 | return error; |
| 1138 | } |
| 1139 | |
| 1140 | |
| 1141 | /* Split a cubic Bezier curve into a number of lines */ |
| 1142 | /* and add them to `out`. */ |
| 1143 | /* */ |
| 1144 | /* This function uses recursion; we thus need */ |
| 1145 | /* parameter `max_splits' for stopping. */ |
| 1146 | static FT_Error |
| 1147 | split_sdf_cubic( FT_Memory memory, |
| 1148 | FT_26D6_Vec* control_points, |
| 1149 | FT_UInt max_splits, |
| 1150 | SDF_Edge** out ) |
| 1151 | { |
| 1152 | FT_Error error = FT_Err_Ok; |
| 1153 | FT_26D6_Vec cpos[7]; |
| 1154 | SDF_Edge* left, *right; |
| 1155 | const FT_26D6 threshold = ONE_PIXEL / 4; |
| 1156 | |
| 1157 | |
| 1158 | if ( !memory || !out ) |
| 1159 | { |
| 1160 | error = FT_THROW( Invalid_Argument ); |
| 1161 | goto Exit; |
| 1162 | } |
| 1163 | |
| 1164 | /* split the cubic */ |
| 1165 | cpos[0] = control_points[0]; |
| 1166 | cpos[1] = control_points[1]; |
| 1167 | cpos[2] = control_points[2]; |
| 1168 | cpos[3] = control_points[3]; |
| 1169 | |
| 1170 | /* If the segment is flat enough we won't get any benefit by */ |
| 1171 | /* splitting it further, so we can just stop splitting. */ |
| 1172 | /* */ |
| 1173 | /* Check the deviation of the Bezier curve and stop if it is */ |
| 1174 | /* smaller than the pre-defined `threshold` value. */ |
| 1175 | if ( FT_ABS( 2 * cpos[0].x - 3 * cpos[1].x + cpos[3].x ) < threshold && |
| 1176 | FT_ABS( 2 * cpos[0].y - 3 * cpos[1].y + cpos[3].y ) < threshold && |
| 1177 | FT_ABS( cpos[0].x - 3 * cpos[2].x + 2 * cpos[3].x ) < threshold && |
| 1178 | FT_ABS( cpos[0].y - 3 * cpos[2].y + 2 * cpos[3].y ) < threshold ) |
| 1179 | { |
| 1180 | split_cubic( cpos ); |
| 1181 | goto Append; |
| 1182 | } |
| 1183 | |
| 1184 | split_cubic( cpos ); |
| 1185 | |
| 1186 | /* If max number of splits is done */ |
| 1187 | /* then stop and add the lines to */ |
| 1188 | /* the list. */ |
| 1189 | if ( max_splits <= 2 ) |
| 1190 | goto Append; |
| 1191 | |
| 1192 | /* Otherwise keep splitting. */ |
| 1193 | FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) ); |
| 1194 | FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) ); |
| 1195 | |
| 1196 | /* [NOTE]: This is not an efficient way of */ |
| 1197 | /* splitting the curve. Check the deviation */ |
| 1198 | /* instead and stop if the deviation is less */ |
| 1199 | /* than a pixel. */ |
| 1200 | |
| 1201 | goto Exit; |
| 1202 | |
| 1203 | Append: |
| 1204 | /* Do allocation and add the lines to the list. */ |
| 1205 | |
| 1206 | FT_CALL( sdf_edge_new( memory, &left) ); |
| 1207 | FT_CALL( sdf_edge_new( memory, &right) ); |
| 1208 | |
| 1209 | left->start_pos = cpos[0]; |
| 1210 | left->end_pos = cpos[3]; |
| 1211 | left->edge_type = SDF_EDGE_LINE; |
| 1212 | |
| 1213 | right->start_pos = cpos[3]; |
| 1214 | right->end_pos = cpos[6]; |
| 1215 | right->edge_type = SDF_EDGE_LINE; |
| 1216 | |
| 1217 | left->next = right; |
| 1218 | right->next = (*out); |
| 1219 | *out = left; |
| 1220 | |
| 1221 | Exit: |
| 1222 | return error; |
| 1223 | } |
| 1224 | |
| 1225 | |
| 1226 | /* Subdivide an entire shape into line segments */ |
| 1227 | /* such that it doesn't look visually different */ |
| 1228 | /* from the original curve. */ |
| 1229 | static FT_Error |
| 1230 | split_sdf_shape( SDF_Shape* shape ) |
| 1231 | { |
| 1232 | FT_Error error = FT_Err_Ok; |
| 1233 | FT_Memory memory; |
| 1234 | |
| 1235 | SDF_Contour* contours; |
| 1236 | SDF_Contour* new_contours = NULL; |
| 1237 | |
| 1238 | |
| 1239 | if ( !shape || !shape->memory ) |
| 1240 | { |
| 1241 | error = FT_THROW( Invalid_Argument ); |
| 1242 | goto Exit; |
| 1243 | } |
| 1244 | |
| 1245 | contours = shape->contours; |
| 1246 | memory = shape->memory; |
| 1247 | |
| 1248 | /* for each contour */ |
| 1249 | while ( contours ) |
| 1250 | { |
| 1251 | SDF_Edge* edges = contours->edges; |
| 1252 | SDF_Edge* new_edges = NULL; |
| 1253 | |
| 1254 | SDF_Contour* tempc; |
| 1255 | |
| 1256 | |
| 1257 | /* for each edge */ |
| 1258 | while ( edges ) |
| 1259 | { |
| 1260 | SDF_Edge* edge = edges; |
| 1261 | SDF_Edge* temp; |
| 1262 | |
| 1263 | switch ( edge->edge_type ) |
| 1264 | { |
| 1265 | case SDF_EDGE_LINE: |
| 1266 | /* Just create a duplicate edge in case */ |
| 1267 | /* it is a line. We can use the same edge. */ |
| 1268 | FT_CALL( sdf_edge_new( memory, &temp ) ); |
| 1269 | |
| 1270 | ft_memcpy( temp, edge, sizeof ( *edge ) ); |
| 1271 | |
| 1272 | temp->next = new_edges; |
| 1273 | new_edges = temp; |
| 1274 | break; |
| 1275 | |
| 1276 | case SDF_EDGE_CONIC: |
| 1277 | /* Subdivide the curve and add it to the list. */ |
| 1278 | { |
| 1279 | FT_26D6_Vec ctrls[3]; |
| 1280 | FT_26D6 dx, dy; |
| 1281 | FT_UInt num_splits; |
| 1282 | |
| 1283 | |
| 1284 | ctrls[0] = edge->start_pos; |
| 1285 | ctrls[1] = edge->control_a; |
| 1286 | ctrls[2] = edge->end_pos; |
| 1287 | |
| 1288 | dx = FT_ABS( ctrls[2].x + ctrls[0].x - 2 * ctrls[1].x ); |
| 1289 | dy = FT_ABS( ctrls[2].y + ctrls[0].y - 2 * ctrls[1].y ); |
| 1290 | if ( dx < dy ) |
| 1291 | dx = dy; |
| 1292 | |
| 1293 | /* Calculate the number of necessary bisections. Each */ |
| 1294 | /* bisection causes a four-fold reduction of the deviation, */ |
| 1295 | /* hence we bisect the Bezier curve until the deviation */ |
| 1296 | /* becomes less than 1/8 of a pixel. For more details */ |
| 1297 | /* check file `ftgrays.c`. */ |
| 1298 | num_splits = 1; |
| 1299 | while ( dx > ONE_PIXEL / 8 ) |
| 1300 | { |
| 1301 | dx >>= 2; |
| 1302 | num_splits <<= 1; |
| 1303 | } |
| 1304 | |
| 1305 | error = split_sdf_conic( memory, ctrls, num_splits, &new_edges ); |
| 1306 | } |
| 1307 | break; |
| 1308 | |
| 1309 | case SDF_EDGE_CUBIC: |
| 1310 | /* Subdivide the curve and add it to the list. */ |
| 1311 | { |
| 1312 | FT_26D6_Vec ctrls[4]; |
| 1313 | |
| 1314 | |
| 1315 | ctrls[0] = edge->start_pos; |
| 1316 | ctrls[1] = edge->control_a; |
| 1317 | ctrls[2] = edge->control_b; |
| 1318 | ctrls[3] = edge->end_pos; |
| 1319 | |
| 1320 | error = split_sdf_cubic( memory, ctrls, 32, &new_edges ); |
| 1321 | } |
| 1322 | break; |
| 1323 | |
| 1324 | default: |
| 1325 | error = FT_THROW( Invalid_Argument ); |
| 1326 | } |
| 1327 | |
| 1328 | if ( error != FT_Err_Ok ) |
| 1329 | goto Exit; |
| 1330 | |
| 1331 | edges = edges->next; |
| 1332 | } |
| 1333 | |
| 1334 | /* add to the contours list */ |
| 1335 | FT_CALL( sdf_contour_new( memory, &tempc ) ); |
| 1336 | |
| 1337 | tempc->next = new_contours; |
| 1338 | tempc->edges = new_edges; |
| 1339 | new_contours = tempc; |
| 1340 | new_edges = NULL; |
| 1341 | |
| 1342 | /* deallocate the contour */ |
| 1343 | tempc = contours; |
| 1344 | contours = contours->next; |
| 1345 | |
| 1346 | sdf_contour_done( memory, &tempc ); |
| 1347 | } |
| 1348 | |
| 1349 | shape->contours = new_contours; |
| 1350 | |
| 1351 | Exit: |
| 1352 | return error; |
| 1353 | } |
| 1354 | |
| 1355 | |
| 1356 | /************************************************************************** |
| 1357 | * |
| 1358 | * for debugging |
| 1359 | * |
| 1360 | */ |
| 1361 | |
| 1362 | #ifdef FT_DEBUG_LEVEL_TRACE |
| 1363 | |
| 1364 | static void |
| 1365 | sdf_shape_dump( SDF_Shape* shape ) |
| 1366 | { |
| 1367 | FT_UInt num_contours = 0; |
| 1368 | |
| 1369 | FT_UInt total_edges = 0; |
| 1370 | FT_UInt total_lines = 0; |
| 1371 | FT_UInt total_conic = 0; |
| 1372 | FT_UInt total_cubic = 0; |
| 1373 | |
| 1374 | SDF_Contour* contour_list; |
| 1375 | |
| 1376 | |
| 1377 | if ( !shape ) |
| 1378 | { |
| 1379 | FT_TRACE5(( "sdf_shape_dump: null shape\n" )); |
| 1380 | return; |
| 1381 | } |
| 1382 | |
| 1383 | contour_list = shape->contours; |
| 1384 | |
| 1385 | FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" )); |
| 1386 | |
| 1387 | while ( contour_list ) |
| 1388 | { |
| 1389 | FT_UInt num_edges = 0; |
| 1390 | SDF_Edge* edge_list; |
| 1391 | SDF_Contour* contour = contour_list; |
| 1392 | |
| 1393 | |
| 1394 | FT_TRACE5(( " Contour %d\n" , num_contours )); |
| 1395 | |
| 1396 | edge_list = contour->edges; |
| 1397 | |
| 1398 | while ( edge_list ) |
| 1399 | { |
| 1400 | SDF_Edge* edge = edge_list; |
| 1401 | |
| 1402 | |
| 1403 | FT_TRACE5(( " %3d: " , num_edges )); |
| 1404 | |
| 1405 | switch ( edge->edge_type ) |
| 1406 | { |
| 1407 | case SDF_EDGE_LINE: |
| 1408 | FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n" , |
| 1409 | edge->start_pos.x, edge->start_pos.y, |
| 1410 | edge->end_pos.x, edge->end_pos.y )); |
| 1411 | total_lines++; |
| 1412 | break; |
| 1413 | |
| 1414 | case SDF_EDGE_CONIC: |
| 1415 | FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n" , |
| 1416 | edge->start_pos.x, edge->start_pos.y, |
| 1417 | edge->control_a.x, edge->control_a.y, |
| 1418 | edge->end_pos.x, edge->end_pos.y )); |
| 1419 | total_conic++; |
| 1420 | break; |
| 1421 | |
| 1422 | case SDF_EDGE_CUBIC: |
| 1423 | FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)" |
| 1424 | " .. (%ld, %ld) .. (%ld %ld)\n" , |
| 1425 | edge->start_pos.x, edge->start_pos.y, |
| 1426 | edge->control_a.x, edge->control_a.y, |
| 1427 | edge->control_b.x, edge->control_b.y, |
| 1428 | edge->end_pos.x, edge->end_pos.y )); |
| 1429 | total_cubic++; |
| 1430 | break; |
| 1431 | |
| 1432 | default: |
| 1433 | break; |
| 1434 | } |
| 1435 | |
| 1436 | num_edges++; |
| 1437 | total_edges++; |
| 1438 | edge_list = edge_list->next; |
| 1439 | } |
| 1440 | |
| 1441 | num_contours++; |
| 1442 | contour_list = contour_list->next; |
| 1443 | } |
| 1444 | |
| 1445 | FT_TRACE5(( "\n" )); |
| 1446 | FT_TRACE5(( " total number of contours = %d\n" , num_contours )); |
| 1447 | FT_TRACE5(( " total number of edges = %d\n" , total_edges )); |
| 1448 | FT_TRACE5(( " |__lines = %d\n" , total_lines )); |
| 1449 | FT_TRACE5(( " |__conic = %d\n" , total_conic )); |
| 1450 | FT_TRACE5(( " |__cubic = %d\n" , total_cubic )); |
| 1451 | } |
| 1452 | |
| 1453 | #endif /* FT_DEBUG_LEVEL_TRACE */ |
| 1454 | |
| 1455 | |
| 1456 | /************************************************************************** |
| 1457 | * |
| 1458 | * math functions |
| 1459 | * |
| 1460 | */ |
| 1461 | |
| 1462 | #if !USE_NEWTON_FOR_CONIC |
| 1463 | |
| 1464 | /* [NOTE]: All the functions below down until rasterizer */ |
| 1465 | /* can be avoided if we decide to subdivide the */ |
| 1466 | /* curve into lines. */ |
| 1467 | |
| 1468 | /* This function uses Newton's iteration to find */ |
| 1469 | /* the cube root of a fixed-point integer. */ |
| 1470 | static FT_16D16 |
| 1471 | cube_root( FT_16D16 val ) |
| 1472 | { |
| 1473 | /* [IMPORTANT]: This function is not good as it may */ |
| 1474 | /* not break, so use a lookup table instead. Or we */ |
| 1475 | /* can use an algorithm similar to `square_root`. */ |
| 1476 | |
| 1477 | FT_Int v, g, c; |
| 1478 | |
| 1479 | |
| 1480 | if ( val == 0 || |
| 1481 | val == -FT_INT_16D16( 1 ) || |
| 1482 | val == FT_INT_16D16( 1 ) ) |
| 1483 | return val; |
| 1484 | |
| 1485 | v = val < 0 ? -val : val; |
| 1486 | g = square_root( v ); |
| 1487 | c = 0; |
| 1488 | |
| 1489 | while ( 1 ) |
| 1490 | { |
| 1491 | c = FT_MulFix( FT_MulFix( g, g ), g ) - v; |
| 1492 | c = FT_DivFix( c, 3 * FT_MulFix( g, g ) ); |
| 1493 | |
| 1494 | g -= c; |
| 1495 | |
| 1496 | if ( ( c < 0 ? -c : c ) < 30 ) |
| 1497 | break; |
| 1498 | } |
| 1499 | |
| 1500 | return val < 0 ? -g : g; |
| 1501 | } |
| 1502 | |
| 1503 | |
| 1504 | /* Calculate the perpendicular by using '1 - base^2'. */ |
| 1505 | /* Then use arctan to compute the angle. */ |
| 1506 | static FT_16D16 |
| 1507 | arc_cos( FT_16D16 val ) |
| 1508 | { |
| 1509 | FT_16D16 p; |
| 1510 | FT_16D16 b = val; |
