1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | *************************************************************************** |
5 | * Copyright (C) 1999-2016 International Business Machines Corporation |
6 | * and others. All rights reserved. |
7 | *************************************************************************** |
8 | */ |
9 | // |
10 | // file: rbbi.cpp Contains the implementation of the rule based break iterator |
11 | // runtime engine and the API implementation for |
12 | // class RuleBasedBreakIterator |
13 | // |
14 | |
15 | #include "utypeinfo.h" // for 'typeid' to work |
16 | |
17 | #include "unicode/utypes.h" |
18 | |
19 | #if !UCONFIG_NO_BREAK_ITERATION |
20 | |
21 | #include <cinttypes> |
22 | |
23 | #include "unicode/rbbi.h" |
24 | #include "unicode/schriter.h" |
25 | #include "unicode/uchriter.h" |
26 | #include "unicode/uclean.h" |
27 | #include "unicode/udata.h" |
28 | |
29 | #include "brkeng.h" |
30 | #include "ucln_cmn.h" |
31 | #include "cmemory.h" |
32 | #include "cstring.h" |
33 | #include "localsvc.h" |
34 | #include "rbbidata.h" |
35 | #include "rbbi_cache.h" |
36 | #include "rbbirb.h" |
37 | #include "uassert.h" |
38 | #include "umutex.h" |
39 | #include "uvectr32.h" |
40 | |
41 | #ifdef RBBI_DEBUG |
42 | static UBool gTrace = false; |
43 | #endif |
44 | |
45 | U_NAMESPACE_BEGIN |
46 | |
47 | // The state number of the starting state |
48 | constexpr int32_t START_STATE = 1; |
49 | |
50 | // The state-transition value indicating "stop" |
51 | constexpr int32_t STOP_STATE = 0; |
52 | |
53 | |
54 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) |
55 | |
56 | |
57 | //======================================================================= |
58 | // constructors |
59 | //======================================================================= |
60 | |
61 | /** |
62 | * Constructs a RuleBasedBreakIterator that uses the already-created |
63 | * tables object that is passed in as a parameter. |
64 | */ |
65 | RuleBasedBreakIterator::(RBBIDataHeader* data, UErrorCode &status) |
66 | : RuleBasedBreakIterator(&status) |
67 | { |
68 | fData = new RBBIDataWrapper(data, status); // status checked in constructor |
69 | if (U_FAILURE(status)) {return;} |
70 | if(fData == nullptr) { |
71 | status = U_MEMORY_ALLOCATION_ERROR; |
72 | return; |
73 | } |
74 | if (fData->fForwardTable->fLookAheadResultsSize > 0) { |
75 | fLookAheadMatches = static_cast<int32_t *>( |
76 | uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t))); |
77 | if (fLookAheadMatches == nullptr) { |
78 | status = U_MEMORY_ALLOCATION_ERROR; |
79 | return; |
80 | } |
81 | } |
82 | } |
83 | |
84 | //------------------------------------------------------------------------------- |
85 | // |
86 | // Constructor from a UDataMemory handle to precompiled break rules |
87 | // stored in an ICU data file. This construcotr is private API, |
88 | // only for internal use. |
89 | // |
90 | //------------------------------------------------------------------------------- |
91 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UBool isPhraseBreaking, |
92 | UErrorCode &status) : RuleBasedBreakIterator(udm, status) |
93 | { |
94 | fIsPhraseBreaking = isPhraseBreaking; |
95 | } |
96 | |
97 | // |
98 | // Construct from precompiled binary rules (tables). This constructor is public API, |
99 | // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules(). |
100 | // |
101 | RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules, |
102 | uint32_t ruleLength, |
103 | UErrorCode &status) |
104 | : RuleBasedBreakIterator(&status) |
105 | { |
106 | if (U_FAILURE(status)) { |
107 | return; |
108 | } |
109 | if (compiledRules == nullptr || ruleLength < sizeof(RBBIDataHeader)) { |
110 | status = U_ILLEGAL_ARGUMENT_ERROR; |
111 | return; |
112 | } |
113 | const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules; |
114 | if (data->fLength > ruleLength) { |
115 | status = U_ILLEGAL_ARGUMENT_ERROR; |
116 | return; |
117 | } |
118 | fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); |
119 | if (U_FAILURE(status)) {return;} |
120 | if(fData == nullptr) { |
121 | status = U_MEMORY_ALLOCATION_ERROR; |
122 | return; |
123 | } |
124 | if (fData->fForwardTable->fLookAheadResultsSize > 0) { |
125 | fLookAheadMatches = static_cast<int32_t *>( |
126 | uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t))); |
127 | if (fLookAheadMatches == nullptr) { |
128 | status = U_MEMORY_ALLOCATION_ERROR; |
129 | return; |
130 | } |
131 | } |
132 | } |
133 | |
134 | |
135 | //------------------------------------------------------------------------------- |
136 | // |
137 | // Constructor from a UDataMemory handle to precompiled break rules |
138 | // stored in an ICU data file. |
139 | // |
140 | //------------------------------------------------------------------------------- |
141 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) |
142 | : RuleBasedBreakIterator(&status) |
143 | { |
144 | fData = new RBBIDataWrapper(udm, status); // status checked in constructor |
145 | if (U_FAILURE(status)) {return;} |
146 | if(fData == nullptr) { |
147 | status = U_MEMORY_ALLOCATION_ERROR; |
148 | return; |
149 | } |
150 | if (fData->fForwardTable->fLookAheadResultsSize > 0) { |
151 | fLookAheadMatches = static_cast<int32_t *>( |
152 | uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t))); |
153 | if (fLookAheadMatches == nullptr) { |
154 | status = U_MEMORY_ALLOCATION_ERROR; |
155 | return; |
156 | } |
157 | } |
158 | } |
159 | |
160 | |
161 | |
162 | //------------------------------------------------------------------------------- |
163 | // |
164 | // Constructor from a set of rules supplied as a string. |
165 | // |
166 | //------------------------------------------------------------------------------- |
167 | RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, |
168 | UParseError &parseError, |
169 | UErrorCode &status) |
