1 | // Copyright 2011 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // SSE2 version of speed-critical encoding functions. |
11 | // |
12 | // Author: Christian Duvivier (cduvivier@google.com) |
13 | |
14 | #include "src/dsp/dsp.h" |
15 | |
16 | #if defined(WEBP_USE_SSE2) |
17 | #include <assert.h> |
18 | #include <stdlib.h> // for abs() |
19 | #include <emmintrin.h> |
20 | |
21 | #include "src/dsp/common_sse2.h" |
22 | #include "src/enc/cost_enc.h" |
23 | #include "src/enc/vp8i_enc.h" |
24 | |
25 | //------------------------------------------------------------------------------ |
26 | // Transforms (Paragraph 14.4) |
27 | |
28 | // Does one inverse transform. |
29 | static void ITransform_One_SSE2(const uint8_t* ref, const int16_t* in, |
30 | uint8_t* dst) { |
31 | // This implementation makes use of 16-bit fixed point versions of two |
32 | // multiply constants: |
33 | // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
34 | // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
35 | // |
36 | // To be able to use signed 16-bit integers, we use the following trick to |
37 | // have constants within range: |
38 | // - Associated constants are obtained by subtracting the 16-bit fixed point |
39 | // version of one: |
40 | // k = K - (1 << 16) => K = k + (1 << 16) |
41 | // K1 = 85267 => k1 = 20091 |
42 | // K2 = 35468 => k2 = -30068 |
43 | // - The multiplication of a variable by a constant become the sum of the |
44 | // variable and the multiplication of that variable by the associated |
45 | // constant: |
46 | // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
47 | const __m128i k1k2 = _mm_set_epi16(-30068, -30068, -30068, -30068, |
48 | 20091, 20091, 20091, 20091); |
49 | const __m128i k2k1 = _mm_set_epi16(20091, 20091, 20091, 20091, |
50 | -30068, -30068, -30068, -30068); |
51 | const __m128i zero = _mm_setzero_si128(); |
52 | const __m128i zero_four = _mm_set_epi16(0, 0, 0, 0, 4, 4, 4, 4); |
53 | __m128i T01, T23; |
54 | |
55 | // Load and concatenate the transform coefficients. |
56 | const __m128i in01 = _mm_loadu_si128((const __m128i*)&in[0]); |
57 | const __m128i in23 = _mm_loadu_si128((const __m128i*)&in[8]); |
58 | // a00 a10 a20 a30 a01 a11 a21 a31 |
59 | // a02 a12 a22 a32 a03 a13 a23 a33 |
60 | |
61 | // Vertical pass and subsequent transpose. |
62 | { |
63 | const __m128i in1 = _mm_unpackhi_epi64(in01, in01); |
64 | const __m128i in3 = _mm_unpackhi_epi64(in23, in23); |
65 | |
66 | // First pass, c and d calculations are longer because of the "trick" |
67 | // multiplications. |
68 | // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
69 | // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
70 | const __m128i a_d3 = _mm_add_epi16(in01, in23); |
71 | const __m128i b_c3 = _mm_sub_epi16(in01, in23); |
72 | const __m128i c1d1 = _mm_mulhi_epi16(in1, k2k1); |
73 | const __m128i c2d2 = _mm_mulhi_epi16(in3, k1k2); |
74 | const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3); |
75 | const __m128i c4 = _mm_sub_epi16(c1d1, c2d2); |
76 | const __m128i c = _mm_add_epi16(c3, c4); |
77 | const __m128i d4u = _mm_add_epi16(c1d1, c2d2); |
78 | const __m128i du = _mm_add_epi16(a_d3, d4u); |
79 | const __m128i d = _mm_unpackhi_epi64(du, du); |
80 | |
81 | // Second pass. |
82 | const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3); |
83 | const __m128i comb_dc = _mm_unpacklo_epi64(d, c); |
84 | |
85 | const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc); |
86 | const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc); |
87 | const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2)); |
88 | |
89 | const __m128i transpose_0 = _mm_unpacklo_epi16(tmp01, tmp23); |
90 | const __m128i transpose_1 = _mm_unpackhi_epi16(tmp01, tmp23); |
91 | // a00 a20 a01 a21 a02 a22 a03 a23 |
92 | // a10 a30 a11 a31 a12 a32 a13 a33 |
93 | |
94 | T01 = _mm_unpacklo_epi16(transpose_0, transpose_1); |
95 | T23 = _mm_unpackhi_epi16(transpose_0, transpose_1); |
96 | // a00 a10 a20 a30 a01 a11 a21 a31 |
97 | // a02 a12 a22 a32 a03 a13 a23 a33 |
98 | } |
99 | |
100 | // Horizontal pass and subsequent transpose. |
101 | { |
102 | const __m128i T1 = _mm_unpackhi_epi64(T01, T01); |
103 | const __m128i T3 = _mm_unpackhi_epi64(T23, T23); |
104 | |
105 | // First pass, c and d calculations are longer because of the "trick" |
106 | // multiplications. |
107 | const __m128i dc = _mm_add_epi16(T01, zero_four); |
108 | |
109 | // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
110 | // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
111 | const __m128i a_d3 = _mm_add_epi16(dc, T23); |
112 | const __m128i b_c3 = _mm_sub_epi16(dc, T23); |
113 | const __m128i c1d1 = _mm_mulhi_epi16(T1, k2k1); |
114 | const __m128i c2d2 = _mm_mulhi_epi16(T3, k1k2); |
115 | const __m128i c3 = _mm_unpackhi_epi64(b_c3, b_c3); |
116 | const __m128i c4 = _mm_sub_epi16(c1d1, c2d2); |
117 | const __m128i c = _mm_add_epi16(c3, c4); |
118 | const __m128i d4u = _mm_add_epi16(c1d1, c2d2); |
119 | const __m128i du = _mm_add_epi16(a_d3, d4u); |
120 | const __m128i d = _mm_unpackhi_epi64(du, du); |
121 | |
122 | // Second pass. |
123 | const __m128i comb_ab = _mm_unpacklo_epi64(a_d3, b_c3); |
124 | const __m128i comb_dc = _mm_unpacklo_epi64(d, c); |
125 | |
126 | const __m128i tmp01 = _mm_add_epi16(comb_ab, comb_dc); |
127 | const __m128i tmp32 = _mm_sub_epi16(comb_ab, comb_dc); |
128 | const __m128i tmp23 = _mm_shuffle_epi32(tmp32, _MM_SHUFFLE(1, 0, 3, 2)); |
129 | |
130 | const __m128i shifted01 = _mm_srai_epi16(tmp01, 3); |
131 | const __m128i shifted23 = _mm_srai_epi16(tmp23, 3); |
132 | // a00 a01 a02 a03 a10 a11 a12 a13 |
133 | // a20 a21 a22 a23 a30 a31 a32 a33 |
134 | |
135 | const __m128i transpose_0 = _mm_unpacklo_epi16(shifted01, shifted23); |
136 | const __m128i transpose_1 = _mm_unpackhi_epi16(shifted01, shifted23); |
137 | // a00 a20 a01 a21 a02 a22 a03 a23 |
138 | // a10 a30 a11 a31 a12 a32 a13 a33 |
139 | |
140 | T01 = _mm_unpacklo_epi16(transpose_0, transpose_1); |
141 | T23 = _mm_unpackhi_epi16(transpose_0, transpose_1); |
142 | // a00 a10 a20 a30 a01 a11 a21 a31 |
143 | // a02 a12 a22 a32 a03 a13 a23 a33 |
144 | } |
145 | |
146 | // Add inverse transform to 'ref' and store. |
147 | { |
148 | // Load the reference(s). |
149 | __m128i ref01, ref23, ref0123; |
150 | int32_t buf[4]; |
151 | |
152 | // Load four bytes/pixels per line. |
153 | const __m128i ref0 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[0 * BPS])); |
154 | const __m128i ref1 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[1 * BPS])); |
155 | const __m128i ref2 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[2 * BPS])); |
156 | const __m128i ref3 = _mm_cvtsi32_si128(WebPMemToInt32(&ref[3 * BPS])); |
157 | ref01 = _mm_unpacklo_epi32(ref0, ref1); |
158 | ref23 = _mm_unpacklo_epi32(ref2, ref3); |
159 | |
160 | // Convert to 16b. |
161 | ref01 = _mm_unpacklo_epi8(ref01, zero); |
162 | ref23 = _mm_unpacklo_epi8(ref23, zero); |
163 | // Add the inverse transform(s). |
164 | ref01 = _mm_add_epi16(ref01, T01); |
165 | ref23 = _mm_add_epi16(ref23, T23); |
166 | // Unsigned saturate to 8b. |
167 | ref0123 = _mm_packus_epi16(ref01, ref23); |
168 | |
169 | _mm_storeu_si128((__m128i *)buf, ref0123); |
170 | |
171 | // Store four bytes/pixels per line. |
172 | WebPInt32ToMem(&dst[0 * BPS], buf[0]); |
173 | WebPInt32ToMem(&dst[1 * BPS], buf[1]); |
174 | WebPInt32ToMem(&dst[2 * BPS], buf[2]); |
175 | WebPInt32ToMem(&dst[3 * BPS], buf[3]); |
176 | } |
177 | } |
178 | |
179 | // Does two inverse transforms. |
180 | static void ITransform_Two_SSE2(const uint8_t* ref, const int16_t* in, |
181 | uint8_t* dst) { |
182 | // This implementation makes use of 16-bit fixed point versions of two |
183 | // multiply constants: |
184 | // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
185 | // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
186 | // |
187 | // To be able to use signed 16-bit integers, we use the following trick to |
188 | // have constants within range: |
189 | // - Associated constants are obtained by subtracting the 16-bit fixed point |
190 | // version of one: |
191 | // k = K - (1 << 16) => K = k + (1 << 16) |
192 | // K1 = 85267 => k1 = 20091 |
