1 | /* |
2 | * Copyright © 2019 Adobe Inc. |
3 | * Copyright © 2019 Ebrahim Byagowi |
4 | * |
5 | * This is part of HarfBuzz, a text shaping library. |
6 | * |
7 | * Permission is hereby granted, without written agreement and without |
8 | * license or royalty fees, to use, copy, modify, and distribute this |
9 | * software and its documentation for any purpose, provided that the |
10 | * above copyright notice and the following two paragraphs appear in |
11 | * all copies of this software. |
12 | * |
13 | * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
14 | * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
15 | * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
16 | * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
17 | * DAMAGE. |
18 | * |
19 | * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
20 | * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
21 | * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
22 | * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
23 | * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
24 | * |
25 | * Adobe Author(s): Michiharu Ariza |
26 | */ |
27 | |
28 | #ifndef HB_OT_VAR_GVAR_TABLE_HH |
29 | #define HB_OT_VAR_GVAR_TABLE_HH |
30 | |
31 | #include "hb-open-type.hh" |
32 | #include "hb-ot-var-common.hh" |
33 | |
34 | /* |
35 | * gvar -- Glyph Variation Table |
36 | * https://docs.microsoft.com/en-us/typography/opentype/spec/gvar |
37 | */ |
38 | #define HB_OT_TAG_gvar HB_TAG('g','v','a','r') |
39 | |
40 | namespace OT { |
41 | |
42 | struct contour_point_t |
43 | { |
44 | void init (float x_ = 0.f, float y_ = 0.f, bool is_end_point_ = false) |
45 | { flag = 0; x = x_; y = y_; is_end_point = is_end_point_; } |
46 | |
47 | void transform (const float (&matrix)[4]) |
48 | { |
49 | float x_ = x * matrix[0] + y * matrix[2]; |
50 | y = x * matrix[1] + y * matrix[3]; |
51 | x = x_; |
52 | } |
53 | HB_ALWAYS_INLINE |
54 | void translate (const contour_point_t &p) { x += p.x; y += p.y; } |
55 | |
56 | |
57 | float x; |
58 | float y; |
59 | uint8_t flag; |
60 | bool is_end_point; |
61 | }; |
62 | |
63 | struct contour_point_vector_t : hb_vector_t<contour_point_t> |
64 | { |
65 | void extend (const hb_array_t<contour_point_t> &a) |
66 | { |
67 | unsigned int old_len = length; |
68 | if (unlikely (!resize (old_len + a.length, false))) |
69 | return; |
70 | auto arrayZ = this->arrayZ + old_len; |
71 | unsigned count = a.length; |
72 | hb_memcpy (arrayZ, a.arrayZ, count * sizeof (arrayZ[0])); |
73 | } |
74 | }; |
75 | |
76 | struct GlyphVariationData : TupleVariationData |
77 | {}; |
78 | |
79 | struct gvar |
80 | { |
81 | static constexpr hb_tag_t tableTag = HB_OT_TAG_gvar; |
82 | |
83 | bool sanitize_shallow (hb_sanitize_context_t *c) const |
84 | { |
85 | TRACE_SANITIZE (this); |
86 | return_trace (c->check_struct (this) && (version.major == 1) && |
87 | sharedTuples.sanitize (c, this, axisCount * sharedTupleCount) && |
88 | (is_long_offset () ? |
89 | c->check_array (get_long_offset_array (), c->get_num_glyphs () + 1) : |
90 | c->check_array (get_short_offset_array (), c->get_num_glyphs () + 1))); |
91 | } |
92 | |
93 | /* GlyphVariationData not sanitized here; must be checked while accessing each glyph variation data */ |
94 | bool sanitize (hb_sanitize_context_t *c) const |
95 | { return sanitize_shallow (c); } |
96 | |
97 | bool subset (hb_subset_context_t *c) const |
98 | { |
99 | TRACE_SUBSET (this); |
100 | |
101 | unsigned glyph_count = version.to_int () ? c->plan->source->get_num_glyphs () : 0; |