170 | : RuleBasedBreakIterator(&status) |
171 | { |
172 | if (U_FAILURE(status)) {return;} |
173 | RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) |
174 | RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status); |
175 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that |
176 | // creates and returns a complete RBBI. From here, in a constructor, we |
177 | // can't just return the object created by the builder factory, hence |
178 | // the assignment of the factory created object to "this". |
179 | if (U_SUCCESS(status)) { |
180 | *this = *bi; |
181 | delete bi; |
182 | } |
183 | } |
184 | |
185 | |
186 | //------------------------------------------------------------------------------- |
187 | // |
188 | // Default Constructor. Create an empty shell that can be set up later. |
189 | // Used when creating a RuleBasedBreakIterator from a set |
190 | // of rules. |
191 | //------------------------------------------------------------------------------- |
192 | RuleBasedBreakIterator::RuleBasedBreakIterator() |
193 | : RuleBasedBreakIterator(nullptr) |
194 | { |
195 | } |
196 | |
197 | /** |
198 | * Simple Constructor with an error code. |
199 | * Handles common initialization for all other constructors. |
200 | */ |
201 | RuleBasedBreakIterator::RuleBasedBreakIterator(UErrorCode *status) { |
202 | UErrorCode ec = U_ZERO_ERROR; |
203 | if (status == nullptr) { |
204 | status = &ec; |
205 | } |
206 | utext_openUChars(&fText, nullptr, 0, status); |
207 | LocalPointer<DictionaryCache> lpDictionaryCache(new DictionaryCache(this, *status), *status); |
208 | LocalPointer<BreakCache> lpBreakCache(new BreakCache(this, *status), *status); |
209 | if (U_FAILURE(*status)) { |
210 | fErrorCode = *status; |
211 | return; |
212 | } |
213 | fDictionaryCache = lpDictionaryCache.orphan(); |
214 | fBreakCache = lpBreakCache.orphan(); |
215 | |
216 | #ifdef RBBI_DEBUG |
217 | static UBool debugInitDone = false; |
218 | if (debugInitDone == false) { |
219 | char *debugEnv = getenv("U_RBBIDEBUG" ); |
220 | if (debugEnv && uprv_strstr(debugEnv, "trace" )) { |
221 | gTrace = true; |
222 | } |
223 | debugInitDone = true; |
224 | } |
225 | #endif |
226 | } |
227 | |
228 | |
229 | //------------------------------------------------------------------------------- |
230 | // |
231 | // Copy constructor. Will produce a break iterator with the same behavior, |
232 | // and which iterates over the same text, as the one passed in. |
233 | // |
234 | //------------------------------------------------------------------------------- |
235 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) |
236 | : RuleBasedBreakIterator() |
237 | { |
238 | *this = other; |
239 | } |
240 | |
241 | |
242 | /** |
243 | * Destructor |
244 | */ |
245 | RuleBasedBreakIterator::~RuleBasedBreakIterator() { |
246 | if (fCharIter != &fSCharIter) { |
247 | // fCharIter was adopted from the outside. |
248 | delete fCharIter; |
249 | } |
250 | fCharIter = nullptr; |
251 | |
252 | utext_close(&fText); |
253 | |
254 | if (fData != nullptr) { |
255 | fData->removeReference(); |
256 | fData = nullptr; |
257 | } |
258 | delete fBreakCache; |
259 | fBreakCache = nullptr; |
260 | |
261 | delete fDictionaryCache; |
262 | fDictionaryCache = nullptr; |
263 | |
264 | delete fLanguageBreakEngines; |
265 | fLanguageBreakEngines = nullptr; |
266 | |
267 | delete fUnhandledBreakEngine; |
268 | fUnhandledBreakEngine = nullptr; |
269 | |
270 | uprv_free(fLookAheadMatches); |
271 | fLookAheadMatches = nullptr; |
272 | } |
273 | |
274 | /** |
275 | * Assignment operator. Sets this iterator to have the same behavior, |
276 | * and iterate over the same text, as the one passed in. |
277 | * TODO: needs better handling of memory allocation errors. |
278 | */ |
279 | RuleBasedBreakIterator& |
280 | RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { |
281 | if (this == &that) { |
282 | return *this; |
283 | } |
284 | BreakIterator::operator=(that); |
285 | |
286 | if (fLanguageBreakEngines != nullptr) { |
287 | delete fLanguageBreakEngines; |
288 | fLanguageBreakEngines = nullptr; // Just rebuild for now |
289 | } |
290 | // TODO: clone fLanguageBreakEngines from "that" |
291 | UErrorCode status = U_ZERO_ERROR; |
292 | utext_clone(&fText, &that.fText, false, true, &status); |
293 | |
294 | if (fCharIter != &fSCharIter) { |
295 | delete fCharIter; |
296 | } |
297 | fCharIter = &fSCharIter; |
298 | |
299 | if (that.fCharIter != nullptr && that.fCharIter != &that.fSCharIter) { |
300 | // This is a little bit tricky - it will initially appear that |
301 | // this->fCharIter is adopted, even if that->fCharIter was |
302 | // not adopted. That's ok. |
303 | fCharIter = that.fCharIter->clone(); |
304 | } |
305 | fSCharIter = that.fSCharIter; |
306 | if (fCharIter == nullptr) { |
307 | fCharIter = &fSCharIter; |
308 | } |
309 | |
310 | if (fData != nullptr) { |
311 | fData->removeReference(); |
312 | fData = nullptr; |
313 | } |
314 | if (that.fData != nullptr) { |
315 | fData = that.fData->addReference(); |
316 | } |
317 | |
318 | uprv_free(fLookAheadMatches); |
319 | fLookAheadMatches = nullptr; |
320 | if (fData && fData->fForwardTable->fLookAheadResultsSize > 0) { |
321 | fLookAheadMatches = static_cast<int32_t *>( |
322 | uprv_malloc(fData->fForwardTable->fLookAheadResultsSize * sizeof(int32_t))); |
323 | } |
324 | |
325 | |
326 | fPosition = that.fPosition; |
327 | fRuleStatusIndex = that.fRuleStatusIndex; |
328 | fDone = that.fDone; |
329 | |
330 | // TODO: both the dictionary and the main cache need to be copied. |
331 | // Current position could be within a dictionary range. Trying to continue |
332 | // the iteration without the caches present would go to the rules, with |
333 | // the assumption that the current position is on a rule boundary. |
334 | fBreakCache->reset(fPosition, fRuleStatusIndex); |
335 | fDictionaryCache->reset(); |
336 | |
