1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * |
6 | * Copyright (C) 2007-2012, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ****************************************************************************** |
10 | * file name: unisetspan.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2007mar01 |
16 | * created by: Markus W. Scherer |
17 | */ |
18 | |
19 | #include "unicode/utypes.h" |
20 | #include "unicode/uniset.h" |
21 | #include "unicode/ustring.h" |
22 | #include "unicode/utf8.h" |
23 | #include "unicode/utf16.h" |
24 | #include "cmemory.h" |
25 | #include "uvector.h" |
26 | #include "unisetspan.h" |
27 | |
28 | U_NAMESPACE_BEGIN |
29 | |
30 | /* |
31 | * List of offsets from the current position from where to try matching |
32 | * a code point or a string. |
33 | * Store offsets rather than indexes to simplify the code and use the same list |
34 | * for both increments (in span()) and decrements (in spanBack()). |
35 | * |
36 | * Assumption: The maximum offset is limited, and the offsets that are stored |
37 | * at any one time are relatively dense, that is, there are normally no gaps of |
38 | * hundreds or thousands of offset values. |
39 | * |
40 | * The implementation uses a circular buffer of byte flags, |
41 | * each indicating whether the corresponding offset is in the list. |
42 | * This avoids inserting into a sorted list of offsets (or absolute indexes) and |
43 | * physically moving part of the list. |
44 | * |
45 | * Note: In principle, the caller should setMaxLength() to the maximum of the |
46 | * max string length and U16_LENGTH/U8_LENGTH to account for |
47 | * "long" single code points. |
48 | * However, this implementation uses at least a staticList with more than |
49 | * U8_LENGTH entries anyway. |
50 | * |
51 | * Note: If maxLength were guaranteed to be no more than 32 or 64, |
52 | * the list could be stored as bit flags in a single integer. |
53 | * Rather than handling a circular buffer with a start list index, |
54 | * the integer would simply be shifted when lower offsets are removed. |
55 | * UnicodeSet does not have a limit on the lengths of strings. |
56 | */ |
57 | class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. |
58 | public: |
59 | OffsetList() : list(staticList), capacity(0), length(0), start(0) {} |
60 | |
61 | ~OffsetList() { |
62 | if(list!=staticList) { |
63 | uprv_free(list); |
64 | } |
65 | } |
66 | |
67 | // Call exactly once if the list is to be used. |
68 | void setMaxLength(int32_t maxLength) { |
69 | if(maxLength<=(int32_t)sizeof(staticList)) { |
70 | capacity=(int32_t)sizeof(staticList); |
71 | } else { |
72 | UBool *l=(UBool *)uprv_malloc(maxLength); |
73 | if(l!=nullptr) { |
74 | list=l; |
75 | capacity=maxLength; |
76 | } |
77 | } |
78 | uprv_memset(list, 0, capacity); |
79 | } |
80 | |
81 | void clear() { |
82 | uprv_memset(list, 0, capacity); |
83 | start=length=0; |
84 | } |
85 | |
86 | UBool isEmpty() const { |
87 | return (UBool)(length==0); |
88 | } |
89 | |
90 | // Reduce all stored offsets by delta, used when the current position |
91 | // moves by delta. |
92 | // There must not be any offsets lower than delta. |
93 | // If there is an offset equal to delta, it is removed. |
94 | // delta=[1..maxLength] |
95 | void shift(int32_t delta) { |
96 | int32_t i=start+delta; |
97 | if(i>=capacity) { |
98 | i-=capacity; |
99 | } |
100 | if(list[i]) { |
101 | list[i]=false; |
102 | --length; |
103 | } |
104 | start=i; |
105 | } |
106 | |
107 | // Add an offset. The list must not contain it yet. |
108 | // offset=[1..maxLength] |
109 | void addOffset(int32_t offset) { |
110 | int32_t i=start+offset; |
111 | if(i>=capacity) { |
112 | i-=capacity; |
113 | } |
114 | list[i]=true; |
115 | ++length; |
116 | } |
117 | |
118 | // offset=[1..maxLength] |
119 | UBool containsOffset(int32_t offset) const { |
120 | int32_t i=start+offset; |
121 | if(i>=capacity) { |
122 | i-=capacity; |
123 | } |
124 | return list[i]; |
125 | } |
126 | |
127 | // Find the lowest stored offset from a non-empty list, remove it, |
128 | // and reduce all other offsets by this minimum. |
129 | // Returns [1..maxLength]. |
130 | int32_t popMinimum() { |
131 | // Look for the next offset in list[start+1..capacity-1]. |
132 | int32_t i=start, result; |
133 | while(++i<capacity) { |
134 | if(list[i]) { |
135 | list[i]=false; |
136 | --length; |
137 | result=i-start; |
138 | start=i; |
139 | return result; |
140 | } |
141 | } |
142 | // i==capacity |
143 | |
144 | // Wrap around and look for the next offset in list[0..start]. |
145 | // Since the list is not empty, there will be one. |
146 | result=capacity-start; |
147 | i=0; |
148 | while(!list[i]) { |
149 | ++i; |
150 | } |
151 | list[i]=false; |
152 | --length; |
153 | start=i; |
154 | return result+=i; |
155 | } |
156 | |
157 | private: |
158 | UBool *list; |
159 | int32_t capacity; |
160 | int32_t length; |
161 | int32_t start; |
162 | |
163 | UBool staticList[16]; |
164 | }; |
165 | |
166 | // Get the number of UTF-8 bytes for a UTF-16 (sub)string. |
167 | static int32_t |
168 | getUTF8Length(const char16_t *s, int32_t length) { |
169 | UErrorCode errorCode=U_ZERO_ERROR; |
170 | int32_t length8=0; |
171 | u_strToUTF8(nullptr, 0, &length8, s, length, &errorCode); |
172 | if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { |
173 | return length8; |
174 | } else { |
175 | // The string contains an unpaired surrogate. |
176 | // Ignore this string. |
177 | return 0; |
178 | } |
179 | } |
180 | |
181 | // Append the UTF-8 version of the string to t and return the appended UTF-8 length. |
182 | static int32_t |
183 | appendUTF8(const char16_t *s, int32_t length, uint8_t *t, int32_t capacity) { |
184 | UErrorCode errorCode=U_ZERO_ERROR; |
185 | int32_t length8=0; |
186 | u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); |
187 | if(U_SUCCESS(errorCode)) { |
188 | return length8; |
189 | } else { |
190 | // The string contains an unpaired surrogate. |
191 | // Ignore this string. |
192 | return 0; |
193 | } |
194 | } |
195 | |
196 | static inline uint8_t |
197 | makeSpanLengthByte(int32_t spanLength) { |
198 | // 0xfe==UnicodeSetStringSpan::LONG_SPAN |
199 | return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; |
200 | } |
201 | |
202 | // Construct for all variants of span(), or only for any one variant. |
203 | // Initialize as little as possible, for single use. |
204 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, |
205 | const UVector &setStrings, |
206 | uint32_t which) |
207 | : spanSet(0, 0x10ffff), pSpanNotSet(nullptr), strings(setStrings), |
208 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), |
209 | utf8Length(0), |
210 | maxLength16(0), maxLength8(0), |
211 | all((UBool)(which==ALL)) { |
212 | spanSet.retainAll(set); |
213 | if(which&NOT_CONTAINED) { |
214 | // Default to the same sets. |
215 | // addToSpanNotSet() will create a separate set if necessary. |
216 | pSpanNotSet=&spanSet; |
217 | } |
218 | |
219 | // Determine if the strings even need to be taken into account at all for span() etc. |
220 | // If any string is relevant, then all strings need to be used for |
