| 1 | // Copyright 2014 Google Inc. All Rights Reserved. |
| 2 | // |
| 3 | // Use of this source code is governed by a BSD-style license |
| 4 | // that can be found in the COPYING file in the root of the source |
| 5 | // tree. An additional intellectual property rights grant can be found |
| 6 | // in the file PATENTS. All contributing project authors may |
| 7 | // be found in the AUTHORS file in the root of the source tree. |
| 8 | // ----------------------------------------------------------------------------- |
| 9 | // |
| 10 | // SSE2 variant of methods for lossless decoder |
| 11 | // |
| 12 | // Author: Skal (pascal.massimino@gmail.com) |
| 13 | |
| 14 | #include "src/dsp/dsp.h" |
| 15 | |
| 16 | #if defined(WEBP_USE_SSE2) |
| 17 | |
| 18 | #include "src/dsp/common_sse2.h" |
| 19 | #include "src/dsp/lossless.h" |
| 20 | #include "src/dsp/lossless_common.h" |
| 21 | #include <emmintrin.h> |
| 22 | |
| 23 | //------------------------------------------------------------------------------ |
| 24 | // Predictor Transform |
| 25 | |
| 26 | static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, |
| 27 | uint32_t c1, |
| 28 | uint32_t c2) { |
| 29 | const __m128i zero = _mm_setzero_si128(); |
| 30 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); |
| 31 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); |
| 32 | const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); |
| 33 | const __m128i V1 = _mm_add_epi16(C0, C1); |
| 34 | const __m128i V2 = _mm_sub_epi16(V1, C2); |
| 35 | const __m128i b = _mm_packus_epi16(V2, V2); |
| 36 | return (uint32_t)_mm_cvtsi128_si32(b); |
| 37 | } |
| 38 | |
| 39 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, |
| 40 | uint32_t c1, |
| 41 | uint32_t c2) { |
| 42 | const __m128i zero = _mm_setzero_si128(); |
| 43 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); |
| 44 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); |
| 45 | const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); |
| 46 | const __m128i avg = _mm_add_epi16(C1, C0); |
| 47 | const __m128i A0 = _mm_srli_epi16(avg, 1); |
| 48 | const __m128i A1 = _mm_sub_epi16(A0, B0); |
| 49 | const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
| 50 | const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
| 51 | const __m128i A3 = _mm_srai_epi16(A2, 1); |
| 52 | const __m128i A4 = _mm_add_epi16(A0, A3); |
| 53 | const __m128i A5 = _mm_packus_epi16(A4, A4); |
| 54 | return (uint32_t)_mm_cvtsi128_si32(A5); |
| 55 | } |
| 56 | |
| 57 | static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { |
| 58 | int pa_minus_pb; |
| 59 | const __m128i zero = _mm_setzero_si128(); |
| 60 | const __m128i A0 = _mm_cvtsi32_si128((int)a); |
| 61 | const __m128i B0 = _mm_cvtsi32_si128((int)b); |
| 62 | const __m128i C0 = _mm_cvtsi32_si128((int)c); |
| 63 | const __m128i AC0 = _mm_subs_epu8(A0, C0); |
| 64 | const __m128i CA0 = _mm_subs_epu8(C0, A0); |
| 65 | const __m128i BC0 = _mm_subs_epu8(B0, C0); |
| 66 | const __m128i CB0 = _mm_subs_epu8(C0, B0); |
| 67 | const __m128i AC = _mm_or_si128(AC0, CA0); |
| 68 | const __m128i BC = _mm_or_si128(BC0, CB0); |
| 69 | const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
| 70 | const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
| 71 | const __m128i diff = _mm_sub_epi16(pb, pa); |
| 72 | { |
| 73 | int16_t out[8]; |
| 74 | _mm_storeu_si128((__m128i*)out, diff); |
| 75 | pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
| 76 | } |
| 77 | return (pa_minus_pb <= 0) ? a : b; |
| 78 | } |
| 79 | |
| 80 | static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
| 81 | const __m128i* const a1, |
| 82 | __m128i* const avg) { |
| 83 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| 84 | const __m128i ones = _mm_set1_epi8(1); |