337 | return *this; |
338 | } |
339 | |
340 | //----------------------------------------------------------------------------- |
341 | // |
342 | // clone - Returns a newly-constructed RuleBasedBreakIterator with the same |
343 | // behavior, and iterating over the same text, as this one. |
344 | // Virtual function: does the right thing with subclasses. |
345 | // |
346 | //----------------------------------------------------------------------------- |
347 | RuleBasedBreakIterator* |
348 | RuleBasedBreakIterator::clone() const { |
349 | return new RuleBasedBreakIterator(*this); |
350 | } |
351 | |
352 | /** |
353 | * Equality operator. Returns true if both BreakIterators are of the |
354 | * same class, have the same behavior, and iterate over the same text. |
355 | */ |
356 | bool |
357 | RuleBasedBreakIterator::operator==(const BreakIterator& that) const { |
358 | if (typeid(*this) != typeid(that)) { |
359 | return false; |
360 | } |
361 | if (this == &that) { |
362 | return true; |
363 | } |
364 | |
365 | // The base class BreakIterator carries no state that participates in equality, |
366 | // and does not implement an equality function that would otherwise be |
367 | // checked at this point. |
368 | |
369 | const RuleBasedBreakIterator& that2 = static_cast<const RuleBasedBreakIterator&>(that); |
370 | |
371 | if (!utext_equals(&fText, &that2.fText)) { |
372 | // The two break iterators are operating on different text, |
373 | // or have a different iteration position. |
374 | // Note that fText's position is always the same as the break iterator's position. |
375 | return false; |
376 | } |
377 | |
378 | if (!(fPosition == that2.fPosition && |
379 | fRuleStatusIndex == that2.fRuleStatusIndex && |
380 | fDone == that2.fDone)) { |
381 | return false; |
382 | } |
383 | |
384 | if (that2.fData == fData || |
385 | (fData != nullptr && that2.fData != nullptr && *that2.fData == *fData)) { |
386 | // The two break iterators are using the same rules. |
387 | return true; |
388 | } |
389 | return false; |
390 | } |
391 | |
392 | /** |
393 | * Compute a hash code for this BreakIterator |
394 | * @return A hash code |
395 | */ |
396 | int32_t |
397 | RuleBasedBreakIterator::hashCode() const { |
398 | int32_t hash = 0; |
399 | if (fData != nullptr) { |
400 | hash = fData->hashCode(); |
401 | } |
402 | return hash; |
403 | } |
404 | |
405 | |
406 | void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) { |
407 | if (U_FAILURE(status)) { |
408 | return; |
409 | } |
410 | fBreakCache->reset(); |
411 | fDictionaryCache->reset(); |
412 | utext_clone(&fText, ut, false, true, &status); |
413 | |
414 | // Set up a dummy CharacterIterator to be returned if anyone |
415 | // calls getText(). With input from UText, there is no reasonable |
416 | // way to return a characterIterator over the actual input text. |
417 | // Return one over an empty string instead - this is the closest |
418 | // we can come to signaling a failure. |
419 | // (GetText() is obsolete, this failure is sort of OK) |
420 | fSCharIter.setText(u"" , 0); |
421 | |
422 | if (fCharIter != &fSCharIter) { |
423 | // existing fCharIter was adopted from the outside. Delete it now. |
424 | delete fCharIter; |
425 | } |
426 | fCharIter = &fSCharIter; |
427 | |
428 | this->first(); |
429 | } |
430 | |
431 | |
432 | UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const { |
433 | UText *result = utext_clone(fillIn, &fText, false, true, &status); |
434 | return result; |
435 | } |
436 | |
437 | |
438 | //======================================================================= |
439 | // BreakIterator overrides |
440 | //======================================================================= |
441 | |
442 | /** |
443 | * Return a CharacterIterator over the text being analyzed. |
444 | */ |
445 | CharacterIterator& |
446 | RuleBasedBreakIterator::getText() const { |
447 | return *fCharIter; |
448 | } |
449 | |
450 | /** |
451 | * Set the iterator to analyze a new piece of text. This function resets |
452 | * the current iteration position to the beginning of the text. |
453 | * @param newText An iterator over the text to analyze. |
454 | */ |
455 | void |
456 | RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { |
457 | // If we are holding a CharacterIterator adopted from a |
458 | // previous call to this function, delete it now. |
459 | if (fCharIter != &fSCharIter) { |
460 | delete fCharIter; |
461 | } |
462 | |
463 | fCharIter = newText; |
464 | UErrorCode status = U_ZERO_ERROR; |
465 | fBreakCache->reset(); |
466 | fDictionaryCache->reset(); |
467 | if (newText==nullptr || newText->startIndex() != 0) { |
468 | // startIndex !=0 wants to be an error, but there's no way to report it. |
469 | // Make the iterator text be an empty string. |
470 | utext_openUChars(&fText, nullptr, 0, &status); |
471 | } else { |
472 | utext_openCharacterIterator(&fText, newText, &status); |
473 | } |
474 | this->first(); |
475 | } |
476 | |
477 | /** |
478 | * Set the iterator to analyze a new piece of text. This function resets |
479 | * the current iteration position to the beginning of the text. |
480 | * @param newText An iterator over the text to analyze. |
481 | */ |
482 | void |
483 | RuleBasedBreakIterator::setText(const UnicodeString& newText) { |
484 | UErrorCode status = U_ZERO_ERROR; |
485 | fBreakCache->reset(); |
486 | fDictionaryCache->reset(); |
487 | utext_openConstUnicodeString(&fText, &newText, &status); |
488 | |
489 | // Set up a character iterator on the string. |
490 | // Needed in case someone calls getText(). |
491 | // Can not, unfortunately, do this lazily on the (probably never) |
492 | // call to getText(), because getText is const. |
493 | fSCharIter.setText(newText.getBuffer(), newText.length()); |
494 | |
495 | if (fCharIter != &fSCharIter) { |
496 | // old fCharIter was adopted from the outside. Delete it. |