| 1511 | FT_16D16 one = FT_INT_16D16( 1 ); |
| 1512 | |
| 1513 | |
| 1514 | if ( b > one ) |
| 1515 | b = one; |
| 1516 | if ( b < -one ) |
| 1517 | b = -one; |
| 1518 | |
| 1519 | p = one - FT_MulFix( b, b ); |
| 1520 | p = square_root( p ); |
| 1521 | |
| 1522 | return FT_Atan2( b, p ); |
| 1523 | } |
| 1524 | |
| 1525 | |
| 1526 | /* Compute roots of a quadratic polynomial, assign them to `out`, */ |
| 1527 | /* and return number of real roots. */ |
| 1528 | /* */ |
| 1529 | /* The procedure can be found at */ |
| 1530 | /* */ |
| 1531 | /* https://mathworld.wolfram.com/QuadraticFormula.html */ |
| 1532 | static FT_UShort |
| 1533 | solve_quadratic_equation( FT_26D6 a, |
| 1534 | FT_26D6 b, |
| 1535 | FT_26D6 c, |
| 1536 | FT_16D16 out[2] ) |
| 1537 | { |
| 1538 | FT_16D16 discriminant = 0; |
| 1539 | |
| 1540 | |
| 1541 | a = FT_26D6_16D16( a ); |
| 1542 | b = FT_26D6_16D16( b ); |
| 1543 | c = FT_26D6_16D16( c ); |
| 1544 | |
| 1545 | if ( a == 0 ) |
| 1546 | { |
| 1547 | if ( b == 0 ) |
| 1548 | return 0; |
| 1549 | else |
| 1550 | { |
| 1551 | out[0] = FT_DivFix( -c, b ); |
| 1552 | |
| 1553 | return 1; |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c ); |
| 1558 | |
| 1559 | if ( discriminant < 0 ) |
| 1560 | return 0; |
| 1561 | else if ( discriminant == 0 ) |
| 1562 | { |
| 1563 | out[0] = FT_DivFix( -b, 2 * a ); |
| 1564 | |
| 1565 | return 1; |
| 1566 | } |
| 1567 | else |
| 1568 | { |
| 1569 | discriminant = square_root( discriminant ); |
| 1570 | |
| 1571 | out[0] = FT_DivFix( -b + discriminant, 2 * a ); |
| 1572 | out[1] = FT_DivFix( -b - discriminant, 2 * a ); |
| 1573 | |
| 1574 | return 2; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | |
| 1579 | /* Compute roots of a cubic polynomial, assign them to `out`, */ |
| 1580 | /* and return number of real roots. */ |
| 1581 | /* */ |
| 1582 | /* The procedure can be found at */ |
| 1583 | /* */ |
| 1584 | /* https://mathworld.wolfram.com/CubicFormula.html */ |
| 1585 | static FT_UShort |
| 1586 | solve_cubic_equation( FT_26D6 a, |
| 1587 | FT_26D6 b, |
| 1588 | FT_26D6 c, |
| 1589 | FT_26D6 d, |
| 1590 | FT_16D16 out[3] ) |
| 1591 | { |
| 1592 | FT_16D16 q = 0; /* intermediate */ |
| 1593 | FT_16D16 r = 0; /* intermediate */ |
| 1594 | |
| 1595 | FT_16D16 a2 = b; /* x^2 coefficients */ |
| 1596 | FT_16D16 a1 = c; /* x coefficients */ |
| 1597 | FT_16D16 a0 = d; /* constant */ |
| 1598 | |
| 1599 | FT_16D16 q3 = 0; |
| 1600 | FT_16D16 r2 = 0; |
| 1601 | FT_16D16 a23 = 0; |
| 1602 | FT_16D16 a22 = 0; |
| 1603 | FT_16D16 a1x2 = 0; |
| 1604 | |
| 1605 | |
| 1606 | /* cutoff value for `a` to be a cubic, otherwise solve quadratic */ |
| 1607 | if ( a == 0 || FT_ABS( a ) < 16 ) |
| 1608 | return solve_quadratic_equation( b, c, d, out ); |
| 1609 | |
| 1610 | if ( d == 0 ) |
| 1611 | { |
| 1612 | out[0] = 0; |
| 1613 | |
| 1614 | return solve_quadratic_equation( a, b, c, out + 1 ) + 1; |
| 1615 | } |
| 1616 | |
| 1617 | /* normalize the coefficients; this also makes them 16.16 */ |
| 1618 | a2 = FT_DivFix( a2, a ); |
| 1619 | a1 = FT_DivFix( a1, a ); |
| 1620 | a0 = FT_DivFix( a0, a ); |
| 1621 | |
| 1622 | /* compute intermediates */ |
| 1623 | a1x2 = FT_MulFix( a1, a2 ); |
| 1624 | a22 = FT_MulFix( a2, a2 ); |
| 1625 | a23 = FT_MulFix( a22, a2 ); |
| 1626 | |
| 1627 | q = ( 3 * a1 - a22 ) / 9; |
| 1628 | r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54; |
| 1629 | |
| 1630 | /* [BUG]: `q3` and `r2` still cause underflow. */ |
| 1631 | |
| 1632 | q3 = FT_MulFix( q, q ); |
| 1633 | q3 = FT_MulFix( q3, q ); |
| 1634 | |
| 1635 | r2 = FT_MulFix( r, r ); |
| 1636 | |
| 1637 | if ( q3 < 0 && r2 < -q3 ) |
| 1638 | { |
| 1639 | FT_16D16 t = 0; |
| 1640 | |
| 1641 | |
| 1642 | q3 = square_root( -q3 ); |
| 1643 | t = FT_DivFix( r, q3 ); |
| 1644 | |
| 1645 | if ( t > ( 1 << 16 ) ) |
| 1646 | t = ( 1 << 16 ); |
| 1647 | if ( t < -( 1 << 16 ) ) |
| 1648 | t = -( 1 << 16 ); |
| 1649 | |
| 1650 | t = arc_cos( t ); |
| 1651 | a2 /= 3; |
| 1652 | q = 2 * square_root( -q ); |
| 1653 | |
| 1654 | out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2; |
| 1655 | out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2; |
| 1656 | out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2; |
| 1657 | |
| 1658 | return 3; |
| 1659 | } |
| 1660 | |
| 1661 | else if ( r2 == -q3 ) |
| 1662 | { |
| 1663 | FT_16D16 s = 0; |
| 1664 | |
| 1665 | |
| 1666 | s = cube_root( r ); |
| 1667 | a2 /= -3; |
| 1668 | |
| 1669 | out[0] = a2 + ( 2 * s ); |
| 1670 | out[1] = a2 - s; |
| 1671 | |
| 1672 | return 2; |
| 1673 | } |
| 1674 | |
| 1675 | else |
| 1676 | { |
| 1677 | FT_16D16 s = 0; |
| 1678 | FT_16D16 t = 0; |
| 1679 | FT_16D16 dis = 0; |
| 1680 | |
| 1681 | |
| 1682 | if ( q3 == 0 ) |
| 1683 | dis = FT_ABS( r ); |
| 1684 | else |
| 1685 | dis = square_root( q3 + r2 ); |
| 1686 | |
| 1687 | s = cube_root( r + dis ); |
| 1688 | t = cube_root( r - dis ); |
| 1689 | a2 /= -3; |
| 1690 | out[0] = ( a2 + ( s + t ) ); |
| 1691 | |
| 1692 | return 1; |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | #endif /* !USE_NEWTON_FOR_CONIC */ |
| 1697 | |
| 1698 | |
| 1699 | /*************************************************************************/ |
| 1700 | /*************************************************************************/ |
| 1701 | /** **/ |
| 1702 | /** RASTERIZER **/ |
| 1703 | /** **/ |
| 1704 | /*************************************************************************/ |
| 1705 | /*************************************************************************/ |
| 1706 | |
| 1707 | /************************************************************************** |
| 1708 | * |
| 1709 | * @Function: |
| 1710 | * resolve_corner |
| 1711 | * |
| 1712 | * @Description: |
| 1713 | * At some places on the grid two edges can give opposite directions; |
| 1714 | * this happens when the closest point is on one of the endpoint. In |
| 1715 | * that case we need to check the proper sign. |
| 1716 | * |
| 1717 | * This can be visualized by an example: |
| 1718 | * |
| 1719 | * ``` |
| 1720 | * x |
| 1721 | * |
| 1722 | * o |
| 1723 | * ^ \ |
| 1724 | * / \ |
| 1725 | * / \ |
| 1726 | * (a) / \ (b) |
| 1727 | * / \ |
| 1728 | * / \ |
| 1729 | * / v |
| 1730 | * ``` |
| 1731 | * |
| 1732 | * Suppose `x` is the point whose shortest distance from an arbitrary |
| 1733 | * contour we want to find out. It is clear that `o` is the nearest |
| 1734 | * point on the contour. Now to determine the sign we do a cross |
| 1735 | * product of the shortest distance vector and the edge direction, i.e., |
| 1736 | * |
| 1737 | * ``` |
| 1738 | * => sign = cross(x - o, direction(a)) |
| 1739 | * ``` |
| 1740 | * |
| 1741 | * Using the right hand thumb rule we can see that the sign will be |
| 1742 | * positive. |
| 1743 | * |
| 1744 | * If we use `b', however, we have |
| 1745 | * |
| 1746 | * ``` |
| 1747 | * => sign = cross(x - o, direction(b)) |
| 1748 | * ``` |
| 1749 | * |
| 1750 | * In this case the sign will be negative. To determine the correct |
| 1751 | * sign we thus divide the plane in two halves and check which plane the |
| 1752 | * point lies in. |
| 1753 | * |
| 1754 | * ``` |
| 1755 | * | |
| 1756 | * x | |
| 1757 | * | |
| 1758 | * o |
| 1759 | * ^|\ |
| 1760 | * / | \ |
| 1761 | * / | \ |
| 1762 | * (a) / | \ (b) |
| 1763 | * / | \ |
| 1764 | * / \ |
| 1765 | * / v |
| 1766 | * ``` |
| 1767 | * |
| 1768 | * We can see that `x` lies in the plane of `a`, so we take the sign |
| 1769 | * determined by `a`. This test can be easily done by calculating the |
| 1770 | * orthogonality and taking the greater one. |
| 1771 | * |
| 1772 | * The orthogonality is simply the sinus of the two vectors (i.e., |
| 1773 | * x - o) and the corresponding direction. We efficiently pre-compute |
| 1774 | * the orthogonality with the corresponding `get_min_distance_*` |
| 1775 | * functions. |
| 1776 | * |
| 1777 | * @Input: |
| 1778 | * sdf1 :: |
| 1779 | * First signed distance (can be any of `a` or `b`). |
| 1780 | * |
| 1781 | * sdf1 :: |
| 1782 | * Second signed distance (can be any of `a` or `b`). |
| 1783 | * |
| 1784 | * @Return: |
| 1785 | * The correct signed distance, which is computed by using the above |
| 1786 | * algorithm. |
| 1787 | * |
| 1788 | * @Note: |
| 1789 | * The function does not care about the actual distance, it simply |
| 1790 | * returns the signed distance which has a larger cross product. As a |
| 1791 | * consequence, this function should not be used if the two distances |
| 1792 | * are fairly apart. In that case simply use the signed distance with |
| 1793 | * a shorter absolute distance. |
| 1794 | * |
| 1795 | */ |
| 1796 | static SDF_Signed_Distance |
| 1797 | resolve_corner( SDF_Signed_Distance sdf1, |
| 1798 | SDF_Signed_Distance sdf2 ) |
| 1799 | { |
| 1800 | return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2; |
| 1801 | } |
| 1802 | |
| 1803 | |
| 1804 | /************************************************************************** |
| 1805 | * |
| 1806 | * @Function: |
| 1807 | * get_min_distance_line |
| 1808 | * |
| 1809 | * @Description: |
| 1810 | * Find the shortest distance from the `line` segment to a given `point` |
| 1811 | * and assign it to `out`. Use it for line segments only. |
| 1812 | * |
| 1813 | * @Input: |
| 1814 | * line :: |
| 1815 | * The line segment to which the shortest distance is to be computed. |
| 1816 | * |
| 1817 | * point :: |
| 1818 | * Point from which the shortest distance is to be computed. |
| 1819 | * |
| 1820 | * @Output: |
| 1821 | * out :: |
| 1822 | * Signed distance from `point` to `line`. |
| 1823 | * |
| 1824 | * @Return: |
| 1825 | * FreeType error, 0 means success. |
| 1826 | * |
| 1827 | * @Note: |
| 1828 | * The `line' parameter must have an edge type of `SDF_EDGE_LINE`. |
| 1829 | * |
| 1830 | */ |
| 1831 | static FT_Error |
| 1832 | get_min_distance_line( SDF_Edge* line, |
| 1833 | FT_26D6_Vec point, |
| 1834 | SDF_Signed_Distance* out ) |
| 1835 | { |
| 1836 | /* |
| 1837 | * In order to calculate the shortest distance from a point to |
| 1838 | * a line segment, we do the following. Let's assume that |
| 1839 | * |
| 1840 | * ``` |
| 1841 | * a = start point of the line segment |
| 1842 | * b = end point of the line segment |
| 1843 | * p = point from which shortest distance is to be calculated |
| 1844 | * ``` |
| 1845 | * |
| 1846 | * (1) Write the parametric equation of the line. |
| 1847 | * |
| 1848 | * ``` |
| 1849 | * point_on_line = a + (b - a) * t (t is the factor) |
| 1850 | * ``` |
| 1851 | * |
| 1852 | * (2) Find the projection of point `p` on the line. The projection |
| 1853 | * will be perpendicular to the line, which allows us to get the |
| 1854 | * solution by making the dot product zero. |
| 1855 | * |
| 1856 | * ``` |
| 1857 | * (point_on_line - a) . (p - point_on_line) = 0 |
| 1858 | * |
| 1859 | * (point_on_line) |
| 1860 | * (a) x-------o----------------x (b) |
| 1861 | * |_| |
| 1862 | * | |
| 1863 | * | |
| 1864 | * (p) |
| 1865 | * ``` |
| 1866 | * |
| 1867 | * (3) Simplification of the above equation yields the factor of |
| 1868 | * `point_on_line`: |
| 1869 | * |
| 1870 | * ``` |
| 1871 | * t = ((p - a) . (b - a)) / |b - a|^2 |
| 1872 | * ``` |
| 1873 | * |
| 1874 | * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line` |
| 1875 | * can be outside of the line segment: |
| 1876 | * |
| 1877 | * ``` |
| 1878 | * (point_on_line) |
| 1879 | * (a) x------------------------x (b) -----o--- |
| 1880 | * |_| |
| 1881 | * | |
| 1882 | * | |
| 1883 | * (p) |
| 1884 | * ``` |
| 1885 | * |
| 1886 | * (5) Finally, the distance we are interested in is |