102 | |
103 | gvar *out = c->serializer->allocate_min<gvar> (); |
104 | if (unlikely (!out)) return_trace (false); |
105 | |
106 | out->version.major = 1; |
107 | out->version.minor = 0; |
108 | out->axisCount = axisCount; |
109 | out->sharedTupleCount = sharedTupleCount; |
110 | |
111 | unsigned int num_glyphs = c->plan->num_output_glyphs (); |
112 | out->glyphCountX = hb_min (0xFFFFu, num_glyphs); |
113 | |
114 | auto it = hb_iter (c->plan->new_to_old_gid_list); |
115 | if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE)) |
116 | it++; |
117 | unsigned int subset_data_size = 0; |
118 | for (auto &_ : it) |
119 | { |
120 | hb_codepoint_t old_gid = _.second; |
121 | subset_data_size += get_glyph_var_data_bytes (c->source_blob, glyph_count, old_gid).length; |
122 | } |
123 | |
124 | bool long_offset = subset_data_size & ~0xFFFFu; |
125 | out->flags = long_offset ? 1 : 0; |
126 | |
127 | HBUINT8 *subset_offsets = c->serializer->allocate_size<HBUINT8> ((long_offset ? 4 : 2) * (num_glyphs + 1), false); |
128 | if (!subset_offsets) return_trace (false); |
129 | |
130 | /* shared tuples */ |
131 | if (!sharedTupleCount || !sharedTuples) |
132 | out->sharedTuples = 0; |
133 | else |
134 | { |
135 | unsigned int shared_tuple_size = F2DOT14::static_size * axisCount * sharedTupleCount; |
136 | F2DOT14 *tuples = c->serializer->allocate_size<F2DOT14> (shared_tuple_size); |
137 | if (!tuples) return_trace (false); |
138 | out->sharedTuples = (char *) tuples - (char *) out; |
139 | hb_memcpy (tuples, this+sharedTuples, shared_tuple_size); |
140 | } |
141 | |
142 | char *subset_data = c->serializer->allocate_size<char> (subset_data_size, false); |
143 | if (!subset_data) return_trace (false); |
144 | out->dataZ = subset_data - (char *) out; |
145 | |
146 | |
147 | if (long_offset) |
148 | { |
149 | ((HBUINT32 *) subset_offsets)[0] = 0; |
150 | subset_offsets += 4; |
151 | } |
152 | else |
153 | { |
154 | ((HBUINT16 *) subset_offsets)[0] = 0; |
155 | subset_offsets += 2; |
156 | } |
157 | unsigned int glyph_offset = 0; |
158 | |
159 | hb_codepoint_t last = 0; |
160 | it = hb_iter (c->plan->new_to_old_gid_list); |
161 | if (it->first == 0 && !(c->plan->flags & HB_SUBSET_FLAGS_NOTDEF_OUTLINE)) |
162 | it++; |
163 | for (auto &_ : it) |
164 | { |
165 | hb_codepoint_t gid = _.first; |
166 | hb_codepoint_t old_gid = _.second; |
167 | |
168 | if (long_offset) |
169 | for (; last < gid; last++) |
170 | ((HBUINT32 *) subset_offsets)[last] = glyph_offset; |
171 | else |
172 | for (; last < gid; last++) |
173 | ((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2; |
174 | |
175 | hb_bytes_t var_data_bytes = get_glyph_var_data_bytes (c->source_blob, |
176 | glyph_count, |
177 | old_gid); |
178 | |
179 | hb_memcpy (subset_data, var_data_bytes.arrayZ, var_data_bytes.length); |
180 | subset_data += var_data_bytes.length; |
181 | glyph_offset += var_data_bytes.length; |
182 | |
183 | if (long_offset) |
184 | ((HBUINT32 *) subset_offsets)[gid] = glyph_offset; |
185 | else |
186 | ((HBUINT16 *) subset_offsets)[gid] = glyph_offset / 2; |
187 | |
188 | last++; // Skip over gid |
189 | } |
190 | |
191 | if (long_offset) |
192 | for (; last < num_glyphs; last++) |
193 | ((HBUINT32 *) subset_offsets)[last] = glyph_offset; |
194 | else |
195 | for (; last < num_glyphs; last++) |
196 | ((HBUINT16 *) subset_offsets)[last] = glyph_offset / 2; |
197 | |
198 | return_trace (true); |
199 | } |
200 | |
201 | protected: |
202 | const hb_bytes_t get_glyph_var_data_bytes (hb_blob_t *blob, |
203 | unsigned glyph_count, |