497 | delete fCharIter; |
498 | } |
499 | fCharIter = &fSCharIter; |
500 | |
501 | this->first(); |
502 | } |
503 | |
504 | |
505 | /** |
506 | * Provide a new UText for the input text. Must reference text with contents identical |
507 | * to the original. |
508 | * Intended for use with text data originating in Java (garbage collected) environments |
509 | * where the data may be moved in memory at arbitrary times. |
510 | */ |
511 | RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) { |
512 | if (U_FAILURE(status)) { |
513 | return *this; |
514 | } |
515 | if (input == nullptr) { |
516 | status = U_ILLEGAL_ARGUMENT_ERROR; |
517 | return *this; |
518 | } |
519 | int64_t pos = utext_getNativeIndex(&fText); |
520 | // Shallow read-only clone of the new UText into the existing input UText |
521 | utext_clone(&fText, input, false, true, &status); |
522 | if (U_FAILURE(status)) { |
523 | return *this; |
524 | } |
525 | utext_setNativeIndex(&fText, pos); |
526 | if (utext_getNativeIndex(&fText) != pos) { |
527 | // Sanity check. The new input utext is supposed to have the exact same |
528 | // contents as the old. If we can't set to the same position, it doesn't. |
529 | // The contents underlying the old utext might be invalid at this point, |
530 | // so it's not safe to check directly. |
531 | status = U_ILLEGAL_ARGUMENT_ERROR; |
532 | } |
533 | return *this; |
534 | } |
535 | |
536 | |
537 | /** |
538 | * Sets the current iteration position to the beginning of the text, position zero. |
539 | * @return The new iterator position, which is zero. |
540 | */ |
541 | int32_t RuleBasedBreakIterator::first() { |
542 | UErrorCode status = U_ZERO_ERROR; |
543 | if (!fBreakCache->seek(0)) { |
544 | fBreakCache->populateNear(0, status); |
545 | } |
546 | fBreakCache->current(); |
547 | U_ASSERT(fPosition == 0); |
548 | return 0; |
549 | } |
550 | |
551 | /** |
552 | * Sets the current iteration position to the end of the text. |
553 | * @return The text's past-the-end offset. |
554 | */ |
555 | int32_t RuleBasedBreakIterator::last() { |
556 | int32_t endPos = (int32_t)utext_nativeLength(&fText); |
557 | UBool endShouldBeBoundary = isBoundary(endPos); // Has side effect of setting iterator position. |
558 | (void)endShouldBeBoundary; |
559 | U_ASSERT(endShouldBeBoundary); |
560 | U_ASSERT(fPosition == endPos); |
561 | return endPos; |
562 | } |
563 | |
564 | /** |
565 | * Advances the iterator either forward or backward the specified number of steps. |
566 | * Negative values move backward, and positive values move forward. This is |
567 | * equivalent to repeatedly calling next() or previous(). |
568 | * @param n The number of steps to move. The sign indicates the direction |
569 | * (negative is backwards, and positive is forwards). |
570 | * @return The character offset of the boundary position n boundaries away from |
571 | * the current one. |
572 | */ |
573 | int32_t RuleBasedBreakIterator::next(int32_t n) { |
574 | int32_t result = 0; |
575 | if (n > 0) { |
576 | for (; n > 0 && result != UBRK_DONE; --n) { |
577 | result = next(); |
578 | } |
579 | } else if (n < 0) { |
580 | for (; n < 0 && result != UBRK_DONE; ++n) { |
581 | result = previous(); |
582 | } |
583 | } else { |
584 | result = current(); |
585 | } |
586 | return result; |
587 | } |
588 | |
589 | /** |
590 | * Advances the iterator to the next boundary position. |
591 | * @return The position of the first boundary after this one. |
592 | */ |
593 | int32_t RuleBasedBreakIterator::next() { |
594 | fBreakCache->next(); |
595 | return fDone ? UBRK_DONE : fPosition; |
596 | } |
597 | |
598 | /** |
599 | * Move the iterator backwards, to the boundary preceding the current one. |
600 | * |
601 | * Starts from the current position within fText. |
602 | * Starting position need not be on a boundary. |
603 | * |
604 | * @return The position of the boundary position immediately preceding the starting position. |
605 | */ |
606 | int32_t RuleBasedBreakIterator::previous() { |
607 | UErrorCode status = U_ZERO_ERROR; |
608 | fBreakCache->previous(status); |
609 | return fDone ? UBRK_DONE : fPosition; |
610 | } |
611 | |
612 | /** |
613 | * Sets the iterator to refer to the first boundary position following |
614 | * the specified position. |
615 | * @param startPos The position from which to begin searching for a break position. |
616 | * @return The position of the first break after the current position. |
617 | */ |
618 | int32_t RuleBasedBreakIterator::following(int32_t startPos) { |
619 | // if the supplied position is before the beginning, return the |
620 | // text's starting offset |
621 | if (startPos < 0) { |
622 | return first(); |
623 | } |
624 | |
625 | // Move requested offset to a code point start. It might be on a trail surrogate, |
626 | // or on a trail byte if the input is UTF-8. Or it may be beyond the end of the text. |
627 | utext_setNativeIndex(&fText, startPos); |
628 | startPos = (int32_t)utext_getNativeIndex(&fText); |
629 | |
630 | UErrorCode status = U_ZERO_ERROR; |
631 | fBreakCache->following(startPos, status); |
632 | return fDone ? UBRK_DONE : fPosition; |
633 | } |
634 | |
635 | /** |
636 | * Sets the iterator to refer to the last boundary position before the |
637 | * specified position. |
638 | * @param offset The position to begin searching for a break from. |
639 | * @return The position of the last boundary before the starting position. |
640 | */ |
641 | int32_t RuleBasedBreakIterator::preceding(int32_t offset) { |
642 | if (offset > utext_nativeLength(&fText)) { |
643 | return last(); |
644 | } |
645 | |
646 | // Move requested offset to a code point start. It might be on a trail surrogate, |
647 | // or on a trail byte if the input is UTF-8. |
648 | |
649 | utext_setNativeIndex(&fText, offset); |
650 | int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText)); |
651 | |
652 | UErrorCode status = U_ZERO_ERROR; |
