1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ******************************************************************************* |
5 | * |
6 | * Copyright (C) 2005-2016, International Business Machines |
7 | * Corporation and others. All Rights Reserved. |
8 | * |
9 | ******************************************************************************* |
10 | * file name: utext.cpp |
11 | * encoding: UTF-8 |
12 | * tab size: 8 (not used) |
13 | * indentation:4 |
14 | * |
15 | * created on: 2005apr12 |
16 | * created by: Markus W. Scherer |
17 | */ |
18 | |
19 | #include <cstddef> |
20 | |
21 | #include "unicode/utypes.h" |
22 | #include "unicode/ustring.h" |
23 | #include "unicode/unistr.h" |
24 | #include "unicode/chariter.h" |
25 | #include "unicode/utext.h" |
26 | #include "unicode/utf.h" |
27 | #include "unicode/utf8.h" |
28 | #include "unicode/utf16.h" |
29 | #include "ustr_imp.h" |
30 | #include "cmemory.h" |
31 | #include "cstring.h" |
32 | #include "uassert.h" |
33 | #include "putilimp.h" |
34 | |
35 | U_NAMESPACE_USE |
36 | |
37 | #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
38 | |
39 | |
40 | static UBool |
41 | utext_access(UText *ut, int64_t index, UBool forward) { |
42 | return ut->pFuncs->access(ut, index, forward); |
43 | } |
44 | |
45 | |
46 | |
47 | U_CAPI UBool U_EXPORT2 |
48 | utext_moveIndex32(UText *ut, int32_t delta) { |
49 | UChar32 c; |
50 | if (delta > 0) { |
51 | do { |
52 | if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, true)) { |
53 | return false; |
54 | } |
55 | c = ut->chunkContents[ut->chunkOffset]; |
56 | if (U16_IS_SURROGATE(c)) { |
57 | c = utext_next32(ut); |
58 | if (c == U_SENTINEL) { |
59 | return false; |
60 | } |
61 | } else { |
62 | ut->chunkOffset++; |
63 | } |
64 | } while(--delta>0); |
65 | |
66 | } else if (delta<0) { |
67 | do { |
68 | if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, false)) { |
69 | return false; |
70 | } |
71 | c = ut->chunkContents[ut->chunkOffset-1]; |
72 | if (U16_IS_SURROGATE(c)) { |
73 | c = utext_previous32(ut); |
74 | if (c == U_SENTINEL) { |
75 | return false; |
76 | } |
77 | } else { |
78 | ut->chunkOffset--; |
79 | } |
80 | } while(++delta<0); |
81 | } |
82 | |
83 | return true; |
84 | } |
85 | |
86 | |
87 | U_CAPI int64_t U_EXPORT2 |
88 | utext_nativeLength(UText *ut) { |
89 | return ut->pFuncs->nativeLength(ut); |
90 | } |
91 | |
92 | |
93 | U_CAPI UBool U_EXPORT2 |
94 | utext_isLengthExpensive(const UText *ut) { |
95 | UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; |
96 | return r; |
97 | } |
98 | |
99 | |
100 | U_CAPI int64_t U_EXPORT2 |
101 | utext_getNativeIndex(const UText *ut) { |
102 | if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
103 | return ut->chunkNativeStart+ut->chunkOffset; |
104 | } else { |
105 | return ut->pFuncs->mapOffsetToNative(ut); |
106 | } |
107 | } |
108 | |
109 | |
110 | U_CAPI void U_EXPORT2 |
111 | utext_setNativeIndex(UText *ut, int64_t index) { |
112 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
113 | // The desired position is outside of the current chunk. |
114 | // Access the new position. Assume a forward iteration from here, |
115 | // which will also be optimimum for a single random access. |
116 | // Reverse iterations may suffer slightly. |
117 | ut->pFuncs->access(ut, index, true); |
118 | } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { |
119 | // utf-16 indexing. |
120 | ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
121 | } else { |
122 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
123 | } |
124 | // The convention is that the index must always be on a code point boundary. |
125 | // Adjust the index position if it is in the middle of a surrogate pair. |
126 | if (ut->chunkOffset<ut->chunkLength) { |
127 | char16_t c= ut->chunkContents[ut->chunkOffset]; |
128 | if (U16_IS_TRAIL(c)) { |
129 | if (ut->chunkOffset==0) { |
130 | ut->pFuncs->access(ut, ut->chunkNativeStart, false); |
131 | } |
132 | if (ut->chunkOffset>0) { |
133 | char16_t lead = ut->chunkContents[ut->chunkOffset-1]; |
134 | if (U16_IS_LEAD(lead)) { |
135 | ut->chunkOffset--; |
136 | } |
137 | } |
138 | } |
139 | } |
140 | } |
141 | |
142 | |
143 | |
144 | U_CAPI int64_t U_EXPORT2 |
145 | utext_getPreviousNativeIndex(UText *ut) { |
146 | // |
147 | // Fast-path the common case. |
148 | // Common means current position is not at the beginning of a chunk |
149 | // and the preceding character is not supplementary. |
150 | // |
151 | int32_t i = ut->chunkOffset - 1; |
152 | int64_t result; |
153 | if (i >= 0) { |
154 | char16_t c = ut->chunkContents[i]; |
155 | if (U16_IS_TRAIL(c) == false) { |
156 | if (i <= ut->nativeIndexingLimit) { |
157 | result = ut->chunkNativeStart + i; |
158 | } else { |
159 | ut->chunkOffset = i; |
160 | result = ut->pFuncs->mapOffsetToNative(ut); |
161 | ut->chunkOffset++; |
162 | } |
163 | return result; |
164 | } |
165 | } |
166 | |
167 | // If at the start of text, simply return 0. |
168 | if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
169 | return 0; |
170 | } |
171 | |
172 | // Harder, less common cases. We are at a chunk boundary, or on a surrogate. |
173 | // Keep it simple, use other functions to handle the edges. |
174 | // |
175 | utext_previous32(ut); |
176 | result = UTEXT_GETNATIVEINDEX(ut); |
177 | utext_next32(ut); |
178 | return result; |
179 | } |
180 | |
181 | |
182 | // |
183 | // utext_current32. Get the UChar32 at the current position. |
184 | // UText iteration position is always on a code point boundary, |
185 | // never on the trail half of a surrogate pair. |
186 | // |
187 | U_CAPI UChar32 U_EXPORT2 |
188 | utext_current32(UText *ut) { |
189 | UChar32 c; |
190 | if (ut->chunkOffset==ut->chunkLength) { |
191 | // Current position is just off the end of the chunk. |
192 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
193 | // Off the end of the text. |
194 | return U_SENTINEL; |
195 | } |
196 | } |
197 | |
198 | c = ut->chunkContents[ut->chunkOffset]; |
199 | if (U16_IS_LEAD(c) == false) { |
200 | // Normal, non-supplementary case. |
201 | return c; |
202 | } |
203 | |
204 | // |
205 | // Possible supplementary char. |
206 | // |
207 | UChar32 trail = 0; |
208 | UChar32 supplementaryC = c; |
209 | if ((ut->chunkOffset+1) < ut->chunkLength) { |
210 | // The trail surrogate is in the same chunk. |
211 | trail = ut->chunkContents[ut->chunkOffset+1]; |
212 | } else { |
213 | // The trail surrogate is in a different chunk. |
214 | // Because we must maintain the iteration position, we need to switch forward |
215 | // into the new chunk, get the trail surrogate, then revert the chunk back to the |
216 | // original one. |
217 | // An edge case to be careful of: the entire text may end with an unpaired |
218 | // leading surrogate. The attempt to access the trail will fail, but |
219 | // the original position before the unpaired lead still needs to be restored. |
220 | int64_t nativePosition = ut->chunkNativeLimit; |
221 | if (ut->pFuncs->access(ut, nativePosition, true)) { |
222 | trail = ut->chunkContents[ut->chunkOffset]; |
223 | } |
224 | UBool r = ut->pFuncs->access(ut, nativePosition, false); // reverse iteration flag loads preceding chunk |
225 | U_ASSERT(r); |
226 | // Here we need to restore chunkOffset since the access functions were called with |
227 | // chunkNativeLimit but that is not where we were (we were 1 code unit before the |
228 | // limit). Restoring was originally added in ICU-4669 but did not support access |
229 | // functions that changed the chunk size, the following does. |
230 | ut->chunkOffset = ut->chunkLength - 1; |
231 | if(!r) { |
232 | return U_SENTINEL; |
233 | } |
234 | } |
235 | |
236 | if (U16_IS_TRAIL(trail)) { |
237 | supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
238 | } |
239 | return supplementaryC; |
240 | |
241 | } |
242 | |
243 | |
244 | U_CAPI UChar32 U_EXPORT2 |
245 | utext_char32At(UText *ut, int64_t nativeIndex) { |
246 | UChar32 c = U_SENTINEL; |
247 | |
248 | // Fast path the common case. |
249 | if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { |
250 | ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
251 | c = ut->chunkContents[ut->chunkOffset]; |
252 | if (U16_IS_SURROGATE(c) == false) { |
253 | return c; |
254 | } |
255 | } |
256 | |
257 | |
258 | utext_setNativeIndex(ut, nativeIndex); |
259 | if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
260 | c = ut->chunkContents[ut->chunkOffset]; |
261 | if (U16_IS_SURROGATE(c)) { |
262 | // For surrogates, let current32() deal with the complications |
263 | // of supplementaries that may span chunk boundaries. |
264 | c = utext_current32(ut); |
265 | } |
266 | } |
267 | return c; |
268 | } |
269 | |
270 | |
271 | U_CAPI UChar32 U_EXPORT2 |
272 | utext_next32(UText *ut) { |
273 | UChar32 c; |
274 | |
275 | if (ut->chunkOffset >= ut->chunkLength) { |
276 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
277 | return U_SENTINEL; |
278 | } |
279 | } |
280 | |
281 | c = ut->chunkContents[ut->chunkOffset++]; |
282 | if (U16_IS_LEAD(c) == false) { |
283 | // Normal case, not supplementary. |
284 | // (A trail surrogate seen here is just returned as is, as a surrogate value. |
285 | // It cannot be part of a pair.) |
286 | return c; |
287 | } |
288 | |
289 | if (ut->chunkOffset >= ut->chunkLength) { |
290 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
291 | // c is an unpaired lead surrogate at the end of the text. |
292 | // return it as it is. |
293 | return c; |
294 | } |
295 | } |
296 | UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
297 | if (U16_IS_TRAIL(trail) == false) { |
298 | // c was an unpaired lead surrogate, not at the end of the text. |
299 | // return it as it is (unpaired). Iteration position is on the |
300 | // following character, possibly in the next chunk, where the |
301 | // trail surrogate would have been if it had existed. |
302 | return c; |
303 | } |
304 | |
305 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
306 | ut->chunkOffset++; // move iteration position over the trail surrogate. |
307 | return supplementary; |
308 | } |
309 | |
310 | |
311 | U_CAPI UChar32 U_EXPORT2 |
312 | utext_previous32(UText *ut) { |
313 | UChar32 c; |
314 | |
315 | if (ut->chunkOffset <= 0) { |
316 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) { |
317 | return U_SENTINEL; |
318 | } |
319 | } |
320 | ut->chunkOffset--; |
321 | c = ut->chunkContents[ut->chunkOffset]; |
322 | if (U16_IS_TRAIL(c) == false) { |
323 | // Normal case, not supplementary. |
324 | // (A lead surrogate seen here is just returned as is, as a surrogate value. |
325 | // It cannot be part of a pair.) |
326 | return c; |
327 | } |
328 | |
329 | if (ut->chunkOffset <= 0) { |
330 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) { |
331 | // c is an unpaired trail surrogate at the start of the text. |
332 | // return it as it is. |
333 | return c; |
334 | } |
335 | } |
336 | |
337 | UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
338 | if (U16_IS_LEAD(lead) == false) { |
339 | // c was an unpaired trail surrogate, not at the end of the text. |
340 | // return it as it is (unpaired). Iteration position is at c |
341 | return c; |
342 | } |
343 | |
344 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
345 | ut->chunkOffset--; // move iteration position over the lead surrogate. |
346 | return supplementary; |
347 | } |
348 | |
349 | |
350 | |
351 | U_CAPI UChar32 U_EXPORT2 |
352 | utext_next32From(UText *ut, int64_t index) { |
353 | UChar32 c = U_SENTINEL; |
354 | |
355 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
356 | // Desired position is outside of the current chunk. |
357 | if(!ut->pFuncs->access(ut, index, true)) { |
358 | // no chunk available here |
359 | return U_SENTINEL; |
360 | } |
361 | } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
362 | // Desired position is in chunk, with direct 1:1 native to UTF16 indexing |
363 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
364 | } else { |
365 | // Desired position is in chunk, with non-UTF16 indexing. |
366 | ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
367 | } |
368 | |
369 | c = ut->chunkContents[ut->chunkOffset++]; |
370 | if (U16_IS_SURROGATE(c)) { |
371 | // Surrogates. Many edge cases. Use other functions that already |
372 | // deal with the problems. |
373 | utext_setNativeIndex(ut, index); |
374 | c = utext_next32(ut); |
375 | } |
376 | return c; |
377 | } |
378 | |
379 | |
380 | U_CAPI UChar32 U_EXPORT2 |
381 | utext_previous32From(UText *ut, int64_t index) { |
382 | // |
383 | // Return the character preceding the specified index. |
384 | // Leave the iteration position at the start of the character that was returned. |