204 | hb_codepoint_t glyph) const |
205 | { |
206 | unsigned start_offset = get_offset (glyph_count, glyph); |
207 | unsigned end_offset = get_offset (glyph_count, glyph+1); |
208 | if (unlikely (end_offset < start_offset)) return hb_bytes_t (); |
209 | unsigned length = end_offset - start_offset; |
210 | hb_bytes_t var_data = blob->as_bytes ().sub_array (((unsigned) dataZ) + start_offset, length); |
211 | return likely (var_data.length >= GlyphVariationData::min_size) ? var_data : hb_bytes_t (); |
212 | } |
213 | |
214 | bool is_long_offset () const { return flags & 1; } |
215 | |
216 | unsigned get_offset (unsigned glyph_count, unsigned i) const |
217 | { |
218 | if (unlikely (i > glyph_count)) return 0; |
219 | _hb_compiler_memory_r_barrier (); |
220 | return is_long_offset () ? get_long_offset_array ()[i] : get_short_offset_array ()[i] * 2; |
221 | } |
222 | |
223 | const HBUINT32 * get_long_offset_array () const { return (const HBUINT32 *) &offsetZ; } |
224 | const HBUINT16 *get_short_offset_array () const { return (const HBUINT16 *) &offsetZ; } |
225 | |
226 | public: |
227 | struct accelerator_t |
228 | { |
229 | accelerator_t (hb_face_t *face) |
230 | { |
231 | table = hb_sanitize_context_t ().reference_table<gvar> (face); |
232 | /* If sanitize failed, set glyphCount to 0. */ |
233 | glyphCount = table->version.to_int () ? face->get_num_glyphs () : 0; |
234 | |
235 | /* For shared tuples that only have one axis active, shared the index of |
236 | * that axis as a cache. This will speed up caclulate_scalar() a lot |
237 | * for fonts with lots of axes and many "monovar" tuples. */ |
238 | hb_array_t<const F2DOT14> shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * table->axisCount); |
239 | unsigned count = table->sharedTupleCount; |
240 | if (unlikely (!shared_tuple_active_idx.resize (count, false))) return; |
241 | unsigned axis_count = table->axisCount; |
242 | for (unsigned i = 0; i < count; i++) |
243 | { |
244 | hb_array_t<const F2DOT14> tuple = shared_tuples.sub_array (axis_count * i, axis_count); |
245 | int idx1 = -1, idx2 = -1; |
246 | for (unsigned j = 0; j < axis_count; j++) |
247 | { |
248 | const F2DOT14 &peak = tuple.arrayZ[j]; |
249 | if (peak.to_int () != 0) |
250 | { |
251 | if (idx1 == -1) |
252 | idx1 = j; |
253 | else if (idx2 == -1) |
254 | idx2 = j; |
255 | else |
256 | { |
257 | idx1 = idx2 = -1; |
258 | break; |
259 | } |
260 | } |
261 | } |
262 | shared_tuple_active_idx.arrayZ[i] = {idx1, idx2}; |
263 | } |
264 | } |
265 | ~accelerator_t () { table.destroy (); } |
266 | |
267 | private: |
268 | |
269 | static float infer_delta (const hb_array_t<contour_point_t> points, |
270 | const hb_array_t<contour_point_t> deltas, |
271 | unsigned int target, unsigned int prev, unsigned int next, |
272 | float contour_point_t::*m) |
273 | { |
274 | float target_val = points.arrayZ[target].*m; |
275 | float prev_val = points.arrayZ[prev].*m; |
276 | float next_val = points.arrayZ[next].*m; |
277 | float prev_delta = deltas.arrayZ[prev].*m; |
278 | float next_delta = deltas.arrayZ[next].*m; |
279 | |
280 | if (prev_val == next_val) |
281 | return (prev_delta == next_delta) ? prev_delta : 0.f; |
282 | else if (target_val <= hb_min (prev_val, next_val)) |
283 | return (prev_val < next_val) ? prev_delta : next_delta; |
284 | else if (target_val >= hb_max (prev_val, next_val)) |
285 | return (prev_val > next_val) ? prev_delta : next_delta; |
286 | |
287 | /* linear interpolation */ |
288 | float r = (target_val - prev_val) / (next_val - prev_val); |