653 | fBreakCache->preceding(adjustedOffset, status); |
654 | return fDone ? UBRK_DONE : fPosition; |
655 | } |
656 | |
657 | /** |
658 | * Returns true if the specified position is a boundary position. As a side |
659 | * effect, leaves the iterator pointing to the first boundary position at |
660 | * or after "offset". |
661 | * |
662 | * @param offset the offset to check. |
663 | * @return True if "offset" is a boundary position. |
664 | */ |
665 | UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { |
666 | // out-of-range indexes are never boundary positions |
667 | if (offset < 0) { |
668 | first(); // For side effects on current position, tag values. |
669 | return false; |
670 | } |
671 | |
672 | // Adjust offset to be on a code point boundary and not beyond the end of the text. |
673 | // Note that isBoundary() is always false for offsets that are not on code point boundaries. |
674 | // But we still need the side effect of leaving iteration at the following boundary. |
675 | |
676 | utext_setNativeIndex(&fText, offset); |
677 | int32_t adjustedOffset = static_cast<int32_t>(utext_getNativeIndex(&fText)); |
678 | |
679 | bool result = false; |
680 | UErrorCode status = U_ZERO_ERROR; |
681 | if (fBreakCache->seek(adjustedOffset) || fBreakCache->populateNear(adjustedOffset, status)) { |
682 | result = (fBreakCache->current() == offset); |
683 | } |
684 | |
685 | if (result && adjustedOffset < offset && utext_char32At(&fText, offset) == U_SENTINEL) { |
686 | // Original offset is beyond the end of the text. Return false, it's not a boundary, |
687 | // but the iteration position remains set to the end of the text, which is a boundary. |
688 | return false; |
689 | } |
690 | if (!result) { |
691 | // Not on a boundary. isBoundary() must leave iterator on the following boundary. |
692 | // Cache->seek(), above, left us on the preceding boundary, so advance one. |
693 | next(); |
694 | } |
695 | return result; |
696 | } |
697 | |
698 | |
699 | /** |
700 | * Returns the current iteration position. |
701 | * @return The current iteration position. |
702 | */ |
703 | int32_t RuleBasedBreakIterator::current() const { |
704 | return fPosition; |
705 | } |
706 | |
707 | |
708 | //======================================================================= |
709 | // implementation |
710 | //======================================================================= |
711 | |
712 | // |
713 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end |
714 | // of user text. A variable with this enum type keeps track of where we |
715 | // are. The state machine only fetches user input while in the RUN mode. |
716 | // |
717 | enum RBBIRunMode { |
718 | RBBI_START, // state machine processing is before first char of input |
719 | RBBI_RUN, // state machine processing is in the user text |
720 | RBBI_END // state machine processing is after end of user text. |
721 | }; |
722 | |
723 | |
724 | // Wrapper functions to select the appropriate handleNext() or handleSafePrevious() |
725 | // instantiation, based on whether an 8 or 16 bit table is required. |
726 | // |
727 | // These Trie access functions will be inlined within the handleNext()/Previous() instantions. |
728 | static inline uint16_t TrieFunc8(const UCPTrie *trie, UChar32 c) { |
729 | return UCPTRIE_FAST_GET(trie, UCPTRIE_8, c); |
730 | } |
731 | |
732 | static inline uint16_t TrieFunc16(const UCPTrie *trie, UChar32 c) { |
733 | return UCPTRIE_FAST_GET(trie, UCPTRIE_16, c); |
734 | } |
735 | |
736 | int32_t RuleBasedBreakIterator::handleNext() { |
737 | const RBBIStateTable *statetable = fData->fForwardTable; |
738 | bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8; |
739 | if (statetable->fFlags & RBBI_8BITS_ROWS) { |
740 | if (use8BitsTrie) { |
741 | return handleNext<RBBIStateTableRow8, TrieFunc8>(); |
742 | } else { |
743 | return handleNext<RBBIStateTableRow8, TrieFunc16>(); |
744 | } |
745 | } else { |
746 | if (use8BitsTrie) { |
747 | return handleNext<RBBIStateTableRow16, TrieFunc8>(); |
748 | } else { |
749 | return handleNext<RBBIStateTableRow16, TrieFunc16>(); |
750 | } |
751 | } |
752 | } |
753 | |
754 | int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) { |
755 | const RBBIStateTable *statetable = fData->fReverseTable; |
756 | bool use8BitsTrie = ucptrie_getValueWidth(fData->fTrie) == UCPTRIE_VALUE_BITS_8; |
757 | if (statetable->fFlags & RBBI_8BITS_ROWS) { |
758 | if (use8BitsTrie) { |
759 | return handleSafePrevious<RBBIStateTableRow8, TrieFunc8>(fromPosition); |
760 | } else { |
761 | return handleSafePrevious<RBBIStateTableRow8, TrieFunc16>(fromPosition); |
762 | } |
763 | } else { |
764 | if (use8BitsTrie) { |
765 | return handleSafePrevious<RBBIStateTableRow16, TrieFunc8>(fromPosition); |
766 | } else { |
767 | return handleSafePrevious<RBBIStateTableRow16, TrieFunc16>(fromPosition); |
768 | } |
769 | } |
770 | } |
771 | |
772 | |
773 | //----------------------------------------------------------------------------------- |
774 | // |
775 | // handleNext() |
776 | // Run the state machine to find a boundary |
777 | // |
778 | //----------------------------------------------------------------------------------- |
779 | template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc> |
780 | int32_t RuleBasedBreakIterator::handleNext() { |
781 | int32_t state; |
782 | uint16_t category = 0; |
783 | RBBIRunMode mode; |
784 | |
785 | RowType *row; |
786 | UChar32 c; |
787 | int32_t result = 0; |
788 | int32_t initialPosition = 0; |
789 | const RBBIStateTable *statetable = fData->fForwardTable; |
790 | const char *tableData = statetable->fTableData; |
791 | uint32_t tableRowLen = statetable->fRowLen; |
792 | uint32_t dictStart = statetable->fDictCategoriesStart; |
793 | #ifdef RBBI_DEBUG |
794 | if (gTrace) { |
795 | RBBIDebugPuts("Handle Next pos char state category" ); |
796 | } |
797 | #endif |
798 | |