193 | // K2 = 35468 => k2 = -30068 |
194 | // - The multiplication of a variable by a constant become the sum of the |
195 | // variable and the multiplication of that variable by the associated |
196 | // constant: |
197 | // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x |
198 | const __m128i k1 = _mm_set1_epi16(20091); |
199 | const __m128i k2 = _mm_set1_epi16(-30068); |
200 | __m128i T0, T1, T2, T3; |
201 | |
202 | // Load and concatenate the transform coefficients (we'll do two inverse |
203 | // transforms in parallel). |
204 | __m128i in0, in1, in2, in3; |
205 | { |
206 | const __m128i tmp0 = _mm_loadu_si128((const __m128i*)&in[0]); |
207 | const __m128i tmp1 = _mm_loadu_si128((const __m128i*)&in[8]); |
208 | const __m128i tmp2 = _mm_loadu_si128((const __m128i*)&in[16]); |
209 | const __m128i tmp3 = _mm_loadu_si128((const __m128i*)&in[24]); |
210 | in0 = _mm_unpacklo_epi64(tmp0, tmp2); |
211 | in1 = _mm_unpackhi_epi64(tmp0, tmp2); |
212 | in2 = _mm_unpacklo_epi64(tmp1, tmp3); |
213 | in3 = _mm_unpackhi_epi64(tmp1, tmp3); |
214 | // a00 a10 a20 a30 b00 b10 b20 b30 |
215 | // a01 a11 a21 a31 b01 b11 b21 b31 |
216 | // a02 a12 a22 a32 b02 b12 b22 b32 |
217 | // a03 a13 a23 a33 b03 b13 b23 b33 |
218 | } |
219 | |
220 | // Vertical pass and subsequent transpose. |
221 | { |
222 | // First pass, c and d calculations are longer because of the "trick" |
223 | // multiplications. |
224 | const __m128i a = _mm_add_epi16(in0, in2); |
225 | const __m128i b = _mm_sub_epi16(in0, in2); |
226 | // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3 |
227 | const __m128i c1 = _mm_mulhi_epi16(in1, k2); |
228 | const __m128i c2 = _mm_mulhi_epi16(in3, k1); |
229 | const __m128i c3 = _mm_sub_epi16(in1, in3); |
230 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
231 | const __m128i c = _mm_add_epi16(c3, c4); |
232 | // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3 |
233 | const __m128i d1 = _mm_mulhi_epi16(in1, k1); |
234 | const __m128i d2 = _mm_mulhi_epi16(in3, k2); |
235 | const __m128i d3 = _mm_add_epi16(in1, in3); |
236 | const __m128i d4 = _mm_add_epi16(d1, d2); |
237 | const __m128i d = _mm_add_epi16(d3, d4); |
238 | |
239 | // Second pass. |
240 | const __m128i tmp0 = _mm_add_epi16(a, d); |
241 | const __m128i tmp1 = _mm_add_epi16(b, c); |
242 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
243 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
244 | |
245 | // Transpose the two 4x4. |
246 | VP8Transpose_2_4x4_16b(&tmp0, &tmp1, &tmp2, &tmp3, &T0, &T1, &T2, &T3); |
247 | } |
248 | |
249 | // Horizontal pass and subsequent transpose. |
250 | { |
251 | // First pass, c and d calculations are longer because of the "trick" |
252 | // multiplications. |
253 | const __m128i four = _mm_set1_epi16(4); |
254 | const __m128i dc = _mm_add_epi16(T0, four); |
255 | const __m128i a = _mm_add_epi16(dc, T2); |
256 | const __m128i b = _mm_sub_epi16(dc, T2); |
257 | // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3 |
258 | const __m128i c1 = _mm_mulhi_epi16(T1, k2); |
259 | const __m128i c2 = _mm_mulhi_epi16(T3, k1); |
260 | const __m128i c3 = _mm_sub_epi16(T1, T3); |
261 | const __m128i c4 = _mm_sub_epi16(c1, c2); |
262 | const __m128i c = _mm_add_epi16(c3, c4); |
263 | // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3 |
264 | const __m128i d1 = _mm_mulhi_epi16(T1, k1); |
265 | const __m128i d2 = _mm_mulhi_epi16(T3, k2); |
266 | const __m128i d3 = _mm_add_epi16(T1, T3); |
267 | const __m128i d4 = _mm_add_epi16(d1, d2); |
268 | const __m128i d = _mm_add_epi16(d3, d4); |
269 | |
270 | // Second pass. |
271 | const __m128i tmp0 = _mm_add_epi16(a, d); |
272 | const __m128i tmp1 = _mm_add_epi16(b, c); |
273 | const __m128i tmp2 = _mm_sub_epi16(b, c); |
274 | const __m128i tmp3 = _mm_sub_epi16(a, d); |
275 | const __m128i shifted0 = _mm_srai_epi16(tmp0, 3); |
276 | const __m128i shifted1 = _mm_srai_epi16(tmp1, 3); |
277 | const __m128i shifted2 = _mm_srai_epi16(tmp2, 3); |
278 | const __m128i shifted3 = _mm_srai_epi16(tmp3, 3); |
279 | |
280 | // Transpose the two 4x4. |
281 | VP8Transpose_2_4x4_16b(&shifted0, &shifted1, &shifted2, &shifted3, &T0, &T1, |
282 | &T2, &T3); |
283 | } |
284 | |
285 | // Add inverse transform to 'ref' and store. |
286 | { |
287 | const __m128i zero = _mm_setzero_si128(); |
288 | // Load the reference(s). |
289 | __m128i ref0, ref1, ref2, ref3; |
290 | // Load eight bytes/pixels per line. |
291 | ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
292 | ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
293 | ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
294 | ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
295 | // Convert to 16b. |
296 | ref0 = _mm_unpacklo_epi8(ref0, zero); |
297 | ref1 = _mm_unpacklo_epi8(ref1, zero); |
298 | ref2 = _mm_unpacklo_epi8(ref2, zero); |
299 | ref3 = _mm_unpacklo_epi8(ref3, zero); |
300 | // Add the inverse transform(s). |
301 | ref0 = _mm_add_epi16(ref0, T0); |
302 | ref1 = _mm_add_epi16(ref1, T1); |
303 | ref2 = _mm_add_epi16(ref2, T2); |
304 | ref3 = _mm_add_epi16(ref3, T3); |
305 | // Unsigned saturate to 8b. |
306 | ref0 = _mm_packus_epi16(ref0, ref0); |
307 | ref1 = _mm_packus_epi16(ref1, ref1); |
308 | ref2 = _mm_packus_epi16(ref2, ref2); |
309 | ref3 = _mm_packus_epi16(ref3, ref3); |
310 | // Store eight bytes/pixels per line. |
311 | _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
312 | _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
313 | _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
314 | _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
315 | } |
316 | } |
317 | |
318 | // Does one or two inverse transforms. |
319 | static void ITransform_SSE2(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
320 | int do_two) { |
321 | if (do_two) { |
322 | ITransform_Two_SSE2(ref, in, dst); |
323 | } else { |
324 | ITransform_One_SSE2(ref, in, dst); |
325 | } |
326 | } |
327 | |
328 | static void FTransformPass1_SSE2(const __m128i* const in01, |
329 | const __m128i* const in23, |
330 | __m128i* const out01, |
331 | __m128i* const out32) { |
332 | const __m128i k937 = _mm_set1_epi32(937); |
333 | const __m128i k1812 = _mm_set1_epi32(1812); |
334 | |
335 | const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
336 | const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
337 | const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
338 | 2217, 5352, 2217, 5352); |
339 | const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
340 | -5352, 2217, -5352, 2217); |
341 | |
342 | // *in01 = 00 01 10 11 02 03 12 13 |
343 | // *in23 = 20 21 30 31 22 23 32 33 |
344 | const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); |
345 | const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); |
346 | // 00 01 10 11 03 02 13 12 |
347 | // 20 21 30 31 23 22 33 32 |
348 | const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
349 | const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
350 | // 00 01 10 11 20 21 30 31 |
351 | // 03 02 13 12 23 22 33 32 |
352 | const __m128i a01 = _mm_add_epi16(s01, s32); |
353 | const __m128i a32 = _mm_sub_epi16(s01, s32); |
354 | // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
355 | // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
356 | |
357 | const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
358 | const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
359 | const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
360 | const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
361 | const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
362 | const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
363 | const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
364 | const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
365 | const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
366 | const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
367 | const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
368 | const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
369 | const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
370 | *out01 = _mm_unpacklo_epi32(s_lo, s_hi); |