289 | return prev_delta + r * (next_delta - prev_delta); |
290 | } |
291 | |
292 | static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) |
293 | { return (i >= end) ? start : (i + 1); } |
294 | |
295 | public: |
296 | bool apply_deltas_to_points (hb_codepoint_t glyph, |
297 | hb_array_t<int> coords, |
298 | const hb_array_t<contour_point_t> points, |
299 | bool phantom_only = false) const |
300 | { |
301 | if (unlikely (glyph >= glyphCount)) return true; |
302 | |
303 | hb_bytes_t var_data_bytes = table->get_glyph_var_data_bytes (table.get_blob (), glyphCount, glyph); |
304 | if (!var_data_bytes.as<GlyphVariationData> ()->has_data ()) return true; |
305 | hb_vector_t<unsigned int> shared_indices; |
306 | GlyphVariationData::tuple_iterator_t iterator; |
307 | if (!GlyphVariationData::get_tuple_iterator (var_data_bytes, table->axisCount, |
308 | var_data_bytes.arrayZ, |
309 | shared_indices, &iterator)) |
310 | return true; /* so isn't applied at all */ |
311 | |
312 | /* Save original points for inferred delta calculation */ |
313 | contour_point_vector_t orig_points_vec; // Populated lazily |
314 | auto orig_points = orig_points_vec.as_array (); |
315 | |
316 | /* flag is used to indicate referenced point */ |
317 | contour_point_vector_t deltas_vec; // Populated lazily |
318 | auto deltas = deltas_vec.as_array (); |
319 | |
320 | hb_vector_t<unsigned> end_points; // Populated lazily |
321 | |
322 | unsigned num_coords = table->axisCount; |
323 | hb_array_t<const F2DOT14> shared_tuples = (table+table->sharedTuples).as_array (table->sharedTupleCount * num_coords); |
324 | |
325 | hb_vector_t<unsigned int> private_indices; |
326 | hb_vector_t<int> x_deltas; |
327 | hb_vector_t<int> y_deltas; |
328 | unsigned count = points.length; |
329 | bool flush = false; |
330 | do |
331 | { |
332 | float scalar = iterator.current_tuple->calculate_scalar (coords, num_coords, shared_tuples, |
333 | &shared_tuple_active_idx); |
334 | if (scalar == 0.f) continue; |
335 | const HBUINT8 *p = iterator.get_serialized_data (); |
336 | unsigned int length = iterator.current_tuple->get_data_size (); |
337 | if (unlikely (!iterator.var_data_bytes.check_range (p, length))) |
338 | return false; |
339 | |
340 | if (!deltas) |
341 | { |
342 | if (unlikely (!deltas_vec.resize (count, false))) return false; |
343 | deltas = deltas_vec.as_array (); |
344 | hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0, |
345 | (phantom_only ? 4 : count) * sizeof (deltas[0])); |
346 | } |
347 | |
348 | const HBUINT8 *end = p + length; |
349 | |
350 | bool has_private_points = iterator.current_tuple->has_private_points (); |
351 | if (has_private_points && |
352 | !GlyphVariationData::unpack_points (p, private_indices, end)) |
353 | return false; |
354 | const hb_array_t<unsigned int> &indices = has_private_points ? private_indices : shared_indices; |
355 | |
356 | bool apply_to_all = (indices.length == 0); |
357 | unsigned int num_deltas = apply_to_all ? points.length : indices.length; |
358 | if (unlikely (!x_deltas.resize (num_deltas, false))) return false; |
359 | if (unlikely (!GlyphVariationData::unpack_deltas (p, x_deltas, end))) return false; |
360 | if (unlikely (!y_deltas.resize (num_deltas, false))) return false; |
361 | if (unlikely (!GlyphVariationData::unpack_deltas (p, y_deltas, end))) return false; |
362 | |
363 | if (!apply_to_all) |
364 | { |
365 | if (!orig_points && !phantom_only) |
366 | { |
367 | orig_points_vec.extend (points); |