385 | // |
386 | UChar32 cPrev; // The character preceding cCurr, which is what we will return. |
387 | |
388 | // Address the chunk containing the position preceding the incoming index |
389 | // A tricky edge case: |
390 | // We try to test the requested native index against the chunkNativeStart to determine |
391 | // whether the character preceding the one at the index is in the current chunk. |
392 | // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the |
393 | // requested index is on something other than the first position of the first char. |
394 | // |
395 | if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
396 | // Requested native index is outside of the current chunk. |
397 | if(!ut->pFuncs->access(ut, index, false)) { |
398 | // no chunk available here |
399 | return U_SENTINEL; |
400 | } |
401 | } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
402 | // Direct UTF-16 indexing. |
403 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
404 | } else { |
405 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
406 | if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, false)) { |
407 | // no chunk available here |
408 | return U_SENTINEL; |
409 | } |
410 | } |
411 | |
412 | // |
413 | // Simple case with no surrogates. |
414 | // |
415 | ut->chunkOffset--; |
416 | cPrev = ut->chunkContents[ut->chunkOffset]; |
417 | |
418 | if (U16_IS_SURROGATE(cPrev)) { |
419 | // Possible supplementary. Many edge cases. |
420 | // Let other functions do the heavy lifting. |
421 | utext_setNativeIndex(ut, index); |
422 | cPrev = utext_previous32(ut); |
423 | } |
424 | return cPrev; |
425 | } |
426 | |
427 | |
428 | U_CAPI int32_t U_EXPORT2 |
429 | utext_extract(UText *ut, |
430 | int64_t start, int64_t limit, |
431 | char16_t *dest, int32_t destCapacity, |
432 | UErrorCode *status) { |
433 | return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); |
434 | } |
435 | |
436 | |
437 | |
438 | U_CAPI UBool U_EXPORT2 |
439 | utext_equals(const UText *a, const UText *b) { |
440 | if (a==nullptr || b==nullptr || |
441 | a->magic != UTEXT_MAGIC || |
442 | b->magic != UTEXT_MAGIC) { |
443 | // Null or invalid arguments don't compare equal to anything. |
444 | return false; |
445 | } |
446 | |
447 | if (a->pFuncs != b->pFuncs) { |
448 | // Different types of text providers. |
449 | return false; |
450 | } |
451 | |
452 | if (a->context != b->context) { |
453 | // Different sources (different strings) |
454 | return false; |
455 | } |
456 | if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
457 | // Different current position in the string. |
458 | return false; |
459 | } |
460 | |
461 | return true; |
462 | } |
463 | |
464 | U_CAPI UBool U_EXPORT2 |
465 | utext_isWritable(const UText *ut) |
466 | { |
467 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
468 | return b; |
469 | } |
470 | |
471 | |
472 | U_CAPI void U_EXPORT2 |
473 | utext_freeze(UText *ut) { |
474 | // Zero out the WRITABLE flag. |
475 | ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
476 | } |
477 | |
478 | |
479 | U_CAPI UBool U_EXPORT2 |
480 | utext_hasMetaData(const UText *ut) |
481 | { |
482 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; |
483 | return b; |
484 | } |
485 | |
486 | |
487 | |
488 | U_CAPI int32_t U_EXPORT2 |
489 | utext_replace(UText *ut, |
490 | int64_t nativeStart, int64_t nativeLimit, |
491 | const char16_t *replacementText, int32_t replacementLength, |
492 | UErrorCode *status) |
493 | { |
494 | if (U_FAILURE(*status)) { |
495 | return 0; |
496 | } |
497 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
498 | *status = U_NO_WRITE_PERMISSION; |
499 | return 0; |
500 | } |
501 | int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); |
502 | return i; |
503 | } |
504 | |
505 | U_CAPI void U_EXPORT2 |
506 | utext_copy(UText *ut, |
507 | int64_t nativeStart, int64_t nativeLimit, |
508 | int64_t destIndex, |
509 | UBool move, |
510 | UErrorCode *status) |
511 | { |
512 | if (U_FAILURE(*status)) { |
513 | return; |
514 | } |
515 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
516 | *status = U_NO_WRITE_PERMISSION; |
517 | return; |
518 | } |
519 | ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
520 | } |
521 | |
522 | |
523 | |
524 | U_CAPI UText * U_EXPORT2 |
525 | utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
526 | if (U_FAILURE(*status)) { |
527 | return dest; |
528 | } |
529 | UText *result = src->pFuncs->clone(dest, src, deep, status); |
530 | if (U_FAILURE(*status)) { |
531 | return result; |
532 | } |
533 | if (result == nullptr) { |
534 | *status = U_MEMORY_ALLOCATION_ERROR; |
535 | return result; |
536 | } |
537 | if (readOnly) { |
538 | utext_freeze(result); |
539 | } |
540 | return result; |
541 | } |
542 | |
543 | |
544 | |
545 | //------------------------------------------------------------------------------ |
546 | // |
547 | // UText common functions implementation |
548 | // |
549 | //------------------------------------------------------------------------------ |
550 | |
551 | // |
552 | // UText.flags bit definitions |
553 | // |
554 | enum { |
555 | UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. |
556 | // 0 if caller provided storage for the UText. |
557 | |
558 | = 2, // 1 if ICU has allocated extra storage as a separate |
559 | // heap block. |
560 | // 0 if there is no separate allocation. Either no extra |
561 | // storage was requested, or it is appended to the end |
562 | // of the main UText storage. |
563 | |
564 | UTEXT_OPEN = 4 // 1 if this UText is currently open |
565 | // 0 if this UText is not open. |
566 | }; |
567 | |
568 | |
569 | // |
570 | // Extended form of a UText. The purpose is to aid in computing the total size required |
571 | // when a provider asks for a UText to be allocated with extra storage. |
572 | |
573 | struct ExtendedUText { |
574 | UText ut; |
575 | std::max_align_t extension; |
576 | }; |
577 | |
578 | static const UText emptyText = UTEXT_INITIALIZER; |
579 | |
580 | U_CAPI UText * U_EXPORT2 |
581 | utext_setup(UText *ut, int32_t , UErrorCode *status) { |
582 | if (U_FAILURE(*status)) { |
583 | return ut; |
584 | } |
585 | |
586 | if (ut == nullptr) { |
587 | // We need to heap-allocate storage for the new UText |
588 | int32_t spaceRequired = sizeof(UText); |
589 | if (extraSpace > 0) { |
590 | spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t); |
591 | } |
592 | ut = (UText *)uprv_malloc(spaceRequired); |
593 | if (ut == nullptr) { |
594 | *status = U_MEMORY_ALLOCATION_ERROR; |
595 | return nullptr; |
596 | } else { |
597 | *ut = emptyText; |
598 | ut->flags |= UTEXT_HEAP_ALLOCATED; |
599 | if (spaceRequired>0) { |
600 | ut->extraSize = extraSpace; |
601 | ut->pExtra = &((ExtendedUText *)ut)->extension; |
602 | } |
603 | } |
604 | } else { |
605 | // We have been supplied with an already existing UText. |
606 | // Verify that it really appears to be a UText. |
607 | if (ut->magic != UTEXT_MAGIC) { |
608 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
609 | return ut; |
610 | } |
611 | // If the ut is already open and there's a provider supplied close |
612 | // function, call it. |
613 | if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != nullptr) { |
614 | ut->pFuncs->close(ut); |
615 | } |
616 | ut->flags &= ~UTEXT_OPEN; |
617 | |
618 | // If extra space was requested by our caller, check whether |
619 | // sufficient already exists, and allocate new if needed. |
620 | if (extraSpace > ut->extraSize) { |
621 | // Need more space. If there is existing separately allocated space, |
622 | // delete it first, then allocate new space. |
623 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
624 | uprv_free(ut->pExtra); |
625 | ut->extraSize = 0; |
626 | } |
627 | ut->pExtra = uprv_malloc(extraSpace); |
628 | if (ut->pExtra == nullptr) { |
629 | *status = U_MEMORY_ALLOCATION_ERROR; |
630 | } else { |
631 | ut->extraSize = extraSpace; |
632 | ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
633 | } |
634 | } |
635 | } |
636 | if (U_SUCCESS(*status)) { |
637 | ut->flags |= UTEXT_OPEN; |
638 | |
639 | // Initialize all remaining fields of the UText. |
640 | // |
641 | ut->context = nullptr; |
642 | ut->chunkContents = nullptr; |
643 | ut->p = nullptr; |
644 | ut->q = nullptr; |
645 | ut->r = nullptr; |
646 | ut->a = 0; |
647 | ut->b = 0; |
648 | ut->c = 0; |
649 | ut->chunkOffset = 0; |
650 | ut->chunkLength = 0; |
651 | ut->chunkNativeStart = 0; |
652 | ut->chunkNativeLimit = 0; |
653 | ut->nativeIndexingLimit = 0; |
654 | ut->providerProperties = 0; |
655 | ut->privA = 0; |
656 | ut->privB = 0; |
657 | ut->privC = 0; |
658 | ut->privP = nullptr; |
659 | if (ut->pExtra!=nullptr && ut->extraSize>0) |
660 | uprv_memset(ut->pExtra, 0, ut->extraSize); |
661 | |
662 | } |
663 | return ut; |
664 | } |
665 | |
666 | |
667 | U_CAPI UText * U_EXPORT2 |
668 | utext_close(UText *ut) { |
669 | if (ut==nullptr || |
670 | ut->magic != UTEXT_MAGIC || |
671 | (ut->flags & UTEXT_OPEN) == 0) |
672 | { |
673 | // The supplied ut is not an open UText. |
674 | // Do nothing. |
675 | return ut; |
676 | } |
677 | |
678 | // If the provider gave us a close function, call it now. |
679 | // This will clean up anything allocated specifically by the provider. |
680 | if (ut->pFuncs->close != nullptr) { |
681 | ut->pFuncs->close(ut); |
682 | } |
683 | ut->flags &= ~UTEXT_OPEN; |
684 | |
685 | // If we (the framework) allocated the UText or subsidiary storage, |
686 | // delete it. |
687 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
688 | uprv_free(ut->pExtra); |
689 | ut->pExtra = nullptr; |
690 | ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
691 | ut->extraSize = 0; |
692 | } |
693 | |
694 | // Zero out function table of the closed UText. This is a defensive move, |
695 | // intended to cause applications that inadvertently use a closed |
696 | // utext to crash with null pointer errors. |
697 | ut->pFuncs = nullptr; |
698 | |
699 | if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
700 | // This UText was allocated by UText setup. We need to free it. |
701 | // Clear magic, so we can detect if the user messes up and immediately |
702 | // tries to reopen another UText using the deleted storage. |
703 | ut->magic = 0; |
704 | uprv_free(ut); |
705 | ut = nullptr; |
706 | } |
707 | return ut; |
708 | } |
709 | |
710 | |
711 | |
712 | |
713 | // |
714 | // invalidateChunk Reset a chunk to have no contents, so that the next call |
715 | // to access will cause new data to load. |
716 | // This is needed when copy/move/replace operate directly on the |
717 | // backing text, potentially putting it out of sync with the |
718 | // contents in the chunk. |
719 | // |
720 | static void |
721 | invalidateChunk(UText *ut) { |
722 | ut->chunkLength = 0; |
723 | ut->chunkNativeLimit = 0; |
724 | ut->chunkNativeStart = 0; |
725 | ut->chunkOffset = 0; |
726 | ut->nativeIndexingLimit = 0; |
727 | } |
728 | |
729 | // |
730 | // pinIndex Do range pinning on a native index parameter. |
731 | // 64 bit pinning is done in place. |
732 | // 32 bit truncated result is returned as a convenience for |
733 | // use in providers that don't need 64 bits. |
734 | static int32_t |
735 | pinIndex(int64_t &index, int64_t limit) { |
736 | if (index<0) { |
737 | index = 0; |
738 | } else if (index > limit) { |
739 | index = limit; |
740 | } |
741 | return (int32_t)index; |
742 | } |
743 | |
744 | |
745 | U_CDECL_BEGIN |
746 | |
747 | // |
748 | // Pointer relocation function, |
749 | // a utility used by shallow clone. |
750 | // Adjust a pointer that refers to something within one UText (the source) |
751 | // to refer to the same relative offset within a another UText (the target) |
752 | // |
753 | static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
754 | // convert all pointers to (char *) so that byte address arithmetic will work. |
755 | char *dptr = (char *)*destPtr; |
756 | char *dUText = (char *)dest; |
757 | char *sUText = (char *)src; |
758 | |
759 | if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { |
760 | // target ptr was to something within the src UText's pExtra storage. |
761 | // relocate it into the target UText's pExtra region. |
762 | *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
763 | } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
764 | // target ptr was pointing to somewhere within the source UText itself. |
765 | // Move it to the same offset within the target UText. |
766 | *destPtr = dUText + (dptr-sUText); |
767 | } |
768 | } |
769 | |
770 | |
771 | // |
772 | // Clone. This is a generic copy-the-utext-by-value clone function that can be |