371 | *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
372 | } |
373 | |
374 | static void FTransformPass2_SSE2(const __m128i* const v01, |
375 | const __m128i* const v32, |
376 | int16_t* out) { |
377 | const __m128i zero = _mm_setzero_si128(); |
378 | const __m128i seven = _mm_set1_epi16(7); |
379 | const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
380 | 5352, 2217, 5352, 2217); |
381 | const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
382 | 2217, -5352, 2217, -5352); |
383 | const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
384 | const __m128i k51000 = _mm_set1_epi32(51000); |
385 | |
386 | // Same operations are done on the (0,3) and (1,2) pairs. |
387 | // a3 = v0 - v3 |
388 | // a2 = v1 - v2 |
389 | const __m128i a32 = _mm_sub_epi16(*v01, *v32); |
390 | const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
391 | |
392 | const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
393 | const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
394 | const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
395 | const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
396 | const __m128i d3 = _mm_add_epi32(c3, k51000); |
397 | const __m128i e1 = _mm_srai_epi32(d1, 16); |
398 | const __m128i e3 = _mm_srai_epi32(d3, 16); |
399 | // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
400 | // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
401 | const __m128i f1 = _mm_packs_epi32(e1, e1); |
402 | const __m128i f3 = _mm_packs_epi32(e3, e3); |
403 | // g1 = f1 + (a3 != 0); |
404 | // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
405 | // desired (0, 1), we add one earlier through k12000_plus_one. |
406 | // -> g1 = f1 + 1 - (a3 == 0) |
407 | const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
408 | |
409 | // a0 = v0 + v3 |
410 | // a1 = v1 + v2 |
411 | const __m128i a01 = _mm_add_epi16(*v01, *v32); |
412 | const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
413 | const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
414 | const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
415 | const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
416 | // d0 = (a0 + a1 + 7) >> 4; |
417 | // d2 = (a0 - a1 + 7) >> 4; |
418 | const __m128i d0 = _mm_srai_epi16(c0, 4); |
419 | const __m128i d2 = _mm_srai_epi16(c2, 4); |
420 | |
421 | const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
422 | const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
423 | _mm_storeu_si128((__m128i*)&out[0], d0_g1); |
424 | _mm_storeu_si128((__m128i*)&out[8], d2_f3); |
425 | } |
426 | |
427 | static void FTransform_SSE2(const uint8_t* src, const uint8_t* ref, |
428 | int16_t* out) { |
429 | const __m128i zero = _mm_setzero_si128(); |
430 | // Load src. |
431 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
432 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
433 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
434 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
435 | // 00 01 02 03 * |
436 | // 10 11 12 13 * |
437 | // 20 21 22 23 * |
438 | // 30 31 32 33 * |
439 | // Shuffle. |
440 | const __m128i src_0 = _mm_unpacklo_epi16(src0, src1); |
441 | const __m128i src_1 = _mm_unpacklo_epi16(src2, src3); |
442 | // 00 01 10 11 02 03 12 13 * * ... |
443 | // 20 21 30 31 22 22 32 33 * * ... |
444 | |
445 | // Load ref. |
446 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
447 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
448 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
449 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
450 | const __m128i ref_0 = _mm_unpacklo_epi16(ref0, ref1); |
451 | const __m128i ref_1 = _mm_unpacklo_epi16(ref2, ref3); |
452 | |
453 | // Convert both to 16 bit. |
454 | const __m128i src_0_16b = _mm_unpacklo_epi8(src_0, zero); |
455 | const __m128i src_1_16b = _mm_unpacklo_epi8(src_1, zero); |
456 | const __m128i ref_0_16b = _mm_unpacklo_epi8(ref_0, zero); |
457 | const __m128i ref_1_16b = _mm_unpacklo_epi8(ref_1, zero); |
458 | |
459 | // Compute the difference. |
460 | const __m128i row01 = _mm_sub_epi16(src_0_16b, ref_0_16b); |
461 | const __m128i row23 = _mm_sub_epi16(src_1_16b, ref_1_16b); |
462 | __m128i v01, v32; |
463 | |
464 | // First pass |
465 | FTransformPass1_SSE2(&row01, &row23, &v01, &v32); |
466 | |
467 | // Second pass |
468 | FTransformPass2_SSE2(&v01, &v32, out); |
469 | } |
470 | |
471 | static void FTransform2_SSE2(const uint8_t* src, const uint8_t* ref, |
472 | int16_t* out) { |
473 | const __m128i zero = _mm_setzero_si128(); |
474 | |
475 | // Load src and convert to 16b. |
476 | const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
477 | const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
478 | const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
479 | const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
480 | const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
481 | const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
482 | const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
483 | const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
484 | // Load ref and convert to 16b. |
485 | const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
486 | const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
487 | const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
488 | const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
489 | const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
490 | const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
491 | const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
492 | const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
493 | // Compute difference. -> 00 01 02 03 00' 01' 02' 03' |
494 | const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
495 | const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
496 | const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
497 | const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
498 | |
499 | // Unpack and shuffle |
500 | // 00 01 02 03 0 0 0 0 |
501 | // 10 11 12 13 0 0 0 0 |
502 | // 20 21 22 23 0 0 0 0 |
503 | // 30 31 32 33 0 0 0 0 |
504 | const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); |
505 | const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); |
506 | const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); |
507 | const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); |
508 | __m128i v01l, v32l; |
509 | __m128i v01h, v32h; |
510 | |
511 | // First pass |
512 | FTransformPass1_SSE2(&shuf01l, &shuf23l, &v01l, &v32l); |
513 | FTransformPass1_SSE2(&shuf01h, &shuf23h, &v01h, &v32h); |
514 | |
515 | // Second pass |
516 | FTransformPass2_SSE2(&v01l, &v32l, out + 0); |
517 | FTransformPass2_SSE2(&v01h, &v32h, out + 16); |
518 | } |
519 | |
520 | static void FTransformWHTRow_SSE2(const int16_t* const in, __m128i* const out) { |
521 | const __m128i kMult = _mm_set_epi16(-1, 1, -1, 1, 1, 1, 1, 1); |
522 | const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); |
523 | const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); |
524 | const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); |
525 | const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); |
526 | const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... |
527 | const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... |
528 | const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... |
529 | const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... |
530 | const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 | ... |
531 | const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 | ... |
532 | const __m128i D = _mm_unpacklo_epi64(C0, C1); // a0 a1 a3 a2 a3 a2 a0 a1 |
533 | *out = _mm_madd_epi16(D, kMult); |
534 | } |
535 | |
536 | static void FTransformWHT_SSE2(const int16_t* in, int16_t* out) { |
537 | // Input is 12b signed. |
538 | __m128i row0, row1, row2, row3; |
539 | // Rows are 14b signed. |
540 | FTransformWHTRow_SSE2(in + 0 * 64, &row0); |
541 | FTransformWHTRow_SSE2(in + 1 * 64, &row1); |
542 | FTransformWHTRow_SSE2(in + 2 * 64, &row2); |
543 | FTransformWHTRow_SSE2(in + 3 * 64, &row3); |
544 | |