368 | if (unlikely (orig_points_vec.in_error ())) return false; |
369 | orig_points = orig_points_vec.as_array (); |
370 | } |
371 | |
372 | if (flush) |
373 | { |
374 | for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) |
375 | points.arrayZ[i].translate (deltas.arrayZ[i]); |
376 | flush = false; |
377 | |
378 | } |
379 | hb_memset (deltas.arrayZ + (phantom_only ? count - 4 : 0), 0, |
380 | (phantom_only ? 4 : count) * sizeof (deltas[0])); |
381 | } |
382 | |
383 | if (HB_OPTIMIZE_SIZE_VAL) |
384 | { |
385 | for (unsigned int i = 0; i < num_deltas; i++) |
386 | { |
387 | unsigned int pt_index; |
388 | if (apply_to_all) |
389 | pt_index = i; |
390 | else |
391 | { |
392 | pt_index = indices[i]; |
393 | if (unlikely (pt_index >= deltas.length)) continue; |
394 | } |
395 | if (phantom_only && pt_index < count - 4) continue; |
396 | auto &delta = deltas.arrayZ[pt_index]; |
397 | delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ |
398 | delta.x += x_deltas.arrayZ[i] * scalar; |
399 | delta.y += y_deltas.arrayZ[i] * scalar; |
400 | } |
401 | } |
402 | else |
403 | { |
404 | /* Ouch. Four cases... for optimization. */ |
405 | if (scalar != 1.0f) |
406 | { |
407 | if (apply_to_all) |
408 | for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) |
409 | { |
410 | unsigned int pt_index = i; |
411 | auto &delta = deltas.arrayZ[pt_index]; |
412 | delta.x += x_deltas.arrayZ[i] * scalar; |
413 | delta.y += y_deltas.arrayZ[i] * scalar; |
414 | } |
415 | else |
416 | for (unsigned int i = 0; i < num_deltas; i++) |
417 | { |
418 | unsigned int pt_index = indices[i]; |
419 | if (unlikely (pt_index >= deltas.length)) continue; |
420 | if (phantom_only && pt_index < count - 4) continue; |
421 | auto &delta = deltas.arrayZ[pt_index]; |
422 | delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ |
423 | delta.x += x_deltas.arrayZ[i] * scalar; |
424 | delta.y += y_deltas.arrayZ[i] * scalar; |
425 | } |
426 | } |
427 | else |
428 | { |
429 | if (apply_to_all) |
430 | for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) |
431 | { |
432 | unsigned int pt_index = i; |
433 | auto &delta = deltas.arrayZ[pt_index]; |
434 | delta.x += x_deltas.arrayZ[i]; |
435 | delta.y += y_deltas.arrayZ[i]; |
436 | } |
437 | else |
438 | for (unsigned int i = 0; i < num_deltas; i++) |
439 | { |
440 | unsigned int pt_index = indices[i]; |
441 | if (unlikely (pt_index >= deltas.length)) continue; |
442 | if (phantom_only && pt_index < count - 4) continue; |
443 | auto &delta = deltas.arrayZ[pt_index]; |
444 | delta.flag = 1; /* this point is referenced, i.e., explicit deltas specified */ |
445 | delta.x += x_deltas.arrayZ[i]; |
446 | delta.y += y_deltas.arrayZ[i]; |
447 | } |
448 | } |
449 | } |
450 | |
451 | /* infer deltas for unreferenced points */ |
452 | if (!apply_to_all && !phantom_only) |
453 | { |
454 | if (!end_points) |
455 | { |
456 | for (unsigned i = 0; i < count; ++i) |
457 | if (points.arrayZ[i].is_end_point) |
458 | end_points.push (i); |
459 | if (unlikely (end_points.in_error ())) return false; |
460 | } |
461 | |
462 | unsigned start_point = 0; |
463 | for (unsigned end_point : end_points) |
464 | { |
465 | /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ |
466 | unsigned unref_count = 0; |
467 | for (unsigned i = start_point; i < end_point + 1; i++) |
468 | unref_count += deltas.arrayZ[i].flag; |
469 | unref_count = (end_point - start_point + 1) - unref_count; |
470 | |
471 | unsigned j = start_point; |
472 | if (unref_count == 0 || unref_count > end_point - start_point) |
473 | goto no_more_gaps; |