799 | // handleNext always sets the break tag value. |
800 | // Set the default for it. |
801 | fRuleStatusIndex = 0; |
802 | |
803 | fDictionaryCharCount = 0; |
804 | |
805 | // if we're already at the end of the text, return DONE. |
806 | initialPosition = fPosition; |
807 | UTEXT_SETNATIVEINDEX(&fText, initialPosition); |
808 | result = initialPosition; |
809 | c = UTEXT_NEXT32(&fText); |
810 | if (c==U_SENTINEL) { |
811 | fDone = true; |
812 | return UBRK_DONE; |
813 | } |
814 | |
815 | // Set the initial state for the state machine |
816 | state = START_STATE; |
817 | row = (RowType *) |
818 | //(statetable->fTableData + (statetable->fRowLen * state)); |
819 | (tableData + tableRowLen * state); |
820 | |
821 | |
822 | mode = RBBI_RUN; |
823 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { |
824 | category = 2; |
825 | mode = RBBI_START; |
826 | } |
827 | |
828 | |
829 | // loop until we reach the end of the text or transition to state 0 |
830 | // |
831 | for (;;) { |
832 | if (c == U_SENTINEL) { |
833 | // Reached end of input string. |
834 | if (mode == RBBI_END) { |
835 | // We have already run the loop one last time with the |
836 | // character set to the psueudo {eof} value. Now it is time |
837 | // to unconditionally bail out. |
838 | break; |
839 | } |
840 | // Run the loop one last time with the fake end-of-input character category. |
841 | mode = RBBI_END; |
842 | category = 1; |
843 | } |
844 | |
845 | // |
846 | // Get the char category. An incoming category of 1 or 2 means that |
847 | // we are preset for doing the beginning or end of input, and |
848 | // that we shouldn't get a category from an actual text input character. |
849 | // |
850 | if (mode == RBBI_RUN) { |
851 | // look up the current character's character category, which tells us |
852 | // which column in the state table to look at. |
853 | category = trieFunc(fData->fTrie, c); |
854 | fDictionaryCharCount += (category >= dictStart); |
855 | } |
856 | |
857 | #ifdef RBBI_DEBUG |
858 | if (gTrace) { |
859 | RBBIDebugPrintf(" %4" PRId64 " " , utext_getNativeIndex(&fText)); |
860 | if (0x20<=c && c<0x7f) { |
861 | RBBIDebugPrintf("\"%c\" " , c); |
862 | } else { |
863 | RBBIDebugPrintf("%5x " , c); |
864 | } |
865 | RBBIDebugPrintf("%3d %3d\n" , state, category); |
866 | } |
867 | #endif |
868 | |
869 | // State Transition - move machine to its next state |
870 | // |
871 | |
872 | // fNextState is a variable-length array. |
873 | U_ASSERT(category<fData->fHeader->fCatCount); |
874 | state = row->fNextState[category]; /*Not accessing beyond memory*/ |
875 | row = (RowType *) |
876 | // (statetable->fTableData + (statetable->fRowLen * state)); |
877 | (tableData + tableRowLen * state); |
878 | |
879 | |
880 | uint16_t accepting = row->fAccepting; |
881 | if (accepting == ACCEPTING_UNCONDITIONAL) { |
882 | // Match found, common case. |
883 | if (mode != RBBI_START) { |
884 | result = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
885 | } |
886 | fRuleStatusIndex = row->fTagsIdx; // Remember the break status (tag) values. |
887 | } else if (accepting > ACCEPTING_UNCONDITIONAL) { |
888 | // Lookahead match is completed. |
889 | U_ASSERT(accepting < fData->fForwardTable->fLookAheadResultsSize); |
890 | int32_t lookaheadResult = fLookAheadMatches[accepting]; |
891 | if (lookaheadResult >= 0) { |
892 | fRuleStatusIndex = row->fTagsIdx; |
893 | fPosition = lookaheadResult; |
894 | return lookaheadResult; |
895 | } |
896 | } |
897 | |
898 | // If we are at the position of the '/' in a look-ahead (hard break) rule; |
899 | // record the current position, to be returned later, if the full rule matches. |
900 | // TODO: Move this check before the previous check of fAccepting. |
901 | // This would enable hard-break rules with no following context. |
902 | // But there are line break test failures when trying this. Investigate. |
903 | // Issue ICU-20837 |
904 | uint16_t rule = row->fLookAhead; |
905 | U_ASSERT(rule == 0 || rule > ACCEPTING_UNCONDITIONAL); |
906 | U_ASSERT(rule == 0 || rule < fData->fForwardTable->fLookAheadResultsSize); |
907 | if (rule > ACCEPTING_UNCONDITIONAL) { |
908 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
909 | fLookAheadMatches[rule] = pos; |
910 | } |
911 | |
912 | if (state == STOP_STATE) { |
913 | // This is the normal exit from the lookup state machine. |
914 | // We have advanced through the string until it is certain that no |
915 | // longer match is possible, no matter what characters follow. |
916 | break; |
917 | } |
918 | |
919 | // Advance to the next character. |
920 | // If this is a beginning-of-input loop iteration, don't advance |
921 | // the input position. The next iteration will be processing the |
922 | // first real input character. |
923 | if (mode == RBBI_RUN) { |
924 | c = UTEXT_NEXT32(&fText); |
925 | } else { |
926 | if (mode == RBBI_START) { |
927 | mode = RBBI_RUN; |
928 | } |
929 | } |
930 | } |
931 | |
932 | // The state machine is done. Check whether it found a match... |
933 | |
934 | // If the iterator failed to advance in the match engine, force it ahead by one. |
935 | // (This really indicates a defect in the break rules. They should always match |
936 | // at least one character.) |
937 | if (result == initialPosition) { |
938 | utext_setNativeIndex(&fText, initialPosition); |
939 | utext_next32(&fText); |
940 | result = (int32_t)utext_getNativeIndex(&fText); |
941 | fRuleStatusIndex = 0; |
942 | } |
943 | |
944 | // Leave the iterator at our result position. |
945 | fPosition = result; |
946 | #ifdef RBBI_DEBUG |
947 | if (gTrace) { |
948 | RBBIDebugPrintf("result = %d\n\n" , result); |
949 | } |
950 | #endif |
951 | return result; |
952 | } |
953 | |
954 | |
955 | //----------------------------------------------------------------------------------- |
956 | // |
957 | // handleSafePrevious() |
958 | // |
959 | // Iterate backwards using the safe reverse rules. |