545 | { |
546 | // The a* are 15b signed. |
547 | const __m128i a0 = _mm_add_epi32(row0, row2); |
548 | const __m128i a1 = _mm_add_epi32(row1, row3); |
549 | const __m128i a2 = _mm_sub_epi32(row1, row3); |
550 | const __m128i a3 = _mm_sub_epi32(row0, row2); |
551 | const __m128i a0a3 = _mm_packs_epi32(a0, a3); |
552 | const __m128i a1a2 = _mm_packs_epi32(a1, a2); |
553 | |
554 | // The b* are 16b signed. |
555 | const __m128i b0b1 = _mm_add_epi16(a0a3, a1a2); |
556 | const __m128i b3b2 = _mm_sub_epi16(a0a3, a1a2); |
557 | const __m128i tmp_b2b3 = _mm_unpackhi_epi64(b3b2, b3b2); |
558 | const __m128i b2b3 = _mm_unpacklo_epi64(tmp_b2b3, b3b2); |
559 | |
560 | _mm_storeu_si128((__m128i*)&out[0], _mm_srai_epi16(b0b1, 1)); |
561 | _mm_storeu_si128((__m128i*)&out[8], _mm_srai_epi16(b2b3, 1)); |
562 | } |
563 | } |
564 | |
565 | //------------------------------------------------------------------------------ |
566 | // Compute susceptibility based on DCT-coeff histograms: |
567 | // the higher, the "easier" the macroblock is to compress. |
568 | |
569 | static void CollectHistogram_SSE2(const uint8_t* ref, const uint8_t* pred, |
570 | int start_block, int end_block, |
571 | VP8Histogram* const histo) { |
572 | const __m128i zero = _mm_setzero_si128(); |
573 | const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
574 | int j; |
575 | int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
576 | for (j = start_block; j < end_block; ++j) { |
577 | int16_t out[16]; |
578 | int k; |
579 | |
580 | FTransform_SSE2(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
581 | |
582 | // Convert coefficients to bin (within out[]). |
583 | { |
584 | // Load. |
585 | const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
586 | const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
587 | const __m128i d0 = _mm_sub_epi16(zero, out0); |
588 | const __m128i d1 = _mm_sub_epi16(zero, out1); |
589 | const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b |
590 | const __m128i abs1 = _mm_max_epi16(out1, d1); |
591 | // v = abs(out) >> 3 |
592 | const __m128i v0 = _mm_srai_epi16(abs0, 3); |
593 | const __m128i v1 = _mm_srai_epi16(abs1, 3); |
594 | // bin = min(v, MAX_COEFF_THRESH) |
595 | const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
596 | const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
597 | // Store. |
598 | _mm_storeu_si128((__m128i*)&out[0], bin0); |
599 | _mm_storeu_si128((__m128i*)&out[8], bin1); |
600 | } |
601 | |
602 | // Convert coefficients to bin. |
603 | for (k = 0; k < 16; ++k) { |
604 | ++distribution[out[k]]; |
605 | } |
606 | } |
607 | VP8SetHistogramData(distribution, histo); |
608 | } |
609 | |
610 | //------------------------------------------------------------------------------ |
611 | // Intra predictions |
612 | |
613 | // helper for chroma-DC predictions |
614 | static WEBP_INLINE void Put8x8uv_SSE2(uint8_t v, uint8_t* dst) { |
615 | int j; |
616 | const __m128i values = _mm_set1_epi8((char)v); |
617 | for (j = 0; j < 8; ++j) { |
618 | _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
619 | } |
620 | } |
621 | |
622 | static WEBP_INLINE void Put16_SSE2(uint8_t v, uint8_t* dst) { |
623 | int j; |
624 | const __m128i values = _mm_set1_epi8((char)v); |
625 | for (j = 0; j < 16; ++j) { |
626 | _mm_store_si128((__m128i*)(dst + j * BPS), values); |
627 | } |
628 | } |
629 | |
630 | static WEBP_INLINE void Fill_SSE2(uint8_t* dst, int value, int size) { |
631 | if (size == 4) { |
632 | int j; |
633 | for (j = 0; j < 4; ++j) { |
634 | memset(dst + j * BPS, value, 4); |
635 | } |
636 | } else if (size == 8) { |
637 | Put8x8uv_SSE2(value, dst); |
638 | } else { |
639 | Put16_SSE2(value, dst); |
640 | } |
641 | } |
642 | |
643 | static WEBP_INLINE void VE8uv_SSE2(uint8_t* dst, const uint8_t* top) { |
644 | int j; |
645 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
646 | for (j = 0; j < 8; ++j) { |
647 | _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); |
648 | } |
649 | } |
650 | |
651 | static WEBP_INLINE void VE16_SSE2(uint8_t* dst, const uint8_t* top) { |
652 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
653 | int j; |
654 | for (j = 0; j < 16; ++j) { |
655 | _mm_store_si128((__m128i*)(dst + j * BPS), top_values); |
656 | } |
657 | } |
658 | |
659 | static WEBP_INLINE void VerticalPred_SSE2(uint8_t* dst, |
660 | const uint8_t* top, int size) { |
661 | if (top != NULL) { |
662 | if (size == 8) { |
663 | VE8uv_SSE2(dst, top); |
664 | } else { |
665 | VE16_SSE2(dst, top); |
666 | } |
667 | } else { |
668 | Fill_SSE2(dst, 127, size); |
669 | } |
670 | } |
671 | |
672 | static WEBP_INLINE void HE8uv_SSE2(uint8_t* dst, const uint8_t* left) { |
673 | int j; |
674 | for (j = 0; j < 8; ++j) { |
675 | const __m128i values = _mm_set1_epi8((char)left[j]); |
676 | _mm_storel_epi64((__m128i*)dst, values); |
677 | dst += BPS; |
678 | } |
679 | } |
680 | |
681 | static WEBP_INLINE void HE16_SSE2(uint8_t* dst, const uint8_t* left) { |
682 | int j; |
683 | for (j = 0; j < 16; ++j) { |
684 | const __m128i values = _mm_set1_epi8((char)left[j]); |
685 | _mm_store_si128((__m128i*)dst, values); |
686 | dst += BPS; |
687 | } |
688 | } |
689 | |
690 | static WEBP_INLINE void HorizontalPred_SSE2(uint8_t* dst, |
691 | const uint8_t* left, int size) { |
692 | if (left != NULL) { |
693 | if (size == 8) { |
694 | HE8uv_SSE2(dst, left); |
695 | } else { |
696 | HE16_SSE2(dst, left); |
697 | } |
698 | } else { |
699 | Fill_SSE2(dst, 129, size); |
700 | } |
701 | } |
702 | |
703 | static WEBP_INLINE void TM_SSE2(uint8_t* dst, const uint8_t* left, |
704 | const uint8_t* top, int size) { |
705 | const __m128i zero = _mm_setzero_si128(); |
706 | int y; |
707 | if (size == 8) { |
708 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
709 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
710 | for (y = 0; y < 8; ++y, dst += BPS) { |
711 | const int val = left[y] - left[-1]; |
712 | const __m128i base = _mm_set1_epi16(val); |
713 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
714 | _mm_storel_epi64((__m128i*)dst, out); |
715 | } |
716 | } else { |
717 | const __m128i top_values = _mm_load_si128((const __m128i*)top); |
718 | const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
719 | const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
720 | for (y = 0; y < 16; ++y, dst += BPS) { |
721 | const int val = left[y] - left[-1]; |
722 | const __m128i base = _mm_set1_epi16(val); |
723 | const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
724 | const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
725 | const __m128i out = _mm_packus_epi16(out_0, out_1); |
726 | _mm_store_si128((__m128i*)dst, out); |
727 | } |
728 | } |
729 | } |
730 | |
731 | static WEBP_INLINE void TrueMotion_SSE2(uint8_t* dst, const uint8_t* left, |
732 | const uint8_t* top, int size) { |
733 | if (left != NULL) { |
734 | if (top != NULL) { |
735 | TM_SSE2(dst, left, top, size); |
736 | } else { |
737 | HorizontalPred_SSE2(dst, left, size); |
738 | } |
739 | } else { |
740 | // true motion without left samples (hence: with default 129 value) |
741 | // is equivalent to VE prediction where you just copy the top samples. |
742 | // Note that if top samples are not available, the default value is |
743 | // then 129, and not 127 as in the VerticalPred case. |
744 | if (top != NULL) { |
745 | VerticalPred_SSE2(dst, top, size); |
746 | } else { |
747 | Fill_SSE2(dst, 129, size); |
748 | } |
749 | } |
750 | } |
751 | |
752 | static WEBP_INLINE void DC8uv_SSE2(uint8_t* dst, const uint8_t* left, |
753 | const uint8_t* top) { |
754 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
755 | const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); |
756 | const __m128i combined = _mm_unpacklo_epi64(top_values, left_values); |
757 | const int DC = VP8HorizontalAdd8b(&combined) + 8; |
758 | Put8x8uv_SSE2(DC >> 4, dst); |
759 | } |
760 | |
761 | static WEBP_INLINE void DC8uvNoLeft_SSE2(uint8_t* dst, const uint8_t* top) { |
762 | const __m128i zero = _mm_setzero_si128(); |
763 | const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
764 | const __m128i sum = _mm_sad_epu8(top_values, zero); |
765 | const int DC = _mm_cvtsi128_si32(sum) + 4; |