| 1887 | * |
| 1888 | * ``` |
| 1889 | * |point_on_line - p| |
| 1890 | * ``` |
| 1891 | */ |
| 1892 | |
| 1893 | FT_Error error = FT_Err_Ok; |
| 1894 | |
| 1895 | FT_Vector a; /* start position */ |
| 1896 | FT_Vector b; /* end position */ |
| 1897 | FT_Vector p; /* current point */ |
| 1898 | |
| 1899 | FT_26D6_Vec line_segment; /* `b` - `a` */ |
| 1900 | FT_26D6_Vec p_sub_a; /* `p` - `a` */ |
| 1901 | |
| 1902 | FT_26D6 sq_line_length; /* squared length of `line_segment` */ |
| 1903 | FT_16D16 factor; /* factor of the nearest point */ |
| 1904 | FT_26D6 cross; /* used to determine sign */ |
| 1905 | |
| 1906 | FT_16D16_Vec nearest_point; /* `point_on_line` */ |
| 1907 | FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */ |
| 1908 | |
| 1909 | |
| 1910 | if ( !line || !out ) |
| 1911 | { |
| 1912 | error = FT_THROW( Invalid_Argument ); |
| 1913 | goto Exit; |
| 1914 | } |
| 1915 | |
| 1916 | if ( line->edge_type != SDF_EDGE_LINE ) |
| 1917 | { |
| 1918 | error = FT_THROW( Invalid_Argument ); |
| 1919 | goto Exit; |
| 1920 | } |
| 1921 | |
| 1922 | a = line->start_pos; |
| 1923 | b = line->end_pos; |
| 1924 | p = point; |
| 1925 | |
| 1926 | line_segment.x = b.x - a.x; |
| 1927 | line_segment.y = b.y - a.y; |
| 1928 | |
| 1929 | p_sub_a.x = p.x - a.x; |
| 1930 | p_sub_a.y = p.y - a.y; |
| 1931 | |
| 1932 | sq_line_length = ( line_segment.x * line_segment.x ) / 64 + |
| 1933 | ( line_segment.y * line_segment.y ) / 64; |
| 1934 | |
| 1935 | /* currently factor is 26.6 */ |
| 1936 | factor = ( p_sub_a.x * line_segment.x ) / 64 + |
| 1937 | ( p_sub_a.y * line_segment.y ) / 64; |
| 1938 | |
| 1939 | /* now factor is 16.16 */ |
| 1940 | factor = FT_DivFix( factor, sq_line_length ); |
| 1941 | |
| 1942 | /* clamp the factor between 0.0 and 1.0 in fixed-point */ |
| 1943 | if ( factor > FT_INT_16D16( 1 ) ) |
| 1944 | factor = FT_INT_16D16( 1 ); |
| 1945 | if ( factor < 0 ) |
| 1946 | factor = 0; |
| 1947 | |
| 1948 | nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ), |
| 1949 | factor ); |
| 1950 | nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ), |
| 1951 | factor ); |
| 1952 | |
| 1953 | nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x; |
| 1954 | nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y; |
| 1955 | |
| 1956 | nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x ); |
| 1957 | nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y ); |
| 1958 | |
| 1959 | cross = FT_MulFix( nearest_vector.x, line_segment.y ) - |
| 1960 | FT_MulFix( nearest_vector.y, line_segment.x ); |
| 1961 | |
| 1962 | /* assign the output */ |
| 1963 | out->sign = cross < 0 ? 1 : -1; |
| 1964 | out->distance = VECTOR_LENGTH_16D16( nearest_vector ); |
| 1965 | |
| 1966 | /* Instead of finding `cross` for checking corner we */ |
| 1967 | /* directly set it here. This is more efficient */ |
| 1968 | /* because if the distance is perpendicular we can */ |
| 1969 | /* directly set it to 1. */ |
| 1970 | if ( factor != 0 && factor != FT_INT_16D16( 1 ) ) |
| 1971 | out->cross = FT_INT_16D16( 1 ); |
| 1972 | else |
| 1973 | { |
| 1974 | /* [OPTIMIZATION]: Pre-compute this direction. */ |
| 1975 | /* If not perpendicular then compute `cross`. */ |
| 1976 | FT_Vector_NormLen( &line_segment ); |
| 1977 | FT_Vector_NormLen( &nearest_vector ); |
| 1978 | |
| 1979 | out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) - |
| 1980 | FT_MulFix( line_segment.y, nearest_vector.x ); |
| 1981 | } |
| 1982 | |
| 1983 | Exit: |
| 1984 | return error; |
| 1985 | } |
| 1986 | |
| 1987 | |
| 1988 | /************************************************************************** |
| 1989 | * |
| 1990 | * @Function: |
| 1991 | * get_min_distance_conic |
| 1992 | * |
| 1993 | * @Description: |
| 1994 | * Find the shortest distance from the `conic` Bezier curve to a given |
| 1995 | * `point` and assign it to `out`. Use it for conic/quadratic curves |
| 1996 | * only. |
| 1997 | * |
| 1998 | * @Input: |
| 1999 | * conic :: |
| 2000 | * The conic Bezier curve to which the shortest distance is to be |
| 2001 | * computed. |
| 2002 | * |
| 2003 | * point :: |
| 2004 | * Point from which the shortest distance is to be computed. |
| 2005 | * |
| 2006 | * @Output: |
| 2007 | * out :: |
| 2008 | * Signed distance from `point` to `conic`. |
| 2009 | * |
| 2010 | * @Return: |
| 2011 | * FreeType error, 0 means success. |
| 2012 | * |
| 2013 | * @Note: |
| 2014 | * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`. |
| 2015 | * |
| 2016 | */ |
| 2017 | |
| 2018 | #if !USE_NEWTON_FOR_CONIC |
| 2019 | |
| 2020 | /* |
| 2021 | * The function uses an analytical method to find the shortest distance |
| 2022 | * which is faster than the Newton-Raphson method, but has underflows at |
| 2023 | * the moment. Use Newton's method if you can see artifacts in the SDF. |
| 2024 | */ |
| 2025 | static FT_Error |
| 2026 | get_min_distance_conic( SDF_Edge* conic, |
| 2027 | FT_26D6_Vec point, |
| 2028 | SDF_Signed_Distance* out ) |
| 2029 | { |
| 2030 | /* |
| 2031 | * The procedure to find the shortest distance from a point to a |
| 2032 | * quadratic Bezier curve is similar to the line segment algorithm. The |
| 2033 | * shortest distance is perpendicular to the Bezier curve; the only |
| 2034 | * difference from line is that there can be more than one |
| 2035 | * perpendicular, and we also have to check the endpoints, because the |
| 2036 | * perpendicular may not be the shortest. |
| 2037 | * |
| 2038 | * Let's assume that |
| 2039 | * ``` |
| 2040 | * p0 = first endpoint |
| 2041 | * p1 = control point |
| 2042 | * p2 = second endpoint |
| 2043 | * p = point from which shortest distance is to be calculated |
| 2044 | * ``` |
| 2045 | * |
| 2046 | * (1) The equation of a quadratic Bezier curve can be written as |
| 2047 | * |
| 2048 | * ``` |
| 2049 | * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 |
| 2050 | * ``` |
| 2051 | * |
| 2052 | * with `t` a factor in the range [0.0f, 1.0f]. This equation can |
| 2053 | * be rewritten as |
| 2054 | * |
| 2055 | * ``` |
| 2056 | * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 |
| 2057 | * ``` |
| 2058 | * |
| 2059 | * With |
| 2060 | * |
| 2061 | * ``` |
| 2062 | * A = p0 - 2p1 + p2 |
| 2063 | * B = p1 - p0 |
| 2064 | * ``` |
| 2065 | * |
| 2066 | * we have |
| 2067 | * |
| 2068 | * ``` |
| 2069 | * B(t) = t^2 * A + 2t * B + p0 |
| 2070 | * ``` |
| 2071 | * |
| 2072 | * (2) The derivative of the last equation above is |
| 2073 | * |
| 2074 | * ``` |
| 2075 | * B'(t) = 2 *(tA + B) |
| 2076 | * ``` |
| 2077 | * |
| 2078 | * (3) To find the shortest distance from `p` to `B(t)` we find the |
| 2079 | * point on the curve at which the shortest distance vector (i.e., |
| 2080 | * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees. |
| 2081 | * In other words, we make the dot product zero. |
| 2082 | * |
| 2083 | * ``` |
| 2084 | * (B(t) - p) . (B'(t)) = 0 |
| 2085 | * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0 |
| 2086 | * ``` |
| 2087 | * |
| 2088 | * After simplifying we get a cubic equation |
| 2089 | * |
| 2090 | * ``` |
| 2091 | * at^3 + bt^2 + ct + d = 0 |
| 2092 | * ``` |
| 2093 | * |
| 2094 | * with |
| 2095 | * |
| 2096 | * ``` |
| 2097 | * a = A.A |
| 2098 | * b = 3A.B |
| 2099 | * c = 2B.B + A.p0 - A.p |
| 2100 | * d = p0.B - p.B |
| 2101 | * ``` |
| 2102 | * |
| 2103 | * (4) Now the roots of the equation can be computed using 'Cardano's |
| 2104 | * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f]. |
| 2105 | * |
| 2106 | * [note]: `B` and `B(t)` are different in the above equations. |
| 2107 | */ |
| 2108 | |
| 2109 | FT_Error error = FT_Err_Ok; |
| 2110 | |
| 2111 | FT_26D6_Vec aA, bB; /* A, B in the above comment */ |
| 2112 | FT_26D6_Vec nearest_point = { 0, 0 }; |
| 2113 | /* point on curve nearest to `point` */ |
| 2114 | FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ |
| 2115 | |
| 2116 | FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ |
| 2117 | FT_26D6_Vec p; /* `point` to which shortest distance */ |
| 2118 | |
| 2119 | FT_26D6 a, b, c, d; /* cubic coefficients */ |
| 2120 | |
| 2121 | FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */ |
| 2122 | FT_16D16 min_factor; /* factor at `nearest_point` */ |
| 2123 | FT_16D16 cross; /* to determine the sign */ |
| 2124 | FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ |
| 2125 | |
| 2126 | FT_UShort num_roots; /* number of real roots of cubic */ |
| 2127 | FT_UShort i; |
| 2128 | |
| 2129 | |
| 2130 | if ( !conic || !out ) |
| 2131 | { |
| 2132 | error = FT_THROW( Invalid_Argument ); |
| 2133 | goto Exit; |
| 2134 | } |
| 2135 | |
| 2136 | if ( conic->edge_type != SDF_EDGE_CONIC ) |
| 2137 | { |
| 2138 | error = FT_THROW( Invalid_Argument ); |
| 2139 | goto Exit; |
| 2140 | } |
| 2141 | |
| 2142 | p0 = conic->start_pos; |
| 2143 | p1 = conic->control_a; |
| 2144 | p2 = conic->end_pos; |
| 2145 | p = point; |
| 2146 | |
| 2147 | /* compute substitution coefficients */ |
| 2148 | aA.x = p0.x - 2 * p1.x + p2.x; |
| 2149 | aA.y = p0.y - 2 * p1.y + p2.y; |
| 2150 | |
| 2151 | bB.x = p1.x - p0.x; |
| 2152 | bB.y = p1.y - p0.y; |
| 2153 | |
| 2154 | /* compute cubic coefficients */ |
| 2155 | a = VEC_26D6_DOT( aA, aA ); |
| 2156 | |
| 2157 | b = 3 * VEC_26D6_DOT( aA, bB ); |
| 2158 | |
| 2159 | c = 2 * VEC_26D6_DOT( bB, bB ) + |
| 2160 | VEC_26D6_DOT( aA, p0 ) - |
| 2161 | VEC_26D6_DOT( aA, p ); |
| 2162 | |
| 2163 | d = VEC_26D6_DOT( p0, bB ) - |
| 2164 | VEC_26D6_DOT( p, bB ); |
| 2165 | |
| 2166 | /* find the roots */ |
| 2167 | num_roots = solve_cubic_equation( a, b, c, d, roots ); |
| 2168 | |
| 2169 | if ( num_roots == 0 ) |
| 2170 | { |
| 2171 | roots[0] = 0; |
| 2172 | roots[1] = FT_INT_16D16( 1 ); |
| 2173 | num_roots = 2; |
| 2174 | } |
| 2175 | |
| 2176 | /* [OPTIMIZATION]: Check the roots, clamp them and discard */ |
| 2177 | /* duplicate roots. */ |
| 2178 | |
| 2179 | /* convert these values to 16.16 for further computation */ |
| 2180 | aA.x = FT_26D6_16D16( aA.x ); |
| 2181 | aA.y = FT_26D6_16D16( aA.y ); |
| 2182 | |
| 2183 | bB.x = FT_26D6_16D16( bB.x ); |
| 2184 | bB.y = FT_26D6_16D16( bB.y ); |
| 2185 | |
| 2186 | p0.x = FT_26D6_16D16( p0.x ); |
| 2187 | p0.y = FT_26D6_16D16( p0.y ); |
| 2188 | |
| 2189 | p.x = FT_26D6_16D16( p.x ); |
| 2190 | p.y = FT_26D6_16D16( p.y ); |
| 2191 | |
| 2192 | for ( i = 0; i < num_roots; i++ ) |
| 2193 | { |
| 2194 | FT_16D16 t = roots[i]; |
| 2195 | FT_16D16 t2 = 0; |
| 2196 | FT_16D16 dist = 0; |
| 2197 | |
| 2198 | FT_16D16_Vec curve_point; |
| 2199 | FT_16D16_Vec dist_vector; |
| 2200 | |
| 2201 | /* |
| 2202 | * Ideally we should discard the roots which are outside the range |
| 2203 | * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad |
| 2204 | * Esfahbod proved the following lemma. |
| 2205 | * |
| 2206 | * Lemma: |
| 2207 | * |
| 2208 | * (1) If the closest point on the curve [0, 1] is to the endpoint at |
| 2209 | * `t` = 1 and the cubic has no real roots at `t` = 1 then the |
| 2210 | * cubic must have a real root at some `t` > 1. |
| 2211 | * |
| 2212 | * (2) Similarly, if the closest point on the curve [0, 1] is to the |
| 2213 | * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0 |
| 2214 | * then the cubic must have a real root at some `t` < 0. |
| 2215 | * |
| 2216 | * Now because of this lemma we only need to clamp the roots and that |
| 2217 | * will take care of the endpoints. |
| 2218 | * |
| 2219 | * For more details see |
| 2220 | * |
| 2221 | * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html |
| 2222 | */ |
| 2223 | |
