1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /* |
4 | ****************************************************************************** |
5 | * Copyright (C) 1999-2015, International Business Machines Corporation and |
6 | * others. All Rights Reserved. |
7 | ****************************************************************************** |
8 | * Date Name Description |
9 | * 10/22/99 alan Creation. |
10 | ********************************************************************** |
11 | */ |
12 | |
13 | #include "uvectr32.h" |
14 | #include "cmemory.h" |
15 | #include "putilimp.h" |
16 | |
17 | U_NAMESPACE_BEGIN |
18 | |
19 | #define DEFAULT_CAPACITY 8 |
20 | |
21 | /* |
22 | * Constants for hinting whether a key is an integer |
23 | * or a pointer. If a hint bit is zero, then the associated |
24 | * token is assumed to be an integer. This is needed for iSeries |
25 | */ |
26 | |
27 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector32) |
28 | |
29 | UVector32::UVector32(UErrorCode &status) : |
30 | count(0), |
31 | capacity(0), |
32 | maxCapacity(0), |
33 | elements(nullptr) |
34 | { |
35 | _init(DEFAULT_CAPACITY, status); |
36 | } |
37 | |
38 | UVector32::UVector32(int32_t initialCapacity, UErrorCode &status) : |
39 | count(0), |
40 | capacity(0), |
41 | maxCapacity(0), |
42 | elements(0) |
43 | { |
44 | _init(initialCapacity, status); |
45 | } |
46 | |
47 | |
48 | |
49 | void UVector32::_init(int32_t initialCapacity, UErrorCode &status) { |
50 | // Fix bogus initialCapacity values; avoid malloc(0) |
51 | if (initialCapacity < 1) { |
52 | initialCapacity = DEFAULT_CAPACITY; |
53 | } |
54 | if (maxCapacity>0 && maxCapacity<initialCapacity) { |
55 | initialCapacity = maxCapacity; |
56 | } |
57 | if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int32_t))) { |
58 | initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity); |
59 | } |
60 | elements = (int32_t *)uprv_malloc(sizeof(int32_t)*initialCapacity); |
61 | if (elements == 0) { |
62 | status = U_MEMORY_ALLOCATION_ERROR; |
63 | } else { |
64 | capacity = initialCapacity; |
65 | } |
66 | } |
67 | |
68 | UVector32::~UVector32() { |
69 | uprv_free(elements); |
70 | elements = 0; |
71 | } |
72 | |
73 | /** |
74 | * Assign this object to another (make this a copy of 'other'). |
75 | */ |
76 | void UVector32::assign(const UVector32& other, UErrorCode &ec) { |
77 | if (ensureCapacity(other.count, ec)) { |
78 | setSize(other.count); |
79 | for (int32_t i=0; i<other.count; ++i) { |
80 | elements[i] = other.elements[i]; |
81 | } |
82 | } |
83 | } |
84 | |
85 | |
86 | bool UVector32::operator==(const UVector32& other) const { |
87 | int32_t i; |
88 | if (count != other.count) return false; |
89 | for (i=0; i<count; ++i) { |
90 | if (elements[i] != other.elements[i]) { |
91 | return false; |
92 | } |
93 | } |
94 | return true; |
95 | } |
96 | |
97 | |
98 | void UVector32::setElementAt(int32_t elem, int32_t index) { |
99 | if (0 <= index && index < count) { |
100 | elements[index] = elem; |
101 | } |
102 | /* else index out of range */ |
103 | } |
104 | |
105 | void UVector32::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) { |
106 | // must have 0 <= index <= count |
107 | if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { |
108 | for (int32_t i=count; i>index; --i) { |
109 | elements[i] = elements[i-1]; |
110 | } |
111 | elements[index] = elem; |
112 | ++count; |
113 | } |
114 | /* else index out of range */ |
115 | } |
116 | |
117 | UBool UVector32::containsAll(const UVector32& other) const { |
118 | for (int32_t i=0; i<other.size(); ++i) { |
119 | if (indexOf(other.elements[i]) < 0) { |
120 | return false; |
121 | } |
122 | } |
123 | return true; |
124 | } |
125 | |
126 | UBool UVector32::containsNone(const UVector32& other) const { |
127 | for (int32_t i=0; i<other.size(); ++i) { |
128 | if (indexOf(other.elements[i]) >= 0) { |
129 | return false; |
130 | } |
131 | } |
132 | return true; |
133 | } |
134 | |
135 | UBool UVector32::removeAll(const UVector32& other) { |
136 | UBool changed = false; |
137 | for (int32_t i=0; i<other.size(); ++i) { |
138 | int32_t j = indexOf(other.elements[i]); |
139 | if (j >= 0) { |
140 | removeElementAt(j); |
141 | changed = true; |
142 | } |
143 | } |
144 | return changed; |
145 | } |
146 | |
147 | UBool UVector32::retainAll(const UVector32& other) { |
148 | UBool changed = false; |
149 | for (int32_t j=size()-1; j>=0; --j) { |
150 | int32_t i = other.indexOf(elements[j]); |
151 | if (i < 0) { |
152 | removeElementAt(j); |
153 | changed = true; |
154 | } |
155 | } |
156 | return changed; |
157 | } |
158 | |
159 | void UVector32::removeElementAt(int32_t index) { |
160 | if (index >= 0) { |
161 | for (int32_t i=index; i<count-1; ++i) { |
162 | elements[i] = elements[i+1]; |
163 | } |
164 | --count; |
165 | } |
166 | } |
167 | |
168 | void UVector32::removeAllElements() { |
169 | count = 0; |
170 | } |
171 | |