773 | // used as-is with some utext types, and as a helper by other clones. |
774 | // |
775 | static UText * U_CALLCONV |
776 | shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
777 | if (U_FAILURE(*status)) { |
778 | return nullptr; |
779 | } |
780 | int32_t = src->extraSize; |
781 | |
782 | // |
783 | // Use the generic text_setup to allocate storage if required. |
784 | // |
785 | dest = utext_setup(dest, srcExtraSize, status); |
786 | if (U_FAILURE(*status)) { |
787 | return dest; |
788 | } |
789 | |
790 | // |
791 | // flags (how the UText was allocated) and the pointer to the |
792 | // extra storage must retain the values in the cloned utext that |
793 | // were set up by utext_setup. Save them separately before |
794 | // copying the whole struct. |
795 | // |
796 | void * = dest->pExtra; |
797 | int32_t flags = dest->flags; |
798 | |
799 | |
800 | // |
801 | // Copy the whole UText struct by value. |
802 | // Any "Extra" storage is copied also. |
803 | // |
804 | int sizeToCopy = src->sizeOfStruct; |
805 | if (sizeToCopy > dest->sizeOfStruct) { |
806 | sizeToCopy = dest->sizeOfStruct; |
807 | } |
808 | uprv_memcpy(dest, src, sizeToCopy); |
809 | dest->pExtra = destExtra; |
810 | dest->flags = flags; |
811 | if (srcExtraSize > 0) { |
812 | uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
813 | } |
814 | |
815 | // |
816 | // Relocate any pointers in the target that refer to the UText itself |
817 | // to point to the cloned copy rather than the original source. |
818 | // |
819 | adjustPointer(dest, &dest->context, src); |
820 | adjustPointer(dest, &dest->p, src); |
821 | adjustPointer(dest, &dest->q, src); |
822 | adjustPointer(dest, &dest->r, src); |
823 | adjustPointer(dest, (const void **)&dest->chunkContents, src); |
824 | |
825 | // The newly shallow-cloned UText does _not_ own the underlying storage for the text. |
826 | // (The source for the clone may or may not have owned the text.) |
827 | |
828 | dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
829 | |
830 | return dest; |
831 | } |
832 | |
833 | |
834 | U_CDECL_END |
835 | |
836 | |
837 | |
838 | //------------------------------------------------------------------------------ |
839 | // |
840 | // UText implementation for UTF-8 char * strings (read-only) |
841 | // Limitation: string length must be <= 0x7fffffff in length. |
842 | // (length must for in an int32_t variable) |
843 | // |
844 | // Use of UText data members: |
845 | // context pointer to UTF-8 string |
846 | // utext.b is the input string length (bytes). |
847 | // utext.c Length scanned so far in string |
848 | // (for optimizing finding length of zero terminated strings.) |
849 | // utext.p pointer to the current buffer |
850 | // utext.q pointer to the other buffer. |
851 | // |
852 | //------------------------------------------------------------------------------ |
853 | |
854 | // Chunk size. |
855 | // Must be less than 85 (256/3), because of byte mapping from char16_t indexes to native indexes. |
856 | // Worst case is three native bytes to one char16_t. (Supplemenaries are 4 native bytes |
857 | // to two UChars.) |
858 | // The longest illegal byte sequence treated as a single error (and converted to U+FFFD) |
859 | // is a three-byte sequence (truncated four-byte sequence). |
860 | // |
861 | enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
862 | |
863 | // |
864 | // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. |
865 | // Each contains the char16_t chunk buffer, the to and from native maps, and |
866 | // header info. |
867 | // |
868 | // because backwards iteration fills the buffers starting at the end and |
869 | // working towards the front, the filled part of the buffers may not begin |
870 | // at the start of the available storage for the buffers. |
871 | // |
872 | // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for |
873 | // the last character added being a supplementary, and thus requiring a surrogate |
874 | // pair. Doing this is simpler than checking for the edge case. |
875 | // |
876 | |
877 | struct UTF8Buf { |
878 | int32_t bufNativeStart; // Native index of first char in char16_t buf |
879 | int32_t bufNativeLimit; // Native index following last char in buf. |
880 | int32_t bufStartIdx; // First filled position in buf. |
881 | int32_t bufLimitIdx; // Limit of filled range in buf. |
882 | int32_t bufNILimit; // Limit of native indexing part of buf |
883 | int32_t toUCharsMapStart; // Native index corresponding to |
884 | // mapToUChars[0]. |
885 | // Set to bufNativeStart when filling forwards. |
886 | // Set to computed value when filling backwards. |
887 | |
888 | char16_t buf[UTF8_TEXT_CHUNK_SIZE+4]; // The char16_t buffer. Requires one extra position beyond the |
889 | // the chunk size, to allow for surrogate at the end. |
890 | // Length must be identical to mapToNative array, below, |
891 | // because of the way indexing works when the array is |
892 | // filled backwards during a reverse iteration. Thus, |
893 | // the additional extra size. |
894 | uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map char16_t index in buf to |
895 | // native offset from bufNativeStart. |
896 | // Requires two extra slots, |
897 | // one for a supplementary starting in the last normal position, |
898 | // and one for an entry for the buffer limit position. |
899 | uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
900 | // corresponding offset in filled part of buf. |
901 | int32_t align; |
902 | }; |
903 | |
904 | U_CDECL_BEGIN |
905 | |
906 | // |
907 | // utf8TextLength |
908 | // |
909 | // Get the length of the string. If we don't already know it, |
910 | // we'll need to scan for the trailing nul. |
911 | // |
912 | static int64_t U_CALLCONV |
913 | utf8TextLength(UText *ut) { |
914 | if (ut->b < 0) { |
915 | // Zero terminated string, and we haven't scanned to the end yet. |
916 | // Scan it now. |
917 | const char *r = (const char *)ut->context + ut->c; |
918 | while (*r != 0) { |
919 | r++; |
920 | } |
921 | if ((r - (const char *)ut->context) < 0x7fffffff) { |
922 | ut->b = (int32_t)(r - (const char *)ut->context); |
923 | } else { |
924 | // Actual string was bigger (more than 2 gig) than we |
925 | // can handle. Clip it to 2 GB. |
926 | ut->b = 0x7fffffff; |
927 | } |
928 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
929 | } |
930 | return ut->b; |
931 | } |
932 | |
933 | |
934 | |
935 | |
936 | |
937 | |
938 | static UBool U_CALLCONV |
939 | utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
940 | // |
941 | // Apologies to those who are allergic to goto statements. |
942 | // Consider each goto to a labelled block to be the equivalent of |
943 | // call the named block as if it were a function(); |
944 | // return; |
945 | // |
946 | const uint8_t *s8=(const uint8_t *)ut->context; |
947 | UTF8Buf *u8b = nullptr; |
948 | int32_t length = ut->b; // Length of original utf-8 |
949 | int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
950 | int32_t mapIndex = 0; |
951 | if (index<0) { |
952 | ix=0; |
953 | } else if (index > 0x7fffffff) { |
954 | // Strings with 64 bit lengths not supported by this UTF-8 provider. |
955 | ix = 0x7fffffff; |
956 | } |
957 | |
958 | // Pin requested index to the string length. |
959 | if (ix>length) { |
960 | if (length>=0) { |
961 | ix=length; |
962 | } else if (ix>=ut->c) { |
963 | // Zero terminated string, and requested index is beyond |
964 | // the region that has already been scanned. |
965 | // Scan up to either the end of the string or to the |
966 | // requested position, whichever comes first. |
967 | while (ut->c<ix && s8[ut->c]!=0) { |
968 | ut->c++; |
969 | } |
970 | // TODO: support for null terminated string length > 32 bits. |
971 | if (s8[ut->c] == 0) { |
972 | // We just found the actual length of the string. |
973 | // Trim the requested index back to that. |
974 | ix = ut->c; |
975 | ut->b = ut->c; |
976 | length = ut->c; |
977 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
978 | } |
979 | } |
980 | } |
981 | |
982 | // |
983 | // Dispatch to the appropriate action for a forward iteration request. |
984 | // |
985 | if (forward) { |
986 | if (ix==ut->chunkNativeLimit) { |
987 | // Check for normal sequential iteration cases first. |
988 | if (ix==length) { |
989 | // Just reached end of string |
990 | // Don't swap buffers, but do set the |
991 | // current buffer position. |
992 | ut->chunkOffset = ut->chunkLength; |
993 | return false; |
994 | } else { |
995 | // End of current buffer. |
996 | // check whether other buffer already has what we need. |
997 | UTF8Buf *altB = (UTF8Buf *)ut->q; |
998 | if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
999 | goto swapBuffers; |
1000 | } |
1001 | } |
1002 | } |
1003 | |
1004 | // A random access. Desired index could be in either or niether buf. |
1005 | // For optimizing the order of testing, first check for the index |
1006 | // being in the other buffer. This will be the case for uses that |
1007 | // move back and forth over a fairly limited range |
1008 | { |
1009 | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
1010 | if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
1011 | // Requested index is in the other buffer. |
1012 | goto swapBuffers; |
1013 | } |
1014 | if (ix == length) { |
1015 | // Requested index is end-of-string. |
1016 | // (this is the case of randomly seeking to the end. |
1017 | // The case of iterating off the end is handled earlier.) |
1018 | if (ix == ut->chunkNativeLimit) { |
1019 | // Current buffer extends up to the end of the string. |
1020 | // Leave it as the current buffer. |
1021 | ut->chunkOffset = ut->chunkLength; |
1022 | return false; |
1023 | } |
1024 | if (ix == u8b->bufNativeLimit) { |
1025 | // Alternate buffer extends to the end of string. |
1026 | // Swap it in as the current buffer. |
1027 | goto swapBuffersAndFail; |
1028 | } |
1029 | |
1030 | // Neither existing buffer extends to the end of the string. |
1031 | goto makeStubBuffer; |
1032 | } |
1033 | |
1034 | if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
1035 | // Requested index is in neither buffer. |
1036 | goto fillForward; |
1037 | } |
1038 | |
1039 | // Requested index is in this buffer. |
1040 | u8b = (UTF8Buf *)ut->p; // the current buffer |
1041 | mapIndex = ix - u8b->toUCharsMapStart; |
1042 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
1043 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1044 | return true; |
1045 | |
1046 | } |
1047 | } |
1048 | |
1049 | |
1050 | // |
1051 | // Dispatch to the appropriate action for a |
1052 | // Backwards Direction iteration request. |
1053 | // |
1054 | if (ix==ut->chunkNativeStart) { |
1055 | // Check for normal sequential iteration cases first. |
1056 | if (ix==0) { |
1057 | // Just reached the start of string |
1058 | // Don't swap buffers, but do set the |
1059 | // current buffer position. |
1060 | ut->chunkOffset = 0; |
1061 | return false; |
1062 | } else { |
1063 | // Start of current buffer. |
1064 | // check whether other buffer already has what we need. |
1065 | UTF8Buf *altB = (UTF8Buf *)ut->q; |
1066 | if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
1067 | goto swapBuffers; |
1068 | } |
1069 | } |
1070 | } |
1071 | |
1072 | // A random access. Desired index could be in either or niether buf. |
1073 | // For optimizing the order of testing, |
1074 | // Most likely case: in the other buffer. |
1075 | // Second most likely: in neither buffer. |
1076 | // Unlikely, but must work: in the current buffer. |
1077 | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
1078 | if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
1079 | // Requested index is in the other buffer. |
1080 | goto swapBuffers; |
1081 | } |
1082 | // Requested index is start-of-string. |
1083 | // (this is the case of randomly seeking to the start. |
1084 | // The case of iterating off the start is handled earlier.) |
1085 | if (ix==0) { |
1086 | if (u8b->bufNativeStart==0) { |
1087 | // Alternate buffer contains the data for the start string. |
1088 | // Make it be the current buffer. |
1089 | goto swapBuffersAndFail; |
1090 | } else { |
1091 | // Request for data before the start of string, |
1092 | // neither buffer is usable. |
1093 | // set up a zero-length buffer. |
1094 | goto makeStubBuffer; |
1095 | } |
1096 | } |
1097 | |
1098 | if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
1099 | // Requested index is in neither buffer. |
1100 | goto fillReverse; |
1101 | } |
1102 | |
1103 | // Requested index is in this buffer. |
1104 | // Set the utf16 buffer index. |
1105 | u8b = (UTF8Buf *)ut->p; |