221 | // span(longest match) but only the relevant ones for span(while contained). |
222 | // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH |
223 | // and do not store UTF-8 strings if !thisRelevant and CONTAINED. |
224 | // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) |
225 | // Also count the lengths of the UTF-8 versions of the strings for memory allocation. |
226 | int32_t stringsLength=strings.size(); |
227 | |
228 | int32_t i, spanLength; |
229 | UBool someRelevant=false; |
230 | for(i=0; i<stringsLength; ++i) { |
231 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
232 | const char16_t *s16=string.getBuffer(); |
233 | int32_t length16=string.length(); |
234 | if (length16==0) { |
235 | continue; // skip the empty string |
236 | } |
237 | UBool thisRelevant; |
238 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
239 | if(spanLength<length16) { // Relevant string. |
240 | someRelevant=thisRelevant=true; |
241 | } else { |
242 | thisRelevant=false; |
243 | } |
244 | if((which&UTF16) && length16>maxLength16) { |
245 | maxLength16=length16; |
246 | } |
247 | if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { |
248 | int32_t length8=getUTF8Length(s16, length16); |
249 | utf8Length+=length8; |
250 | if(length8>maxLength8) { |
251 | maxLength8=length8; |
252 | } |
253 | } |
254 | } |
255 | if(!someRelevant) { |
256 | maxLength16=maxLength8=0; |
257 | return; |
258 | } |
259 | |
260 | // Freeze after checking for the need to use strings at all because freezing |
261 | // a set takes some time and memory which are wasted if there are no relevant strings. |
262 | if(all) { |
263 | spanSet.freeze(); |
264 | } |
265 | |
266 | uint8_t *spanBackLengths; |
267 | uint8_t *spanUTF8Lengths; |
268 | uint8_t *spanBackUTF8Lengths; |
269 | |
270 | // Allocate a block of meta data. |
271 | int32_t allocSize; |
272 | if(all) { |
273 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
274 | allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
275 | } else { |
276 | allocSize=stringsLength; // One set of span lengths. |
277 | if(which&UTF8) { |
278 | // UTF-8 lengths and UTF-8 strings. |
279 | allocSize+=stringsLength*4+utf8Length; |
280 | } |
281 | } |
282 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
283 | utf8Lengths=staticLengths; |
284 | } else { |
285 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
286 | if(utf8Lengths==nullptr) { |
287 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. |
288 | return; // Out of memory. |
289 | } |
290 | } |
291 | |
292 | if(all) { |
293 | // Store span lengths for all span() variants. |
294 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
295 | spanBackLengths=spanLengths+stringsLength; |
296 | spanUTF8Lengths=spanBackLengths+stringsLength; |
297 | spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; |
298 | utf8=spanBackUTF8Lengths+stringsLength; |
299 | } else { |
300 | // Store span lengths for only one span() variant. |
301 | if(which&UTF8) { |
302 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
303 | utf8=spanLengths+stringsLength; |
304 | } else { |
305 | spanLengths=(uint8_t *)utf8Lengths; |
306 | } |
307 | spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; |
308 | } |
309 | |
310 | // Set the meta data and pSpanNotSet and write the UTF-8 strings. |
311 | int32_t utf8Count=0; // Count UTF-8 bytes written so far. |
312 | |
313 | for(i=0; i<stringsLength; ++i) { |
314 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
315 | const char16_t *s16=string.getBuffer(); |
316 | int32_t length16=string.length(); |
317 | spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); |
318 | if(spanLength<length16 && length16>0) { // Relevant string. |
319 | if(which&UTF16) { |
320 | if(which&CONTAINED) { |
321 | if(which&FWD) { |
322 | spanLengths[i]=makeSpanLengthByte(spanLength); |
323 | } |
324 | if(which&BACK) { |
325 | spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); |
326 | spanBackLengths[i]=makeSpanLengthByte(spanLength); |
327 | } |
328 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
329 | spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. |
330 | } |
331 | } |
332 | if(which&UTF8) { |
333 | uint8_t *s8=utf8+utf8Count; |
334 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
335 | utf8Count+=utf8Lengths[i]=length8; |
336 | if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. |
337 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; |
338 | } else { // Relevant for UTF-8. |
339 | if(which&CONTAINED) { |
340 | if(which&FWD) { |
341 | spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
342 | spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
343 | } |
344 | if(which&BACK) { |
345 | spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); |
346 | spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); |
347 | } |
348 | } else /* not CONTAINED, not all, but NOT_CONTAINED */ { |
349 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. |
350 | } |
351 | } |
352 | } |
353 | if(which&NOT_CONTAINED) { |
354 | // Add string start and end code points to the spanNotSet so that |
355 | // a span(while not contained) stops before any string. |
356 | UChar32 c; |
357 | if(which&FWD) { |
358 | int32_t len=0; |
359 | U16_NEXT(s16, len, length16, c); |
360 | addToSpanNotSet(c); |
361 | } |
362 | if(which&BACK) { |
363 | int32_t len=length16; |
364 | U16_PREV(s16, 0, len, c); |
365 | addToSpanNotSet(c); |
366 | } |
367 | } |
368 | } else { // Irrelevant string. (Also the empty string.) |
369 | if(which&UTF8) { |
370 | if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. |
371 | uint8_t *s8=utf8+utf8Count; |
372 | int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); |
373 | utf8Count+=utf8Lengths[i]=length8; |
374 | } else { |
375 | utf8Lengths[i]=0; |
376 | } |
377 | } |
378 | if(all) { |
379 | spanLengths[i]=spanBackLengths[i]= |
380 | spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= |
381 | (uint8_t)ALL_CP_CONTAINED; |
382 | } else { |
383 | // All spanXYZLengths pointers contain the same address. |
384 | spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; |
385 | } |
386 | } |
387 | } |
388 | |
389 | // Finish. |
390 | if(all) { |
391 | pSpanNotSet->freeze(); |
392 | } |
393 | } |
394 | |
395 | // Copy constructor. Assumes which==ALL for a frozen set. |
396 | UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, |
397 | const UVector &newParentSetStrings) |
398 | : spanSet(otherStringSpan.spanSet), pSpanNotSet(nullptr), strings(newParentSetStrings), |
399 | utf8Lengths(nullptr), spanLengths(nullptr), utf8(nullptr), |
400 | utf8Length(otherStringSpan.utf8Length), |
401 | maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), |
402 | all(true) { |
403 | if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { |
404 | pSpanNotSet=&spanSet; |
405 | } else { |
406 | pSpanNotSet=otherStringSpan.pSpanNotSet->clone(); |
407 | } |
408 | |
409 | // Allocate a block of meta data. |
410 | // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. |
411 | int32_t stringsLength=strings.size(); |
412 | int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; |
413 | if(allocSize<=(int32_t)sizeof(staticLengths)) { |