| 85 | const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
| 86 | const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
| 87 | *avg = _mm_sub_epi8(avg1, one); |
| 88 | } |
| 89 | |
| 90 | static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, |
| 91 | const uint32_t a1, |
| 92 | __m128i* const avg) { |
| 93 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
| 94 | const __m128i ones = _mm_set1_epi8(1); |
| 95 | const __m128i A0 = _mm_cvtsi32_si128((int)a0); |
| 96 | const __m128i A1 = _mm_cvtsi32_si128((int)a1); |
| 97 | const __m128i avg1 = _mm_avg_epu8(A0, A1); |
| 98 | const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); |
| 99 | *avg = _mm_sub_epi8(avg1, one); |
| 100 | } |
| 101 | |
| 102 | static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { |
| 103 | const __m128i zero = _mm_setzero_si128(); |
| 104 | const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero); |
| 105 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); |
| 106 | const __m128i sum = _mm_add_epi16(A1, A0); |
| 107 | return _mm_srli_epi16(sum, 1); |
| 108 | } |
| 109 | |
| 110 | static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { |
| 111 | __m128i output; |
| 112 | Average2_uint32_SSE2(a0, a1, &output); |
| 113 | return (uint32_t)_mm_cvtsi128_si32(output); |
| 114 | } |
| 115 | |
| 116 | static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, |
| 117 | uint32_t a2) { |
| 118 | const __m128i zero = _mm_setzero_si128(); |
| 119 | const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); |
| 120 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); |
| 121 | const __m128i sum = _mm_add_epi16(avg1, A1); |
| 122 | const __m128i avg2 = _mm_srli_epi16(sum, 1); |
| 123 | const __m128i A2 = _mm_packus_epi16(avg2, avg2); |
| 124 | return (uint32_t)_mm_cvtsi128_si32(A2); |
| 125 | } |
| 126 | |
| 127 | static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, |
| 128 | uint32_t a2, uint32_t a3) { |
| 129 | const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); |
| 130 | const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); |
| 131 | const __m128i sum = _mm_add_epi16(avg2, avg1); |
| 132 | const __m128i avg3 = _mm_srli_epi16(sum, 1); |
| 133 | const __m128i A0 = _mm_packus_epi16(avg3, avg3); |
| 134 | return (uint32_t)_mm_cvtsi128_si32(A0); |
| 135 | } |
| 136 | |
| 137 | static uint32_t Predictor5_SSE2(const uint32_t* const left, |
| 138 | const uint32_t* const top) { |
| 139 | const uint32_t pred = Average3_SSE2(*left, top[0], top[1]); |
| 140 | return pred; |
| 141 | } |
| 142 | static uint32_t Predictor6_SSE2(const uint32_t* const left, |
| 143 | const uint32_t* const top) { |
| 144 | const uint32_t pred = Average2_SSE2(*left, top[-1]); |
| 145 | return pred; |
| 146 | } |
| 147 | static uint32_t Predictor7_SSE2(const uint32_t* const left, |
| 148 | const uint32_t* const top) { |
| 149 | const uint32_t pred = Average2_SSE2(*left, top[0]); |
| 150 | return pred; |
| 151 | } |
| 152 | static uint32_t Predictor8_SSE2(const uint32_t* const left, |
| 153 | const uint32_t* const top) { |
| 154 | const uint32_t pred = Average2_SSE2(top[-1], top[0]); |
| 155 | (void)left; |
| 156 | return pred; |
| 157 | } |
| 158 | static uint32_t Predictor9_SSE2(const uint32_t* const left, |
| 159 | const uint32_t* const top) { |
| 160 | const uint32_t pred = Average2_SSE2(top[0], top[1]); |
| 161 | (void)left; |
| 162 | return pred; |
| 163 | } |
| 164 | static uint32_t Predictor10_SSE2(const uint32_t* const left, |
| 165 | const uint32_t* const top) { |
| 166 | const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]); |
| 167 | return pred; |
| 168 | } |
| 169 | static uint32_t Predictor11_SSE2(const uint32_t* const left, |