| 2224 | if ( t < 0 ) |
| 2225 | t = 0; |
| 2226 | if ( t > FT_INT_16D16( 1 ) ) |
| 2227 | t = FT_INT_16D16( 1 ); |
| 2228 | |
| 2229 | t2 = FT_MulFix( t, t ); |
| 2230 | |
| 2231 | /* B(t) = t^2 * A + 2t * B + p0 - p */ |
| 2232 | curve_point.x = FT_MulFix( aA.x, t2 ) + |
| 2233 | 2 * FT_MulFix( bB.x, t ) + p0.x; |
| 2234 | curve_point.y = FT_MulFix( aA.y, t2 ) + |
| 2235 | 2 * FT_MulFix( bB.y, t ) + p0.y; |
| 2236 | |
| 2237 | /* `curve_point` - `p` */ |
| 2238 | dist_vector.x = curve_point.x - p.x; |
| 2239 | dist_vector.y = curve_point.y - p.y; |
| 2240 | |
| 2241 | dist = VECTOR_LENGTH_16D16( dist_vector ); |
| 2242 | |
| 2243 | if ( dist < min ) |
| 2244 | { |
| 2245 | min = dist; |
| 2246 | nearest_point = curve_point; |
| 2247 | min_factor = t; |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | /* B'(t) = 2 * (tA + B) */ |
| 2252 | direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x; |
| 2253 | direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y; |
| 2254 | |
| 2255 | /* determine the sign */ |
| 2256 | cross = FT_MulFix( nearest_point.x - p.x, direction.y ) - |
| 2257 | FT_MulFix( nearest_point.y - p.y, direction.x ); |
| 2258 | |
| 2259 | /* assign the values */ |
| 2260 | out->distance = min; |
| 2261 | out->sign = cross < 0 ? 1 : -1; |
| 2262 | |
| 2263 | if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| 2264 | out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| 2265 | else |
| 2266 | { |
| 2267 | /* convert to nearest vector */ |
| 2268 | nearest_point.x -= FT_26D6_16D16( p.x ); |
| 2269 | nearest_point.y -= FT_26D6_16D16( p.y ); |
| 2270 | |
| 2271 | /* compute `cross` if not perpendicular */ |
| 2272 | FT_Vector_NormLen( &direction ); |
| 2273 | FT_Vector_NormLen( &nearest_point ); |
| 2274 | |
| 2275 | out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| 2276 | FT_MulFix( direction.y, nearest_point.x ); |
| 2277 | } |
| 2278 | |
| 2279 | Exit: |
| 2280 | return error; |
| 2281 | } |
| 2282 | |
| 2283 | #else /* USE_NEWTON_FOR_CONIC */ |
| 2284 | |
| 2285 | /* |
| 2286 | * The function uses Newton's approximation to find the shortest distance, |
| 2287 | * which is a bit slower than the analytical method but doesn't cause |
| 2288 | * underflow. |
| 2289 | */ |
| 2290 | static FT_Error |
| 2291 | get_min_distance_conic( SDF_Edge* conic, |
| 2292 | FT_26D6_Vec point, |
| 2293 | SDF_Signed_Distance* out ) |
| 2294 | { |
| 2295 | /* |
| 2296 | * This method uses Newton-Raphson's approximation to find the shortest |
| 2297 | * distance from a point to a conic curve. It does not involve solving |
| 2298 | * any cubic equation, that is why there is no risk of underflow. |
| 2299 | * |
| 2300 | * Let's assume that |
| 2301 | * |
| 2302 | * ``` |
| 2303 | * p0 = first endpoint |
| 2304 | * p1 = control point |
| 2305 | * p3 = second endpoint |
| 2306 | * p = point from which shortest distance is to be calculated |
| 2307 | * ``` |
| 2308 | * |
| 2309 | * (1) The equation of a quadratic Bezier curve can be written as |
| 2310 | * |
| 2311 | * ``` |
| 2312 | * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 |
| 2313 | * ``` |
| 2314 | * |
| 2315 | * with `t` the factor in the range [0.0f, 1.0f]. The above |
| 2316 | * equation can be rewritten as |
| 2317 | * |
| 2318 | * ``` |
| 2319 | * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 |
| 2320 | * ``` |
| 2321 | * |
| 2322 | * With |
| 2323 | * |
| 2324 | * ``` |
| 2325 | * A = p0 - 2p1 + p2 |
| 2326 | * B = 2 * (p1 - p0) |
| 2327 | * ``` |
| 2328 | * |
| 2329 | * we have |
| 2330 | * |
| 2331 | * ``` |
| 2332 | * B(t) = t^2 * A + t * B + p0 |
| 2333 | * ``` |
| 2334 | * |
| 2335 | * (2) The derivative of the above equation is |
| 2336 | * |
| 2337 | * ``` |
| 2338 | * B'(t) = 2t * A + B |
| 2339 | * ``` |
| 2340 | * |
| 2341 | * (3) The second derivative of the above equation is |
| 2342 | * |
| 2343 | * ``` |
| 2344 | * B''(t) = 2A |
| 2345 | * ``` |
| 2346 | * |
| 2347 | * (4) The equation `P(t)` of the distance from point `p` to the curve |
| 2348 | * can be written as |
| 2349 | * |
| 2350 | * ``` |
| 2351 | * P(t) = t^2 * A + t^2 * B + p0 - p |
| 2352 | * ``` |
| 2353 | * |
| 2354 | * With |
| 2355 | * |
| 2356 | * ``` |
| 2357 | * C = p0 - p |
| 2358 | * ``` |
| 2359 | * |
| 2360 | * we have |
| 2361 | * |
| 2362 | * ``` |
| 2363 | * P(t) = t^2 * A + t * B + C |
| 2364 | * ``` |
| 2365 | * |
| 2366 | * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can |
| 2367 | * be written as |
| 2368 | * |
| 2369 | * ``` |
| 2370 | * Q(t) = P(t) . B'(t) |
| 2371 | * ``` |
| 2372 | * |
| 2373 | * (6) Our task is to find a value of `t` such that the above equation |
| 2374 | * `Q(t)` becomes zero, that is, the point-to-curve vector makes |
| 2375 | * 90~degrees with the curve. We solve this with the Newton-Raphson |
| 2376 | * method. |
| 2377 | * |
| 2378 | * (7) We first assume an arbitrary value of factor `t`, which we then |
| 2379 | * improve. |
| 2380 | * |
| 2381 | * ``` |
| 2382 | * t := Q(t) / Q'(t) |
| 2383 | * ``` |
| 2384 | * |
| 2385 | * Putting the value of `Q(t)` from the above equation gives |
| 2386 | * |
| 2387 | * ``` |
| 2388 | * t := P(t) . B'(t) / derivative(P(t) . B'(t)) |
| 2389 | * t := P(t) . B'(t) / |
| 2390 | * (P'(t) . B'(t) + P(t) . B''(t)) |
| 2391 | * ``` |
| 2392 | * |
| 2393 | * Note that `P'(t)` is the same as `B'(t)` because the constant is |
| 2394 | * gone due to the derivative. |
| 2395 | * |
| 2396 | * (8) Finally we get the equation to improve the factor as |
| 2397 | * |
| 2398 | * ``` |
| 2399 | * t := P(t) . B'(t) / |
| 2400 | * (B'(t) . B'(t) + P(t) . B''(t)) |
| 2401 | * ``` |
| 2402 | * |
| 2403 | * [note]: `B` and `B(t)` are different in the above equations. |
| 2404 | */ |
| 2405 | |
| 2406 | FT_Error error = FT_Err_Ok; |
| 2407 | |
| 2408 | FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */ |
| 2409 | FT_26D6_Vec nearest_point = { 0, 0 }; |
| 2410 | /* point on curve nearest to `point` */ |
| 2411 | FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ |
| 2412 | |
| 2413 | FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ |
| 2414 | FT_26D6_Vec p; /* `point` to which shortest distance */ |
| 2415 | |
| 2416 | FT_16D16 min_factor = 0; /* factor at `nearest_point' */ |
| 2417 | FT_16D16 cross; /* to determine the sign */ |
| 2418 | FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ |
| 2419 | |
| 2420 | FT_UShort iterations; |
| 2421 | FT_UShort steps; |
| 2422 | |
| 2423 | |
| 2424 | if ( !conic || !out ) |
| 2425 | { |
| 2426 | error = FT_THROW( Invalid_Argument ); |
| 2427 | goto Exit; |
| 2428 | } |
| 2429 | |
| 2430 | if ( conic->edge_type != SDF_EDGE_CONIC ) |
| 2431 | { |
| 2432 | error = FT_THROW( Invalid_Argument ); |
| 2433 | goto Exit; |
| 2434 | } |
| 2435 | |
| 2436 | p0 = conic->start_pos; |
| 2437 | p1 = conic->control_a; |
| 2438 | p2 = conic->end_pos; |
| 2439 | p = point; |
| 2440 | |
| 2441 | /* compute substitution coefficients */ |
| 2442 | aA.x = p0.x - 2 * p1.x + p2.x; |
| 2443 | aA.y = p0.y - 2 * p1.y + p2.y; |
| 2444 | |
| 2445 | bB.x = 2 * ( p1.x - p0.x ); |
| 2446 | bB.y = 2 * ( p1.y - p0.y ); |
| 2447 | |
| 2448 | cC.x = p0.x; |
| 2449 | cC.y = p0.y; |
| 2450 | |
| 2451 | /* do Newton's iterations */ |
| 2452 | for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) |
| 2453 | { |
| 2454 | FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; |
| 2455 | FT_16D16 factor2; |
| 2456 | FT_16D16 length; |
| 2457 | |
| 2458 | FT_16D16_Vec curve_point; /* point on the curve */ |
| 2459 | FT_16D16_Vec dist_vector; /* `curve_point` - `p` */ |
| 2460 | |
| 2461 | FT_26D6_Vec d1; /* first derivative */ |
| 2462 | FT_26D6_Vec d2; /* second derivative */ |
| 2463 | |
| 2464 | FT_16D16 temp1; |
| 2465 | FT_16D16 temp2; |
| 2466 | |
| 2467 | |
| 2468 | for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) |
| 2469 | { |
| 2470 | factor2 = FT_MulFix( factor, factor ); |
| 2471 | |
| 2472 | /* B(t) = t^2 * A + t * B + p0 */ |
| 2473 | curve_point.x = FT_MulFix( aA.x, factor2 ) + |
| 2474 | FT_MulFix( bB.x, factor ) + cC.x; |
| 2475 | curve_point.y = FT_MulFix( aA.y, factor2 ) + |
| 2476 | FT_MulFix( bB.y, factor ) + cC.y; |
| 2477 | |
| 2478 | /* convert to 16.16 */ |
| 2479 | curve_point.x = FT_26D6_16D16( curve_point.x ); |
| 2480 | curve_point.y = FT_26D6_16D16( curve_point.y ); |
| 2481 | |
| 2482 | /* P(t) in the comment */ |
| 2483 | dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); |
| 2484 | dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); |
| 2485 | |
| 2486 | length = VECTOR_LENGTH_16D16( dist_vector ); |
| 2487 | |
| 2488 | if ( length < min ) |
| 2489 | { |
| 2490 | min = length; |
| 2491 | min_factor = factor; |
| 2492 | nearest_point = curve_point; |
| 2493 | } |
| 2494 | |
| 2495 | /* This is Newton's approximation. */ |
| 2496 | /* */ |
| 2497 | /* t := P(t) . B'(t) / */ |
| 2498 | /* (B'(t) . B'(t) + P(t) . B''(t)) */ |
| 2499 | |
| 2500 | /* B'(t) = 2tA + B */ |
| 2501 | d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x; |
| 2502 | d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y; |
| 2503 | |
| 2504 | /* B''(t) = 2A */ |
| 2505 | d2.x = 2 * aA.x; |
| 2506 | d2.y = 2 * aA.y; |
| 2507 | |
| 2508 | dist_vector.x /= 1024; |
| 2509 | dist_vector.y /= 1024; |
| 2510 | |
| 2511 | /* temp1 = P(t) . B'(t) */ |
| 2512 | temp1 = VEC_26D6_DOT( dist_vector, d1 ); |
| 2513 | |
| 2514 | /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ |
| 2515 | temp2 = VEC_26D6_DOT( d1, d1 ) + |
| 2516 | VEC_26D6_DOT( dist_vector, d2 ); |
| 2517 | |
| 2518 | factor -= FT_DivFix( temp1, temp2 ); |
| 2519 | |
| 2520 | if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) |
| 2521 | break; |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | /* B'(t) = 2t * A + B */ |
| 2526 | direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x; |
| 2527 | direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y; |
| 2528 | |
| 2529 | /* determine the sign */ |
| 2530 | cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), |
| 2531 | direction.y ) - |
| 2532 | FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), |
| 2533 | direction.x ); |
| 2534 | |
| 2535 | /* assign the values */ |
| 2536 | out->distance = min; |
| 2537 | out->sign = cross < 0 ? 1 : -1; |
| 2538 | |
| 2539 | if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| 2540 | out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| 2541 | else |
| 2542 | { |
| 2543 | /* convert to nearest vector */ |
| 2544 | nearest_point.x -= FT_26D6_16D16( p.x ); |
| 2545 | nearest_point.y -= FT_26D6_16D16( p.y ); |
| 2546 | |
| 2547 | /* compute `cross` if not perpendicular */ |
| 2548 | FT_Vector_NormLen( &direction ); |
| 2549 | FT_Vector_NormLen( &nearest_point ); |
| 2550 | |
| 2551 | out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| 2552 | FT_MulFix( direction.y, nearest_point.x ); |
| 2553 | } |
| 2554 | |
| 2555 | Exit: |
| 2556 | return error; |
| 2557 | } |
| 2558 | |
| 2559 | |
| 2560 | #endif /* USE_NEWTON_FOR_CONIC */ |
| 2561 | |
| 2562 | |
| 2563 | /************************************************************************** |
| 2564 | * |
| 2565 | * @Function: |
| 2566 | * get_min_distance_cubic |
| 2567 | * |
| 2568 | * @Description: |
| 2569 | * Find the shortest distance from the `cubic` Bezier curve to a given |
| 2570 | * `point` and assigns it to `out`. Use it for cubic curves only. |
| 2571 | * |
| 2572 | * @Input: |
| 2573 | * cubic :: |
| 2574 | * The cubic Bezier curve to which the shortest distance is to be |
| 2575 | * computed. |
| 2576 | * |
| 2577 | * point :: |