414 | utf8Lengths=staticLengths; |
415 | } else { |
416 | utf8Lengths=(int32_t *)uprv_malloc(allocSize); |
417 | if(utf8Lengths==nullptr) { |
418 | maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return false. |
419 | return; // Out of memory. |
420 | } |
421 | } |
422 | |
423 | spanLengths=(uint8_t *)(utf8Lengths+stringsLength); |
424 | utf8=spanLengths+stringsLength*4; |
425 | uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); |
426 | } |
427 | |
428 | UnicodeSetStringSpan::~UnicodeSetStringSpan() { |
429 | if(pSpanNotSet!=nullptr && pSpanNotSet!=&spanSet) { |
430 | delete pSpanNotSet; |
431 | } |
432 | if(utf8Lengths!=nullptr && utf8Lengths!=staticLengths) { |
433 | uprv_free(utf8Lengths); |
434 | } |
435 | } |
436 | |
437 | void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { |
438 | if(pSpanNotSet==nullptr || pSpanNotSet==&spanSet) { |
439 | if(spanSet.contains(c)) { |
440 | return; // Nothing to do. |
441 | } |
442 | UnicodeSet *newSet=spanSet.cloneAsThawed(); |
443 | if(newSet==nullptr) { |
444 | return; // Out of memory. |
445 | } else { |
446 | pSpanNotSet=newSet; |
447 | } |
448 | } |
449 | pSpanNotSet->add(c); |
450 | } |
451 | |
452 | // Compare strings without any argument checks. Requires length>0. |
453 | static inline UBool |
454 | matches16(const char16_t *s, const char16_t *t, int32_t length) { |
455 | do { |
456 | if(*s++!=*t++) { |
457 | return false; |
458 | } |
459 | } while(--length>0); |
460 | return true; |
461 | } |
462 | |
463 | static inline UBool |
464 | matches8(const uint8_t *s, const uint8_t *t, int32_t length) { |
465 | do { |
466 | if(*s++!=*t++) { |
467 | return false; |
468 | } |
469 | } while(--length>0); |
470 | return true; |
471 | } |
472 | |
473 | // Compare 16-bit Unicode strings (which may be malformed UTF-16) |
474 | // at code point boundaries. |
475 | // That is, each edge of a match must not be in the middle of a surrogate pair. |
476 | static inline UBool |
477 | matches16CPB(const char16_t *s, int32_t start, int32_t limit, const char16_t *t, int32_t length) { |
478 | s+=start; |
479 | limit-=start; |
480 | return matches16(s, t, length) && |
481 | !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && |
482 | !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); |
483 | } |
484 | |
485 | // Does the set contain the next code point? |
486 | // If so, return its length; otherwise return its negative length. |
487 | static inline int32_t |
488 | spanOne(const UnicodeSet &set, const char16_t *s, int32_t length) { |
489 | char16_t c=*s, c2; |
490 | if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { |
491 | return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; |
492 | } |
493 | return set.contains(c) ? 1 : -1; |
494 | } |
495 | |
496 | static inline int32_t |
497 | spanOneBack(const UnicodeSet &set, const char16_t *s, int32_t length) { |
498 | char16_t c=s[length-1], c2; |
499 | if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { |
500 | return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; |
501 | } |
502 | return set.contains(c) ? 1 : -1; |
503 | } |
504 | |
505 | static inline int32_t |
506 | spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
507 | UChar32 c=*s; |
508 | if(U8_IS_SINGLE(c)) { |
509 | return set.contains(c) ? 1 : -1; |
510 | } |
511 | // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). |
512 | int32_t i=0; |
513 | U8_NEXT_OR_FFFD(s, i, length, c); |
514 | return set.contains(c) ? i : -i; |
515 | } |
516 | |
517 | static inline int32_t |
518 | spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { |
519 | UChar32 c=s[length-1]; |
520 | if(U8_IS_SINGLE(c)) { |
521 | return set.contains(c) ? 1 : -1; |
522 | } |
523 | int32_t i=length-1; |
524 | c=utf8_prevCharSafeBody(s, 0, &i, c, -3); |
525 | length-=i; |
526 | return set.contains(c) ? length : -length; |
527 | } |
528 | |
529 | /* |
530 | * Note: In span() when spanLength==0 (after a string match, or at the beginning |
531 | * after an empty code point span) and in spanNot() and spanNotUTF8(), |
532 | * string matching could use a binary search |
533 | * because all string matches are done from the same start index. |
534 | * |
535 | * For UTF-8, this would require a comparison function that returns UTF-16 order. |
536 | * |
537 | * This optimization should not be necessary for normal UnicodeSets because |
538 | * most sets have no strings, and most sets with strings have |
539 | * very few very short strings. |
540 | * For cases with many strings, it might be better to use a different API |
541 | * and implementation with a DFA (state machine). |
542 | */ |
543 | |
544 | /* |
545 | * Algorithm for span(USET_SPAN_CONTAINED) |
546 | * |
547 | * Theoretical algorithm: |
548 | * - Iterate through the string, and at each code point boundary: |
549 | * + If the code point there is in the set, then remember to continue after it. |
550 | * + If a set string matches at the current position, then remember to continue after it. |
551 | * + Either recursively span for each code point or string match, |
552 | * or recursively span for all but the shortest one and |
553 | * iteratively continue the span with the shortest local match. |
554 | * + Remember the longest recursive span (the farthest end point). |
555 | * + If there is no match at the current position, neither for the code point there |
556 | * nor for any set string, then stop and return the longest recursive span length. |
557 | * |
558 | * Optimized implementation: |
559 | * |
560 | * (We assume that most sets will have very few very short strings. |
561 | * A span using a string-less set is extremely fast.) |
562 | * |
563 | * Create and cache a spanSet which contains all of the single code points |
564 | * of the original set but none of its strings. |
565 | * |
566 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
567 | * - Loop: |
568 | * + Try to match each set string at the end of the spanLength. |
569 | * ~ Set strings that start with set-contained code points must be matched |
570 | * with a partial overlap because the recursive algorithm would have tried |
571 | * to match them at every position. |
572 | * ~ Set strings that entirely consist of set-contained code points |
573 | * are irrelevant for span(USET_SPAN_CONTAINED) because the |
574 | * recursive algorithm would continue after them anyway |
575 | * and find the longest recursive match from their end. |
576 | * ~ Rather than recursing, note each end point of a set string match. |
577 | * + If no set string matched after spanSet.span(), then return |
578 | * with where the spanSet.span() ended. |
579 | * + If at least one set string matched after spanSet.span(), then |
580 | * pop the shortest string match end point and continue |
581 | * the loop, trying to match all set strings from there. |
582 | * + If at least one more set string matched after a previous string match, |
583 | * then test if the code point after the previous string match is also |
584 | * contained in the set. |
585 | * Continue the loop with the shortest end point of either this code point |
586 | * or a matching set string. |