| 170 | const uint32_t* const top) { |
| 171 | const uint32_t pred = Select_SSE2(top[0], *left, top[-1]); |
| 172 | return pred; |
| 173 | } |
| 174 | static uint32_t Predictor12_SSE2(const uint32_t* const left, |
| 175 | const uint32_t* const top) { |
| 176 | const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]); |
| 177 | return pred; |
| 178 | } |
| 179 | static uint32_t Predictor13_SSE2(const uint32_t* const left, |
| 180 | const uint32_t* const top) { |
| 181 | const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]); |
| 182 | return pred; |
| 183 | } |
| 184 | |
| 185 | // Batch versions of those functions. |
| 186 | |
| 187 | // Predictor0: ARGB_BLACK. |
| 188 | static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, |
| 189 | int num_pixels, uint32_t* out) { |
| 190 | int i; |
| 191 | const __m128i black = _mm_set1_epi32((int)ARGB_BLACK); |
| 192 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 193 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 194 | const __m128i res = _mm_add_epi8(src, black); |
| 195 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 196 | } |
| 197 | if (i != num_pixels) { |
| 198 | VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i); |
| 199 | } |
| 200 | (void)upper; |
| 201 | } |
| 202 | |
| 203 | // Predictor1: left. |
| 204 | static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, |
| 205 | int num_pixels, uint32_t* out) { |
| 206 | int i; |
| 207 | __m128i prev = _mm_set1_epi32((int)out[-1]); |
| 208 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 209 | // a | b | c | d |
| 210 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 211 | // 0 | a | b | c |
| 212 | const __m128i shift0 = _mm_slli_si128(src, 4); |
| 213 | // a | a + b | b + c | c + d |
| 214 | const __m128i sum0 = _mm_add_epi8(src, shift0); |
| 215 | // 0 | 0 | a | a + b |
| 216 | const __m128i shift1 = _mm_slli_si128(sum0, 8); |
| 217 | // a | a + b | a + b + c | a + b + c + d |
| 218 | const __m128i sum1 = _mm_add_epi8(sum0, shift1); |
| 219 | const __m128i res = _mm_add_epi8(sum1, prev); |
| 220 | _mm_storeu_si128((__m128i*)&out[i], res); |
| 221 | // replicate prev output on the four lanes |
| 222 | prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); |
| 223 | } |
| 224 | if (i != num_pixels) { |
| 225 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
| 230 | // per 8 bit channel. |
| 231 | #define GENERATE_PREDICTOR_1(X, IN) \ |
| 232 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| 233 | int num_pixels, uint32_t* out) { \ |
| 234 | int i; \ |
| 235 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 236 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| 237 | const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| 238 | const __m128i res = _mm_add_epi8(src, other); \ |
| 239 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
| 240 | } \ |
| 241 | if (i != num_pixels) { \ |
| 242 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 243 | } \ |
| 244 | } |
| 245 | |
| 246 | // Predictor2: Top. |
| 247 | GENERATE_PREDICTOR_1(2, upper[i]) |
| 248 | // Predictor3: Top-right. |
| 249 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
| 250 | // Predictor4: Top-left. |
| 251 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
| 252 | #undef GENERATE_PREDICTOR_1 |
| 253 | |
| 254 | // Due to averages with integers, values cannot be accumulated in parallel for |
| 255 | // predictors 5 to 7. |
| 256 | GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) |
| 257 | GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) |
| 258 | GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) |
| 259 | |
| 260 | #define GENERATE_PREDICTOR_2(X, IN) \ |
| 261 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