960 | // The logic of this function is similar to handleNext(), but simpler |
961 | // because the safe table does not require as many options. |
962 | // |
963 | //----------------------------------------------------------------------------------- |
964 | template <typename RowType, RuleBasedBreakIterator::PTrieFunc trieFunc> |
965 | int32_t RuleBasedBreakIterator::handleSafePrevious(int32_t fromPosition) { |
966 | |
967 | int32_t state; |
968 | uint16_t category = 0; |
969 | RowType *row; |
970 | UChar32 c; |
971 | int32_t result = 0; |
972 | |
973 | const RBBIStateTable *stateTable = fData->fReverseTable; |
974 | UTEXT_SETNATIVEINDEX(&fText, fromPosition); |
975 | #ifdef RBBI_DEBUG |
976 | if (gTrace) { |
977 | RBBIDebugPuts("Handle Previous pos char state category" ); |
978 | } |
979 | #endif |
980 | |
981 | // if we're already at the start of the text, return DONE. |
982 | if (fData == nullptr || UTEXT_GETNATIVEINDEX(&fText)==0) { |
983 | return BreakIterator::DONE; |
984 | } |
985 | |
986 | // Set the initial state for the state machine |
987 | c = UTEXT_PREVIOUS32(&fText); |
988 | state = START_STATE; |
989 | row = (RowType *) |
990 | (stateTable->fTableData + (stateTable->fRowLen * state)); |
991 | |
992 | // loop until we reach the start of the text or transition to state 0 |
993 | // |
994 | for (; c != U_SENTINEL; c = UTEXT_PREVIOUS32(&fText)) { |
995 | |
996 | // look up the current character's character category, which tells us |
997 | // which column in the state table to look at. |
998 | // |
999 | // Off the dictionary flag bit. For reverse iteration it is not used. |
1000 | category = trieFunc(fData->fTrie, c); |
1001 | |
1002 | #ifdef RBBI_DEBUG |
1003 | if (gTrace) { |
1004 | RBBIDebugPrintf(" %4d " , (int32_t)utext_getNativeIndex(&fText)); |
1005 | if (0x20<=c && c<0x7f) { |
1006 | RBBIDebugPrintf("\"%c\" " , c); |
1007 | } else { |
1008 | RBBIDebugPrintf("%5x " , c); |
1009 | } |
1010 | RBBIDebugPrintf("%3d %3d\n" , state, category); |
1011 | } |
1012 | #endif |
1013 | |
1014 | // State Transition - move machine to its next state |
1015 | // |
1016 | // fNextState is a variable-length array. |
1017 | U_ASSERT(category<fData->fHeader->fCatCount); |
1018 | state = row->fNextState[category]; /*Not accessing beyond memory*/ |
1019 | row = (RowType *) |
1020 | (stateTable->fTableData + (stateTable->fRowLen * state)); |
1021 | |
1022 | if (state == STOP_STATE) { |
1023 | // This is the normal exit from the lookup state machine. |
1024 | // Transition to state zero means we have found a safe point. |
1025 | break; |
1026 | } |
1027 | } |
1028 | |
1029 | // The state machine is done. Check whether it found a match... |
1030 | result = (int32_t)UTEXT_GETNATIVEINDEX(&fText); |
1031 | #ifdef RBBI_DEBUG |
1032 | if (gTrace) { |
1033 | RBBIDebugPrintf("result = %d\n\n" , result); |
1034 | } |
1035 | #endif |
1036 | return result; |
1037 | } |
1038 | |
1039 | |
1040 | //------------------------------------------------------------------------------- |
1041 | // |
1042 | // getRuleStatus() Return the break rule tag associated with the current |
1043 | // iterator position. If the iterator arrived at its current |
1044 | // position by iterating forwards, the value will have been |
1045 | // cached by the handleNext() function. |
1046 | // |
1047 | //------------------------------------------------------------------------------- |
1048 | |
1049 | int32_t RuleBasedBreakIterator::getRuleStatus() const { |
1050 | |
1051 | // fLastRuleStatusIndex indexes to the start of the appropriate status record |
1052 | // (the number of status values.) |
1053 | // This function returns the last (largest) of the array of status values. |
1054 | int32_t idx = fRuleStatusIndex + fData->fRuleStatusTable[fRuleStatusIndex]; |
1055 | int32_t tagVal = fData->fRuleStatusTable[idx]; |
1056 | |
1057 | return tagVal; |
1058 | } |
1059 | |
1060 | |
1061 | int32_t RuleBasedBreakIterator::getRuleStatusVec( |
1062 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) { |
1063 | if (U_FAILURE(status)) { |
1064 | return 0; |
1065 | } |
1066 | |
1067 | int32_t numVals = fData->fRuleStatusTable[fRuleStatusIndex]; |
1068 | int32_t numValsToCopy = numVals; |
1069 | if (numVals > capacity) { |
1070 | status = U_BUFFER_OVERFLOW_ERROR; |
1071 | numValsToCopy = capacity; |
1072 | } |
1073 | int i; |
1074 | for (i=0; i<numValsToCopy; i++) { |
1075 | fillInVec[i] = fData->fRuleStatusTable[fRuleStatusIndex + i + 1]; |
1076 | } |
1077 | return numVals; |
1078 | } |
1079 | |
1080 | |
1081 | |
1082 | //------------------------------------------------------------------------------- |
1083 | // |
1084 | // getBinaryRules Access to the compiled form of the rules, |
1085 | // for use by build system tools that save the data |
1086 | // for standard iterator types. |
1087 | // |
1088 | //------------------------------------------------------------------------------- |
1089 | const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { |
1090 | const uint8_t *retPtr = nullptr; |
1091 | length = 0; |
1092 | |
1093 | if (fData != nullptr) { |
1094 | retPtr = (const uint8_t *)fData->fHeader; |
1095 | length = fData->fHeader->fLength; |
1096 | } |
1097 | return retPtr; |
1098 | } |
1099 | |
1100 | |
1101 | RuleBasedBreakIterator *RuleBasedBreakIterator::createBufferClone( |
1102 | void * /*stackBuffer*/, int32_t &bufferSize, UErrorCode &status) { |
1103 | if (U_FAILURE(status)){ |
1104 | return nullptr; |
1105 | } |
1106 | |
1107 | if (bufferSize == 0) { |
1108 | bufferSize = 1; // preflighting for deprecated functionality |
1109 | return nullptr; |
1110 | } |
1111 | |
1112 | BreakIterator *clonedBI = clone(); |
1113 | if (clonedBI == nullptr) { |
1114 | status = U_MEMORY_ALLOCATION_ERROR; |
1115 | } else { |
1116 | status = U_SAFECLONE_ALLOCATED_WARNING; |
1117 | } |
1118 | return (RuleBasedBreakIterator *)clonedBI; |