766 | Put8x8uv_SSE2(DC >> 3, dst); |
767 | } |
768 | |
769 | static WEBP_INLINE void DC8uvNoTop_SSE2(uint8_t* dst, const uint8_t* left) { |
770 | // 'left' is contiguous so we can reuse the top summation. |
771 | DC8uvNoLeft_SSE2(dst, left); |
772 | } |
773 | |
774 | static WEBP_INLINE void DC8uvNoTopLeft_SSE2(uint8_t* dst) { |
775 | Put8x8uv_SSE2(0x80, dst); |
776 | } |
777 | |
778 | static WEBP_INLINE void DC8uvMode_SSE2(uint8_t* dst, const uint8_t* left, |
779 | const uint8_t* top) { |
780 | if (top != NULL) { |
781 | if (left != NULL) { // top and left present |
782 | DC8uv_SSE2(dst, left, top); |
783 | } else { // top, but no left |
784 | DC8uvNoLeft_SSE2(dst, top); |
785 | } |
786 | } else if (left != NULL) { // left but no top |
787 | DC8uvNoTop_SSE2(dst, left); |
788 | } else { // no top, no left, nothing. |
789 | DC8uvNoTopLeft_SSE2(dst); |
790 | } |
791 | } |
792 | |
793 | static WEBP_INLINE void DC16_SSE2(uint8_t* dst, const uint8_t* left, |
794 | const uint8_t* top) { |
795 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
796 | const __m128i left_row = _mm_load_si128((const __m128i*)left); |
797 | const int DC = |
798 | VP8HorizontalAdd8b(&top_row) + VP8HorizontalAdd8b(&left_row) + 16; |
799 | Put16_SSE2(DC >> 5, dst); |
800 | } |
801 | |
802 | static WEBP_INLINE void DC16NoLeft_SSE2(uint8_t* dst, const uint8_t* top) { |
803 | const __m128i top_row = _mm_load_si128((const __m128i*)top); |
804 | const int DC = VP8HorizontalAdd8b(&top_row) + 8; |
805 | Put16_SSE2(DC >> 4, dst); |
806 | } |
807 | |
808 | static WEBP_INLINE void DC16NoTop_SSE2(uint8_t* dst, const uint8_t* left) { |
809 | // 'left' is contiguous so we can reuse the top summation. |
810 | DC16NoLeft_SSE2(dst, left); |
811 | } |
812 | |
813 | static WEBP_INLINE void DC16NoTopLeft_SSE2(uint8_t* dst) { |
814 | Put16_SSE2(0x80, dst); |
815 | } |
816 | |
817 | static WEBP_INLINE void DC16Mode_SSE2(uint8_t* dst, const uint8_t* left, |
818 | const uint8_t* top) { |
819 | if (top != NULL) { |
820 | if (left != NULL) { // top and left present |
821 | DC16_SSE2(dst, left, top); |
822 | } else { // top, but no left |
823 | DC16NoLeft_SSE2(dst, top); |
824 | } |
825 | } else if (left != NULL) { // left but no top |
826 | DC16NoTop_SSE2(dst, left); |
827 | } else { // no top, no left, nothing. |
828 | DC16NoTopLeft_SSE2(dst); |
829 | } |
830 | } |
831 | |
832 | //------------------------------------------------------------------------------ |
833 | // 4x4 predictions |
834 | |
835 | #define DST(x, y) dst[(x) + (y) * BPS] |
836 | #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
837 | #define AVG2(a, b) (((a) + (b) + 1) >> 1) |
838 | |
839 | // We use the following 8b-arithmetic tricks: |
840 | // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
841 | // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
842 | // and: |
843 | // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
844 | // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
845 | // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
846 | |
847 | static WEBP_INLINE void VE4_SSE2(uint8_t* dst, |
848 | const uint8_t* top) { // vertical |
849 | const __m128i one = _mm_set1_epi8(1); |
850 | const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); |
851 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
852 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
853 | const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
854 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
855 | const __m128i b = _mm_subs_epu8(a, lsb); |
856 | const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
857 | const int vals = _mm_cvtsi128_si32(avg); |
858 | int i; |
859 | for (i = 0; i < 4; ++i) { |
860 | WebPInt32ToMem(dst + i * BPS, vals); |
861 | } |
862 | } |
863 | |
864 | static WEBP_INLINE void HE4_SSE2(uint8_t* dst, |
865 | const uint8_t* top) { // horizontal |
866 | const int X = top[-1]; |
867 | const int I = top[-2]; |
868 | const int J = top[-3]; |
869 | const int K = top[-4]; |
870 | const int L = top[-5]; |
871 | WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
872 | WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
873 | WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
874 | WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
875 | } |
876 | |
877 | static WEBP_INLINE void DC4_SSE2(uint8_t* dst, const uint8_t* top) { |
878 | uint32_t dc = 4; |
879 | int i; |
880 | for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
881 | Fill_SSE2(dst, dc >> 3, 4); |
882 | } |
883 | |
884 | static WEBP_INLINE void LD4_SSE2(uint8_t* dst, |
885 | const uint8_t* top) { // Down-Left |
886 | const __m128i one = _mm_set1_epi8(1); |
887 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
888 | const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
889 | const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
890 | const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); |
891 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
892 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
893 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
894 | const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
895 | WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
896 | WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
897 | WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
898 | WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
899 | } |
900 | |
901 | static WEBP_INLINE void VR4_SSE2(uint8_t* dst, |
902 | const uint8_t* top) { // Vertical-Right |
903 | const __m128i one = _mm_set1_epi8(1); |
904 | const int I = top[-2]; |
905 | const int J = top[-3]; |
906 | const int K = top[-4]; |
907 | const int X = top[-1]; |
908 | const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); |
909 | const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
910 | const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
911 | const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
912 | const __m128i IXABCD = _mm_insert_epi16(_XABCD, (short)(I | (X << 8)), 0); |
913 | const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
914 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
915 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
916 | const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
917 | WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
918 | WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
919 | WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
920 | WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
921 | |
922 | // these two are hard to implement in SSE2, so we keep the C-version: |
923 | DST(0, 2) = AVG3(J, I, X); |
924 | DST(0, 3) = AVG3(K, J, I); |
925 | } |
926 | |
927 | static WEBP_INLINE void VL4_SSE2(uint8_t* dst, |
928 | const uint8_t* top) { // Vertical-Left |
929 | const __m128i one = _mm_set1_epi8(1); |
930 | const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
931 | const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
932 | const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
933 | const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
934 | const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
935 | const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
936 | const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
937 | const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
938 | const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
939 | const __m128i abbc = _mm_or_si128(ab, bc); |
940 | const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
941 | const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
942 | const uint32_t = |
943 | (uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
944 | WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
945 | WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
946 | WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
947 | WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
948 | |
949 | // these two are hard to get and irregular |
950 | DST(3, 2) = (extra_out >> 0) & 0xff; |
951 | DST(3, 3) = (extra_out >> 8) & 0xff; |
952 | } |
953 | |
954 | static WEBP_INLINE void RD4_SSE2(uint8_t* dst, |