1106 | mapIndex = ix - u8b->toUCharsMapStart; |
1107 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1108 | if (ut->chunkOffset==0) { |
1109 | // This occurs when the first character in the text is |
1110 | // a multi-byte UTF-8 char, and the requested index is to |
1111 | // one of the trailing bytes. Because there is no preceding , |
1112 | // character, this access fails. We can't pick up on the |
1113 | // situation sooner because the requested index is not zero. |
1114 | return false; |
1115 | } else { |
1116 | return true; |
1117 | } |
1118 | |
1119 | |
1120 | |
1121 | swapBuffers: |
1122 | // The alternate buffer (ut->q) has the string data that was requested. |
1123 | // Swap the primary and alternate buffers, and set the |
1124 | // chunk index into the new primary buffer. |
1125 | { |
1126 | u8b = (UTF8Buf *)ut->q; |
1127 | ut->q = ut->p; |
1128 | ut->p = u8b; |
1129 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
1130 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
1131 | ut->chunkNativeStart = u8b->bufNativeStart; |
1132 | ut->chunkNativeLimit = u8b->bufNativeLimit; |
1133 | ut->nativeIndexingLimit = u8b->bufNILimit; |
1134 | |
1135 | // Index into the (now current) chunk |
1136 | // Use the map to set the chunk index. It's more trouble than it's worth |
1137 | // to check whether native indexing can be used. |
1138 | U_ASSERT(ix>=u8b->bufNativeStart); |
1139 | U_ASSERT(ix<=u8b->bufNativeLimit); |
1140 | mapIndex = ix - u8b->toUCharsMapStart; |
1141 | U_ASSERT(mapIndex>=0); |
1142 | U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
1143 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1144 | |
1145 | return true; |
1146 | } |
1147 | |
1148 | |
1149 | swapBuffersAndFail: |
1150 | // We got a request for either the start or end of the string, |
1151 | // with iteration continuing in the out-of-bounds direction. |
1152 | // The alternate buffer already contains the data up to the |
1153 | // start/end. |
1154 | // Swap the buffers, then return failure, indicating that we couldn't |
1155 | // make things correct for continuing the iteration in the requested |
1156 | // direction. The position & buffer are correct should the |
1157 | // user decide to iterate in the opposite direction. |
1158 | u8b = (UTF8Buf *)ut->q; |
1159 | ut->q = ut->p; |
1160 | ut->p = u8b; |
1161 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
1162 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
1163 | ut->chunkNativeStart = u8b->bufNativeStart; |
1164 | ut->chunkNativeLimit = u8b->bufNativeLimit; |
1165 | ut->nativeIndexingLimit = u8b->bufNILimit; |
1166 | |
1167 | // Index into the (now current) chunk |
1168 | // For this function (swapBuffersAndFail), the requested index |
1169 | // will always be at either the start or end of the chunk. |
1170 | if (ix==u8b->bufNativeLimit) { |
1171 | ut->chunkOffset = ut->chunkLength; |
1172 | } else { |
1173 | ut->chunkOffset = 0; |
1174 | U_ASSERT(ix == u8b->bufNativeStart); |
1175 | } |
1176 | return false; |
1177 | |
1178 | makeStubBuffer: |
1179 | // The user has done a seek/access past the start or end |
1180 | // of the string. Rather than loading data that is likely |
1181 | // to never be used, just set up a zero-length buffer at |
1182 | // the position. |
1183 | u8b = (UTF8Buf *)ut->q; |
1184 | u8b->bufNativeStart = ix; |
1185 | u8b->bufNativeLimit = ix; |
1186 | u8b->bufStartIdx = 0; |
1187 | u8b->bufLimitIdx = 0; |
1188 | u8b->bufNILimit = 0; |
1189 | u8b->toUCharsMapStart = ix; |
1190 | u8b->mapToNative[0] = 0; |
1191 | u8b->mapToUChars[0] = 0; |
1192 | goto swapBuffersAndFail; |
1193 | |
1194 | |
1195 | |
1196 | fillForward: |
1197 | { |
1198 | // Move the incoming index to a code point boundary. |
1199 | U8_SET_CP_START(s8, 0, ix); |
1200 | |
1201 | // Swap the UText buffers. |
1202 | // We want to fill what was previously the alternate buffer, |
1203 | // and make what was the current buffer be the new alternate. |
1204 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
1205 | ut->q = ut->p; |
1206 | ut->p = u8b_swap; |
1207 | |
1208 | int32_t strLen = ut->b; |
1209 | UBool nulTerminated = false; |
1210 | if (strLen < 0) { |
1211 | strLen = 0x7fffffff; |
1212 | nulTerminated = true; |
1213 | } |
1214 | |
1215 | char16_t *buf = u8b_swap->buf; |
1216 | uint8_t *mapToNative = u8b_swap->mapToNative; |
1217 | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
1218 | int32_t destIx = 0; |
1219 | int32_t srcIx = ix; |
1220 | UBool seenNonAscii = false; |
1221 | UChar32 c = 0; |
1222 | |
1223 | // Fill the chunk buffer and mapping arrays. |
1224 | while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
1225 | c = s8[srcIx]; |
1226 | if (c>0 && c<0x80) { |
1227 | // Special case ASCII range for speed. |
1228 | // zero is excluded to simplify bounds checking. |
1229 | buf[destIx] = (char16_t)c; |
1230 | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
1231 | mapToUChars[srcIx-ix] = (uint8_t)destIx; |
1232 | srcIx++; |
1233 | destIx++; |
1234 | } else { |
1235 | // General case, handle everything. |
1236 | if (seenNonAscii == false) { |
1237 | seenNonAscii = true; |
1238 | u8b_swap->bufNILimit = destIx; |
1239 | } |
1240 | |
1241 | int32_t cIx = srcIx; |
1242 | int32_t dIx = destIx; |
1243 | int32_t dIxSaved = destIx; |
1244 | U8_NEXT_OR_FFFD(s8, srcIx, strLen, c); |
1245 | if (c==0 && nulTerminated) { |
1246 | srcIx--; |
1247 | break; |
1248 | } |
1249 | |
1250 | U16_APPEND_UNSAFE(buf, destIx, c); |
1251 | do { |
1252 | mapToNative[dIx++] = (uint8_t)(cIx - ix); |
1253 | } while (dIx < destIx); |
1254 | |
1255 | do { |
1256 | mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
1257 | } while (cIx < srcIx); |
1258 | } |
1259 | if (srcIx>=strLen) { |
1260 | break; |
1261 | } |
1262 | |
1263 | } |
1264 | |
1265 | // store Native <--> Chunk Map entries for the end of the buffer. |
1266 | // There is no actual character here, but the index position is valid. |
1267 | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
1268 | mapToUChars[srcIx - ix] = (uint8_t)destIx; |
1269 | |
1270 | // fill in Buffer descriptor |
1271 | u8b_swap->bufNativeStart = ix; |
1272 | u8b_swap->bufNativeLimit = srcIx; |
1273 | u8b_swap->bufStartIdx = 0; |
1274 | u8b_swap->bufLimitIdx = destIx; |
1275 | if (seenNonAscii == false) { |
1276 | u8b_swap->bufNILimit = destIx; |
1277 | } |
1278 | u8b_swap->toUCharsMapStart = u8b_swap->bufNativeStart; |
1279 | |
1280 | // Set UText chunk to refer to this buffer. |
1281 | ut->chunkContents = buf; |
1282 | ut->chunkOffset = 0; |
1283 | ut->chunkLength = u8b_swap->bufLimitIdx; |
1284 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
1285 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
1286 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
1287 | |
1288 | // For zero terminated strings, keep track of the maximum point |
1289 | // scanned so far. |
1290 | if (nulTerminated && srcIx>ut->c) { |
1291 | ut->c = srcIx; |
1292 | if (c==0) { |
1293 | // We scanned to the end. |
1294 | // Remember the actual length. |
1295 | ut->b = srcIx; |
1296 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
1297 | } |
1298 | } |
1299 | return true; |
1300 | } |
1301 | |
1302 | |
1303 | fillReverse: |
1304 | { |
1305 | // Move the incoming index to a code point boundary. |
1306 | // Can only do this if the incoming index is somewhere in the interior of the string. |
1307 | // If index is at the end, there is no character there to look at. |
1308 | if (ix != ut->b) { |
1309 | // Note: this function will only move the index back if it is on a trail byte |
1310 | // and there is a preceding lead byte and the sequence from the lead |
1311 | // through this trail could be part of a valid UTF-8 sequence |
1312 | // Otherwise the index remains unchanged. |
1313 | U8_SET_CP_START(s8, 0, ix); |
1314 | } |
1315 | |
1316 | // Swap the UText buffers. |
1317 | // We want to fill what was previously the alternate buffer, |
1318 | // and make what was the current buffer be the new alternate. |
1319 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
1320 | ut->q = ut->p; |
1321 | ut->p = u8b_swap; |
1322 | |
1323 | char16_t *buf = u8b_swap->buf; |
1324 | uint8_t *mapToNative = u8b_swap->mapToNative; |
1325 | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
1326 | int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1; |
1327 | // Note that toUCharsMapStart can be negative. Happens when the remaining |
1328 | // text from current position to the beginning is less than the buffer size. |
1329 | // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry. |
1330 | int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
1331 | // at end of buffer to leave room |
1332 | // for a surrogate pair at the |
1333 | // buffer start. |
1334 | int32_t srcIx = ix; |
1335 | int32_t bufNILimit = destIx; |
1336 | UChar32 c; |
1337 | |
1338 | // Map to/from Native Indexes, fill in for the position at the end of |
1339 | // the buffer. |
1340 | // |
1341 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1342 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
1343 | |
1344 | // Fill the chunk buffer |
1345 | // Work backwards, filling from the end of the buffer towards the front. |
1346 | // |
1347 | while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
1348 | srcIx--; |
1349 | destIx--; |
1350 | |
1351 | // Get last byte of the UTF-8 character |
1352 | c = s8[srcIx]; |
1353 | if (c<0x80) { |
1354 | // Special case ASCII range for speed. |
1355 | buf[destIx] = (char16_t)c; |
1356 | U_ASSERT(toUCharsMapStart <= srcIx); |
1357 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
1358 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1359 | } else { |
1360 | // General case, handle everything non-ASCII. |
1361 | |
1362 | int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char |
1363 | |
1364 | // Get the full character from the UTF8 string. |
1365 | // use code derived from the macros in utf8.h |
1366 | // Leaves srcIx pointing at the first byte of the UTF-8 char. |
1367 | // |
1368 | c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3); |
1369 | // leaves srcIx at first byte of the multi-byte char. |
1370 | |
1371 | // Store the character in UTF-16 buffer. |
1372 | if (c<0x10000) { |
1373 | buf[destIx] = (char16_t)c; |
1374 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1375 | } else { |
1376 | buf[destIx] = U16_TRAIL(c); |
1377 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1378 | buf[--destIx] = U16_LEAD(c); |
1379 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1380 | } |
1381 | |
1382 | // Fill in the map from native indexes to UChars buf index. |
1383 | do { |
1384 | mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
1385 | } while (sIx >= srcIx); |
1386 | U_ASSERT(toUCharsMapStart <= (srcIx+1)); |
1387 | |
1388 | // Set native indexing limit to be the current position. |
1389 | // We are processing a non-ascii, non-native-indexing char now; |
1390 | // the limit will be here if the rest of the chars to be |
1391 | // added to this buffer are ascii. |
1392 | bufNILimit = destIx; |
1393 | } |
1394 | } |
1395 | u8b_swap->bufNativeStart = srcIx; |
1396 | u8b_swap->bufNativeLimit = ix; |
1397 | u8b_swap->bufStartIdx = destIx; |
1398 | u8b_swap->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
1399 | u8b_swap->bufNILimit = bufNILimit - u8b_swap->bufStartIdx; |
1400 | u8b_swap->toUCharsMapStart = toUCharsMapStart; |
1401 | |
1402 | ut->chunkContents = &buf[u8b_swap->bufStartIdx]; |
1403 | ut->chunkLength = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx; |
1404 | ut->chunkOffset = ut->chunkLength; |
1405 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
1406 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
1407 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
1408 | return true; |
1409 | } |
1410 | |
1411 | } |
1412 | |
1413 | |
1414 | |
1415 | // |
1416 | // This is a slightly modified copy of u_strFromUTF8, |
1417 | // Inserts a Replacement Char rather than failing on invalid UTF-8 |
1418 | // Removes unnecessary features. |
1419 | // |
1420 | static char16_t* |
1421 | utext_strFromUTF8(char16_t *dest, |
1422 | int32_t destCapacity, |
1423 | int32_t *pDestLength, |
1424 | const char* src, |
1425 | int32_t srcLength, // required. NUL terminated not supported. |
1426 | UErrorCode *pErrorCode |
1427 | ) |
1428 | { |
1429 | |
1430 | char16_t *pDest = dest; |
1431 | char16_t *pDestLimit = (dest!=nullptr)?(dest+destCapacity):nullptr; |
1432 | UChar32 ch=0; |
1433 | int32_t index = 0; |
1434 | int32_t reqLength = 0; |
1435 | uint8_t* pSrc = (uint8_t*) src; |
1436 | |
1437 | |
1438 | while((index < srcLength)&&(pDest<pDestLimit)){ |