1119 | } |
1120 | |
1121 | U_NAMESPACE_END |
1122 | |
1123 | |
1124 | static icu::UStack *gLanguageBreakFactories = nullptr; |
1125 | static const icu::UnicodeString *gEmptyString = nullptr; |
1126 | static icu::UInitOnce gLanguageBreakFactoriesInitOnce {}; |
1127 | static icu::UInitOnce gRBBIInitOnce {}; |
1128 | |
1129 | /** |
1130 | * Release all static memory held by breakiterator. |
1131 | */ |
1132 | U_CDECL_BEGIN |
1133 | UBool U_CALLCONV rbbi_cleanup() { |
1134 | delete gLanguageBreakFactories; |
1135 | gLanguageBreakFactories = nullptr; |
1136 | delete gEmptyString; |
1137 | gEmptyString = nullptr; |
1138 | gLanguageBreakFactoriesInitOnce.reset(); |
1139 | gRBBIInitOnce.reset(); |
1140 | return true; |
1141 | } |
1142 | U_CDECL_END |
1143 | |
1144 | U_CDECL_BEGIN |
1145 | static void U_CALLCONV _deleteFactory(void *obj) { |
1146 | delete (icu::LanguageBreakFactory *) obj; |
1147 | } |
1148 | U_CDECL_END |
1149 | U_NAMESPACE_BEGIN |
1150 | |
1151 | static void U_CALLCONV rbbiInit() { |
1152 | gEmptyString = new UnicodeString(); |
1153 | ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup); |
1154 | } |
1155 | |
1156 | static void U_CALLCONV initLanguageFactories() { |
1157 | UErrorCode status = U_ZERO_ERROR; |
1158 | U_ASSERT(gLanguageBreakFactories == nullptr); |
1159 | gLanguageBreakFactories = new UStack(_deleteFactory, nullptr, status); |
1160 | if (gLanguageBreakFactories != nullptr && U_SUCCESS(status)) { |
1161 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); |
1162 | gLanguageBreakFactories->push(builtIn, status); |
1163 | #ifdef U_LOCAL_SERVICE_HOOK |
1164 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory" , &status); |
1165 | if (extra != nullptr) { |
1166 | gLanguageBreakFactories->push(extra, status); |
1167 | } |
1168 | #endif |
1169 | } |
1170 | ucln_common_registerCleanup(UCLN_COMMON_RBBI, rbbi_cleanup); |
1171 | } |
1172 | |
1173 | |
1174 | static const LanguageBreakEngine* |
1175 | getLanguageBreakEngineFromFactory(UChar32 c) |
1176 | { |
1177 | umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories); |
1178 | if (gLanguageBreakFactories == nullptr) { |
1179 | return nullptr; |
1180 | } |
1181 | |
1182 | int32_t i = gLanguageBreakFactories->size(); |
1183 | const LanguageBreakEngine *lbe = nullptr; |
1184 | while (--i >= 0) { |
1185 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); |
1186 | lbe = factory->getEngineFor(c); |
1187 | if (lbe != nullptr) { |
1188 | break; |
1189 | } |
1190 | } |
1191 | return lbe; |
1192 | } |
1193 | |
1194 | |
1195 | //------------------------------------------------------------------------------- |
1196 | // |
1197 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the |
1198 | // the character c. |
1199 | // |
1200 | //------------------------------------------------------------------------------- |
1201 | const LanguageBreakEngine * |
1202 | RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) { |
1203 | const LanguageBreakEngine *lbe = nullptr; |
1204 | UErrorCode status = U_ZERO_ERROR; |
1205 | |
1206 | if (fLanguageBreakEngines == nullptr) { |
1207 | fLanguageBreakEngines = new UStack(status); |
1208 | if (fLanguageBreakEngines == nullptr || U_FAILURE(status)) { |
1209 | delete fLanguageBreakEngines; |
1210 | fLanguageBreakEngines = 0; |
1211 | return nullptr; |
1212 | } |
1213 | } |
1214 | |
1215 | int32_t i = fLanguageBreakEngines->size(); |
1216 | while (--i >= 0) { |
1217 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); |
1218 | if (lbe->handles(c)) { |
1219 | return lbe; |
1220 | } |
1221 | } |
1222 | |
1223 | // No existing dictionary took the character. See if a factory wants to |
1224 | // give us a new LanguageBreakEngine for this character. |
1225 | lbe = getLanguageBreakEngineFromFactory(c); |
1226 | |
1227 | // If we got one, use it and push it on our stack. |
1228 | if (lbe != nullptr) { |
1229 | fLanguageBreakEngines->push((void *)lbe, status); |
1230 | // Even if we can't remember it, we can keep looking it up, so |
1231 | // return it even if the push fails. |
1232 | return lbe; |
1233 | } |
1234 | |
1235 | // No engine is forthcoming for this character. Add it to the |
1236 | // reject set. Create the reject break engine if needed. |
1237 | if (fUnhandledBreakEngine == nullptr) { |
1238 | fUnhandledBreakEngine = new UnhandledEngine(status); |
1239 | if (U_SUCCESS(status) && fUnhandledBreakEngine == nullptr) { |
1240 | status = U_MEMORY_ALLOCATION_ERROR; |
1241 | return nullptr; |
1242 | } |
1243 | // Put it last so that scripts for which we have an engine get tried |
1244 | // first. |
1245 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); |
1246 | // If we can't insert it, or creation failed, get rid of it |
1247 | U_ASSERT(!fLanguageBreakEngines->hasDeleter()); |
1248 | if (U_FAILURE(status)) { |
1249 | delete fUnhandledBreakEngine; |
1250 | fUnhandledBreakEngine = 0; |
1251 | return nullptr; |
1252 | } |
1253 | } |
1254 | |
1255 | // Tell the reject engine about the character; at its discretion, it may |
1256 | // add more than just the one character. |
1257 | fUnhandledBreakEngine->handleCharacter(c); |
1258 | |
1259 | return fUnhandledBreakEngine; |
1260 | } |
1261 | |
1262 | void RuleBasedBreakIterator::dumpCache() { |
1263 | fBreakCache->dumpCache(); |
1264 | } |
1265 | |
1266 | void RuleBasedBreakIterator::dumpTables() { |
1267 | fData->printData(); |
1268 | } |
1269 | |
1270 | /** |
1271 | * Returns the description used to create this iterator |
1272 | */ |
1273 | |
1274 | const UnicodeString& |
1275 | RuleBasedBreakIterator::getRules() const { |
1276 | if (fData != nullptr) { |
1277 | return fData->getRuleSourceString(); |
1278 | } else { |
1279 | umtx_initOnce(gRBBIInitOnce, &rbbiInit); |
1280 | return *gEmptyString; |
1281 | } |
1282 | } |
1283 | |
1284 | U_NAMESPACE_END |
1285 | |
1286 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1287 | |