955 | const uint8_t* top) { // Down-right |
956 | const __m128i one = _mm_set1_epi8(1); |
957 | const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); |
958 | const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); |
959 | const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
960 | const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
961 | const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
962 | const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
963 | const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
964 | const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
965 | WebPInt32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
966 | WebPInt32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
967 | WebPInt32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
968 | WebPInt32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
969 | } |
970 | |
971 | static WEBP_INLINE void HU4_SSE2(uint8_t* dst, const uint8_t* top) { |
972 | const int I = top[-2]; |
973 | const int J = top[-3]; |
974 | const int K = top[-4]; |
975 | const int L = top[-5]; |
976 | DST(0, 0) = AVG2(I, J); |
977 | DST(2, 0) = DST(0, 1) = AVG2(J, K); |
978 | DST(2, 1) = DST(0, 2) = AVG2(K, L); |
979 | DST(1, 0) = AVG3(I, J, K); |
980 | DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
981 | DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
982 | DST(3, 2) = DST(2, 2) = |
983 | DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
984 | } |
985 | |
986 | static WEBP_INLINE void HD4_SSE2(uint8_t* dst, const uint8_t* top) { |
987 | const int X = top[-1]; |
988 | const int I = top[-2]; |
989 | const int J = top[-3]; |
990 | const int K = top[-4]; |
991 | const int L = top[-5]; |
992 | const int A = top[0]; |
993 | const int B = top[1]; |
994 | const int C = top[2]; |
995 | |
996 | DST(0, 0) = DST(2, 1) = AVG2(I, X); |
997 | DST(0, 1) = DST(2, 2) = AVG2(J, I); |
998 | DST(0, 2) = DST(2, 3) = AVG2(K, J); |
999 | DST(0, 3) = AVG2(L, K); |
1000 | |
1001 | DST(3, 0) = AVG3(A, B, C); |
1002 | DST(2, 0) = AVG3(X, A, B); |
1003 | DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
1004 | DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
1005 | DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
1006 | DST(1, 3) = AVG3(L, K, J); |
1007 | } |
1008 | |
1009 | static WEBP_INLINE void TM4_SSE2(uint8_t* dst, const uint8_t* top) { |
1010 | const __m128i zero = _mm_setzero_si128(); |
1011 | const __m128i top_values = _mm_cvtsi32_si128(WebPMemToInt32(top)); |
1012 | const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
1013 | int y; |
1014 | for (y = 0; y < 4; ++y, dst += BPS) { |
1015 | const int val = top[-2 - y] - top[-1]; |
1016 | const __m128i base = _mm_set1_epi16(val); |
1017 | const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
1018 | WebPInt32ToMem(dst, _mm_cvtsi128_si32(out)); |
1019 | } |
1020 | } |
1021 | |
1022 | #undef DST |
1023 | #undef AVG3 |
1024 | #undef AVG2 |
1025 | |
1026 | //------------------------------------------------------------------------------ |
1027 | // luma 4x4 prediction |
1028 | |
1029 | // Left samples are top[-5 .. -2], top_left is top[-1], top are |
1030 | // located at top[0..3], and top right is top[4..7] |
1031 | static void Intra4Preds_SSE2(uint8_t* dst, const uint8_t* top) { |
1032 | DC4_SSE2(I4DC4 + dst, top); |
1033 | TM4_SSE2(I4TM4 + dst, top); |
1034 | VE4_SSE2(I4VE4 + dst, top); |
1035 | HE4_SSE2(I4HE4 + dst, top); |
1036 | RD4_SSE2(I4RD4 + dst, top); |
1037 | VR4_SSE2(I4VR4 + dst, top); |
1038 | LD4_SSE2(I4LD4 + dst, top); |
1039 | VL4_SSE2(I4VL4 + dst, top); |
1040 | HD4_SSE2(I4HD4 + dst, top); |
1041 | HU4_SSE2(I4HU4 + dst, top); |
1042 | } |
1043 | |
1044 | //------------------------------------------------------------------------------ |
1045 | // Chroma 8x8 prediction (paragraph 12.2) |
1046 | |
1047 | static void IntraChromaPreds_SSE2(uint8_t* dst, const uint8_t* left, |
1048 | const uint8_t* top) { |
1049 | // U block |
1050 | DC8uvMode_SSE2(C8DC8 + dst, left, top); |
1051 | VerticalPred_SSE2(C8VE8 + dst, top, 8); |
1052 | HorizontalPred_SSE2(C8HE8 + dst, left, 8); |
1053 | TrueMotion_SSE2(C8TM8 + dst, left, top, 8); |
1054 | // V block |
1055 | dst += 8; |
1056 | if (top != NULL) top += 8; |
1057 | if (left != NULL) left += 16; |
1058 | DC8uvMode_SSE2(C8DC8 + dst, left, top); |
1059 | VerticalPred_SSE2(C8VE8 + dst, top, 8); |
1060 | HorizontalPred_SSE2(C8HE8 + dst, left, 8); |
1061 | TrueMotion_SSE2(C8TM8 + dst, left, top, 8); |
1062 | } |
1063 | |
1064 | //------------------------------------------------------------------------------ |
1065 | // luma 16x16 prediction (paragraph 12.3) |
1066 | |
1067 | static void Intra16Preds_SSE2(uint8_t* dst, |
1068 | const uint8_t* left, const uint8_t* top) { |
1069 | DC16Mode_SSE2(I16DC16 + dst, left, top); |
1070 | VerticalPred_SSE2(I16VE16 + dst, top, 16); |
1071 | HorizontalPred_SSE2(I16HE16 + dst, left, 16); |
1072 | TrueMotion_SSE2(I16TM16 + dst, left, top, 16); |
1073 | } |
1074 | |
1075 | //------------------------------------------------------------------------------ |
1076 | // Metric |
1077 | |
1078 | static WEBP_INLINE void SubtractAndAccumulate_SSE2(const __m128i a, |
1079 | const __m128i b, |
1080 | __m128i* const sum) { |
1081 | // take abs(a-b) in 8b |
1082 | const __m128i a_b = _mm_subs_epu8(a, b); |
1083 | const __m128i b_a = _mm_subs_epu8(b, a); |
1084 | const __m128i abs_a_b = _mm_or_si128(a_b, b_a); |
1085 | // zero-extend to 16b |
1086 | const __m128i zero = _mm_setzero_si128(); |
1087 | const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); |
1088 | const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); |
1089 | // multiply with self |
1090 | const __m128i sum1 = _mm_madd_epi16(C0, C0); |
1091 | const __m128i sum2 = _mm_madd_epi16(C1, C1); |
1092 | *sum = _mm_add_epi32(sum1, sum2); |
1093 | } |
1094 | |
1095 | static WEBP_INLINE int SSE_16xN_SSE2(const uint8_t* a, const uint8_t* b, |
1096 | int num_pairs) { |
1097 | __m128i sum = _mm_setzero_si128(); |
1098 | int32_t tmp[4]; |
1099 | int i; |
1100 | |
1101 | for (i = 0; i < num_pairs; ++i) { |
1102 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); |
1103 | const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); |
1104 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); |
1105 | const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); |
1106 | __m128i sum1, sum2; |
1107 | SubtractAndAccumulate_SSE2(a0, b0, &sum1); |
1108 | SubtractAndAccumulate_SSE2(a1, b1, &sum2); |
1109 | sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); |
1110 | a += 2 * BPS; |
1111 | b += 2 * BPS; |
1112 | } |
1113 | _mm_storeu_si128((__m128i*)tmp, sum); |
1114 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1115 | } |
1116 | |
1117 | static int SSE16x16_SSE2(const uint8_t* a, const uint8_t* b) { |
1118 | return SSE_16xN_SSE2(a, b, 8); |
1119 | } |
1120 | |
1121 | static int SSE16x8_SSE2(const uint8_t* a, const uint8_t* b) { |
1122 | return SSE_16xN_SSE2(a, b, 4); |
1123 | } |
1124 | |
1125 | #define LOAD_8x16b(ptr) \ |
1126 | _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) |
1127 | |
1128 | static int SSE8x8_SSE2(const uint8_t* a, const uint8_t* b) { |
1129 | const __m128i zero = _mm_setzero_si128(); |
1130 | int num_pairs = 4; |
1131 | __m128i sum = zero; |
1132 | int32_t tmp[4]; |
1133 | while (num_pairs-- > 0) { |
1134 | const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); |
1135 | const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); |
1136 | const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); |
1137 | const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); |
1138 | // subtract |
1139 | const __m128i c0 = _mm_subs_epi16(a0, b0); |
1140 | const __m128i c1 = _mm_subs_epi16(a1, b1); |
1141 | // multiply/accumulate with self |
1142 | const __m128i d0 = _mm_madd_epi16(c0, c0); |
1143 | const __m128i d1 = _mm_madd_epi16(c1, c1); |
1144 | // collect |
1145 | const __m128i sum01 = _mm_add_epi32(d0, d1); |
1146 | sum = _mm_add_epi32(sum, sum01); |
1147 | a += 2 * BPS; |
1148 | b += 2 * BPS; |
1149 | } |
1150 | _mm_storeu_si128((__m128i*)tmp, sum); |