587 | * + If no more set string matched after a previous string match, |
588 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
589 | * Stop if spanLength==0, otherwise continue the loop. |
590 | * |
591 | * By noting each end point of a set string match, |
592 | * the function visits each string position at most once and finishes |
593 | * in linear time. |
594 | * |
595 | * The recursive algorithm may visit the same string position many times |
596 | * if multiple paths lead to it and finishes in exponential time. |
597 | */ |
598 | |
599 | /* |
600 | * Algorithm for span(USET_SPAN_SIMPLE) |
601 | * |
602 | * Theoretical algorithm: |
603 | * - Iterate through the string, and at each code point boundary: |
604 | * + If the code point there is in the set, then remember to continue after it. |
605 | * + If a set string matches at the current position, then remember to continue after it. |
606 | * + Continue from the farthest match position and ignore all others. |
607 | * + If there is no match at the current position, |
608 | * then stop and return the current position. |
609 | * |
610 | * Optimized implementation: |
611 | * |
612 | * (Same assumption and spanSet as above.) |
613 | * |
614 | * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). |
615 | * - Loop: |
616 | * + Try to match each set string at the end of the spanLength. |
617 | * ~ Set strings that start with set-contained code points must be matched |
618 | * with a partial overlap because the standard algorithm would have tried |
619 | * to match them earlier. |
620 | * ~ Set strings that entirely consist of set-contained code points |
621 | * must be matched with a full overlap because the longest-match algorithm |
622 | * would hide set string matches that end earlier. |
623 | * Such set strings need not be matched earlier inside the code point span |
624 | * because the standard algorithm would then have continued after |
625 | * the set string match anyway. |
626 | * ~ Remember the longest set string match (farthest end point) from the earliest |
627 | * starting point. |
628 | * + If no set string matched after spanSet.span(), then return |
629 | * with where the spanSet.span() ended. |
630 | * + If at least one set string matched, then continue the loop after the |
631 | * longest match from the earliest position. |
632 | * + If no more set string matched after a previous string match, |
633 | * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). |
634 | * Stop if spanLength==0, otherwise continue the loop. |
635 | */ |
636 | |
637 | int32_t UnicodeSetStringSpan::span(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { |
638 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
639 | return spanNot(s, length); |
640 | } |
641 | int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); |
642 | if(spanLength==length) { |
643 | return length; |
644 | } |
645 | |
646 | // Consider strings; they may overlap with the span. |
647 | OffsetList offsets; |
648 | if(spanCondition==USET_SPAN_CONTAINED) { |
649 | // Use offset list to try all possibilities. |
650 | offsets.setMaxLength(maxLength16); |
651 | } |
652 | int32_t pos=spanLength, rest=length-pos; |
653 | int32_t i, stringsLength=strings.size(); |
654 | for(;;) { |
655 | if(spanCondition==USET_SPAN_CONTAINED) { |
656 | for(i=0; i<stringsLength; ++i) { |
657 | int32_t overlap=spanLengths[i]; |
658 | if(overlap==ALL_CP_CONTAINED) { |
659 | continue; // Irrelevant string. (Also the empty string.) |
660 | } |
661 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
662 | const char16_t *s16=string.getBuffer(); |
663 | int32_t length16=string.length(); |
664 | U_ASSERT(length>0); |
665 | |
666 | // Try to match this string at pos-overlap..pos. |
667 | if(overlap>=LONG_SPAN) { |
668 | overlap=length16; |
669 | // While contained: No point matching fully inside the code point span. |
670 | U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. |
671 | } |
672 | if(overlap>spanLength) { |
673 | overlap=spanLength; |
674 | } |
675 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
676 | for(;;) { |
677 | if(inc>rest) { |
678 | break; |
679 | } |
680 | // Try to match if the increment is not listed already. |
681 | if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { |
682 | if(inc==rest) { |
683 | return length; // Reached the end of the string. |
684 | } |
685 | offsets.addOffset(inc); |
686 | } |
687 | if(overlap==0) { |
688 | break; |
689 | } |
690 | --overlap; |
691 | ++inc; |
692 | } |
693 | } |
694 | } else /* USET_SPAN_SIMPLE */ { |
695 | int32_t maxInc=0, maxOverlap=0; |
696 | for(i=0; i<stringsLength; ++i) { |
697 | int32_t overlap=spanLengths[i]; |
698 | // For longest match, we do need to try to match even an all-contained string |
699 | // to find the match from the earliest start. |
700 | |
701 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
702 | const char16_t *s16=string.getBuffer(); |
703 | int32_t length16=string.length(); |
704 | if (length16==0) { |
705 | continue; // skip the empty string |
706 | } |
707 | |
708 | // Try to match this string at pos-overlap..pos. |
709 | if(overlap>=LONG_SPAN) { |
710 | overlap=length16; |
711 | // Longest match: Need to match fully inside the code point span |
712 | // to find the match from the earliest start. |
713 | } |
714 | if(overlap>spanLength) { |
715 | overlap=spanLength; |
716 | } |
717 | int32_t inc=length16-overlap; // Keep overlap+inc==length16. |
718 | for(;;) { |
719 | if(inc>rest || overlap<maxOverlap) { |
720 | break; |
721 | } |
722 | // Try to match if the string is longer or starts earlier. |
723 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && |
724 | matches16CPB(s, pos-overlap, length, s16, length16) |
725 | ) { |
726 | maxInc=inc; // Longest match from earliest start. |
727 | maxOverlap=overlap; |
728 | break; |
729 | } |
730 | --overlap; |
731 | ++inc; |
732 | } |
733 | } |
734 | |
735 | if(maxInc!=0 || maxOverlap!=0) { |
736 | // Longest-match algorithm, and there was a string match. |
737 | // Simply continue after it. |
738 | pos+=maxInc; |
739 | rest-=maxInc; |
740 | if(rest==0) { |
741 | return length; // Reached the end of the string. |
742 | } |
743 | spanLength=0; // Match strings from after a string match. |
744 | continue; |
745 | } |
746 | } |
747 | // Finished trying to match all strings at pos. |
748 | |
749 | if(spanLength!=0 || pos==0) { |
750 | // The position is after an unlimited code point span (spanLength!=0), |
751 | // not after a string match. |
752 | // The only position where spanLength==0 after a span is pos==0. |
753 | // Otherwise, an unlimited code point span is only tried again when no |
754 | // strings match, and if such a non-initial span fails we stop. |
755 | if(offsets.isEmpty()) { |
756 | return pos; // No strings matched after a span. |
757 | } |
758 | // Match strings from after the next string match. |
759 | } else { |
760 | // The position is after a string match (or a single code point). |
761 | if(offsets.isEmpty()) { |
762 | // No more strings matched after a previous string match. |
763 | // Try another code point span from after the last string match. |