1439 | ch = pSrc[index++]; |
1440 | if(ch <=0x7f){ |
1441 | *pDest++=(char16_t)ch; |
1442 | }else{ |
1443 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
1444 | if(U_IS_BMP(ch)){ |
1445 | *(pDest++)=(char16_t)ch; |
1446 | }else{ |
1447 | *(pDest++)=U16_LEAD(ch); |
1448 | if(pDest<pDestLimit){ |
1449 | *(pDest++)=U16_TRAIL(ch); |
1450 | }else{ |
1451 | reqLength++; |
1452 | break; |
1453 | } |
1454 | } |
1455 | } |
1456 | } |
1457 | /* donot fill the dest buffer just count the UChars needed */ |
1458 | while(index < srcLength){ |
1459 | ch = pSrc[index++]; |
1460 | if(ch <= 0x7f){ |
1461 | reqLength++; |
1462 | }else{ |
1463 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
1464 | reqLength+=U16_LENGTH(ch); |
1465 | } |
1466 | } |
1467 | |
1468 | reqLength+=(int32_t)(pDest - dest); |
1469 | |
1470 | if(pDestLength){ |
1471 | *pDestLength = reqLength; |
1472 | } |
1473 | |
1474 | /* Terminate the buffer */ |
1475 | u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
1476 | |
1477 | return dest; |
1478 | } |
1479 | |
1480 | |
1481 | |
1482 | static int32_t U_CALLCONV |
1483 | (UText *ut, |
1484 | int64_t start, int64_t limit, |
1485 | char16_t *dest, int32_t destCapacity, |
1486 | UErrorCode *pErrorCode) { |
1487 | if(U_FAILURE(*pErrorCode)) { |
1488 | return 0; |
1489 | } |
1490 | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
1491 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
1492 | return 0; |
1493 | } |
1494 | int32_t length = ut->b; |
1495 | int32_t start32 = pinIndex(start, length); |
1496 | int32_t limit32 = pinIndex(limit, length); |
1497 | |
1498 | if(start32>limit32) { |
1499 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
1500 | return 0; |
1501 | } |
1502 | |
1503 | |
1504 | // adjust the incoming indexes to land on code point boundaries if needed. |
1505 | // adjust by no more than three, because that is the largest number of trail bytes |
1506 | // in a well formed UTF8 character. |
1507 | const uint8_t *buf = (const uint8_t *)ut->context; |
1508 | int i; |
1509 | if (start32 < ut->chunkNativeLimit) { |
1510 | for (i=0; i<3; i++) { |
1511 | if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
1512 | break; |
1513 | } |
1514 | start32--; |
1515 | } |
1516 | } |
1517 | |
1518 | if (limit32 < ut->chunkNativeLimit) { |
1519 | for (i=0; i<3; i++) { |
1520 | if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
1521 | break; |
1522 | } |
1523 | limit32--; |
1524 | } |
1525 | } |
1526 | |
1527 | // Do the actual extract. |
1528 | int32_t destLength=0; |
1529 | utext_strFromUTF8(dest, destCapacity, &destLength, |
1530 | (const char *)ut->context+start32, limit32-start32, |
1531 | pErrorCode); |
1532 | utf8TextAccess(ut, limit32, true); |
1533 | return destLength; |
1534 | } |
1535 | |
1536 | // |
1537 | // utf8TextMapOffsetToNative |
1538 | // |
1539 | // Map a chunk (UTF-16) offset to a native index. |
1540 | static int64_t U_CALLCONV |
1541 | utf8TextMapOffsetToNative(const UText *ut) { |
1542 | // |
1543 | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
1544 | U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); |
1545 | int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; |
1546 | U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); |
1547 | return nativeOffset; |
1548 | } |
1549 | |
1550 | // |
1551 | // Map a native index to the corresponding chunk offset |
1552 | // |
1553 | static int32_t U_CALLCONV |
1554 | utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
1555 | U_ASSERT(index64 <= 0x7fffffff); |
1556 | int32_t index = (int32_t)index64; |
1557 | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
1558 | U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
1559 | U_ASSERT(index<=ut->chunkNativeLimit); |
1560 | int32_t mapIndex = index - u8b->toUCharsMapStart; |
1561 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
1562 | int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1563 | U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
1564 | return offset; |
1565 | } |
1566 | |
1567 | static UText * U_CALLCONV |
1568 | utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
1569 | { |
1570 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
1571 | dest = shallowTextClone(dest, src, status); |
1572 | |
1573 | // For deep clones, make a copy of the string. |
1574 | // The copied storage is owned by the newly created clone. |
1575 | // |
1576 | // TODO: There is an issue with using utext_nativeLength(). |
1577 | // That function is non-const in cases where the input was NUL terminated |
1578 | // and the length has not yet been determined. |
1579 | // This function (clone()) is const. |
1580 | // There potentially a thread safety issue lurking here. |
1581 | // |
1582 | if (deep && U_SUCCESS(*status)) { |
1583 | int32_t len = (int32_t)utext_nativeLength((UText *)src); |
1584 | char *copyStr = (char *)uprv_malloc(len+1); |
1585 | if (copyStr == nullptr) { |
1586 | *status = U_MEMORY_ALLOCATION_ERROR; |
1587 | } else { |
1588 | uprv_memcpy(copyStr, src->context, len+1); |
1589 | dest->context = copyStr; |
1590 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
1591 | } |
1592 | } |
1593 | return dest; |
1594 | } |
1595 | |
1596 | |
1597 | static void U_CALLCONV |
1598 | utf8TextClose(UText *ut) { |
1599 | // Most of the work of close is done by the generic UText framework close. |
1600 | // All that needs to be done here is to delete the UTF8 string if the UText |
1601 | // owns it. This occurs if the UText was created by cloning. |
1602 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
1603 | char *s = (char *)ut->context; |
1604 | uprv_free(s); |
1605 | ut->context = nullptr; |
1606 | } |
1607 | } |
1608 | |
1609 | U_CDECL_END |
1610 | |
1611 | |
1612 | static const struct UTextFuncs utf8Funcs = |
1613 | { |
1614 | sizeof(UTextFuncs), |
1615 | 0, 0, 0, // Reserved alignment padding |
1616 | utf8TextClone, |
1617 | utf8TextLength, |
1618 | utf8TextAccess, |
1619 | utf8TextExtract, |
1620 | nullptr, /* replace*/ |
1621 | nullptr, /* copy */ |
1622 | utf8TextMapOffsetToNative, |
1623 | utf8TextMapIndexToUTF16, |
1624 | utf8TextClose, |
1625 | nullptr, // spare 1 |
1626 | nullptr, // spare 2 |
1627 | nullptr // spare 3 |
1628 | }; |
1629 | |
1630 | |
1631 | static const char gEmptyString[] = {0}; |
1632 | |
1633 | U_CAPI UText * U_EXPORT2 |
1634 | utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
1635 | if(U_FAILURE(*status)) { |
1636 | return nullptr; |
1637 | } |
1638 | if(s==nullptr && length==0) { |
1639 | s = gEmptyString; |
1640 | } |
1641 | |
1642 | if(s==nullptr || length<-1 || length>INT32_MAX) { |
1643 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1644 | return nullptr; |
1645 | } |
1646 | |
1647 | ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
1648 | if (U_FAILURE(*status)) { |
1649 | return ut; |
1650 | } |
1651 | |
1652 | ut->pFuncs = &utf8Funcs; |
1653 | ut->context = s; |
1654 | ut->b = (int32_t)length; |
1655 | ut->c = (int32_t)length; |
1656 | if (ut->c < 0) { |
1657 | ut->c = 0; |
1658 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
1659 | } |
1660 | ut->p = ut->pExtra; |
1661 | ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
1662 | return ut; |
1663 | |
1664 | } |
1665 | |
1666 | |
1667 | |
1668 | |
1669 | |
1670 | |
1671 | |
1672 | |
1673 | //------------------------------------------------------------------------------ |
1674 | // |
1675 | // UText implementation wrapper for Replaceable (read/write) |
1676 | // |
1677 | // Use of UText data members: |
1678 | // context pointer to Replaceable. |
1679 | // p pointer to Replaceable if it is owned by the UText. |
1680 | // |
1681 | //------------------------------------------------------------------------------ |
1682 | |
1683 | |
1684 | |
1685 | // minimum chunk size for this implementation: 3 |
1686 | // to allow for possible trimming for code point boundaries |
1687 | enum { REP_TEXT_CHUNK_SIZE=10 }; |
1688 | |
1689 | struct { |
1690 | /* |
1691 | * Chunk UChars. |
1692 | * +1 to simplify filling with surrogate pair at the end. |
1693 | */ |
1694 | char16_t [REP_TEXT_CHUNK_SIZE+1]; |
1695 | }; |
1696 | |
1697 | |
1698 | U_CDECL_BEGIN |
1699 | |
1700 | static UText * U_CALLCONV |
1701 | repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
1702 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
1703 | dest = shallowTextClone(dest, src, status); |
1704 | |
1705 | // For deep clones, make a copy of the Replaceable. |
1706 | // The copied Replaceable storage is owned by the newly created UText clone. |
1707 | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
1708 | // it. |
1709 | // |
1710 | if (deep && U_SUCCESS(*status)) { |
1711 | const Replaceable *replSrc = (const Replaceable *)src->context; |
1712 | dest->context = replSrc->clone(); |
1713 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
1714 | |
1715 | // with deep clone, the copy is writable, even when the source is not. |
1716 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
1717 | } |
1718 | return dest; |
1719 | } |
1720 | |
1721 | |
1722 | static void U_CALLCONV |
1723 | repTextClose(UText *ut) { |
1724 | // Most of the work of close is done by the generic UText framework close. |
1725 | // All that needs to be done here is delete the Replaceable if the UText |
1726 | // owns it. This occurs if the UText was created by cloning. |
1727 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
1728 | Replaceable *rep = (Replaceable *)ut->context; |
1729 | delete rep; |
1730 | ut->context = nullptr; |
1731 | } |
1732 | } |
1733 | |
1734 | |
1735 | static int64_t U_CALLCONV |
1736 | repTextLength(UText *ut) { |
1737 | const Replaceable *replSrc = (const Replaceable *)ut->context; |
1738 | int32_t len = replSrc->length(); |
1739 | return len; |
1740 | } |
1741 | |
1742 | |
1743 | static UBool U_CALLCONV |
1744 | repTextAccess(UText *ut, int64_t index, UBool forward) { |
1745 | const Replaceable *rep=(const Replaceable *)ut->context; |
1746 | int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) |
1747 | |
1748 | // clip the requested index to the limits of the text. |
1749 | int32_t index32 = pinIndex(index, length); |
1750 | U_ASSERT(index<=INT32_MAX); |
1751 | |
1752 | |
1753 | /* |
1754 | * Compute start/limit boundaries around index, for a segment of text |
1755 | * to be extracted. |
1756 | * To allow for the possibility that our user gave an index to the trailing |
1757 | * half of a surrogate pair, we must request one extra preceding char16_t when |
1758 | * going in the forward direction. This will ensure that the buffer has the |
1759 | * entire code point at the specified index. |
1760 | */ |
1761 | if(forward) { |
1762 | |
1763 | if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
1764 | // Buffer already contains the requested position. |
1765 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
1766 | return true; |
1767 | } |
1768 | if (index32>=length && ut->chunkNativeLimit==length) { |
1769 | // Request for end of string, and buffer already extends up to it. |
1770 | // Can't get the data, but don't change the buffer. |
1771 | ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
1772 | return false; |
1773 | } |
1774 | |
1775 | ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
1776 | // Going forward, so we want to have the buffer with stuff at and beyond |
1777 | // the requested index. The -1 gets us one code point before the |
1778 | // requested index also, to handle the case of the index being on |
1779 | // a trail surrogate of a surrogate pair. |
1780 | if(ut->chunkNativeLimit > length) { |
1781 | ut->chunkNativeLimit = length; |
1782 | } |
1783 | // unless buffer ran off end, start is index-1. |
1784 | ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
1785 | if(ut->chunkNativeStart < 0) { |
1786 | ut->chunkNativeStart = 0; |
1787 | } |
1788 | } else { |
1789 | // Reverse iteration. Fill buffer with data preceding the requested index. |
1790 | if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
1791 | // Requested position already in buffer. |
1792 | ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
1793 | return true; |
1794 | } |
1795 | if (index32==0 && ut->chunkNativeStart==0) { |
1796 | // Request for start, buffer already begins at start. |
1797 | // No data, but keep the buffer as is. |
1798 | ut->chunkOffset = 0; |
1799 | return false; |
1800 | } |
1801 | |
1802 | // Figure out the bounds of the chunk to extract for reverse iteration. |
1803 | // Need to worry about chunk not splitting surrogate pairs, and while still |
1804 | // containing the data we need. |
1805 | // Fix by requesting a chunk that includes an extra char16_t at the end. |