1151 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1152 | } |
1153 | #undef LOAD_8x16b |
1154 | |
1155 | static int SSE4x4_SSE2(const uint8_t* a, const uint8_t* b) { |
1156 | const __m128i zero = _mm_setzero_si128(); |
1157 | |
1158 | // Load values. Note that we read 8 pixels instead of 4, |
1159 | // but the a/b buffers are over-allocated to that effect. |
1160 | const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); |
1161 | const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); |
1162 | const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); |
1163 | const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); |
1164 | const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); |
1165 | const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); |
1166 | const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); |
1167 | const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); |
1168 | // Combine pair of lines. |
1169 | const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
1170 | const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
1171 | const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
1172 | const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
1173 | // Convert to 16b. |
1174 | const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
1175 | const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
1176 | const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
1177 | const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
1178 | // subtract, square and accumulate |
1179 | const __m128i d0 = _mm_subs_epi16(a01s, b01s); |
1180 | const __m128i d1 = _mm_subs_epi16(a23s, b23s); |
1181 | const __m128i e0 = _mm_madd_epi16(d0, d0); |
1182 | const __m128i e1 = _mm_madd_epi16(d1, d1); |
1183 | const __m128i sum = _mm_add_epi32(e0, e1); |
1184 | |
1185 | int32_t tmp[4]; |
1186 | _mm_storeu_si128((__m128i*)tmp, sum); |
1187 | return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
1188 | } |
1189 | |
1190 | //------------------------------------------------------------------------------ |
1191 | |
1192 | static void Mean16x4_SSE2(const uint8_t* ref, uint32_t dc[4]) { |
1193 | const __m128i mask = _mm_set1_epi16(0x00ff); |
1194 | const __m128i a0 = _mm_loadu_si128((const __m128i*)&ref[BPS * 0]); |
1195 | const __m128i a1 = _mm_loadu_si128((const __m128i*)&ref[BPS * 1]); |
1196 | const __m128i a2 = _mm_loadu_si128((const __m128i*)&ref[BPS * 2]); |
1197 | const __m128i a3 = _mm_loadu_si128((const __m128i*)&ref[BPS * 3]); |
1198 | const __m128i b0 = _mm_srli_epi16(a0, 8); // hi byte |
1199 | const __m128i b1 = _mm_srli_epi16(a1, 8); |
1200 | const __m128i b2 = _mm_srli_epi16(a2, 8); |
1201 | const __m128i b3 = _mm_srli_epi16(a3, 8); |
1202 | const __m128i c0 = _mm_and_si128(a0, mask); // lo byte |
1203 | const __m128i c1 = _mm_and_si128(a1, mask); |
1204 | const __m128i c2 = _mm_and_si128(a2, mask); |
1205 | const __m128i c3 = _mm_and_si128(a3, mask); |
1206 | const __m128i d0 = _mm_add_epi32(b0, c0); |
1207 | const __m128i d1 = _mm_add_epi32(b1, c1); |
1208 | const __m128i d2 = _mm_add_epi32(b2, c2); |
1209 | const __m128i d3 = _mm_add_epi32(b3, c3); |
1210 | const __m128i e0 = _mm_add_epi32(d0, d1); |
1211 | const __m128i e1 = _mm_add_epi32(d2, d3); |
1212 | const __m128i f0 = _mm_add_epi32(e0, e1); |
1213 | uint16_t tmp[8]; |
1214 | _mm_storeu_si128((__m128i*)tmp, f0); |
1215 | dc[0] = tmp[0] + tmp[1]; |
1216 | dc[1] = tmp[2] + tmp[3]; |
1217 | dc[2] = tmp[4] + tmp[5]; |
1218 | dc[3] = tmp[6] + tmp[7]; |
1219 | } |
1220 | |
1221 | //------------------------------------------------------------------------------ |
1222 | // Texture distortion |
1223 | // |
1224 | // We try to match the spectral content (weighted) between source and |
1225 | // reconstructed samples. |
1226 | |
1227 | // Hadamard transform |
1228 | // Returns the weighted sum of the absolute value of transformed coefficients. |
1229 | // w[] contains a row-major 4 by 4 symmetric matrix. |
1230 | static int TTransform_SSE2(const uint8_t* inA, const uint8_t* inB, |
1231 | const uint16_t* const w) { |
1232 | int32_t sum[4]; |
1233 | __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
1234 | const __m128i zero = _mm_setzero_si128(); |
1235 | |
1236 | // Load and combine inputs. |
1237 | { |
1238 | const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); |
1239 | const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); |
1240 | const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); |
1241 | const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
1242 | const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); |
1243 | const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); |
1244 | const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); |
1245 | const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
1246 | |
1247 | // Combine inA and inB (we'll do two transforms in parallel). |
1248 | const __m128i inAB_0 = _mm_unpacklo_epi32(inA_0, inB_0); |
1249 | const __m128i inAB_1 = _mm_unpacklo_epi32(inA_1, inB_1); |
1250 | const __m128i inAB_2 = _mm_unpacklo_epi32(inA_2, inB_2); |
1251 | const __m128i inAB_3 = _mm_unpacklo_epi32(inA_3, inB_3); |
1252 | tmp_0 = _mm_unpacklo_epi8(inAB_0, zero); |
1253 | tmp_1 = _mm_unpacklo_epi8(inAB_1, zero); |
1254 | tmp_2 = _mm_unpacklo_epi8(inAB_2, zero); |
1255 | tmp_3 = _mm_unpacklo_epi8(inAB_3, zero); |
1256 | // a00 a01 a02 a03 b00 b01 b02 b03 |
1257 | // a10 a11 a12 a13 b10 b11 b12 b13 |
1258 | // a20 a21 a22 a23 b20 b21 b22 b23 |
1259 | // a30 a31 a32 a33 b30 b31 b32 b33 |
1260 | } |
1261 | |
1262 | // Vertical pass first to avoid a transpose (vertical and horizontal passes |
1263 | // are commutative because w/kWeightY is symmetric) and subsequent transpose. |
1264 | { |
1265 | // Calculate a and b (two 4x4 at once). |
1266 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
1267 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
1268 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
1269 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
1270 | const __m128i b0 = _mm_add_epi16(a0, a1); |
1271 | const __m128i b1 = _mm_add_epi16(a3, a2); |
1272 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
1273 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
1274 | // a00 a01 a02 a03 b00 b01 b02 b03 |
1275 | // a10 a11 a12 a13 b10 b11 b12 b13 |
1276 | // a20 a21 a22 a23 b20 b21 b22 b23 |
1277 | // a30 a31 a32 a33 b30 b31 b32 b33 |
1278 | |
1279 | // Transpose the two 4x4. |
1280 | VP8Transpose_2_4x4_16b(&b0, &b1, &b2, &b3, &tmp_0, &tmp_1, &tmp_2, &tmp_3); |
1281 | } |
1282 | |
1283 | // Horizontal pass and difference of weighted sums. |
1284 | { |
1285 | // Load all inputs. |
1286 | const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
1287 | const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
1288 | |
1289 | // Calculate a and b (two 4x4 at once). |
1290 | const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
1291 | const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
1292 | const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
1293 | const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
1294 | const __m128i b0 = _mm_add_epi16(a0, a1); |
1295 | const __m128i b1 = _mm_add_epi16(a3, a2); |
1296 | const __m128i b2 = _mm_sub_epi16(a3, a2); |
1297 | const __m128i b3 = _mm_sub_epi16(a0, a1); |
1298 | |
1299 | // Separate the transforms of inA and inB. |
1300 | __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
1301 | __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
1302 | __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
1303 | __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
1304 | |
1305 | { |
1306 | const __m128i d0 = _mm_sub_epi16(zero, A_b0); |
1307 | const __m128i d1 = _mm_sub_epi16(zero, A_b2); |
1308 | const __m128i d2 = _mm_sub_epi16(zero, B_b0); |
1309 | const __m128i d3 = _mm_sub_epi16(zero, B_b2); |
1310 | A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b |
1311 | A_b2 = _mm_max_epi16(A_b2, d1); |
1312 | B_b0 = _mm_max_epi16(B_b0, d2); |
1313 | B_b2 = _mm_max_epi16(B_b2, d3); |
1314 | } |
1315 | |
1316 | // weighted sums |
1317 | A_b0 = _mm_madd_epi16(A_b0, w_0); |