764 | spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); |
765 | if( spanLength==rest || // Reached the end of the string, or |
766 | spanLength==0 // neither strings nor span progressed. |
767 | ) { |
768 | return pos+spanLength; |
769 | } |
770 | pos+=spanLength; |
771 | rest-=spanLength; |
772 | continue; // spanLength>0: Match strings from after a span. |
773 | } else { |
774 | // Try to match only one code point from after a string match if some |
775 | // string matched beyond it, so that we try all possible positions |
776 | // and don't overshoot. |
777 | spanLength=spanOne(spanSet, s+pos, rest); |
778 | if(spanLength>0) { |
779 | if(spanLength==rest) { |
780 | return length; // Reached the end of the string. |
781 | } |
782 | // Match strings after this code point. |
783 | // There cannot be any increments below it because UnicodeSet strings |
784 | // contain multiple code points. |
785 | pos+=spanLength; |
786 | rest-=spanLength; |
787 | offsets.shift(spanLength); |
788 | spanLength=0; |
789 | continue; // Match strings from after a single code point. |
790 | } |
791 | // Match strings from after the next string match. |
792 | } |
793 | } |
794 | int32_t minOffset=offsets.popMinimum(); |
795 | pos+=minOffset; |
796 | rest-=minOffset; |
797 | spanLength=0; // Match strings from after a string match. |
798 | } |
799 | } |
800 | |
801 | int32_t UnicodeSetStringSpan::spanBack(const char16_t *s, int32_t length, USetSpanCondition spanCondition) const { |
802 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
803 | return spanNotBack(s, length); |
804 | } |
805 | int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); |
806 | if(pos==0) { |
807 | return 0; |
808 | } |
809 | int32_t spanLength=length-pos; |
810 | |
811 | // Consider strings; they may overlap with the span. |
812 | OffsetList offsets; |
813 | if(spanCondition==USET_SPAN_CONTAINED) { |
814 | // Use offset list to try all possibilities. |
815 | offsets.setMaxLength(maxLength16); |
816 | } |
817 | int32_t i, stringsLength=strings.size(); |
818 | uint8_t *spanBackLengths=spanLengths; |
819 | if(all) { |
820 | spanBackLengths+=stringsLength; |
821 | } |
822 | for(;;) { |
823 | if(spanCondition==USET_SPAN_CONTAINED) { |
824 | for(i=0; i<stringsLength; ++i) { |
825 | int32_t overlap=spanBackLengths[i]; |
826 | if(overlap==ALL_CP_CONTAINED) { |
827 | continue; // Irrelevant string. (Also the empty string.) |
828 | } |
829 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
830 | const char16_t *s16=string.getBuffer(); |
831 | int32_t length16=string.length(); |
832 | U_ASSERT(length>0); |
833 | |
834 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
835 | if(overlap>=LONG_SPAN) { |
836 | overlap=length16; |
837 | // While contained: No point matching fully inside the code point span. |
838 | int32_t len1=0; |
839 | U16_FWD_1(s16, len1, overlap); |
840 | overlap-=len1; // Length of the string minus the first code point. |
841 | } |
842 | if(overlap>spanLength) { |
843 | overlap=spanLength; |
844 | } |
845 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
846 | for(;;) { |
847 | if(dec>pos) { |
848 | break; |
849 | } |
850 | // Try to match if the decrement is not listed already. |
851 | if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { |
852 | if(dec==pos) { |
853 | return 0; // Reached the start of the string. |
854 | } |
855 | offsets.addOffset(dec); |
856 | } |
857 | if(overlap==0) { |
858 | break; |
859 | } |
860 | --overlap; |
861 | ++dec; |
862 | } |
863 | } |
864 | } else /* USET_SPAN_SIMPLE */ { |
865 | int32_t maxDec=0, maxOverlap=0; |
866 | for(i=0; i<stringsLength; ++i) { |
867 | int32_t overlap=spanBackLengths[i]; |
868 | // For longest match, we do need to try to match even an all-contained string |
869 | // to find the match from the latest end. |
870 | |
871 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
872 | const char16_t *s16=string.getBuffer(); |
873 | int32_t length16=string.length(); |
874 | if (length16==0) { |
875 | continue; // skip the empty string |
876 | } |
877 | |
878 | // Try to match this string at pos-(length16-overlap)..pos-length16. |
879 | if(overlap>=LONG_SPAN) { |
880 | overlap=length16; |
881 | // Longest match: Need to match fully inside the code point span |
882 | // to find the match from the latest end. |
883 | } |
884 | if(overlap>spanLength) { |
885 | overlap=spanLength; |
886 | } |
887 | int32_t dec=length16-overlap; // Keep dec+overlap==length16. |
888 | for(;;) { |
889 | if(dec>pos || overlap<maxOverlap) { |
890 | break; |
891 | } |
892 | // Try to match if the string is longer or ends later. |
893 | if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
894 | matches16CPB(s, pos-dec, length, s16, length16) |
895 | ) { |
896 | maxDec=dec; // Longest match from latest end. |
897 | maxOverlap=overlap; |
898 | break; |
899 | } |
900 | --overlap; |
901 | ++dec; |
902 | } |
903 | } |
904 | |
905 | if(maxDec!=0 || maxOverlap!=0) { |
906 | // Longest-match algorithm, and there was a string match. |
907 | // Simply continue before it. |
908 | pos-=maxDec; |
909 | if(pos==0) { |
910 | return 0; // Reached the start of the string. |
911 | } |
912 | spanLength=0; // Match strings from before a string match. |
913 | continue; |
914 | } |
915 | } |
916 | // Finished trying to match all strings at pos. |
917 | |
918 | if(spanLength!=0 || pos==length) { |
919 | // The position is before an unlimited code point span (spanLength!=0), |
920 | // not before a string match. |
921 | // The only position where spanLength==0 before a span is pos==length. |
922 | // Otherwise, an unlimited code point span is only tried again when no |
923 | // strings match, and if such a non-initial span fails we stop. |
924 | if(offsets.isEmpty()) { |
925 | return pos; // No strings matched before a span. |
926 | } |
927 | // Match strings from before the next string match. |
928 | } else { |
929 | // The position is before a string match (or a single code point). |
930 | if(offsets.isEmpty()) { |
931 | // No more strings matched before a previous string match. |
932 | // Try another code point span from before the last string match. |
933 | int32_t oldPos=pos; |
934 | pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); |
935 | spanLength=oldPos-pos; |
936 | if( pos==0 || // Reached the start of the string, or |
937 | spanLength==0 // neither strings nor span progressed. |
938 | ) { |
939 | return pos; |
940 | } |
941 | continue; // spanLength>0: Match strings from before a span. |
942 | } else { |
943 | // Try to match only one code point from before a string match if some |
944 | // string matched beyond it, so that we try all possible positions |
945 | // and don't overshoot. |
946 | spanLength=spanOneBack(spanSet, s, pos); |
947 | if(spanLength>0) { |
948 | if(spanLength==pos) { |
949 | return 0; // Reached the start of the string. |
950 | } |
951 | // Match strings before this code point. |
952 | // There cannot be any decrements below it because UnicodeSet strings |
953 | // contain multiple code points. |
954 | pos-=spanLength; |
955 | offsets.shift(spanLength); |
956 | spanLength=0; |