| 2578 | * Point from which the shortest distance is to be computed. |
| 2579 | * |
| 2580 | * @Output: |
| 2581 | * out :: |
| 2582 | * Signed distance from `point` to `cubic`. |
| 2583 | * |
| 2584 | * @Return: |
| 2585 | * FreeType error, 0 means success. |
| 2586 | * |
| 2587 | * @Note: |
| 2588 | * The function uses Newton's approximation to find the shortest |
| 2589 | * distance. Another way would be to divide the cubic into conic or |
| 2590 | * subdivide the curve into lines, but that is not implemented. |
| 2591 | * |
| 2592 | * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`. |
| 2593 | * |
| 2594 | */ |
| 2595 | static FT_Error |
| 2596 | get_min_distance_cubic( SDF_Edge* cubic, |
| 2597 | FT_26D6_Vec point, |
| 2598 | SDF_Signed_Distance* out ) |
| 2599 | { |
| 2600 | /* |
| 2601 | * The procedure to find the shortest distance from a point to a cubic |
| 2602 | * Bezier curve is similar to quadratic curve algorithm. The only |
| 2603 | * difference is that while calculating factor `t`, instead of a cubic |
| 2604 | * polynomial equation we have to find the roots of a 5th degree |
| 2605 | * polynomial equation. Solving this would require a significant amount |
| 2606 | * of time, and still the results may not be accurate. We are thus |
| 2607 | * going to directly approximate the value of `t` using the Newton-Raphson |
| 2608 | * method. |
| 2609 | * |
| 2610 | * Let's assume that |
| 2611 | * |
| 2612 | * ``` |
| 2613 | * p0 = first endpoint |
| 2614 | * p1 = first control point |
| 2615 | * p2 = second control point |
| 2616 | * p3 = second endpoint |
| 2617 | * p = point from which shortest distance is to be calculated |
| 2618 | * ``` |
| 2619 | * |
| 2620 | * (1) The equation of a cubic Bezier curve can be written as |
| 2621 | * |
| 2622 | * ``` |
| 2623 | * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 + |
| 2624 | * 3(1 - t)t^2 * p2 + t^3 * p3 |
| 2625 | * ``` |
| 2626 | * |
| 2627 | * The equation can be expanded and written as |
| 2628 | * |
| 2629 | * ``` |
| 2630 | * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) + |
| 2631 | * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0 |
| 2632 | * ``` |
| 2633 | * |
| 2634 | * With |
| 2635 | * |
| 2636 | * ``` |
| 2637 | * A = -p0 + 3p1 - 3p2 + p3 |
| 2638 | * B = 3(p0 - 2p1 + p2) |
| 2639 | * C = 3(-p0 + p1) |
| 2640 | * ``` |
| 2641 | * |
| 2642 | * we have |
| 2643 | * |
| 2644 | * ``` |
| 2645 | * B(t) = t^3 * A + t^2 * B + t * C + p0 |
| 2646 | * ``` |
| 2647 | * |
| 2648 | * (2) The derivative of the above equation is |
| 2649 | * |
| 2650 | * ``` |
| 2651 | * B'(t) = 3t^2 * A + 2t * B + C |
| 2652 | * ``` |
| 2653 | * |
| 2654 | * (3) The second derivative of the above equation is |
| 2655 | * |
| 2656 | * ``` |
| 2657 | * B''(t) = 6t * A + 2B |
| 2658 | * ``` |
| 2659 | * |
| 2660 | * (4) The equation `P(t)` of the distance from point `p` to the curve |
| 2661 | * can be written as |
| 2662 | * |
| 2663 | * ``` |
| 2664 | * P(t) = t^3 * A + t^2 * B + t * C + p0 - p |
| 2665 | * ``` |
| 2666 | * |
| 2667 | * With |
| 2668 | * |
| 2669 | * ``` |
| 2670 | * D = p0 - p |
| 2671 | * ``` |
| 2672 | * |
| 2673 | * we have |
| 2674 | * |
| 2675 | * ``` |
| 2676 | * P(t) = t^3 * A + t^2 * B + t * C + D |
| 2677 | * ``` |
| 2678 | * |
| 2679 | * (5) Finally the equation of the angle between `B(t)` and `P(t)` can |
| 2680 | * be written as |
| 2681 | * |
| 2682 | * ``` |
| 2683 | * Q(t) = P(t) . B'(t) |
| 2684 | * ``` |
| 2685 | * |
| 2686 | * (6) Our task is to find a value of `t` such that the above equation |
| 2687 | * `Q(t)` becomes zero, that is, the point-to-curve vector makes |
| 2688 | * 90~degree with curve. We solve this with the Newton-Raphson |
| 2689 | * method. |
| 2690 | * |
| 2691 | * (7) We first assume an arbitrary value of factor `t`, which we then |
| 2692 | * improve. |
| 2693 | * |
| 2694 | * ``` |
| 2695 | * t := Q(t) / Q'(t) |
| 2696 | * ``` |
| 2697 | * |
| 2698 | * Putting the value of `Q(t)` from the above equation gives |
| 2699 | * |
| 2700 | * ``` |
| 2701 | * t := P(t) . B'(t) / derivative(P(t) . B'(t)) |
| 2702 | * t := P(t) . B'(t) / |
| 2703 | * (P'(t) . B'(t) + P(t) . B''(t)) |
| 2704 | * ``` |
| 2705 | * |
| 2706 | * Note that `P'(t)` is the same as `B'(t)` because the constant is |
| 2707 | * gone due to the derivative. |
| 2708 | * |
| 2709 | * (8) Finally we get the equation to improve the factor as |
| 2710 | * |
| 2711 | * ``` |
| 2712 | * t := P(t) . B'(t) / |
| 2713 | * (B'(t) . B'( t ) + P(t) . B''(t)) |
| 2714 | * ``` |
| 2715 | * |
| 2716 | * [note]: `B` and `B(t)` are different in the above equations. |
| 2717 | */ |
| 2718 | |
| 2719 | FT_Error error = FT_Err_Ok; |
| 2720 | |
| 2721 | FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */ |
| 2722 | FT_16D16_Vec nearest_point = { 0, 0 }; |
| 2723 | /* point on curve nearest to `point` */ |
| 2724 | FT_16D16_Vec direction; /* direction of curve at `nearest_point` */ |
| 2725 | |
| 2726 | FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */ |
| 2727 | FT_26D6_Vec p; /* `point` to which shortest distance */ |
| 2728 | |
| 2729 | FT_16D16 min_factor = 0; /* factor at shortest distance */ |
| 2730 | FT_16D16 min_factor_sq = 0; /* factor at shortest distance */ |
| 2731 | FT_16D16 cross; /* to determine the sign */ |
| 2732 | FT_16D16 min = FT_INT_MAX; /* shortest distance */ |
| 2733 | |
| 2734 | FT_UShort iterations; |
| 2735 | FT_UShort steps; |
| 2736 | |
| 2737 | |
| 2738 | if ( !cubic || !out ) |
| 2739 | { |
| 2740 | error = FT_THROW( Invalid_Argument ); |
| 2741 | goto Exit; |
| 2742 | } |
| 2743 | |
| 2744 | if ( cubic->edge_type != SDF_EDGE_CUBIC ) |
| 2745 | { |
| 2746 | error = FT_THROW( Invalid_Argument ); |
| 2747 | goto Exit; |
| 2748 | } |
| 2749 | |
| 2750 | p0 = cubic->start_pos; |
| 2751 | p1 = cubic->control_a; |
| 2752 | p2 = cubic->control_b; |
| 2753 | p3 = cubic->end_pos; |
| 2754 | p = point; |
| 2755 | |
| 2756 | /* compute substitution coefficients */ |
| 2757 | aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x; |
| 2758 | aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y; |
| 2759 | |
| 2760 | bB.x = 3 * ( p0.x - 2 * p1.x + p2.x ); |
| 2761 | bB.y = 3 * ( p0.y - 2 * p1.y + p2.y ); |
| 2762 | |
| 2763 | cC.x = 3 * ( p1.x - p0.x ); |
| 2764 | cC.y = 3 * ( p1.y - p0.y ); |
| 2765 | |
| 2766 | dD.x = p0.x; |
| 2767 | dD.y = p0.y; |
| 2768 | |
| 2769 | for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) |
| 2770 | { |
| 2771 | FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; |
| 2772 | |
| 2773 | FT_16D16 factor2; /* factor^2 */ |
| 2774 | FT_16D16 factor3; /* factor^3 */ |
| 2775 | FT_16D16 length; |
| 2776 | |
| 2777 | FT_16D16_Vec curve_point; /* point on the curve */ |
| 2778 | FT_16D16_Vec dist_vector; /* `curve_point' - `p' */ |
| 2779 | |
| 2780 | FT_26D6_Vec d1; /* first derivative */ |
| 2781 | FT_26D6_Vec d2; /* second derivative */ |
| 2782 | |
| 2783 | FT_16D16 temp1; |
| 2784 | FT_16D16 temp2; |
| 2785 | |
| 2786 | |
| 2787 | for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) |
| 2788 | { |
| 2789 | factor2 = FT_MulFix( factor, factor ); |
| 2790 | factor3 = FT_MulFix( factor2, factor ); |
| 2791 | |
| 2792 | /* B(t) = t^3 * A + t^2 * B + t * C + D */ |
| 2793 | curve_point.x = FT_MulFix( aA.x, factor3 ) + |
| 2794 | FT_MulFix( bB.x, factor2 ) + |
| 2795 | FT_MulFix( cC.x, factor ) + dD.x; |
| 2796 | curve_point.y = FT_MulFix( aA.y, factor3 ) + |
| 2797 | FT_MulFix( bB.y, factor2 ) + |
| 2798 | FT_MulFix( cC.y, factor ) + dD.y; |
| 2799 | |
| 2800 | /* convert to 16.16 */ |
| 2801 | curve_point.x = FT_26D6_16D16( curve_point.x ); |
| 2802 | curve_point.y = FT_26D6_16D16( curve_point.y ); |
| 2803 | |
| 2804 | /* P(t) in the comment */ |
| 2805 | dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); |
| 2806 | dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); |
| 2807 | |
| 2808 | length = VECTOR_LENGTH_16D16( dist_vector ); |
| 2809 | |
| 2810 | if ( length < min ) |
| 2811 | { |
| 2812 | min = length; |
| 2813 | min_factor = factor; |
| 2814 | min_factor_sq = factor2; |
| 2815 | nearest_point = curve_point; |
| 2816 | } |
| 2817 | |
| 2818 | /* This the Newton's approximation. */ |
| 2819 | /* */ |
| 2820 | /* t := P(t) . B'(t) / */ |
| 2821 | /* (B'(t) . B'(t) + P(t) . B''(t)) */ |
| 2822 | |
| 2823 | /* B'(t) = 3t^2 * A + 2t * B + C */ |
| 2824 | d1.x = FT_MulFix( aA.x, 3 * factor2 ) + |
| 2825 | FT_MulFix( bB.x, 2 * factor ) + cC.x; |
| 2826 | d1.y = FT_MulFix( aA.y, 3 * factor2 ) + |
| 2827 | FT_MulFix( bB.y, 2 * factor ) + cC.y; |
| 2828 | |
| 2829 | /* B''(t) = 6t * A + 2B */ |
| 2830 | d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x; |
| 2831 | d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y; |
| 2832 | |
| 2833 | dist_vector.x /= 1024; |
| 2834 | dist_vector.y /= 1024; |
| 2835 | |
| 2836 | /* temp1 = P(t) . B'(t) */ |
| 2837 | temp1 = VEC_26D6_DOT( dist_vector, d1 ); |
| 2838 | |
| 2839 | /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ |
| 2840 | temp2 = VEC_26D6_DOT( d1, d1 ) + |
| 2841 | VEC_26D6_DOT( dist_vector, d2 ); |
| 2842 | |
| 2843 | factor -= FT_DivFix( temp1, temp2 ); |
| 2844 | |
| 2845 | if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) |
| 2846 | break; |
| 2847 | } |
| 2848 | } |
| 2849 | |
| 2850 | /* B'(t) = 3t^2 * A + 2t * B + C */ |
| 2851 | direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) + |
| 2852 | FT_MulFix( bB.x, 2 * min_factor ) + cC.x; |
| 2853 | direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) + |
| 2854 | FT_MulFix( bB.y, 2 * min_factor ) + cC.y; |
| 2855 | |
| 2856 | /* determine the sign */ |
| 2857 | cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), |
| 2858 | direction.y ) - |
| 2859 | FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), |
| 2860 | direction.x ); |
| 2861 | |
| 2862 | /* assign the values */ |
| 2863 | out->distance = min; |
| 2864 | out->sign = cross < 0 ? 1 : -1; |
| 2865 | |
| 2866 | if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| 2867 | out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| 2868 | else |
| 2869 | { |
| 2870 | /* convert to nearest vector */ |
| 2871 | nearest_point.x -= FT_26D6_16D16( p.x ); |
| 2872 | nearest_point.y -= FT_26D6_16D16( p.y ); |
| 2873 | |
| 2874 | /* compute `cross` if not perpendicular */ |
| 2875 | FT_Vector_NormLen( &direction ); |
| 2876 | FT_Vector_NormLen( &nearest_point ); |
| 2877 | |
| 2878 | out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| 2879 | FT_MulFix( direction.y, nearest_point.x ); |
| 2880 | } |
| 2881 | |
| 2882 | Exit: |
| 2883 | return error; |
| 2884 | } |
| 2885 | |
| 2886 | |
| 2887 | /************************************************************************** |
| 2888 | * |
| 2889 | * @Function: |
| 2890 | * sdf_edge_get_min_distance |
| 2891 | * |
| 2892 | * @Description: |
| 2893 | * Find shortest distance from `point` to any type of `edge`. It checks |
| 2894 | * the edge type and then calls the relevant `get_min_distance_*` |
| 2895 | * function. |
| 2896 | * |
| 2897 | * @Input: |
| 2898 | * edge :: |
| 2899 | * An edge to which the shortest distance is to be computed. |
| 2900 | * |
| 2901 | * point :: |
| 2902 | * Point from which the shortest distance is to be computed. |
| 2903 | * |
| 2904 | * @Output: |
| 2905 | * out :: |
| 2906 | * Signed distance from `point` to `edge`. |
| 2907 | * |
| 2908 | * @Return: |
| 2909 | * FreeType error, 0 means success. |
| 2910 | * |
| 2911 | */ |
| 2912 | static FT_Error |
| 2913 | sdf_edge_get_min_distance( SDF_Edge* edge, |
| 2914 | FT_26D6_Vec point, |