1806 | // If this turns out to be a lead surrogate, we can lop it off and still have |
1807 | // the data we wanted. |
1808 | ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
1809 | if (ut->chunkNativeStart < 0) { |
1810 | ut->chunkNativeStart = 0; |
1811 | } |
1812 | |
1813 | ut->chunkNativeLimit = index32 + 1; |
1814 | if (ut->chunkNativeLimit > length) { |
1815 | ut->chunkNativeLimit = length; |
1816 | } |
1817 | } |
1818 | |
1819 | // Extract the new chunk of text from the Replaceable source. |
1820 | ReplExtra *ex = (ReplExtra *)ut->pExtra; |
1821 | // UnicodeString with its buffer a writable alias to the chunk buffer |
1822 | UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); |
1823 | rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); |
1824 | |
1825 | ut->chunkContents = ex->s; |
1826 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
1827 | ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
1828 | |
1829 | // Surrogate pairs from the input text must not span chunk boundaries. |
1830 | // If end of chunk could be the start of a surrogate, trim it off. |
1831 | if (ut->chunkNativeLimit < length && |
1832 | U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
1833 | ut->chunkLength--; |
1834 | ut->chunkNativeLimit--; |
1835 | if (ut->chunkOffset > ut->chunkLength) { |
1836 | ut->chunkOffset = ut->chunkLength; |
1837 | } |
1838 | } |
1839 | |
1840 | // if the first char16_t in the chunk could be the trailing half of a surrogate pair, |
1841 | // trim it off. |
1842 | if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
1843 | ++(ut->chunkContents); |
1844 | ++(ut->chunkNativeStart); |
1845 | --(ut->chunkLength); |
1846 | --(ut->chunkOffset); |
1847 | } |
1848 | |
1849 | // adjust the index/chunkOffset to a code point boundary |
1850 | U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
1851 | |
1852 | // Use fast indexing for get/setNativeIndex() |
1853 | ut->nativeIndexingLimit = ut->chunkLength; |
1854 | |
1855 | return true; |
1856 | } |
1857 | |
1858 | |
1859 | |
1860 | static int32_t U_CALLCONV |
1861 | (UText *ut, |
1862 | int64_t start, int64_t limit, |
1863 | char16_t *dest, int32_t destCapacity, |
1864 | UErrorCode *status) { |
1865 | const Replaceable *rep=(const Replaceable *)ut->context; |
1866 | int32_t length=rep->length(); |
1867 | |
1868 | if(U_FAILURE(*status)) { |
1869 | return 0; |
1870 | } |
1871 | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
1872 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1873 | } |
1874 | if(start>limit) { |
1875 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1876 | return 0; |
1877 | } |
1878 | |
1879 | int32_t start32 = pinIndex(start, length); |
1880 | int32_t limit32 = pinIndex(limit, length); |
1881 | |
1882 | // adjust start, limit if they point to trail half of surrogates |
1883 | if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
1884 | U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
1885 | start32--; |
1886 | } |
1887 | if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
1888 | U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
1889 | limit32--; |
1890 | } |
1891 | |
1892 | length=limit32-start32; |
1893 | if(length>destCapacity) { |
1894 | limit32 = start32 + destCapacity; |
1895 | } |
1896 | UnicodeString buffer(dest, 0, destCapacity); // writable alias |
1897 | rep->extractBetween(start32, limit32, buffer); |
1898 | repTextAccess(ut, limit32, true); |
1899 | |
1900 | return u_terminateUChars(dest, destCapacity, length, status); |
1901 | } |
1902 | |
1903 | static int32_t U_CALLCONV |
1904 | repTextReplace(UText *ut, |
1905 | int64_t start, int64_t limit, |
1906 | const char16_t *src, int32_t length, |
1907 | UErrorCode *status) { |
1908 | Replaceable *rep=(Replaceable *)ut->context; |
1909 | int32_t oldLength; |
1910 | |
1911 | if(U_FAILURE(*status)) { |
1912 | return 0; |
1913 | } |
1914 | if(src==nullptr && length!=0) { |
1915 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1916 | return 0; |
1917 | } |
1918 | oldLength=rep->length(); // will subtract from new length |
1919 | if(start>limit ) { |
1920 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1921 | return 0; |
1922 | } |
1923 | |
1924 | int32_t start32 = pinIndex(start, oldLength); |
1925 | int32_t limit32 = pinIndex(limit, oldLength); |
1926 | |
1927 | // Snap start & limit to code point boundaries. |
1928 | if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
1929 | start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
1930 | { |
1931 | start32--; |
1932 | } |
1933 | if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
1934 | U16_IS_TRAIL(rep->charAt(limit32))) |
1935 | { |
1936 | limit32++; |
1937 | } |
1938 | |
1939 | // Do the actual replace operation using methods of the Replaceable class |
1940 | UnicodeString replStr((UBool)(length<0), src, length); // read-only alias |
1941 | rep->handleReplaceBetween(start32, limit32, replStr); |
1942 | int32_t newLength = rep->length(); |
1943 | int32_t lengthDelta = newLength - oldLength; |
1944 | |
1945 | // Is the UText chunk buffer OK? |
1946 | if (ut->chunkNativeLimit > start32) { |
1947 | // this replace operation may have impacted the current chunk. |
1948 | // invalidate it, which will force a reload on the next access. |
1949 | invalidateChunk(ut); |
1950 | } |
1951 | |
1952 | // set the iteration position to the end of the newly inserted replacement text. |
1953 | int32_t newIndexPos = limit32 + lengthDelta; |
1954 | repTextAccess(ut, newIndexPos, true); |
1955 | |
1956 | return lengthDelta; |
1957 | } |
1958 | |
1959 | |
1960 | static void U_CALLCONV |
1961 | repTextCopy(UText *ut, |
1962 | int64_t start, int64_t limit, |
1963 | int64_t destIndex, |
1964 | UBool move, |
1965 | UErrorCode *status) |
1966 | { |
1967 | Replaceable *rep=(Replaceable *)ut->context; |
1968 | int32_t length=rep->length(); |
1969 | |
1970 | if(U_FAILURE(*status)) { |
1971 | return; |
1972 | } |
1973 | if (start>limit || (start<destIndex && destIndex<limit)) |
1974 | { |
1975 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1976 | return; |
1977 | } |
1978 | |
1979 | int32_t start32 = pinIndex(start, length); |
1980 | int32_t limit32 = pinIndex(limit, length); |
1981 | int32_t destIndex32 = pinIndex(destIndex, length); |
1982 | |
1983 | // TODO: snap input parameters to code point boundaries. |
1984 | |
1985 | if(move) { |
1986 | // move: copy to destIndex, then replace original with nothing |
1987 | int32_t segLength=limit32-start32; |
1988 | rep->copy(start32, limit32, destIndex32); |
1989 | if(destIndex32<start32) { |
1990 | start32+=segLength; |
1991 | limit32+=segLength; |
1992 | } |
1993 | rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
1994 | } else { |
1995 | // copy |
1996 | rep->copy(start32, limit32, destIndex32); |
1997 | } |
1998 | |
1999 | // If the change to the text touched the region in the chunk buffer, |
2000 | // invalidate the buffer. |
2001 | int32_t firstAffectedIndex = destIndex32; |
2002 | if (move && start32<firstAffectedIndex) { |
2003 | firstAffectedIndex = start32; |
2004 | } |
2005 | if (firstAffectedIndex < ut->chunkNativeLimit) { |
2006 | // changes may have affected range covered by the chunk |
2007 | invalidateChunk(ut); |
2008 | } |
2009 | |
2010 | // Put iteration position at the newly inserted (moved) block, |
2011 | int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
2012 | if (move && destIndex32>start32) { |
2013 | // moved a block of text towards the end of the string. |
2014 | nativeIterIndex = destIndex32; |
2015 | } |
2016 | |
2017 | // Set position, reload chunk if needed. |
2018 | repTextAccess(ut, nativeIterIndex, true); |
2019 | } |
2020 | |
2021 | static const struct UTextFuncs repFuncs = |
2022 | { |
2023 | sizeof(UTextFuncs), |
2024 | 0, 0, 0, // Reserved alignment padding |
2025 | repTextClone, |
2026 | repTextLength, |
2027 | repTextAccess, |
2028 | repTextExtract, |
2029 | repTextReplace, |
2030 | repTextCopy, |
2031 | nullptr, // MapOffsetToNative, |
2032 | nullptr, // MapIndexToUTF16, |
2033 | repTextClose, |
2034 | nullptr, // spare 1 |
2035 | nullptr, // spare 2 |
2036 | nullptr // spare 3 |
2037 | }; |
2038 | |
2039 | |
2040 | U_CAPI UText * U_EXPORT2 |
2041 | utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
2042 | { |
2043 | if(U_FAILURE(*status)) { |
2044 | return nullptr; |
2045 | } |
2046 | if(rep==nullptr) { |
2047 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
2048 | return nullptr; |
2049 | } |
2050 | ut = utext_setup(ut, sizeof(ReplExtra), status); |
2051 | if(U_FAILURE(*status)) { |
2052 | return ut; |
2053 | } |
2054 | |
2055 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2056 | if(rep->hasMetaData()) { |
2057 | ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
2058 | } |
2059 | |
2060 | ut->pFuncs = &repFuncs; |
2061 | ut->context = rep; |
2062 | return ut; |
2063 | } |
2064 | |
2065 | U_CDECL_END |
2066 | |
2067 | |
2068 | |
2069 | |
2070 | |
2071 | |
2072 | |
2073 | |
2074 | //------------------------------------------------------------------------------ |
2075 | // |
2076 | // UText implementation for UnicodeString (read/write) and |
2077 | // for const UnicodeString (read only) |
2078 | // (same implementation, only the flags are different) |
2079 | // |
2080 | // Use of UText data members: |
2081 | // context pointer to UnicodeString |
2082 | // p pointer to UnicodeString IF this UText owns the string |
2083 | // and it must be deleted on close(). nullptr otherwise. |
2084 | // |
2085 | //------------------------------------------------------------------------------ |
2086 | |
2087 | U_CDECL_BEGIN |
2088 | |
2089 | |
2090 | static UText * U_CALLCONV |
2091 | unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
2092 | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
2093 | dest = shallowTextClone(dest, src, status); |
2094 | |
2095 | // For deep clones, make a copy of the UnicodeSring. |
2096 | // The copied UnicodeString storage is owned by the newly created UText clone. |
2097 | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
2098 | // the UText. |
2099 | // |
2100 | if (deep && U_SUCCESS(*status)) { |
2101 | const UnicodeString *srcString = (const UnicodeString *)src->context; |
2102 | dest->context = new UnicodeString(*srcString); |
2103 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
2104 | |
2105 | // with deep clone, the copy is writable, even when the source is not. |
2106 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2107 | } |
2108 | return dest; |
2109 | } |
2110 | |
2111 | static void U_CALLCONV |
2112 | unistrTextClose(UText *ut) { |
2113 | // Most of the work of close is done by the generic UText framework close. |
2114 | // All that needs to be done here is delete the UnicodeString if the UText |
2115 | // owns it. This occurs if the UText was created by cloning. |
2116 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
2117 | UnicodeString *str = (UnicodeString *)ut->context; |
2118 | delete str; |
2119 | ut->context = nullptr; |
2120 | } |
2121 | } |
2122 | |
2123 | |
2124 | static int64_t U_CALLCONV |
2125 | unistrTextLength(UText *t) { |
2126 | return ((const UnicodeString *)t->context)->length(); |
2127 | } |
2128 | |
2129 | |
2130 | static UBool U_CALLCONV |
2131 | unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
2132 | int32_t length = ut->chunkLength; |
2133 | ut->chunkOffset = pinIndex(index, length); |
2134 | |
2135 | // Check whether request is at the start or end |
2136 | UBool retVal = (forward && index<length) || (!forward && index>0); |
2137 | return retVal; |
2138 | } |
2139 | |
2140 | |
2141 | |
2142 | static int32_t U_CALLCONV |
2143 | (UText *t, |
2144 | int64_t start, int64_t limit, |
2145 | char16_t *dest, int32_t destCapacity, |
2146 | UErrorCode *pErrorCode) { |
2147 | const UnicodeString *us=(const UnicodeString *)t->context; |
2148 | int32_t length=us->length(); |
2149 | |
2150 | if(U_FAILURE(*pErrorCode)) { |
2151 | return 0; |
2152 | } |
2153 | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
2154 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2155 | } |
2156 | if(start<0 || start>limit) { |
2157 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2158 | return 0; |
2159 | } |
2160 | |
2161 | int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; |
2162 | int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; |
2163 | |
2164 | length=limit32-start32; |
2165 | if (destCapacity>0 && dest!=nullptr) { |
2166 | int32_t trimmedLength = length; |
2167 | if(trimmedLength>destCapacity) { |
2168 | trimmedLength=destCapacity; |
2169 | } |
2170 | us->extract(start32, trimmedLength, dest); |