172 | UBool UVector32::equals(const UVector32 &other) const { |
173 | int i; |
174 | |
175 | if (this->count != other.count) { |
176 | return false; |
177 | } |
178 | for (i=0; i<count; i++) { |
179 | if (elements[i] != other.elements[i]) { |
180 | return false; |
181 | } |
182 | } |
183 | return true; |
184 | } |
185 | |
186 | |
187 | |
188 | |
189 | int32_t UVector32::indexOf(int32_t key, int32_t startIndex) const { |
190 | int32_t i; |
191 | for (i=startIndex; i<count; ++i) { |
192 | if (key == elements[i]) { |
193 | return i; |
194 | } |
195 | } |
196 | return -1; |
197 | } |
198 | |
199 | |
200 | UBool UVector32::expandCapacity(int32_t minimumCapacity, UErrorCode &status) { |
201 | if (U_FAILURE(status)) { |
202 | return false; |
203 | } |
204 | if (minimumCapacity < 0) { |
205 | status = U_ILLEGAL_ARGUMENT_ERROR; |
206 | return false; |
207 | } |
208 | if (capacity >= minimumCapacity) { |
209 | return true; |
210 | } |
211 | if (maxCapacity>0 && minimumCapacity>maxCapacity) { |
212 | status = U_BUFFER_OVERFLOW_ERROR; |
213 | return false; |
214 | } |
215 | if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check |
216 | status = U_ILLEGAL_ARGUMENT_ERROR; |
217 | return false; |
218 | } |
219 | int32_t newCap = capacity * 2; |
220 | if (newCap < minimumCapacity) { |
221 | newCap = minimumCapacity; |
222 | } |
223 | if (maxCapacity > 0 && newCap > maxCapacity) { |
224 | newCap = maxCapacity; |
225 | } |
226 | if (newCap > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check |
227 | // We keep the original memory contents on bad minimumCapacity/maxCapacity. |
228 | status = U_ILLEGAL_ARGUMENT_ERROR; |
229 | return false; |
230 | } |
231 | int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*newCap); |
232 | if (newElems == nullptr) { |
233 | // We keep the original contents on the memory failure on realloc. |
234 | status = U_MEMORY_ALLOCATION_ERROR; |
235 | return false; |
236 | } |
237 | elements = newElems; |
238 | capacity = newCap; |
239 | return true; |
240 | } |
241 | |
242 | void UVector32::setMaxCapacity(int32_t limit) { |
243 | U_ASSERT(limit >= 0); |
244 | if (limit < 0) { |
245 | limit = 0; |
246 | } |
247 | if (limit > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow check for realloc |
248 | // Something is very wrong, don't realloc, leave capacity and maxCapacity unchanged |
249 | return; |
250 | } |
251 | maxCapacity = limit; |
252 | if (capacity <= maxCapacity || maxCapacity == 0) { |
253 | // Current capacity is within the new limit. |
254 | return; |
255 | } |
256 | |
257 | // New maximum capacity is smaller than the current size. |
258 | // Realloc the storage to the new, smaller size. |
259 | int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*maxCapacity); |
260 | if (newElems == nullptr) { |
261 | // Realloc to smaller failed. |
262 | // Just keep what we had. No need to call it a failure. |
263 | return; |
264 | } |
265 | elements = newElems; |
266 | capacity = maxCapacity; |
267 | if (count > capacity) { |
268 | count = capacity; |
269 | } |
270 | } |
271 | |
272 | /** |
273 | * Change the size of this vector as follows: If newSize is smaller, |
274 | * then truncate the array, possibly deleting held elements for i >= |
275 | * newSize. If newSize is larger, grow the array, filling in new |
276 | * slots with nullptr. |
277 | */ |
278 | void UVector32::setSize(int32_t newSize) { |
279 | int32_t i; |
280 | if (newSize < 0) { |
281 | return; |
282 | } |
283 | if (newSize > count) { |
284 | UErrorCode ec = U_ZERO_ERROR; |
285 | if (!ensureCapacity(newSize, ec)) { |
286 | return; |
287 | } |
288 | for (i=count; i<newSize; ++i) { |
289 | elements[i] = 0; |
290 | } |
291 | } |
292 | count = newSize; |
293 | } |
294 | |
295 | |
296 | |
297 | |
298 | /** |
299 | * Insert the given integer into this vector at its sorted position |
300 | * as defined by 'compare'. The current elements are assumed to |
301 | * be sorted already. |
302 | */ |
303 | void UVector32::sortedInsert(int32_t tok, UErrorCode& ec) { |
304 | // Perform a binary search for the location to insert tok at. Tok |
305 | // will be inserted between two elements a and b such that a <= |
306 | // tok && tok < b, where there is a 'virtual' elements[-1] always |
307 | // less than tok and a 'virtual' elements[count] always greater |
308 | // than tok. |
309 | int32_t min = 0, max = count; |
310 | while (min != max) { |
311 | int32_t probe = (min + max) / 2; |
312 | //int8_t c = (*compare)(elements[probe], tok); |
313 | //if (c > 0) { |
314 | if (elements[probe] > tok) { |
315 | max = probe; |
316 | } else { |
317 | // assert(c <= 0); |
318 | min = probe + 1; |
319 | } |
320 | } |
321 | if (ensureCapacity(count + 1, ec)) { |
322 | for (int32_t i=count; i>min; --i) { |
323 | elements[i] = elements[i-1]; |
324 | } |
325 | elements[min] = tok; |
326 | ++count; |
327 | } |
328 | } |
329 | |
330 | |
331 | |
332 | |
333 | |
334 | U_NAMESPACE_END |
335 | |
336 | |