| 2915 | SDF_Signed_Distance* out ) |
| 2916 | { |
| 2917 | FT_Error error = FT_Err_Ok; |
| 2918 | |
| 2919 | |
| 2920 | if ( !edge || !out ) |
| 2921 | { |
| 2922 | error = FT_THROW( Invalid_Argument ); |
| 2923 | goto Exit; |
| 2924 | } |
| 2925 | |
| 2926 | /* edge-specific distance calculation */ |
| 2927 | switch ( edge->edge_type ) |
| 2928 | { |
| 2929 | case SDF_EDGE_LINE: |
| 2930 | get_min_distance_line( edge, point, out ); |
| 2931 | break; |
| 2932 | |
| 2933 | case SDF_EDGE_CONIC: |
| 2934 | get_min_distance_conic( edge, point, out ); |
| 2935 | break; |
| 2936 | |
| 2937 | case SDF_EDGE_CUBIC: |
| 2938 | get_min_distance_cubic( edge, point, out ); |
| 2939 | break; |
| 2940 | |
| 2941 | default: |
| 2942 | error = FT_THROW( Invalid_Argument ); |
| 2943 | } |
| 2944 | |
| 2945 | Exit: |
| 2946 | return error; |
| 2947 | } |
| 2948 | |
| 2949 | |
| 2950 | /* `sdf_generate' is not used at the moment */ |
| 2951 | #if 0 |
| 2952 | |
| 2953 | #error "DO NOT USE THIS!" |
| 2954 | #error "The function still outputs 16-bit data, which might cause memory" |
| 2955 | #error "corruption. If required I will add this later." |
| 2956 | |
| 2957 | /************************************************************************** |
| 2958 | * |
| 2959 | * @Function: |
| 2960 | * sdf_contour_get_min_distance |
| 2961 | * |
| 2962 | * @Description: |
| 2963 | * Iterate over all edges that make up the contour, find the shortest |
| 2964 | * distance from a point to this contour, and assigns result to `out`. |
| 2965 | * |
| 2966 | * @Input: |
| 2967 | * contour :: |
| 2968 | * A contour to which the shortest distance is to be computed. |
| 2969 | * |
| 2970 | * point :: |
| 2971 | * Point from which the shortest distance is to be computed. |
| 2972 | * |
| 2973 | * @Output: |
| 2974 | * out :: |
| 2975 | * Signed distance from the `point' to the `contour'. |
| 2976 | * |
| 2977 | * @Return: |
| 2978 | * FreeType error, 0 means success. |
| 2979 | * |
| 2980 | * @Note: |
| 2981 | * The function does not return a signed distance for each edge which |
| 2982 | * makes up the contour, it simply returns the shortest of all the |
| 2983 | * edges. |
| 2984 | * |
| 2985 | */ |
| 2986 | static FT_Error |
| 2987 | sdf_contour_get_min_distance( SDF_Contour* contour, |
| 2988 | FT_26D6_Vec point, |
| 2989 | SDF_Signed_Distance* out ) |
| 2990 | { |
| 2991 | FT_Error error = FT_Err_Ok; |
| 2992 | SDF_Signed_Distance min_dist = max_sdf; |
| 2993 | SDF_Edge* edge_list; |
| 2994 | |
| 2995 | |
| 2996 | if ( !contour || !out ) |
| 2997 | { |
| 2998 | error = FT_THROW( Invalid_Argument ); |
| 2999 | goto Exit; |
| 3000 | } |
| 3001 | |
| 3002 | edge_list = contour->edges; |
| 3003 | |
| 3004 | /* iterate over all the edges manually */ |
| 3005 | while ( edge_list ) |
| 3006 | { |
| 3007 | SDF_Signed_Distance current_dist = max_sdf; |
| 3008 | FT_16D16 diff; |
| 3009 | |
| 3010 | |
| 3011 | FT_CALL( sdf_edge_get_min_distance( edge_list, |
| 3012 | point, |
| 3013 | ¤t_dist ) ); |
| 3014 | |
| 3015 | if ( current_dist.distance >= 0 ) |
| 3016 | { |
| 3017 | diff = current_dist.distance - min_dist.distance; |
| 3018 | |
| 3019 | |
| 3020 | if ( FT_ABS( diff ) < CORNER_CHECK_EPSILON ) |
| 3021 | min_dist = resolve_corner( min_dist, current_dist ); |
| 3022 | else if ( diff < 0 ) |
| 3023 | min_dist = current_dist; |
| 3024 | } |
| 3025 | else |
| 3026 | FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" )); |
| 3027 | |
| 3028 | edge_list = edge_list->next; |
| 3029 | } |
| 3030 | |
| 3031 | *out = min_dist; |
| 3032 | |
| 3033 | Exit: |
| 3034 | return error; |
| 3035 | } |
| 3036 | |
| 3037 | |
| 3038 | /************************************************************************** |
| 3039 | * |
| 3040 | * @Function: |
| 3041 | * sdf_generate |
| 3042 | * |
| 3043 | * @Description: |
| 3044 | * This is the main function that is responsible for generating signed |
| 3045 | * distance fields. The function does not align or compute the size of |
| 3046 | * `bitmap`; therefore the calling application must set up `bitmap` |
| 3047 | * properly and transform the `shape' appropriately in advance. |
| 3048 | * |
| 3049 | * Currently we check all pixels against all contours and all edges. |
| 3050 | * |
| 3051 | * @Input: |
| 3052 | * internal_params :: |
| 3053 | * Internal parameters and properties required by the rasterizer. See |
| 3054 | * @SDF_Params for more. |
| 3055 | * |
| 3056 | * shape :: |
| 3057 | * A complete shape which is used to generate SDF. |
| 3058 | * |
| 3059 | * spread :: |
| 3060 | * Maximum distances to be allowed in the output bitmap. |
| 3061 | * |
| 3062 | * @Output: |
| 3063 | * bitmap :: |
| 3064 | * The output bitmap which will contain the SDF information. |
| 3065 | * |
| 3066 | * @Return: |
| 3067 | * FreeType error, 0 means success. |
| 3068 | * |
| 3069 | */ |
| 3070 | static FT_Error |
| 3071 | sdf_generate( const SDF_Params internal_params, |
| 3072 | const SDF_Shape* shape, |
| 3073 | FT_UInt spread, |
| 3074 | const FT_Bitmap* bitmap ) |
| 3075 | { |
| 3076 | FT_Error error = FT_Err_Ok; |
| 3077 | |
| 3078 | FT_UInt width = 0; |
| 3079 | FT_UInt rows = 0; |
| 3080 | FT_UInt x = 0; /* used to loop in x direction, i.e., width */ |
| 3081 | FT_UInt y = 0; /* used to loop in y direction, i.e., rows */ |
| 3082 | FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */ |
| 3083 | |
| 3084 | FT_Short* buffer; |
| 3085 | |
| 3086 | |
| 3087 | if ( !shape || !bitmap ) |
| 3088 | { |
| 3089 | error = FT_THROW( Invalid_Argument ); |
| 3090 | goto Exit; |
| 3091 | } |
| 3092 | |
| 3093 | if ( spread < MIN_SPREAD || spread > MAX_SPREAD ) |
| 3094 | { |
| 3095 | error = FT_THROW( Invalid_Argument ); |
| 3096 | goto Exit; |
| 3097 | } |
| 3098 | |
| 3099 | width = bitmap->width; |
| 3100 | rows = bitmap->rows; |
| 3101 | buffer = (FT_Short*)bitmap->buffer; |
| 3102 | |
| 3103 | if ( USE_SQUARED_DISTANCES ) |
| 3104 | sp_sq = FT_INT_16D16( spread * spread ); |
| 3105 | else |
| 3106 | sp_sq = FT_INT_16D16( spread ); |
| 3107 | |
| 3108 | if ( width == 0 || rows == 0 ) |
| 3109 | { |
| 3110 | FT_TRACE0(( "sdf_generate:" |
| 3111 | " Cannot render glyph with width/height == 0\n" )); |
| 3112 | FT_TRACE0(( " " |
| 3113 | " (width, height provided [%d, %d])\n" , |
| 3114 | width, rows )); |
| 3115 | |
| 3116 | error = FT_THROW( Cannot_Render_Glyph ); |
| 3117 | goto Exit; |
| 3118 | } |
| 3119 | |
| 3120 | /* loop over all rows */ |
| 3121 | for ( y = 0; y < rows; y++ ) |
| 3122 | { |
| 3123 | /* loop over all pixels of a row */ |
| 3124 | for ( x = 0; x < width; x++ ) |
| 3125 | { |
| 3126 | /* `grid_point` is the current pixel position; */ |
| 3127 | /* our task is to find the shortest distance */ |
| 3128 | /* from this point to the entire shape. */ |
| 3129 | FT_26D6_Vec grid_point = zero_vector; |
| 3130 | SDF_Signed_Distance min_dist = max_sdf; |
| 3131 | SDF_Contour* contour_list; |
| 3132 | |
| 3133 | FT_UInt index; |
| 3134 | FT_Short value; |
| 3135 | |
| 3136 | |
| 3137 | grid_point.x = FT_INT_26D6( x ); |
| 3138 | grid_point.y = FT_INT_26D6( y ); |
| 3139 | |
| 3140 | /* This `grid_point' is at the corner, but we */ |
| 3141 | /* use the center of the pixel. */ |
| 3142 | grid_point.x += FT_INT_26D6( 1 ) / 2; |
| 3143 | grid_point.y += FT_INT_26D6( 1 ) / 2; |
| 3144 | |
| 3145 | contour_list = shape->contours; |
| 3146 | |
| 3147 | /* iterate over all contours manually */ |
| 3148 | while ( contour_list ) |
| 3149 | { |
| 3150 | SDF_Signed_Distance current_dist = max_sdf; |
| 3151 | |
| 3152 | |
| 3153 | FT_CALL( sdf_contour_get_min_distance( contour_list, |
| 3154 | grid_point, |
| 3155 | ¤t_dist ) ); |
| 3156 | |
| 3157 | if ( current_dist.distance < min_dist.distance ) |
| 3158 | min_dist = current_dist; |
| 3159 | |
| 3160 | contour_list = contour_list->next; |
| 3161 | } |
| 3162 | |
| 3163 | /* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */ |
| 3164 | /* the value to spread to avoid square_root */ |
| 3165 | |
| 3166 | /* clamp the values to spread */ |
| 3167 | if ( min_dist.distance > sp_sq ) |
| 3168 | min_dist.distance = sp_sq; |
| 3169 | |
| 3170 | /* square_root the values and fit in a 6.10 fixed-point */ |
| 3171 | if ( USE_SQUARED_DISTANCES ) |
| 3172 | min_dist.distance = square_root( min_dist.distance ); |
| 3173 | |
| 3174 | if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| 3175 | min_dist.sign = -min_dist.sign; |
| 3176 | if ( internal_params.flip_sign ) |
| 3177 | min_dist.sign = -min_dist.sign; |
| 3178 | |
| 3179 | min_dist.distance /= 64; /* convert from 16.16 to 22.10 */ |
| 3180 | |
| 3181 | value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */ |
| 3182 | value *= min_dist.sign; |
| 3183 | |
| 3184 | if ( internal_params.flip_y ) |
| 3185 | index = y * width + x; |
| 3186 | else |
| 3187 | index = ( rows - y - 1 ) * width + x; |
| 3188 | |
| 3189 | buffer[index] = value; |
| 3190 | } |
| 3191 | } |
| 3192 | |
| 3193 | Exit: |
| 3194 | return error; |
| 3195 | } |
| 3196 | |
| 3197 | #endif /* 0 */ |
| 3198 | |
| 3199 | |
| 3200 | /************************************************************************** |
| 3201 | * |
| 3202 | * @Function: |
| 3203 | * sdf_generate_bounding_box |
| 3204 | * |
| 3205 | * @Description: |
| 3206 | * This function does basically the same thing as `sdf_generate` above |
| 3207 | * but more efficiently. |
| 3208 | * |
| 3209 | * Instead of checking all pixels against all edges, we loop over all |
| 3210 | * edges and only check pixels around the control box of the edge; the |
| 3211 | * control box is increased by the spread in all directions. Anything |
| 3212 | * outside of the control box that exceeds `spread` doesn't need to be |
| 3213 | * computed. |
| 3214 | * |
| 3215 | * Lastly, to determine the sign of unchecked pixels, we do a single |
| 3216 | * pass of all rows starting with a '+' sign and flipping when we come |
| 3217 | * across a '-' sign and continue. This also eliminates the possibility |
| 3218 | * of overflow because we only check the proximity of the curve. |
| 3219 | * Therefore we can use squared distanced safely. |
| 3220 | * |
| 3221 | * @Input: |
| 3222 | * internal_params :: |
| 3223 | * Internal parameters and properties required by the rasterizer. |
| 3224 | * See @SDF_Params for more. |
| 3225 | * |
| 3226 | * shape :: |
| 3227 | * A complete shape which is used to generate SDF. |
| 3228 | * |
| 3229 | * spread :: |
| 3230 | * Maximum distances to be allowed in the output bitmap. |
| 3231 | * |
| 3232 | * @Output: |
| 3233 | * bitmap :: |
| 3234 | * The output bitmap which will contain the SDF information. |
| 3235 | * |
| 3236 | * @Return: |
| 3237 | * FreeType error, 0 means success. |
| 3238 | * |
| 3239 | */ |
| 3240 | static FT_Error |
| 3241 | sdf_generate_bounding_box( const SDF_Params internal_params, |
| 3242 | const SDF_Shape* shape, |
| 3243 | FT_UInt spread, |
| 3244 | const FT_Bitmap* bitmap ) |
| 3245 | { |
| 3246 | FT_Error error = FT_Err_Ok; |
| 3247 | FT_Memory memory = NULL; |
| 3248 | |
| 3249 | FT_Int width, rows, i, j; |
| 3250 | FT_Int sp_sq; /* max value to check */ |
| 3251 | |
| 3252 | SDF_Contour* contours; /* list of all contours */ |
| 3253 | FT_SDFFormat* buffer; /* the bitmap buffer */ |
| 3254 | |
| 3255 | /* This buffer has the same size in indices as the */ |
| 3256 | /* bitmap buffer. When we check a pixel position for */ |
| 3257 | /* a shortest distance we keep it in this buffer. */ |
| 3258 | /* This way we can find out which pixel is set, */ |
| 3259 | /* and also determine the signs properly. */ |