2171 | t->chunkOffset = start32+trimmedLength; |
2172 | } else { |
2173 | t->chunkOffset = start32; |
2174 | } |
2175 | u_terminateUChars(dest, destCapacity, length, pErrorCode); |
2176 | return length; |
2177 | } |
2178 | |
2179 | static int32_t U_CALLCONV |
2180 | unistrTextReplace(UText *ut, |
2181 | int64_t start, int64_t limit, |
2182 | const char16_t *src, int32_t length, |
2183 | UErrorCode *pErrorCode) { |
2184 | UnicodeString *us=(UnicodeString *)ut->context; |
2185 | int32_t oldLength; |
2186 | |
2187 | if(U_FAILURE(*pErrorCode)) { |
2188 | return 0; |
2189 | } |
2190 | if(src==nullptr && length!=0) { |
2191 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2192 | } |
2193 | if(start>limit) { |
2194 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2195 | return 0; |
2196 | } |
2197 | oldLength=us->length(); |
2198 | int32_t start32 = pinIndex(start, oldLength); |
2199 | int32_t limit32 = pinIndex(limit, oldLength); |
2200 | if (start32 < oldLength) { |
2201 | start32 = us->getChar32Start(start32); |
2202 | } |
2203 | if (limit32 < oldLength) { |
2204 | limit32 = us->getChar32Start(limit32); |
2205 | } |
2206 | |
2207 | // replace |
2208 | us->replace(start32, limit32-start32, src, length); |
2209 | int32_t newLength = us->length(); |
2210 | |
2211 | // Update the chunk description. |
2212 | ut->chunkContents = us->getBuffer(); |
2213 | ut->chunkLength = newLength; |
2214 | ut->chunkNativeLimit = newLength; |
2215 | ut->nativeIndexingLimit = newLength; |
2216 | |
2217 | // Set iteration position to the point just following the newly inserted text. |
2218 | int32_t lengthDelta = newLength - oldLength; |
2219 | ut->chunkOffset = limit32 + lengthDelta; |
2220 | |
2221 | return lengthDelta; |
2222 | } |
2223 | |
2224 | static void U_CALLCONV |
2225 | unistrTextCopy(UText *ut, |
2226 | int64_t start, int64_t limit, |
2227 | int64_t destIndex, |
2228 | UBool move, |
2229 | UErrorCode *pErrorCode) { |
2230 | UnicodeString *us=(UnicodeString *)ut->context; |
2231 | int32_t length=us->length(); |
2232 | |
2233 | if(U_FAILURE(*pErrorCode)) { |
2234 | return; |
2235 | } |
2236 | int32_t start32 = pinIndex(start, length); |
2237 | int32_t limit32 = pinIndex(limit, length); |
2238 | int32_t destIndex32 = pinIndex(destIndex, length); |
2239 | |
2240 | if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
2241 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2242 | return; |
2243 | } |
2244 | |
2245 | if(move) { |
2246 | // move: copy to destIndex, then remove original |
2247 | int32_t segLength=limit32-start32; |
2248 | us->copy(start32, limit32, destIndex32); |
2249 | if(destIndex32<start32) { |
2250 | start32+=segLength; |
2251 | } |
2252 | us->remove(start32, segLength); |
2253 | } else { |
2254 | // copy |
2255 | us->copy(start32, limit32, destIndex32); |
2256 | } |
2257 | |
2258 | // update chunk description, set iteration position. |
2259 | ut->chunkContents = us->getBuffer(); |
2260 | if (move==false) { |
2261 | // copy operation, string length grows |
2262 | ut->chunkLength += limit32-start32; |
2263 | ut->chunkNativeLimit = ut->chunkLength; |
2264 | ut->nativeIndexingLimit = ut->chunkLength; |
2265 | } |
2266 | |
2267 | // Iteration position to end of the newly inserted text. |
2268 | ut->chunkOffset = destIndex32+limit32-start32; |
2269 | if (move && destIndex32>start32) { |
2270 | ut->chunkOffset = destIndex32; |
2271 | } |
2272 | |
2273 | } |
2274 | |
2275 | static const struct UTextFuncs unistrFuncs = |
2276 | { |
2277 | sizeof(UTextFuncs), |
2278 | 0, 0, 0, // Reserved alignment padding |
2279 | unistrTextClone, |
2280 | unistrTextLength, |
2281 | unistrTextAccess, |
2282 | unistrTextExtract, |
2283 | unistrTextReplace, |
2284 | unistrTextCopy, |
2285 | nullptr, // MapOffsetToNative, |
2286 | nullptr, // MapIndexToUTF16, |
2287 | unistrTextClose, |
2288 | nullptr, // spare 1 |
2289 | nullptr, // spare 2 |
2290 | nullptr // spare 3 |
2291 | }; |
2292 | |
2293 | |
2294 | |
2295 | U_CDECL_END |
2296 | |
2297 | |
2298 | U_CAPI UText * U_EXPORT2 |
2299 | utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
2300 | ut = utext_openConstUnicodeString(ut, s, status); |
2301 | if (U_SUCCESS(*status)) { |
2302 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2303 | } |
2304 | return ut; |
2305 | } |
2306 | |
2307 | |
2308 | |
2309 | U_CAPI UText * U_EXPORT2 |
2310 | utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
2311 | if (U_SUCCESS(*status) && s->isBogus()) { |
2312 | // The UnicodeString is bogus, but we still need to detach the UText |
2313 | // from whatever it was hooked to before, if anything. |
2314 | utext_openUChars(ut, nullptr, 0, status); |
2315 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
2316 | return ut; |
2317 | } |
2318 | ut = utext_setup(ut, 0, status); |
2319 | // note: use the standard (writable) function table for UnicodeString. |
2320 | // The flag settings disable writing, so having the functions in |
2321 | // the table is harmless. |
2322 | if (U_SUCCESS(*status)) { |
2323 | ut->pFuncs = &unistrFuncs; |
2324 | ut->context = s; |
2325 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
2326 | ut->chunkContents = s->getBuffer(); |
2327 | ut->chunkLength = s->length(); |
2328 | ut->chunkNativeStart = 0; |
2329 | ut->chunkNativeLimit = ut->chunkLength; |
2330 | ut->nativeIndexingLimit = ut->chunkLength; |
2331 | } |
2332 | return ut; |
2333 | } |
2334 | |
2335 | //------------------------------------------------------------------------------ |
2336 | // |
2337 | // UText implementation for const char16_t * strings |
2338 | // |
2339 | // Use of UText data members: |
2340 | // context pointer to UnicodeString |
2341 | // a length. -1 if not yet known. |
2342 | // |
2343 | // TODO: support 64 bit lengths. |
2344 | // |
2345 | //------------------------------------------------------------------------------ |
2346 | |
2347 | U_CDECL_BEGIN |
2348 | |
2349 | |
2350 | static UText * U_CALLCONV |
2351 | ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { |
2352 | // First do a generic shallow clone. |
2353 | dest = shallowTextClone(dest, src, status); |
2354 | |
2355 | // For deep clones, make a copy of the string. |
2356 | // The copied storage is owned by the newly created clone. |
2357 | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
2358 | // it. |
2359 | // |
2360 | if (deep && U_SUCCESS(*status)) { |
2361 | U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
2362 | int32_t len = (int32_t)utext_nativeLength(dest); |
2363 | |
2364 | // The cloned string IS going to be NUL terminated, whether or not the original was. |
2365 | const char16_t *srcStr = (const char16_t *)src->context; |
2366 | char16_t *copyStr = (char16_t *)uprv_malloc((len+1) * sizeof(char16_t)); |
2367 | if (copyStr == nullptr) { |
2368 | *status = U_MEMORY_ALLOCATION_ERROR; |
2369 | } else { |
2370 | int64_t i; |
2371 | for (i=0; i<len; i++) { |
2372 | copyStr[i] = srcStr[i]; |
2373 | } |
2374 | copyStr[len] = 0; |
2375 | dest->context = copyStr; |
2376 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
2377 | } |
2378 | } |
2379 | return dest; |
2380 | } |
2381 | |
2382 | |
2383 | static void U_CALLCONV |
2384 | ucstrTextClose(UText *ut) { |
2385 | // Most of the work of close is done by the generic UText framework close. |
2386 | // All that needs to be done here is delete the string if the UText |
2387 | // owns it. This occurs if the UText was created by cloning. |
2388 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
2389 | char16_t *s = (char16_t *)ut->context; |
2390 | uprv_free(s); |
2391 | ut->context = nullptr; |
2392 | } |
2393 | } |
2394 | |
2395 | |
2396 | |
2397 | static int64_t U_CALLCONV |
2398 | ucstrTextLength(UText *ut) { |
2399 | if (ut->a < 0) { |
2400 | // null terminated, we don't yet know the length. Scan for it. |
2401 | // Access is not convenient for doing this |
2402 | // because the current iteration position can't be changed. |
2403 | const char16_t *str = (const char16_t *)ut->context; |
2404 | for (;;) { |
2405 | if (str[ut->chunkNativeLimit] == 0) { |
2406 | break; |
2407 | } |
2408 | ut->chunkNativeLimit++; |
2409 | } |
2410 | ut->a = ut->chunkNativeLimit; |
2411 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
2412 | ut->nativeIndexingLimit = ut->chunkLength; |
2413 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2414 | } |
2415 | return ut->a; |
2416 | } |
2417 | |
2418 | |
2419 | static UBool U_CALLCONV |
2420 | ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
2421 | const char16_t *str = (const char16_t *)ut->context; |
2422 | |
2423 | // pin the requested index to the bounds of the string, |
2424 | // and set current iteration position. |
2425 | if (index<0) { |
2426 | index = 0; |
2427 | } else if (index < ut->chunkNativeLimit) { |
2428 | // The request data is within the chunk as it is known so far. |
2429 | // Put index on a code point boundary. |
2430 | U16_SET_CP_START(str, 0, index); |
2431 | } else if (ut->a >= 0) { |
2432 | // We know the length of this string, and the user is requesting something |
2433 | // at or beyond the length. Pin the requested index to the length. |
2434 | index = ut->a; |
2435 | } else { |
2436 | // Null terminated string, length not yet known, and the requested index |
2437 | // is beyond where we have scanned so far. |
2438 | // Scan to 32 UChars beyond the requested index. The strategy here is |
2439 | // to avoid fully scanning a long string when the caller only wants to |
2440 | // see a few characters at its beginning. |
2441 | int32_t scanLimit = (int32_t)index + 32; |
2442 | if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression |
2443 | scanLimit = INT32_MAX; |
2444 | } |
2445 | |
2446 | int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
2447 | for (; chunkLimit<scanLimit; chunkLimit++) { |
2448 | if (str[chunkLimit] == 0) { |
2449 | // We found the end of the string. Remember it, pin the requested index to it, |
2450 | // and bail out of here. |
2451 | ut->a = chunkLimit; |
2452 | ut->chunkLength = chunkLimit; |
2453 | ut->nativeIndexingLimit = chunkLimit; |
2454 | if (index >= chunkLimit) { |
2455 | index = chunkLimit; |
2456 | } else { |
2457 | U16_SET_CP_START(str, 0, index); |
2458 | } |
2459 | |
2460 | ut->chunkNativeLimit = chunkLimit; |
2461 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2462 | goto breakout; |
2463 | } |
2464 | } |
2465 | // We scanned through the next batch of UChars without finding the end. |
2466 | U16_SET_CP_START(str, 0, index); |
2467 | if (chunkLimit == INT32_MAX) { |
2468 | // Scanned to the limit of a 32 bit length. |
2469 | // Forceably trim the overlength string back so length fits in int32 |
2470 | // TODO: add support for 64 bit strings. |
2471 | ut->a = chunkLimit; |
2472 | ut->chunkLength = chunkLimit; |
2473 | ut->nativeIndexingLimit = chunkLimit; |
2474 | if (index > chunkLimit) { |
2475 | index = chunkLimit; |
2476 | } |
2477 | ut->chunkNativeLimit = chunkLimit; |
2478 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2479 | } else { |
2480 | // The endpoint of a chunk must not be left in the middle of a surrogate pair. |
2481 | // If the current end is on a lead surrogate, back the end up by one. |
2482 | // It doesn't matter if the end char happens to be an unpaired surrogate, |
2483 | // and it's simpler not to worry about it. |
2484 | if (U16_IS_LEAD(str[chunkLimit-1])) { |
2485 | --chunkLimit; |
2486 | } |
2487 | // Null-terminated chunk with end still unknown. |
2488 | // Update the chunk length to reflect what has been scanned thus far. |
2489 | // That the full length is still unknown is (still) flagged by |
2490 | // ut->a being < 0. |
2491 | ut->chunkNativeLimit = chunkLimit; |
2492 | ut->nativeIndexingLimit = chunkLimit; |
2493 | ut->chunkLength = chunkLimit; |
2494 | } |
2495 | |
2496 | } |
2497 | breakout: |
2498 | U_ASSERT(index<=INT32_MAX); |
2499 | ut->chunkOffset = (int32_t)index; |
2500 | |
2501 | // Check whether request is at the start or end |
2502 | UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); |
2503 | return retVal; |
2504 | } |
2505 | |
2506 | |
2507 | |
2508 | static int32_t U_CALLCONV |
2509 | (UText *ut, |
2510 | int64_t start, int64_t limit, |
2511 | char16_t *dest, int32_t destCapacity, |
2512 | UErrorCode *pErrorCode) |
2513 | { |
2514 | if(U_FAILURE(*pErrorCode)) { |
2515 | return 0; |
2516 | } |
2517 | if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) { |
2518 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2519 | return 0; |
2520 | } |
2521 | |
2522 | //const char16_t *s=(const char16_t *)ut->context; |
2523 | int32_t si, di; |
2524 | |
2525 | int32_t start32; |