1318 | A_b2 = _mm_madd_epi16(A_b2, w_8); |
1319 | B_b0 = _mm_madd_epi16(B_b0, w_0); |
1320 | B_b2 = _mm_madd_epi16(B_b2, w_8); |
1321 | A_b0 = _mm_add_epi32(A_b0, A_b2); |
1322 | B_b0 = _mm_add_epi32(B_b0, B_b2); |
1323 | |
1324 | // difference of weighted sums |
1325 | A_b0 = _mm_sub_epi32(A_b0, B_b0); |
1326 | _mm_storeu_si128((__m128i*)&sum[0], A_b0); |
1327 | } |
1328 | return sum[0] + sum[1] + sum[2] + sum[3]; |
1329 | } |
1330 | |
1331 | static int Disto4x4_SSE2(const uint8_t* const a, const uint8_t* const b, |
1332 | const uint16_t* const w) { |
1333 | const int diff_sum = TTransform_SSE2(a, b, w); |
1334 | return abs(diff_sum) >> 5; |
1335 | } |
1336 | |
1337 | static int Disto16x16_SSE2(const uint8_t* const a, const uint8_t* const b, |
1338 | const uint16_t* const w) { |
1339 | int D = 0; |
1340 | int x, y; |
1341 | for (y = 0; y < 16 * BPS; y += 4 * BPS) { |
1342 | for (x = 0; x < 16; x += 4) { |
1343 | D += Disto4x4_SSE2(a + x + y, b + x + y, w); |
1344 | } |
1345 | } |
1346 | return D; |
1347 | } |
1348 | |
1349 | //------------------------------------------------------------------------------ |
1350 | // Quantization |
1351 | // |
1352 | |
1353 | static WEBP_INLINE int DoQuantizeBlock_SSE2(int16_t in[16], int16_t out[16], |
1354 | const uint16_t* const sharpen, |
1355 | const VP8Matrix* const mtx) { |
1356 | const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
1357 | const __m128i zero = _mm_setzero_si128(); |
1358 | __m128i coeff0, coeff8; |
1359 | __m128i out0, out8; |
1360 | __m128i packed_out; |
1361 | |
1362 | // Load all inputs. |
1363 | __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
1364 | __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
1365 | const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
1366 | const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
1367 | const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
1368 | const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
1369 | |
1370 | // extract sign(in) (0x0000 if positive, 0xffff if negative) |
1371 | const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
1372 | const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
1373 | |
1374 | // coeff = abs(in) = (in ^ sign) - sign |
1375 | coeff0 = _mm_xor_si128(in0, sign0); |
1376 | coeff8 = _mm_xor_si128(in8, sign8); |
1377 | coeff0 = _mm_sub_epi16(coeff0, sign0); |
1378 | coeff8 = _mm_sub_epi16(coeff8, sign8); |
1379 | |
1380 | // coeff = abs(in) + sharpen |
1381 | if (sharpen != NULL) { |
1382 | const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
1383 | const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
1384 | coeff0 = _mm_add_epi16(coeff0, sharpen0); |
1385 | coeff8 = _mm_add_epi16(coeff8, sharpen8); |
1386 | } |
1387 | |
1388 | // out = (coeff * iQ + B) >> QFIX |
1389 | { |
1390 | // doing calculations with 32b precision (QFIX=17) |
1391 | // out = (coeff * iQ) |
1392 | const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
1393 | const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
1394 | const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
1395 | const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
1396 | __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
1397 | __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
1398 | __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
1399 | __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
1400 | // out = (coeff * iQ + B) |
1401 | const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
1402 | const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
1403 | const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
1404 | const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
1405 | out_00 = _mm_add_epi32(out_00, bias_00); |
1406 | out_04 = _mm_add_epi32(out_04, bias_04); |
1407 | out_08 = _mm_add_epi32(out_08, bias_08); |
1408 | out_12 = _mm_add_epi32(out_12, bias_12); |
1409 | // out = QUANTDIV(coeff, iQ, B, QFIX) |
1410 | out_00 = _mm_srai_epi32(out_00, QFIX); |
1411 | out_04 = _mm_srai_epi32(out_04, QFIX); |
1412 | out_08 = _mm_srai_epi32(out_08, QFIX); |
1413 | out_12 = _mm_srai_epi32(out_12, QFIX); |
1414 | |
1415 | // pack result as 16b |
1416 | out0 = _mm_packs_epi32(out_00, out_04); |
1417 | out8 = _mm_packs_epi32(out_08, out_12); |
1418 | |
1419 | // if (coeff > 2047) coeff = 2047 |
1420 | out0 = _mm_min_epi16(out0, max_coeff_2047); |
1421 | out8 = _mm_min_epi16(out8, max_coeff_2047); |
1422 | } |
1423 | |
1424 | // get sign back (if (sign[j]) out_n = -out_n) |
1425 | out0 = _mm_xor_si128(out0, sign0); |
1426 | out8 = _mm_xor_si128(out8, sign8); |
1427 | out0 = _mm_sub_epi16(out0, sign0); |
1428 | out8 = _mm_sub_epi16(out8, sign8); |
1429 | |
1430 | // in = out * Q |
1431 | in0 = _mm_mullo_epi16(out0, q0); |
1432 | in8 = _mm_mullo_epi16(out8, q8); |
1433 | |
1434 | _mm_storeu_si128((__m128i*)&in[0], in0); |
1435 | _mm_storeu_si128((__m128i*)&in[8], in8); |
1436 | |
1437 | // zigzag the output before storing it. |
1438 | // |
1439 | // The zigzag pattern can almost be reproduced with a small sequence of |
1440 | // shuffles. After it, we only need to swap the 7th (ending up in third |
1441 | // position instead of twelfth) and 8th values. |
1442 | { |
1443 | __m128i outZ0, outZ8; |
1444 | outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); |
1445 | outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); |
1446 | outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); |
1447 | outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); |
1448 | outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); |
1449 | outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); |
1450 | _mm_storeu_si128((__m128i*)&out[0], outZ0); |
1451 | _mm_storeu_si128((__m128i*)&out[8], outZ8); |
1452 | packed_out = _mm_packs_epi16(outZ0, outZ8); |
1453 | } |
1454 | { |
1455 | const int16_t outZ_12 = out[12]; |
1456 | const int16_t outZ_3 = out[3]; |
1457 | out[3] = outZ_12; |
1458 | out[12] = outZ_3; |
1459 | } |
1460 | |
1461 | // detect if all 'out' values are zeroes or not |
1462 | return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); |
1463 | } |
1464 | |
1465 | static int QuantizeBlock_SSE2(int16_t in[16], int16_t out[16], |
1466 | const VP8Matrix* const mtx) { |
1467 | return DoQuantizeBlock_SSE2(in, out, &mtx->sharpen_[0], mtx); |
1468 | } |
1469 | |
1470 | static int QuantizeBlockWHT_SSE2(int16_t in[16], int16_t out[16], |
1471 | const VP8Matrix* const mtx) { |
1472 | return DoQuantizeBlock_SSE2(in, out, NULL, mtx); |
1473 | } |
1474 | |
1475 | static int Quantize2Blocks_SSE2(int16_t in[32], int16_t out[32], |
1476 | const VP8Matrix* const mtx) { |
1477 | int nz; |
1478 | const uint16_t* const sharpen = &mtx->sharpen_[0]; |
1479 | nz = DoQuantizeBlock_SSE2(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
1480 | nz |= DoQuantizeBlock_SSE2(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
1481 | return nz; |
1482 | } |
1483 | |
1484 | //------------------------------------------------------------------------------ |
1485 | // Entry point |
1486 | |
1487 | extern void VP8EncDspInitSSE2(void); |
1488 | |
1489 | WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { |
1490 | VP8CollectHistogram = CollectHistogram_SSE2; |
1491 | VP8EncPredLuma16 = Intra16Preds_SSE2; |
1492 | VP8EncPredChroma8 = IntraChromaPreds_SSE2; |
1493 | VP8EncPredLuma4 = Intra4Preds_SSE2; |
1494 | VP8EncQuantizeBlock = QuantizeBlock_SSE2; |
1495 | VP8EncQuantize2Blocks = Quantize2Blocks_SSE2; |
1496 | VP8EncQuantizeBlockWHT = QuantizeBlockWHT_SSE2; |
1497 | VP8ITransform = ITransform_SSE2; |
1498 | VP8FTransform = FTransform_SSE2; |
1499 | VP8FTransform2 = FTransform2_SSE2; |
1500 | VP8FTransformWHT = FTransformWHT_SSE2; |
1501 | VP8SSE16x16 = SSE16x16_SSE2; |
1502 | VP8SSE16x8 = SSE16x8_SSE2; |
1503 | VP8SSE8x8 = SSE8x8_SSE2; |
1504 | VP8SSE4x4 = SSE4x4_SSE2; |
1505 | VP8TDisto4x4 = Disto4x4_SSE2; |
1506 | VP8TDisto16x16 = Disto16x16_SSE2; |
1507 | VP8Mean16x4 = Mean16x4_SSE2; |
1508 | } |
1509 | |
1510 | #else // !WEBP_USE_SSE2 |
1511 | |
1512 | WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) |
1513 | |
1514 | #endif // WEBP_USE_SSE2 |
1515 | |