| 3260 | SDF_Signed_Distance* dists = NULL; |
| 3261 | |
| 3262 | const FT_16D16 fixed_spread = (FT_16D16)FT_INT_16D16( spread ); |
| 3263 | |
| 3264 | |
| 3265 | if ( !shape || !bitmap ) |
| 3266 | { |
| 3267 | error = FT_THROW( Invalid_Argument ); |
| 3268 | goto Exit; |
| 3269 | } |
| 3270 | |
| 3271 | if ( spread < MIN_SPREAD || spread > MAX_SPREAD ) |
| 3272 | { |
| 3273 | error = FT_THROW( Invalid_Argument ); |
| 3274 | goto Exit; |
| 3275 | } |
| 3276 | |
| 3277 | memory = shape->memory; |
| 3278 | if ( !memory ) |
| 3279 | { |
| 3280 | error = FT_THROW( Invalid_Argument ); |
| 3281 | goto Exit; |
| 3282 | } |
| 3283 | |
| 3284 | if ( FT_ALLOC( dists, |
| 3285 | bitmap->width * bitmap->rows * sizeof ( *dists ) ) ) |
| 3286 | goto Exit; |
| 3287 | |
| 3288 | contours = shape->contours; |
| 3289 | width = (FT_Int)bitmap->width; |
| 3290 | rows = (FT_Int)bitmap->rows; |
| 3291 | buffer = (FT_SDFFormat*)bitmap->buffer; |
| 3292 | |
| 3293 | if ( USE_SQUARED_DISTANCES ) |
| 3294 | sp_sq = FT_INT_16D16( (FT_Int)( spread * spread ) ); |
| 3295 | else |
| 3296 | sp_sq = fixed_spread; |
| 3297 | |
| 3298 | if ( width == 0 || rows == 0 ) |
| 3299 | { |
| 3300 | FT_TRACE0(( "sdf_generate:" |
| 3301 | " Cannot render glyph with width/height == 0\n" )); |
| 3302 | FT_TRACE0(( " " |
| 3303 | " (width, height provided [%d, %d])" , width, rows )); |
| 3304 | |
| 3305 | error = FT_THROW( Cannot_Render_Glyph ); |
| 3306 | goto Exit; |
| 3307 | } |
| 3308 | |
| 3309 | /* loop over all contours */ |
| 3310 | while ( contours ) |
| 3311 | { |
| 3312 | SDF_Edge* edges = contours->edges; |
| 3313 | |
| 3314 | |
| 3315 | /* loop over all edges */ |
| 3316 | while ( edges ) |
| 3317 | { |
| 3318 | FT_CBox cbox; |
| 3319 | FT_Int x, y; |
| 3320 | |
| 3321 | |
| 3322 | /* get the control box and increase it by `spread' */ |
| 3323 | cbox = get_control_box( *edges ); |
| 3324 | |
| 3325 | cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread; |
| 3326 | cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread; |
| 3327 | cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread; |
| 3328 | cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread; |
| 3329 | |
| 3330 | /* now loop over the pixels in the control box. */ |
| 3331 | for ( y = cbox.yMin; y < cbox.yMax; y++ ) |
| 3332 | { |
| 3333 | for ( x = cbox.xMin; x < cbox.xMax; x++ ) |
| 3334 | { |
| 3335 | FT_26D6_Vec grid_point = zero_vector; |
| 3336 | SDF_Signed_Distance dist = max_sdf; |
| 3337 | FT_UInt index = 0; |
| 3338 | FT_16D16 diff = 0; |
| 3339 | |
| 3340 | |
| 3341 | if ( x < 0 || x >= width ) |
| 3342 | continue; |
| 3343 | if ( y < 0 || y >= rows ) |
| 3344 | continue; |
| 3345 | |
| 3346 | grid_point.x = FT_INT_26D6( x ); |
| 3347 | grid_point.y = FT_INT_26D6( y ); |
| 3348 | |
| 3349 | /* This `grid_point` is at the corner, but we */ |
| 3350 | /* use the center of the pixel. */ |
| 3351 | grid_point.x += FT_INT_26D6( 1 ) / 2; |
| 3352 | grid_point.y += FT_INT_26D6( 1 ) / 2; |
| 3353 | |
| 3354 | FT_CALL( sdf_edge_get_min_distance( edges, |
| 3355 | grid_point, |
| 3356 | &dist ) ); |
| 3357 | |
| 3358 | if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| 3359 | dist.sign = -dist.sign; |
| 3360 | |
| 3361 | /* ignore if the distance is greater than spread; */ |
| 3362 | /* otherwise it creates artifacts due to the wrong sign */ |
| 3363 | if ( dist.distance > sp_sq ) |
| 3364 | continue; |
| 3365 | |
| 3366 | /* take the square root of the distance if required */ |
| 3367 | if ( USE_SQUARED_DISTANCES ) |
| 3368 | dist.distance = square_root( dist.distance ); |
| 3369 | |
| 3370 | if ( internal_params.flip_y ) |
| 3371 | index = (FT_UInt)( y * width + x ); |
| 3372 | else |
| 3373 | index = (FT_UInt)( ( rows - y - 1 ) * width + x ); |
| 3374 | |
| 3375 | /* check whether the pixel is set or not */ |
| 3376 | if ( dists[index].sign == 0 ) |
| 3377 | dists[index] = dist; |
| 3378 | else |
| 3379 | { |
| 3380 | diff = FT_ABS( dists[index].distance - dist.distance ); |
| 3381 | |
| 3382 | if ( diff <= CORNER_CHECK_EPSILON ) |
| 3383 | dists[index] = resolve_corner( dists[index], dist ); |
| 3384 | else if ( dists[index].distance > dist.distance ) |
| 3385 | dists[index] = dist; |
| 3386 | } |
| 3387 | } |
| 3388 | } |
| 3389 | |
| 3390 | edges = edges->next; |
| 3391 | } |
| 3392 | |
| 3393 | contours = contours->next; |
| 3394 | } |
| 3395 | |
| 3396 | /* final pass */ |
| 3397 | for ( j = 0; j < rows; j++ ) |
| 3398 | { |
| 3399 | /* We assume the starting pixel of each row is outside. */ |
| 3400 | FT_Char current_sign = -1; |
| 3401 | FT_UInt index; |
| 3402 | |
| 3403 | |
| 3404 | if ( internal_params.overload_sign != 0 ) |
| 3405 | current_sign = internal_params.overload_sign < 0 ? -1 : 1; |
| 3406 | |
| 3407 | for ( i = 0; i < width; i++ ) |
| 3408 | { |
| 3409 | index = (FT_UInt)( j * width + i ); |
| 3410 | |
| 3411 | /* if the pixel is not set */ |
| 3412 | /* its shortest distance is more than `spread` */ |
| 3413 | if ( dists[index].sign == 0 ) |
| 3414 | dists[index].distance = fixed_spread; |
| 3415 | else |
| 3416 | current_sign = dists[index].sign; |
| 3417 | |
| 3418 | /* clamp the values */ |
| 3419 | if ( dists[index].distance > fixed_spread ) |
| 3420 | dists[index].distance = fixed_spread; |
| 3421 | |
| 3422 | /* flip sign if required */ |
| 3423 | dists[index].distance *= internal_params.flip_sign ? -current_sign |
| 3424 | : current_sign; |
| 3425 | |
| 3426 | /* concatenate to appropriate format */ |
| 3427 | buffer[index] = map_fixed_to_sdf( dists[index].distance, |
| 3428 | fixed_spread ); |
| 3429 | } |
| 3430 | } |
| 3431 | |
| 3432 | Exit: |
| 3433 | FT_FREE( dists ); |
| 3434 | return error; |
| 3435 | } |
| 3436 | |
| 3437 | |
| 3438 | /************************************************************************** |
| 3439 | * |
| 3440 | * @Function: |
| 3441 | * sdf_generate_subdivision |
| 3442 | * |
| 3443 | * @Description: |
| 3444 | * Subdivide the shape into a number of straight lines, then use the |
| 3445 | * above `sdf_generate_bounding_box` function to generate the SDF. |
| 3446 | * |
| 3447 | * Note: After calling this function `shape` no longer has the original |
| 3448 | * edges, it only contains lines. |
| 3449 | * |
| 3450 | * @Input: |
| 3451 | * internal_params :: |
| 3452 | * Internal parameters and properties required by the rasterizer. |
| 3453 | * See @SDF_Params for more. |
| 3454 | * |
| 3455 | * shape :: |
| 3456 | * A complete shape which is used to generate SDF. |
| 3457 | * |
| 3458 | * spread :: |
| 3459 | * Maximum distances to be allowed inthe output bitmap. |
| 3460 | * |
| 3461 | * @Output: |
| 3462 | * bitmap :: |
| 3463 | * The output bitmap which will contain the SDF information. |
| 3464 | * |
| 3465 | * @Return: |
| 3466 | * FreeType error, 0 means success. |
| 3467 | * |
| 3468 | */ |
| 3469 | static FT_Error |
| 3470 | sdf_generate_subdivision( const SDF_Params internal_params, |
| 3471 | SDF_Shape* shape, |
| 3472 | FT_UInt spread, |
| 3473 | const FT_Bitmap* bitmap ) |
| 3474 | { |
| 3475 | /* |
| 3476 | * Thanks to Alexei for providing the idea of this optimization. |
| 3477 | * |
| 3478 | * We take advantage of two facts. |
| 3479 | * |
| 3480 | * (1) Computing the shortest distance from a point to a line segment is |
| 3481 | * very fast. |
| 3482 | * (2) We don't have to compute the shortest distance for the entire |
| 3483 | * two-dimensional grid. |
| 3484 | * |
| 3485 | * Both ideas lead to the following optimization. |
| 3486 | * |
| 3487 | * (1) Split the outlines into a number of line segments. |
| 3488 | * |
| 3489 | * (2) For each line segment, only process its neighborhood. |
| 3490 | * |
| 3491 | * (3) Compute the closest distance to the line only for neighborhood |
| 3492 | * grid points. |
| 3493 | * |
| 3494 | * This greatly reduces the number of grid points to check. |
| 3495 | */ |
| 3496 | |
| 3497 | FT_Error error = FT_Err_Ok; |
| 3498 | |
| 3499 | |
| 3500 | FT_CALL( split_sdf_shape( shape ) ); |
| 3501 | FT_CALL( sdf_generate_bounding_box( internal_params, |
| 3502 | shape, spread, bitmap ) ); |
| 3503 | |
| 3504 | Exit: |
| 3505 | return error; |
| 3506 | } |
| 3507 | |
| 3508 | |
| 3509 | /************************************************************************** |
| 3510 | * |
| 3511 | * @Function: |
| 3512 | * sdf_generate_with_overlaps |
| 3513 | * |
| 3514 | * @Description: |
| 3515 | * This function can be used to generate SDF for glyphs with overlapping |
| 3516 | * contours. The function generates SDF for contours separately on |
| 3517 | * separate bitmaps (to generate SDF it uses |
| 3518 | * `sdf_generate_subdivision`). At the end it simply combines all the |
| 3519 | * SDF into the output bitmap; this fixes all the signs and removes |
| 3520 | * overlaps. |
| 3521 | * |
| 3522 | * @Input: |
| 3523 | * internal_params :: |
| 3524 | * Internal parameters and properties required by the rasterizer. See |
| 3525 | * @SDF_Params for more. |
| 3526 | * |
| 3527 | * shape :: |
| 3528 | * A complete shape which is used to generate SDF. |
| 3529 | * |
| 3530 | * spread :: |
| 3531 | * Maximum distances to be allowed in the output bitmap. |
| 3532 | * |
| 3533 | * @Output: |
| 3534 | * bitmap :: |
| 3535 | * The output bitmap which will contain the SDF information. |
| 3536 | * |
| 3537 | * @Return: |
| 3538 | * FreeType error, 0 means success. |
| 3539 | * |
| 3540 | * @Note: |
| 3541 | * The function cannot generate a proper SDF for glyphs with |
| 3542 | * self-intersecting contours because we cannot separate them into two |
| 3543 | * separate bitmaps. In case of self-intersecting contours it is |
| 3544 | * necessary to remove the overlaps before generating the SDF. |
| 3545 | * |
| 3546 | */ |
| 3547 | static FT_Error |
| 3548 | sdf_generate_with_overlaps( SDF_Params internal_params, |
| 3549 | SDF_Shape* shape, |
| 3550 | FT_UInt spread, |
| 3551 | const FT_Bitmap* bitmap ) |
| 3552 | { |
| 3553 | FT_Error error = FT_Err_Ok; |
| 3554 | |
| 3555 | FT_Int num_contours; /* total number of contours */ |
| 3556 | FT_Int i, j; /* iterators */ |
| 3557 | FT_Int width, rows; /* width and rows of the bitmap */ |
| 3558 | FT_Bitmap* bitmaps; /* separate bitmaps for contours */ |
| 3559 | |
| 3560 | SDF_Contour* contour; /* temporary variable to iterate */ |
| 3561 | SDF_Contour* temp_contour; /* temporary contour */ |
| 3562 | SDF_Contour* head; /* head of the contour list */ |
| 3563 | SDF_Shape temp_shape; /* temporary shape */ |
| 3564 | |
| 3565 | FT_Memory memory; /* to allocate memory */ |
| 3566 | FT_SDFFormat* t; /* target bitmap buffer */ |
| 3567 | FT_Bool flip_sign; /* flip sign? */ |
| 3568 | |
| 3569 | /* orientation of all the separate contours */ |
| 3570 | SDF_Contour_Orientation* orientations; |
| 3571 | |
| 3572 | |
| 3573 | bitmaps = NULL; |
| 3574 | orientations = NULL; |
| 3575 | head = NULL; |
| 3576 | |
| 3577 | if ( !shape || !bitmap || !shape->memory ) |
| 3578 | return FT_THROW( Invalid_Argument ); |
| 3579 | |
| 3580 | /* Disable `flip_sign` to avoid extra complication */ |
| 3581 | /* during the combination phase. */ |
| 3582 | flip_sign = internal_params.flip_sign; |
| 3583 | internal_params.flip_sign = 0; |
| 3584 | |
| 3585 | contour = shape->contours; |
| 3586 | memory = shape->memory; |
| 3587 | temp_shape.memory = memory; |
| 3588 | width = (FT_Int)bitmap->width; |
| 3589 | rows = (FT_Int)bitmap->rows; |
| 3590 | num_contours = 0; |
| 3591 | |
| 3592 | /* find the number of contours in the shape */ |
| 3593 | while ( contour ) |
| 3594 | { |
| 3595 | num_contours++; |