2526 | int32_t limit32; |
2527 | |
2528 | // Access the start. Does two things we need: |
2529 | // Pins 'start' to the length of the string, if it came in out-of-bounds. |
2530 | // Snaps 'start' to the beginning of a code point. |
2531 | ucstrTextAccess(ut, start, true); |
2532 | const char16_t *s=ut->chunkContents; |
2533 | start32 = ut->chunkOffset; |
2534 | |
2535 | int32_t strLength=(int32_t)ut->a; |
2536 | if (strLength >= 0) { |
2537 | limit32 = pinIndex(limit, strLength); |
2538 | } else { |
2539 | limit32 = pinIndex(limit, INT32_MAX); |
2540 | } |
2541 | di = 0; |
2542 | for (si=start32; si<limit32; si++) { |
2543 | if (strLength<0 && s[si]==0) { |
2544 | // Just hit the end of a null-terminated string. |
2545 | ut->a = si; // set string length for this UText |
2546 | ut->chunkNativeLimit = si; |
2547 | ut->chunkLength = si; |
2548 | ut->nativeIndexingLimit = si; |
2549 | strLength = si; |
2550 | limit32 = si; |
2551 | break; |
2552 | } |
2553 | U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */ |
2554 | if (di<destCapacity) { |
2555 | // only store if there is space. |
2556 | dest[di] = s[si]; |
2557 | } else { |
2558 | if (strLength>=0) { |
2559 | // We have filled the destination buffer, and the string length is known. |
2560 | // Cut the loop short. There is no need to scan string termination. |
2561 | di = limit32 - start32; |
2562 | si = limit32; |
2563 | break; |
2564 | } |
2565 | } |
2566 | di++; |
2567 | } |
2568 | |
2569 | // If the limit index points to a lead surrogate of a pair, |
2570 | // add the corresponding trail surrogate to the destination. |
2571 | if (si>0 && U16_IS_LEAD(s[si-1]) && |
2572 | ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
2573 | { |
2574 | if (di<destCapacity) { |
2575 | // store only if there is space in the output buffer. |
2576 | dest[di++] = s[si]; |
2577 | } |
2578 | si++; |
2579 | } |
2580 | |
2581 | // Put iteration position at the point just following the extracted text |
2582 | if (si <= ut->chunkNativeLimit) { |
2583 | ut->chunkOffset = si; |
2584 | } else { |
2585 | ucstrTextAccess(ut, si, true); |
2586 | } |
2587 | |
2588 | // Add a terminating NUL if space in the buffer permits, |
2589 | // and set the error status as required. |
2590 | u_terminateUChars(dest, destCapacity, di, pErrorCode); |
2591 | return di; |
2592 | } |
2593 | |
2594 | static const struct UTextFuncs ucstrFuncs = |
2595 | { |
2596 | sizeof(UTextFuncs), |
2597 | 0, 0, 0, // Reserved alignment padding |
2598 | ucstrTextClone, |
2599 | ucstrTextLength, |
2600 | ucstrTextAccess, |
2601 | ucstrTextExtract, |
2602 | nullptr, // Replace |
2603 | nullptr, // Copy |
2604 | nullptr, // MapOffsetToNative, |
2605 | nullptr, // MapIndexToUTF16, |
2606 | ucstrTextClose, |
2607 | nullptr, // spare 1 |
2608 | nullptr, // spare 2 |
2609 | nullptr, // spare 3 |
2610 | }; |
2611 | |
2612 | U_CDECL_END |
2613 | |
2614 | static const char16_t gEmptyUString[] = {0}; |
2615 | |
2616 | U_CAPI UText * U_EXPORT2 |
2617 | utext_openUChars(UText *ut, const char16_t *s, int64_t length, UErrorCode *status) { |
2618 | if (U_FAILURE(*status)) { |
2619 | return nullptr; |
2620 | } |
2621 | if(s==nullptr && length==0) { |
2622 | s = gEmptyUString; |
2623 | } |
2624 | if (s==nullptr || length < -1 || length>INT32_MAX) { |
2625 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
2626 | return nullptr; |
2627 | } |
2628 | ut = utext_setup(ut, 0, status); |
2629 | if (U_SUCCESS(*status)) { |
2630 | ut->pFuncs = &ucstrFuncs; |
2631 | ut->context = s; |
2632 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
2633 | if (length==-1) { |
2634 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2635 | } |
2636 | ut->a = length; |
2637 | ut->chunkContents = s; |
2638 | ut->chunkNativeStart = 0; |
2639 | ut->chunkNativeLimit = length>=0? length : 0; |
2640 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
2641 | ut->chunkOffset = 0; |
2642 | ut->nativeIndexingLimit = ut->chunkLength; |
2643 | } |
2644 | return ut; |
2645 | } |
2646 | |
2647 | |
2648 | //------------------------------------------------------------------------------ |
2649 | // |
2650 | // UText implementation for text from ICU CharacterIterators |
2651 | // |
2652 | // Use of UText data members: |
2653 | // context pointer to the CharacterIterator |
2654 | // a length of the full text. |
2655 | // p pointer to buffer 1 |
2656 | // b start index of local buffer 1 contents |
2657 | // q pointer to buffer 2 |
2658 | // c start index of local buffer 2 contents |
2659 | // r pointer to the character iterator if the UText owns it. |
2660 | // Null otherwise. |
2661 | // |
2662 | //------------------------------------------------------------------------------ |
2663 | #define CIBufSize 16 |
2664 | |
2665 | U_CDECL_BEGIN |
2666 | static void U_CALLCONV |
2667 | charIterTextClose(UText *ut) { |
2668 | // Most of the work of close is done by the generic UText framework close. |
2669 | // All that needs to be done here is delete the CharacterIterator if the UText |
2670 | // owns it. This occurs if the UText was created by cloning. |
2671 | CharacterIterator *ci = (CharacterIterator *)ut->r; |
2672 | delete ci; |
2673 | ut->r = nullptr; |
2674 | } |
2675 | |
2676 | static int64_t U_CALLCONV |
2677 | charIterTextLength(UText *ut) { |
2678 | return (int32_t)ut->a; |
2679 | } |
2680 | |
2681 | static UBool U_CALLCONV |
2682 | charIterTextAccess(UText *ut, int64_t index, UBool forward) { |
2683 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
2684 | |
2685 | int32_t clippedIndex = (int32_t)index; |
2686 | if (clippedIndex<0) { |
2687 | clippedIndex=0; |
2688 | } else if (clippedIndex>=ut->a) { |
2689 | clippedIndex=(int32_t)ut->a; |
2690 | } |
2691 | int32_t neededIndex = clippedIndex; |
2692 | if (!forward && neededIndex>0) { |
2693 | // reverse iteration, want the position just before what was asked for. |
2694 | neededIndex--; |
2695 | } else if (forward && neededIndex==ut->a && neededIndex>0) { |
2696 | // Forward iteration, don't ask for something past the end of the text. |
2697 | neededIndex--; |
2698 | } |
2699 | |
2700 | // Find the native index of the start of the buffer containing what we want. |
2701 | neededIndex -= neededIndex % CIBufSize; |
2702 | |
2703 | char16_t *buf = nullptr; |
2704 | UBool needChunkSetup = true; |
2705 | int i; |
2706 | if (ut->chunkNativeStart == neededIndex) { |
2707 | // The buffer we want is already the current chunk. |
2708 | needChunkSetup = false; |
2709 | } else if (ut->b == neededIndex) { |
2710 | // The first buffer (buffer p) has what we need. |
2711 | buf = (char16_t *)ut->p; |
2712 | } else if (ut->c == neededIndex) { |
2713 | // The second buffer (buffer q) has what we need. |
2714 | buf = (char16_t *)ut->q; |
2715 | } else { |
2716 | // Neither buffer already has what we need. |
2717 | // Load new data from the character iterator. |
2718 | // Use the buf that is not the current buffer. |
2719 | buf = (char16_t *)ut->p; |
2720 | if (ut->p == ut->chunkContents) { |
2721 | buf = (char16_t *)ut->q; |
2722 | } |
2723 | ci->setIndex(neededIndex); |
2724 | for (i=0; i<CIBufSize; i++) { |
2725 | buf[i] = ci->nextPostInc(); |
2726 | if (i+neededIndex > ut->a) { |
2727 | break; |
2728 | } |
2729 | } |
2730 | } |
2731 | |
2732 | // We have a buffer with the data we need. |
2733 | // Set it up as the current chunk, if it wasn't already. |
2734 | if (needChunkSetup) { |
2735 | ut->chunkContents = buf; |
2736 | ut->chunkLength = CIBufSize; |
2737 | ut->chunkNativeStart = neededIndex; |
2738 | ut->chunkNativeLimit = neededIndex + CIBufSize; |
2739 | if (ut->chunkNativeLimit > ut->a) { |
2740 | ut->chunkNativeLimit = ut->a; |
2741 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); |
2742 | } |
2743 | ut->nativeIndexingLimit = ut->chunkLength; |
2744 | U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); |
2745 | } |
2746 | ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; |
2747 | UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); |
2748 | return success; |
2749 | } |
2750 | |
2751 | static UText * U_CALLCONV |
2752 | charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { |
2753 | if (U_FAILURE(*status)) { |
2754 | return nullptr; |
2755 | } |
2756 | |
2757 | if (deep) { |
2758 | // There is no CharacterIterator API for cloning the underlying text storage. |
2759 | *status = U_UNSUPPORTED_ERROR; |
2760 | return nullptr; |
2761 | } else { |
2762 | CharacterIterator *srcCI =(CharacterIterator *)src->context; |
2763 | srcCI = srcCI->clone(); |
2764 | dest = utext_openCharacterIterator(dest, srcCI, status); |
2765 | if (U_FAILURE(*status)) { |
2766 | return dest; |
2767 | } |
2768 | // cast off const on getNativeIndex. |
2769 | // For CharacterIterator based UTexts, this is safe, the operation is const. |
2770 | int64_t ix = utext_getNativeIndex((UText *)src); |
2771 | utext_setNativeIndex(dest, ix); |
2772 | dest->r = srcCI; // flags that this UText owns the CharacterIterator |
2773 | } |
2774 | return dest; |
2775 | } |
2776 | |
2777 | static int32_t U_CALLCONV |
2778 | (UText *ut, |
2779 | int64_t start, int64_t limit, |
2780 | char16_t *dest, int32_t destCapacity, |
2781 | UErrorCode *status) |
2782 | { |
2783 | if(U_FAILURE(*status)) { |
2784 | return 0; |
2785 | } |
2786 | if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) { |
2787 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
2788 | return 0; |
2789 | } |
2790 | int32_t length = (int32_t)ut->a; |
2791 | int32_t start32 = pinIndex(start, length); |
2792 | int32_t limit32 = pinIndex(limit, length); |
2793 | int32_t desti = 0; |
2794 | int32_t srci; |
2795 | int32_t copyLimit; |
2796 | |
2797 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
2798 | ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. |
2799 | srci = ci->getIndex(); |
2800 | copyLimit = srci; |
2801 | while (srci<limit32) { |
2802 | UChar32 c = ci->next32PostInc(); |
2803 | int32_t len = U16_LENGTH(c); |
2804 | U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */ |
2805 | if (desti+len <= destCapacity) { |
2806 | U16_APPEND_UNSAFE(dest, desti, c); |
2807 | copyLimit = srci+len; |
2808 | } else { |
2809 | desti += len; |
2810 | *status = U_BUFFER_OVERFLOW_ERROR; |
2811 | } |
2812 | srci += len; |
2813 | } |
2814 | |
2815 | charIterTextAccess(ut, copyLimit, true); |
2816 | |
2817 | u_terminateUChars(dest, destCapacity, desti, status); |
2818 | return desti; |
2819 | } |
2820 | |
2821 | static const struct UTextFuncs charIterFuncs = |
2822 | { |
2823 | sizeof(UTextFuncs), |
2824 | 0, 0, 0, // Reserved alignment padding |
2825 | charIterTextClone, |
2826 | charIterTextLength, |
2827 | charIterTextAccess, |
2828 | charIterTextExtract, |
2829 | nullptr, // Replace |
2830 | nullptr, // Copy |
2831 | nullptr, // MapOffsetToNative, |
2832 | nullptr, // MapIndexToUTF16, |
2833 | charIterTextClose, |
2834 | nullptr, // spare 1 |
2835 | nullptr, // spare 2 |
2836 | nullptr // spare 3 |
2837 | }; |
2838 | U_CDECL_END |
2839 | |
2840 | |
2841 | U_CAPI UText * U_EXPORT2 |
2842 | utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { |
2843 | if (U_FAILURE(*status)) { |
2844 | return nullptr; |
2845 | } |
2846 | |
2847 | if (ci->startIndex() > 0) { |
2848 | // No support for CharacterIterators that do not start indexing from zero. |
2849 | *status = U_UNSUPPORTED_ERROR; |
2850 | return nullptr; |
2851 | } |
2852 | |
2853 | // Extra space in UText for 2 buffers of CIBufSize UChars each. |
2854 | int32_t = 2 * CIBufSize * sizeof(char16_t); |
2855 | ut = utext_setup(ut, extraSpace, status); |
2856 | if (U_SUCCESS(*status)) { |
2857 | ut->pFuncs = &charIterFuncs; |
2858 | ut->context = ci; |
2859 | ut->providerProperties = 0; |
2860 | ut->a = ci->endIndex(); // Length of text |
2861 | ut->p = ut->pExtra; // First buffer |
2862 | ut->b = -1; // Native index of first buffer contents |
2863 | ut->q = (char16_t*)ut->pExtra+CIBufSize; // Second buffer |
2864 | ut->c = -1; // Native index of second buffer contents |
2865 | |
2866 | // Initialize current chunk contents to be empty. |
2867 | // First access will fault something in. |
2868 | // Note: The initial nativeStart and chunkOffset must sum to zero |
2869 | // so that getNativeIndex() will correctly compute to zero |
2870 | // if no call to Access() has ever been made. They can't be both |
2871 | // zero without Access() thinking that the chunk is valid. |
2872 | ut->chunkContents = (char16_t *)ut->p; |
2873 | ut->chunkNativeStart = -1; |
2874 | ut->chunkOffset = 1; |
2875 | ut->chunkNativeLimit = 0; |
2876 | ut->chunkLength = 0; |
2877 | ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing |
2878 | } |
2879 | return ut; |
2880 | } |
2881 | |