957 | continue; // Match strings from before a single code point. |
958 | } |
959 | // Match strings from before the next string match. |
960 | } |
961 | } |
962 | pos-=offsets.popMinimum(); |
963 | spanLength=0; // Match strings from before a string match. |
964 | } |
965 | } |
966 | |
967 | int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
968 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
969 | return spanNotUTF8(s, length); |
970 | } |
971 | int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
972 | if(spanLength==length) { |
973 | return length; |
974 | } |
975 | |
976 | // Consider strings; they may overlap with the span. |
977 | OffsetList offsets; |
978 | if(spanCondition==USET_SPAN_CONTAINED) { |
979 | // Use offset list to try all possibilities. |
980 | offsets.setMaxLength(maxLength8); |
981 | } |
982 | int32_t pos=spanLength, rest=length-pos; |
983 | int32_t i, stringsLength=strings.size(); |
984 | uint8_t *spanUTF8Lengths=spanLengths; |
985 | if(all) { |
986 | spanUTF8Lengths+=2*stringsLength; |
987 | } |
988 | for(;;) { |
989 | const uint8_t *s8=utf8; |
990 | int32_t length8; |
991 | if(spanCondition==USET_SPAN_CONTAINED) { |
992 | for(i=0; i<stringsLength; ++i) { |
993 | length8=utf8Lengths[i]; |
994 | if(length8==0) { |
995 | continue; // String not representable in UTF-8. |
996 | } |
997 | int32_t overlap=spanUTF8Lengths[i]; |
998 | if(overlap==ALL_CP_CONTAINED) { |
999 | s8+=length8; |
1000 | continue; // Irrelevant string. |
1001 | } |
1002 | |
1003 | // Try to match this string at pos-overlap..pos. |
1004 | if(overlap>=LONG_SPAN) { |
1005 | overlap=length8; |
1006 | // While contained: No point matching fully inside the code point span. |
1007 | U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. |
1008 | } |
1009 | if(overlap>spanLength) { |
1010 | overlap=spanLength; |
1011 | } |
1012 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
1013 | for(;;) { |
1014 | if(inc>rest) { |
1015 | break; |
1016 | } |
1017 | // Try to match if the increment is not listed already. |
1018 | // Match at code point boundaries. (The UTF-8 strings were converted |
1019 | // from UTF-16 and are guaranteed to be well-formed.) |
1020 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
1021 | !offsets.containsOffset(inc) && |
1022 | matches8(s+pos-overlap, s8, length8)) { |
1023 | if(inc==rest) { |
1024 | return length; // Reached the end of the string. |
1025 | } |
1026 | offsets.addOffset(inc); |
1027 | } |
1028 | if(overlap==0) { |
1029 | break; |
1030 | } |
1031 | --overlap; |
1032 | ++inc; |
1033 | } |
1034 | s8+=length8; |
1035 | } |
1036 | } else /* USET_SPAN_SIMPLE */ { |
1037 | int32_t maxInc=0, maxOverlap=0; |
1038 | for(i=0; i<stringsLength; ++i) { |
1039 | length8=utf8Lengths[i]; |
1040 | if(length8==0) { |
1041 | continue; // String not representable in UTF-8. |
1042 | } |
1043 | int32_t overlap=spanUTF8Lengths[i]; |
1044 | // For longest match, we do need to try to match even an all-contained string |
1045 | // to find the match from the earliest start. |
1046 | |
1047 | // Try to match this string at pos-overlap..pos. |
1048 | if(overlap>=LONG_SPAN) { |
1049 | overlap=length8; |
1050 | // Longest match: Need to match fully inside the code point span |
1051 | // to find the match from the earliest start. |
1052 | } |
1053 | if(overlap>spanLength) { |
1054 | overlap=spanLength; |
1055 | } |
1056 | int32_t inc=length8-overlap; // Keep overlap+inc==length8. |
1057 | for(;;) { |
1058 | if(inc>rest || overlap<maxOverlap) { |
1059 | break; |
1060 | } |
1061 | // Try to match if the string is longer or starts earlier. |
1062 | // Match at code point boundaries. (The UTF-8 strings were converted |
1063 | // from UTF-16 and are guaranteed to be well-formed.) |
1064 | if(!U8_IS_TRAIL(s[pos-overlap]) && |
1065 | (overlap>maxOverlap || |
1066 | /* redundant overlap==maxOverlap && */ inc>maxInc) && |
1067 | matches8(s+pos-overlap, s8, length8)) { |
1068 | maxInc=inc; // Longest match from earliest start. |
1069 | maxOverlap=overlap; |
1070 | break; |
1071 | } |
1072 | --overlap; |
1073 | ++inc; |
1074 | } |
1075 | s8+=length8; |
1076 | } |
1077 | |
1078 | if(maxInc!=0 || maxOverlap!=0) { |
1079 | // Longest-match algorithm, and there was a string match. |
1080 | // Simply continue after it. |
1081 | pos+=maxInc; |
1082 | rest-=maxInc; |
1083 | if(rest==0) { |
1084 | return length; // Reached the end of the string. |
1085 | } |
1086 | spanLength=0; // Match strings from after a string match. |
1087 | continue; |
1088 | } |
1089 | } |
1090 | // Finished trying to match all strings at pos. |
1091 | |
1092 | if(spanLength!=0 || pos==0) { |
1093 | // The position is after an unlimited code point span (spanLength!=0), |
1094 | // not after a string match. |
1095 | // The only position where spanLength==0 after a span is pos==0. |
1096 | // Otherwise, an unlimited code point span is only tried again when no |
1097 | // strings match, and if such a non-initial span fails we stop. |
1098 | if(offsets.isEmpty()) { |
1099 | return pos; // No strings matched after a span. |
1100 | } |
1101 | // Match strings from after the next string match. |
1102 | } else { |
1103 | // The position is after a string match (or a single code point). |
1104 | if(offsets.isEmpty()) { |
1105 | // No more strings matched after a previous string match. |
1106 | // Try another code point span from after the last string match. |
1107 | spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); |
1108 | if( spanLength==rest || // Reached the end of the string, or |
1109 | spanLength==0 // neither strings nor span progressed. |
1110 | ) { |
1111 | return pos+spanLength; |
1112 | } |
1113 | pos+=spanLength; |
1114 | rest-=spanLength; |
1115 | continue; // spanLength>0: Match strings from after a span. |
1116 | } else { |
1117 | // Try to match only one code point from after a string match if some |
1118 | // string matched beyond it, so that we try all possible positions |
1119 | // and don't overshoot. |
1120 | spanLength=spanOneUTF8(spanSet, s+pos, rest); |
1121 | if(spanLength>0) { |
1122 | if(spanLength==rest) { |
1123 | return length; // Reached the end of the string. |
1124 | } |
1125 | // Match strings after this code point. |
1126 | // There cannot be any increments below it because UnicodeSet strings |
1127 | // contain multiple code points. |
1128 | pos+=spanLength; |
1129 | rest-=spanLength; |
1130 | offsets.shift(spanLength); |
1131 | spanLength=0; |
1132 | continue; // Match strings from after a single code point. |
1133 | } |
1134 | // Match strings from after the next string match. |
1135 | } |
1136 | } |
1137 | int32_t minOffset=offsets.popMinimum(); |
1138 | pos+=minOffset; |
1139 | rest-=minOffset; |
1140 | spanLength=0; // Match strings from after a string match. |
1141 | } |
1142 | } |
1143 | |
1144 | int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { |
1145 | if(spanCondition==USET_SPAN_NOT_CONTAINED) { |
1146 | return spanNotBackUTF8(s, length); |
1147 | } |
1148 | int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); |
1149 | if(pos==0) { |
1150 | return 0; |
1151 | } |
1152 | int32_t spanLength=length-pos; |
1153 | |