| 3596 | contour = contour->next; |
| 3597 | } |
| 3598 | |
| 3599 | /* allocate the bitmaps to generate SDF for separate contours */ |
| 3600 | if ( FT_ALLOC( bitmaps, |
| 3601 | (FT_UInt)num_contours * sizeof ( *bitmaps ) ) ) |
| 3602 | goto Exit; |
| 3603 | |
| 3604 | /* allocate array to hold orientation for all contours */ |
| 3605 | if ( FT_ALLOC( orientations, |
| 3606 | (FT_UInt)num_contours * sizeof ( *orientations ) ) ) |
| 3607 | goto Exit; |
| 3608 | |
| 3609 | contour = shape->contours; |
| 3610 | |
| 3611 | /* Iterate over all contours and generate SDF separately. */ |
| 3612 | for ( i = 0; i < num_contours; i++ ) |
| 3613 | { |
| 3614 | /* initialize the corresponding bitmap */ |
| 3615 | FT_Bitmap_Init( &bitmaps[i] ); |
| 3616 | |
| 3617 | bitmaps[i].width = bitmap->width; |
| 3618 | bitmaps[i].rows = bitmap->rows; |
| 3619 | bitmaps[i].pitch = bitmap->pitch; |
| 3620 | bitmaps[i].num_grays = bitmap->num_grays; |
| 3621 | bitmaps[i].pixel_mode = bitmap->pixel_mode; |
| 3622 | |
| 3623 | /* allocate memory for the buffer */ |
| 3624 | if ( FT_ALLOC( bitmaps[i].buffer, |
| 3625 | bitmap->rows * (FT_UInt)bitmap->pitch ) ) |
| 3626 | goto Exit; |
| 3627 | |
| 3628 | /* determine the orientation */ |
| 3629 | orientations[i] = get_contour_orientation( contour ); |
| 3630 | |
| 3631 | /* The `overload_sign` property is specific to */ |
| 3632 | /* `sdf_generate_bounding_box`. This basically */ |
| 3633 | /* overloads the default sign of the outside */ |
| 3634 | /* pixels, which is necessary for */ |
| 3635 | /* counter-clockwise contours. */ |
| 3636 | if ( orientations[i] == SDF_ORIENTATION_CCW && |
| 3637 | internal_params.orientation == FT_ORIENTATION_FILL_RIGHT ) |
| 3638 | internal_params.overload_sign = 1; |
| 3639 | else if ( orientations[i] == SDF_ORIENTATION_CW && |
| 3640 | internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| 3641 | internal_params.overload_sign = 1; |
| 3642 | else |
| 3643 | internal_params.overload_sign = 0; |
| 3644 | |
| 3645 | /* Make `contour->next` NULL so that there is */ |
| 3646 | /* one contour in the list. Also hold the next */ |
| 3647 | /* contour in a temporary variable so as to */ |
| 3648 | /* restore the original value. */ |
| 3649 | temp_contour = contour->next; |
| 3650 | contour->next = NULL; |
| 3651 | |
| 3652 | /* Use `temp_shape` to hold the new contour. */ |
| 3653 | /* Now, `temp_shape` has only one contour. */ |
| 3654 | temp_shape.contours = contour; |
| 3655 | |
| 3656 | /* finally generate the SDF */ |
| 3657 | FT_CALL( sdf_generate_subdivision( internal_params, |
| 3658 | &temp_shape, |
| 3659 | spread, |
| 3660 | &bitmaps[i] ) ); |
| 3661 | |
| 3662 | /* Restore the original `next` variable. */ |
| 3663 | contour->next = temp_contour; |
| 3664 | |
| 3665 | /* Since `split_sdf_shape` deallocated the original */ |
| 3666 | /* contours list we need to assign the new value to */ |
| 3667 | /* the shape's contour. */ |
| 3668 | temp_shape.contours->next = head; |
| 3669 | head = temp_shape.contours; |
| 3670 | |
| 3671 | /* Simply flip the orientation in case of post-script fonts */ |
| 3672 | /* so as to avoid modificatons in the combining phase. */ |
| 3673 | if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| 3674 | { |
| 3675 | if ( orientations[i] == SDF_ORIENTATION_CW ) |
| 3676 | orientations[i] = SDF_ORIENTATION_CCW; |
| 3677 | else if ( orientations[i] == SDF_ORIENTATION_CCW ) |
| 3678 | orientations[i] = SDF_ORIENTATION_CW; |
| 3679 | } |
| 3680 | |
| 3681 | contour = contour->next; |
| 3682 | } |
| 3683 | |
| 3684 | /* assign the new contour list to `shape->contours` */ |
| 3685 | shape->contours = head; |
| 3686 | |
| 3687 | /* cast the output bitmap buffer */ |
| 3688 | t = (FT_SDFFormat*)bitmap->buffer; |
| 3689 | |
| 3690 | /* Iterate over all pixels and combine all separate */ |
| 3691 | /* contours. These are the rules for combining: */ |
| 3692 | /* */ |
| 3693 | /* (1) For all clockwise contours, compute the largest */ |
| 3694 | /* value. Name this as `val_c`. */ |
| 3695 | /* (2) For all counter-clockwise contours, compute the */ |
| 3696 | /* smallest value. Name this as `val_ac`. */ |
| 3697 | /* (3) Now, finally use the smaller value of `val_c' */ |
| 3698 | /* and `val_ac'. */ |
| 3699 | for ( j = 0; j < rows; j++ ) |
| 3700 | { |
| 3701 | for ( i = 0; i < width; i++ ) |
| 3702 | { |
| 3703 | FT_Int id = j * width + i; /* index of current pixel */ |
| 3704 | FT_Int c; /* contour iterator */ |
| 3705 | |
| 3706 | FT_SDFFormat val_c = 0; /* max clockwise value */ |
| 3707 | FT_SDFFormat val_ac = UCHAR_MAX; /* min counter-clockwise val */ |
| 3708 | |
| 3709 | |
| 3710 | /* iterate through all the contours */ |
| 3711 | for ( c = 0; c < num_contours; c++ ) |
| 3712 | { |
| 3713 | /* current contour value */ |
| 3714 | FT_SDFFormat temp = ( (FT_SDFFormat*)bitmaps[c].buffer )[id]; |
| 3715 | |
| 3716 | |
| 3717 | if ( orientations[c] == SDF_ORIENTATION_CW ) |
| 3718 | val_c = FT_MAX( val_c, temp ); /* clockwise */ |
| 3719 | else |
| 3720 | val_ac = FT_MIN( val_ac, temp ); /* counter-clockwise */ |
| 3721 | } |
| 3722 | |
| 3723 | /* Finally find the smaller of the two and assign to output. */ |
| 3724 | /* Also apply `flip_sign` if set. */ |
| 3725 | t[id] = FT_MIN( val_c, val_ac ); |
| 3726 | |
| 3727 | if ( flip_sign ) |
| 3728 | t[id] = invert_sign( t[id] ); |
| 3729 | } |
| 3730 | } |
| 3731 | |
| 3732 | Exit: |
| 3733 | /* deallocate orientations array */ |
| 3734 | if ( orientations ) |
| 3735 | FT_FREE( orientations ); |
| 3736 | |
| 3737 | /* deallocate temporary bitmaps */ |
| 3738 | if ( bitmaps ) |
| 3739 | { |
| 3740 | if ( num_contours == 0 ) |
| 3741 | error = FT_THROW( Raster_Corrupted ); |
| 3742 | else |
| 3743 | { |
| 3744 | for ( i = 0; i < num_contours; i++ ) |
| 3745 | FT_FREE( bitmaps[i].buffer ); |
| 3746 | |
| 3747 | FT_FREE( bitmaps ); |
| 3748 | } |
| 3749 | } |
| 3750 | |
| 3751 | /* restore the `flip_sign` property */ |
| 3752 | internal_params.flip_sign = flip_sign; |
| 3753 | |
| 3754 | return error; |
| 3755 | } |
| 3756 | |
| 3757 | |
| 3758 | /************************************************************************** |
| 3759 | * |
| 3760 | * interface functions |
| 3761 | * |
| 3762 | */ |
| 3763 | |
| 3764 | static FT_Error |
| 3765 | sdf_raster_new( void* memory_, /* FT_Memory */ |
| 3766 | FT_Raster* araster_ ) /* SDF_PRaster* */ |
| 3767 | { |
| 3768 | FT_Memory memory = (FT_Memory)memory_; |
| 3769 | SDF_PRaster* araster = (SDF_PRaster*)araster_; |
| 3770 | |
| 3771 | |
| 3772 | FT_Error error; |
| 3773 | SDF_PRaster raster = NULL; |
| 3774 | |
| 3775 | |
| 3776 | if ( !FT_NEW( raster ) ) |
| 3777 | raster->memory = memory; |
| 3778 | |
| 3779 | *araster = raster; |
| 3780 | |
| 3781 | return error; |
| 3782 | } |
| 3783 | |
| 3784 | |
| 3785 | static void |
| 3786 | sdf_raster_reset( FT_Raster raster, |
| 3787 | unsigned char* pool_base, |
| 3788 | unsigned long pool_size ) |
| 3789 | { |
| 3790 | FT_UNUSED( raster ); |
| 3791 | FT_UNUSED( pool_base ); |
| 3792 | FT_UNUSED( pool_size ); |
| 3793 | } |
| 3794 | |
| 3795 | |
| 3796 | static FT_Error |
| 3797 | sdf_raster_set_mode( FT_Raster raster, |
| 3798 | unsigned long mode, |
| 3799 | void* args ) |
| 3800 | { |
| 3801 | FT_UNUSED( raster ); |
| 3802 | FT_UNUSED( mode ); |
| 3803 | FT_UNUSED( args ); |
| 3804 | |
| 3805 | return FT_Err_Ok; |
| 3806 | } |
| 3807 | |
| 3808 | |
| 3809 | static FT_Error |
| 3810 | sdf_raster_render( FT_Raster raster, |
| 3811 | const FT_Raster_Params* params ) |
| 3812 | { |
| 3813 | FT_Error error = FT_Err_Ok; |
| 3814 | SDF_TRaster* sdf_raster = (SDF_TRaster*)raster; |
| 3815 | FT_Outline* outline = NULL; |
| 3816 | const SDF_Raster_Params* sdf_params = (const SDF_Raster_Params*)params; |
| 3817 | |
| 3818 | FT_Memory memory = NULL; |
| 3819 | SDF_Shape* shape = NULL; |
| 3820 | SDF_Params internal_params; |
| 3821 | |
| 3822 | |
| 3823 | /* check for valid arguments */ |
| 3824 | if ( !sdf_raster || !sdf_params ) |
| 3825 | { |
| 3826 | error = FT_THROW( Invalid_Argument ); |
| 3827 | goto Exit; |
| 3828 | } |
| 3829 | |
| 3830 | outline = (FT_Outline*)sdf_params->root.source; |
| 3831 | |
| 3832 | /* check whether outline is valid */ |
| 3833 | if ( !outline ) |
| 3834 | { |
| 3835 | error = FT_THROW( Invalid_Outline ); |
| 3836 | goto Exit; |
| 3837 | } |
| 3838 | |
| 3839 | /* if the outline is empty, return */ |
| 3840 | if ( outline->n_points <= 0 || outline->n_contours <= 0 ) |
| 3841 | goto Exit; |
| 3842 | |
| 3843 | /* check whether the outline has valid fields */ |
| 3844 | if ( !outline->contours || !outline->points ) |
| 3845 | { |
| 3846 | error = FT_THROW( Invalid_Outline ); |
| 3847 | goto Exit; |
| 3848 | } |
| 3849 | |
| 3850 | /* check whether spread is set properly */ |
| 3851 | if ( sdf_params->spread > MAX_SPREAD || |
| 3852 | sdf_params->spread < MIN_SPREAD ) |
| 3853 | { |
| 3854 | FT_TRACE0(( "sdf_raster_render:" |
| 3855 | " The `spread' field of `SDF_Raster_Params' is invalid,\n" )); |
| 3856 | FT_TRACE0(( " " |
| 3857 | " the value of this field must be within [%d, %d].\n" , |
| 3858 | MIN_SPREAD, MAX_SPREAD )); |
| 3859 | FT_TRACE0(( " " |
| 3860 | " Also, you must pass `SDF_Raster_Params' instead of\n" )); |
| 3861 | FT_TRACE0(( " " |
| 3862 | " the default `FT_Raster_Params' while calling\n" )); |
| 3863 | FT_TRACE0(( " " |
| 3864 | " this function and set the fields properly.\n" )); |
| 3865 | |
| 3866 | error = FT_THROW( Invalid_Argument ); |
| 3867 | goto Exit; |
| 3868 | } |
| 3869 | |
| 3870 | memory = sdf_raster->memory; |
| 3871 | if ( !memory ) |
| 3872 | { |
| 3873 | FT_TRACE0(( "sdf_raster_render:" |
| 3874 | " Raster not setup properly,\n" )); |
| 3875 | FT_TRACE0(( " " |
| 3876 | " unable to find memory handle.\n" )); |
| 3877 | |
| 3878 | error = FT_THROW( Invalid_Handle ); |
| 3879 | goto Exit; |
| 3880 | } |
| 3881 | |
| 3882 | /* set up the parameters */ |
| 3883 | internal_params.orientation = FT_Outline_Get_Orientation( outline ); |
| 3884 | internal_params.flip_sign = sdf_params->flip_sign; |
| 3885 | internal_params.flip_y = sdf_params->flip_y; |
| 3886 | internal_params.overload_sign = 0; |
| 3887 | |
| 3888 | FT_CALL( sdf_shape_new( memory, &shape ) ); |
| 3889 | |
| 3890 | FT_CALL( sdf_outline_decompose( outline, shape ) ); |
| 3891 | |
| 3892 | if ( sdf_params->overlaps ) |
| 3893 | FT_CALL( sdf_generate_with_overlaps( internal_params, |
| 3894 | shape, sdf_params->spread, |
| 3895 | sdf_params->root.target ) ); |
| 3896 | else |
| 3897 | FT_CALL( sdf_generate_subdivision( internal_params, |
| 3898 | shape, sdf_params->spread, |
| 3899 | sdf_params->root.target ) ); |
| 3900 | |
| 3901 | if ( shape ) |
| 3902 | sdf_shape_done( &shape ); |
| 3903 | |
| 3904 | Exit: |
| 3905 | return error; |
| 3906 | } |
| 3907 | |
| 3908 | |
| 3909 | static void |
| 3910 | sdf_raster_done( FT_Raster raster ) |
| 3911 | { |
| 3912 | FT_Memory memory = (FT_Memory)((SDF_TRaster*)raster)->memory; |
| 3913 | |
| 3914 | |
| 3915 | FT_FREE( raster ); |
| 3916 | } |
| 3917 | |
| 3918 | |
| 3919 | FT_DEFINE_RASTER_FUNCS( |
| 3920 | ft_sdf_raster, |
| 3921 | |
| 3922 | FT_GLYPH_FORMAT_OUTLINE, |
| 3923 | |
| 3924 | (FT_Raster_New_Func) sdf_raster_new, /* raster_new */ |
| 3925 | (FT_Raster_Reset_Func) sdf_raster_reset, /* raster_reset */ |
| 3926 | (FT_Raster_Set_Mode_Func)sdf_raster_set_mode, /* raster_set_mode */ |
| 3927 | (FT_Raster_Render_Func) sdf_raster_render, /* raster_render */ |
| 3928 | (FT_Raster_Done_Func) sdf_raster_done /* raster_done */ |
| 3929 | ) |
| 3930 | |
| 3931 | |
| 3932 | /* END */ |
| 3933 | |