474 | |
475 | for (;;) |
476 | { |
477 | /* Locate the next gap of unreferenced points between two referenced points prev and next. |
478 | * Note that a gap may wrap around at left (start_point) and/or at right (end_point). |
479 | */ |
480 | unsigned int prev, next, i; |
481 | for (;;) |
482 | { |
483 | i = j; |
484 | j = next_index (i, start_point, end_point); |
485 | if (deltas.arrayZ[i].flag && !deltas.arrayZ[j].flag) break; |
486 | } |
487 | prev = j = i; |
488 | for (;;) |
489 | { |
490 | i = j; |
491 | j = next_index (i, start_point, end_point); |
492 | if (!deltas.arrayZ[i].flag && deltas.arrayZ[j].flag) break; |
493 | } |
494 | next = j; |
495 | /* Infer deltas for all unref points in the gap between prev and next */ |
496 | i = prev; |
497 | for (;;) |
498 | { |
499 | i = next_index (i, start_point, end_point); |
500 | if (i == next) break; |
501 | deltas.arrayZ[i].x = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::x); |
502 | deltas.arrayZ[i].y = infer_delta (orig_points, deltas, i, prev, next, &contour_point_t::y); |
503 | if (--unref_count == 0) goto no_more_gaps; |
504 | } |
505 | } |
506 | no_more_gaps: |
507 | start_point = end_point + 1; |
508 | } |
509 | } |
510 | |
511 | flush = true; |
512 | |
513 | } while (iterator.move_to_next ()); |
514 | |
515 | if (flush) |
516 | { |
517 | for (unsigned int i = phantom_only ? count - 4 : 0; i < count; i++) |
518 | points.arrayZ[i].translate (deltas.arrayZ[i]); |
519 | } |
520 | |
521 | return true; |
522 | } |
523 | |
524 | unsigned int get_axis_count () const { return table->axisCount; } |
525 | |
526 | private: |
527 | hb_blob_ptr_t<gvar> table; |
528 | unsigned glyphCount; |
529 | hb_vector_t<hb_pair_t<int, int>> shared_tuple_active_idx; |
530 | }; |
531 | |
532 | protected: |
533 | FixedVersion<>version; /* Version number of the glyph variations table |
534 | * Set to 0x00010000u. */ |
535 | HBUINT16 axisCount; /* The number of variation axes for this font. This must be |
536 | * the same number as axisCount in the 'fvar' table. */ |
537 | HBUINT16 sharedTupleCount; |
538 | /* The number of shared tuple records. Shared tuple records |
539 | * can be referenced within glyph variation data tables for |
540 | * multiple glyphs, as opposed to other tuple records stored |
541 | * directly within a glyph variation data table. */ |
542 | NNOffset32To<UnsizedArrayOf<F2DOT14>> |
543 | sharedTuples; /* Offset from the start of this table to the shared tuple records. |
544 | * Array of tuple records shared across all glyph variation data tables. */ |
545 | HBUINT16 glyphCountX; /* The number of glyphs in this font. This must match the number of |
546 | * glyphs stored elsewhere in the font. */ |
547 | HBUINT16 flags; /* Bit-field that gives the format of the offset array that follows. |
548 | * If bit 0 is clear, the offsets are uint16; if bit 0 is set, the |
549 | * offsets are uint32. */ |
550 | Offset32To<GlyphVariationData> |
551 | dataZ; /* Offset from the start of this table to the array of |
552 | * GlyphVariationData tables. */ |
553 | UnsizedArrayOf<HBUINT8> |
554 | offsetZ; /* Offsets from the start of the GlyphVariationData array |
555 | * to each GlyphVariationData table. */ |
556 | public: |
557 | DEFINE_SIZE_ARRAY (20, offsetZ); |
558 | }; |
559 | |
560 | struct gvar_accelerator_t : gvar::accelerator_t { |
561 | gvar_accelerator_t (hb_face_t *face) : gvar::accelerator_t (face) {} |
562 | }; |
563 | |
564 | } /* namespace OT */ |
565 | |
566 | #endif /* HB_OT_VAR_GVAR_TABLE_HH */ |
567 | |