1154 | // Consider strings; they may overlap with the span. |
1155 | OffsetList offsets; |
1156 | if(spanCondition==USET_SPAN_CONTAINED) { |
1157 | // Use offset list to try all possibilities. |
1158 | offsets.setMaxLength(maxLength8); |
1159 | } |
1160 | int32_t i, stringsLength=strings.size(); |
1161 | uint8_t *spanBackUTF8Lengths=spanLengths; |
1162 | if(all) { |
1163 | spanBackUTF8Lengths+=3*stringsLength; |
1164 | } |
1165 | for(;;) { |
1166 | const uint8_t *s8=utf8; |
1167 | int32_t length8; |
1168 | if(spanCondition==USET_SPAN_CONTAINED) { |
1169 | for(i=0; i<stringsLength; ++i) { |
1170 | length8=utf8Lengths[i]; |
1171 | if(length8==0) { |
1172 | continue; // String not representable in UTF-8. |
1173 | } |
1174 | int32_t overlap=spanBackUTF8Lengths[i]; |
1175 | if(overlap==ALL_CP_CONTAINED) { |
1176 | s8+=length8; |
1177 | continue; // Irrelevant string. |
1178 | } |
1179 | |
1180 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
1181 | if(overlap>=LONG_SPAN) { |
1182 | overlap=length8; |
1183 | // While contained: No point matching fully inside the code point span. |
1184 | int32_t len1=0; |
1185 | U8_FWD_1(s8, len1, overlap); |
1186 | overlap-=len1; // Length of the string minus the first code point. |
1187 | } |
1188 | if(overlap>spanLength) { |
1189 | overlap=spanLength; |
1190 | } |
1191 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
1192 | for(;;) { |
1193 | if(dec>pos) { |
1194 | break; |
1195 | } |
1196 | // Try to match if the decrement is not listed already. |
1197 | // Match at code point boundaries. (The UTF-8 strings were converted |
1198 | // from UTF-16 and are guaranteed to be well-formed.) |
1199 | if( !U8_IS_TRAIL(s[pos-dec]) && |
1200 | !offsets.containsOffset(dec) && |
1201 | matches8(s+pos-dec, s8, length8) |
1202 | ) { |
1203 | if(dec==pos) { |
1204 | return 0; // Reached the start of the string. |
1205 | } |
1206 | offsets.addOffset(dec); |
1207 | } |
1208 | if(overlap==0) { |
1209 | break; |
1210 | } |
1211 | --overlap; |
1212 | ++dec; |
1213 | } |
1214 | s8+=length8; |
1215 | } |
1216 | } else /* USET_SPAN_SIMPLE */ { |
1217 | int32_t maxDec=0, maxOverlap=0; |
1218 | for(i=0; i<stringsLength; ++i) { |
1219 | length8=utf8Lengths[i]; |
1220 | if(length8==0) { |
1221 | continue; // String not representable in UTF-8. |
1222 | } |
1223 | int32_t overlap=spanBackUTF8Lengths[i]; |
1224 | // For longest match, we do need to try to match even an all-contained string |
1225 | // to find the match from the latest end. |
1226 | |
1227 | // Try to match this string at pos-(length8-overlap)..pos-length8. |
1228 | if(overlap>=LONG_SPAN) { |
1229 | overlap=length8; |
1230 | // Longest match: Need to match fully inside the code point span |
1231 | // to find the match from the latest end. |
1232 | } |
1233 | if(overlap>spanLength) { |
1234 | overlap=spanLength; |
1235 | } |
1236 | int32_t dec=length8-overlap; // Keep dec+overlap==length8. |
1237 | for(;;) { |
1238 | if(dec>pos || overlap<maxOverlap) { |
1239 | break; |
1240 | } |
1241 | // Try to match if the string is longer or ends later. |
1242 | // Match at code point boundaries. (The UTF-8 strings were converted |
1243 | // from UTF-16 and are guaranteed to be well-formed.) |
1244 | if( !U8_IS_TRAIL(s[pos-dec]) && |
1245 | (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && |
1246 | matches8(s+pos-dec, s8, length8) |
1247 | ) { |
1248 | maxDec=dec; // Longest match from latest end. |
1249 | maxOverlap=overlap; |
1250 | break; |
1251 | } |
1252 | --overlap; |
1253 | ++dec; |
1254 | } |
1255 | s8+=length8; |
1256 | } |
1257 | |
1258 | if(maxDec!=0 || maxOverlap!=0) { |
1259 | // Longest-match algorithm, and there was a string match. |
1260 | // Simply continue before it. |
1261 | pos-=maxDec; |
1262 | if(pos==0) { |
1263 | return 0; // Reached the start of the string. |
1264 | } |
1265 | spanLength=0; // Match strings from before a string match. |
1266 | continue; |
1267 | } |
1268 | } |
1269 | // Finished trying to match all strings at pos. |
1270 | |
1271 | if(spanLength!=0 || pos==length) { |
1272 | // The position is before an unlimited code point span (spanLength!=0), |
1273 | // not before a string match. |
1274 | // The only position where spanLength==0 before a span is pos==length. |
1275 | // Otherwise, an unlimited code point span is only tried again when no |
1276 | // strings match, and if such a non-initial span fails we stop. |
1277 | if(offsets.isEmpty()) { |
1278 | return pos; // No strings matched before a span. |
1279 | } |
1280 | // Match strings from before the next string match. |
1281 | } else { |
1282 | // The position is before a string match (or a single code point). |
1283 | if(offsets.isEmpty()) { |
1284 | // No more strings matched before a previous string match. |
1285 | // Try another code point span from before the last string match. |
1286 | int32_t oldPos=pos; |
1287 | pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); |
1288 | spanLength=oldPos-pos; |
1289 | if( pos==0 || // Reached the start of the string, or |
1290 | spanLength==0 // neither strings nor span progressed. |
1291 | ) { |
1292 | return pos; |
1293 | } |
1294 | continue; // spanLength>0: Match strings from before a span. |
1295 | } else { |
1296 | // Try to match only one code point from before a string match if some |
1297 | // string matched beyond it, so that we try all possible positions |
1298 | // and don't overshoot. |
1299 | spanLength=spanOneBackUTF8(spanSet, s, pos); |
1300 | if(spanLength>0) { |
1301 | if(spanLength==pos) { |
1302 | return 0; // Reached the start of the string. |
1303 | } |
1304 | // Match strings before this code point. |
1305 | // There cannot be any decrements below it because UnicodeSet strings |
1306 | // contain multiple code points. |
1307 | pos-=spanLength; |
1308 | offsets.shift(spanLength); |
1309 | spanLength=0; |
1310 | continue; // Match strings from before a single code point. |
1311 | } |
1312 | // Match strings from before the next string match. |
1313 | } |
1314 | } |
1315 | pos-=offsets.popMinimum(); |
1316 | spanLength=0; // Match strings from before a string match. |
1317 | } |
1318 | } |
1319 | |
1320 | /* |
1321 | * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) |
1322 | * |
1323 | * Theoretical algorithm: |
1324 | * - Iterate through the string, and at each code point boundary: |
1325 | * + If the code point there is in the set, then return with the current position. |
1326 | * + If a set string matches at the current position, then return with the current position. |
1327 | * |
1328 | * Optimized implementation: |
1329 | * |
1330 | * (Same assumption as for span() above.) |
1331 | * |
1332 | * Create and cache a spanNotSet which contains all of the single code points |
1333 | * of the original set but none of its strings. |
1334 | * For each set string add its initial code point to the spanNotSet. |
1335 | * (Also add its final code point for spanNotBack().) |
1336 | * |
1337 | * - Loop: |
1338 | * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). |
1339 | * + If the current code point is in the original set, then |
1340 | * return the current position. |
1341 | * + If any set string matches at the current position, then |
1342 | * return the current position. |
1343 | * + If there is no match at the current position, neither for the code point there |
1344 | * nor for any set string, then skip this code point and continue the loop. |
1345 | * This happens for set-string-initial code points that were added to spanNotSet |
1346 | * when there is not actually a match for such a set string. |
1347 | */ |
1348 | |
1349 | int32_t UnicodeSetStringSpan::spanNot(const char16_t *s, int32_t length) const { |
1350 | int32_t pos=0, rest=length; |
1351 | int32_t i, stringsLength=strings.size(); |
1352 | do { |
1353 | // Span until we find a code point from the set, |
1354 | // or a code point that starts or ends some string. |
1355 | i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); |
1356 | if(i==rest) { |
1357 | return length; // Reached the end of the string. |
1358 | } |
1359 | pos+=i; |
1360 | rest-=i; |
1361 | |
1362 | // Check whether the current code point is in the original set, |
1363 | // without the string starts and ends. |
1364 | int32_t cpLength=spanOne(spanSet, s+pos, rest); |
1365 | if(cpLength>0) { |
1366 | return pos; // There is a set element at pos. |
1367 | } |
1368 | |
1369 | // Try to match the strings at pos. |
1370 | for(i=0; i<stringsLength; ++i) { |
1371 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
1372 | continue; // Irrelevant string. (Also the empty string.) |
1373 | } |
1374 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
1375 | const char16_t *s16=string.getBuffer(); |
1376 | int32_t length16=string.length(); |
1377 | U_ASSERT(length>0); |
1378 | if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { |
1379 | return pos; // There is a set element at pos. |
1380 | } |
1381 | } |
1382 | |
1383 | // The span(while not contained) ended on a string start/end which is |
1384 | // not in the original set. Skip this code point and continue. |
1385 | // cpLength<0 |
1386 | pos-=cpLength; |
1387 | rest+=cpLength; |
1388 | } while(rest!=0); |
1389 | return length; // Reached the end of the string. |
1390 | } |
1391 | |
1392 | int32_t UnicodeSetStringSpan::spanNotBack(const char16_t *s, int32_t length) const { |
1393 | int32_t pos=length; |
1394 | int32_t i, stringsLength=strings.size(); |
1395 | do { |
1396 | // Span until we find a code point from the set, |
1397 | // or a code point that starts or ends some string. |
1398 | pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); |
1399 | if(pos==0) { |
1400 | return 0; // Reached the start of the string. |
1401 | } |
1402 | |
1403 | // Check whether the current code point is in the original set, |
1404 | // without the string starts and ends. |
1405 | int32_t cpLength=spanOneBack(spanSet, s, pos); |
1406 | if(cpLength>0) { |
1407 | return pos; // There is a set element at pos. |
1408 | } |
1409 | |
1410 | // Try to match the strings at pos. |
1411 | for(i=0; i<stringsLength; ++i) { |
1412 | // Use spanLengths rather than a spanBackLengths pointer because |
1413 | // it is easier and we only need to know whether the string is irrelevant |
1414 | // which is the same in either array. |
1415 | if(spanLengths[i]==ALL_CP_CONTAINED) { |
1416 | continue; // Irrelevant string. (Also the empty string.) |
1417 | } |
1418 | const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); |
1419 | const char16_t *s16=string.getBuffer(); |
1420 | int32_t length16=string.length(); |
1421 | U_ASSERT(length>0); |
1422 | if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { |
1423 | return pos; // There is a set element at pos. |
1424 | } |
1425 | } |
1426 | |
1427 | // The span(while not contained) ended on a string start/end which is |
1428 | // not in the original set. Skip this code point and continue. |
1429 | // cpLength<0 |
1430 | pos+=cpLength; |
1431 | } while(pos!=0); |
1432 | return 0; // Reached the start of the string. |
1433 | } |
1434 | |
1435 | int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { |
1436 | int32_t pos=0, rest=length; |
1437 | int32_t i, stringsLength=strings.size(); |
1438 | uint8_t *spanUTF8Lengths=spanLengths; |
1439 | if(all) { |
1440 | spanUTF8Lengths+=2*stringsLength; |
1441 | } |
1442 | do { |
1443 | // Span until we find a code point from the set, |
1444 | // or a code point that starts or ends some string. |
1445 | i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); |
1446 | if(i==rest) { |
1447 | return length; // Reached the end of the string. |
1448 | } |
1449 | pos+=i; |
1450 | rest-=i; |
1451 | |
1452 | // Check whether the current code point is in the original set, |
1453 | // without the string starts and ends. |
1454 | int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); |
1455 | if(cpLength>0) { |
1456 | return pos; // There is a set element at pos. |
1457 | } |
1458 | |
1459 | // Try to match the strings at pos. |
1460 | const uint8_t *s8=utf8; |
1461 | int32_t length8; |
1462 | for(i=0; i<stringsLength; ++i) { |
1463 | length8=utf8Lengths[i]; |
1464 | // ALL_CP_CONTAINED: Irrelevant string. |
1465 | if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { |
1466 | return pos; // There is a set element at pos. |
1467 | } |
1468 | s8+=length8; |
1469 | } |
1470 | |
1471 | // The span(while not contained) ended on a string start/end which is |
1472 | // not in the original set. Skip this code point and continue. |
1473 | // cpLength<0 |
1474 | pos-=cpLength; |
1475 | rest+=cpLength; |
1476 | } while(rest!=0); |
1477 | return length; // Reached the end of the string. |
1478 | } |
1479 | |
1480 | int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { |
1481 | int32_t pos=length; |
1482 | int32_t i, stringsLength=strings.size(); |
1483 | uint8_t *spanBackUTF8Lengths=spanLengths; |
1484 | if(all) { |
1485 | spanBackUTF8Lengths+=3*stringsLength; |
1486 | } |
1487 | do { |
1488 | // Span until we find a code point from the set, |
1489 | // or a code point that starts or ends some string. |
1490 | pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); |
1491 | if(pos==0) { |
1492 | return 0; // Reached the start of the string. |
1493 | } |
1494 | |
1495 | // Check whether the current code point is in the original set, |
1496 | // without the string starts and ends. |
1497 | int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); |
1498 | if(cpLength>0) { |
1499 | return pos; // There is a set element at pos. |
1500 | } |
1501 | |
1502 | // Try to match the strings at pos. |
1503 | const uint8_t *s8=utf8; |
1504 | int32_t length8; |
1505 | for(i=0; i<stringsLength; ++i) { |
1506 | length8=utf8Lengths[i]; |
1507 | // ALL_CP_CONTAINED: Irrelevant string. |
1508 | if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { |
1509 | return pos; // There is a set element at pos. |
1510 | } |
1511 | s8+=length8; |
1512 | } |
1513 | |
1514 | // The span(while not contained) ended on a string start/end which is |
1515 | // not in the original set. Skip this code point and continue. |
1516 | // cpLength<0 |
1517 | pos+=cpLength; |
1518 | } while(pos!=0); |
1519 | return 0; // Reached the start of the string. |
1520 | } |
1521 | |
1522 | U_NAMESPACE_END |
1523 | |