| 262 | int num_pixels, uint32_t* out) { \ |
| 263 | int i; \ |
| 264 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
| 265 | const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ |
| 266 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ |
| 267 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
| 268 | __m128i avg, res; \ |
| 269 | Average2_m128i(&T, &Tother, &avg); \ |
| 270 | res = _mm_add_epi8(avg, src); \ |
| 271 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
| 272 | } \ |
| 273 | if (i != num_pixels) { \ |
| 274 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
| 275 | } \ |
| 276 | } |
| 277 | // Predictor8: average TL T. |
| 278 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
| 279 | // Predictor9: average T TR. |
| 280 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
| 281 | #undef GENERATE_PREDICTOR_2 |
| 282 | |
| 283 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
| 284 | #define DO_PRED10(OUT) do { \ |
| 285 | __m128i avgLTL, avg; \ |
| 286 | Average2_m128i(&L, &TL, &avgLTL); \ |
| 287 | Average2_m128i(&avgTTR, &avgLTL, &avg); \ |
| 288 | L = _mm_add_epi8(avg, src); \ |
| 289 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ |
| 290 | } while (0) |
| 291 | |
| 292 | #define DO_PRED10_SHIFT do { \ |
| 293 | /* Rotate the pre-computed values for the next iteration.*/ \ |
| 294 | avgTTR = _mm_srli_si128(avgTTR, 4); \ |
| 295 | TL = _mm_srli_si128(TL, 4); \ |
| 296 | src = _mm_srli_si128(src, 4); \ |
| 297 | } while (0) |
| 298 | |
| 299 | static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, |
| 300 | int num_pixels, uint32_t* out) { |
| 301 | int i; |
| 302 | __m128i L = _mm_cvtsi32_si128((int)out[-1]); |
| 303 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 304 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 305 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 306 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 307 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
| 308 | __m128i avgTTR; |
| 309 | Average2_m128i(&T, &TR, &avgTTR); |
| 310 | DO_PRED10(0); |
| 311 | DO_PRED10_SHIFT; |
| 312 | DO_PRED10(1); |
| 313 | DO_PRED10_SHIFT; |
| 314 | DO_PRED10(2); |
| 315 | DO_PRED10_SHIFT; |
| 316 | DO_PRED10(3); |
| 317 | } |
| 318 | if (i != num_pixels) { |
| 319 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
| 320 | } |
| 321 | } |
| 322 | #undef DO_PRED10 |
| 323 | #undef DO_PRED10_SHIFT |
| 324 | |
| 325 | // Predictor11: select. |
| 326 | #define DO_PRED11(OUT) do { \ |
| 327 | const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ |
| 328 | const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ |
| 329 | const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ |
| 330 | const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ |
| 331 | const __m128i A = _mm_and_si128(mask, L); \ |
| 332 | const __m128i B = _mm_andnot_si128(mask, T); \ |
| 333 | const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ |
| 334 | L = _mm_add_epi8(src, pred); \ |
| 335 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ |
| 336 | } while (0) |
| 337 | |
| 338 | #define DO_PRED11_SHIFT do { \ |
| 339 | /* Shift the pre-computed value for the next iteration.*/ \ |
| 340 | T = _mm_srli_si128(T, 4); \ |
| 341 | TL = _mm_srli_si128(TL, 4); \ |
| 342 | src = _mm_srli_si128(src, 4); \ |
| 343 | pa = _mm_srli_si128(pa, 4); \ |
| 344 | } while (0) |
| 345 | |
| 346 | static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, |
| 347 | int num_pixels, uint32_t* out) { |
| 348 | int i; |
| 349 | __m128i pa; |
| 350 | __m128i L = _mm_cvtsi32_si128((int)out[-1]); |
| 351 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 352 | __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 353 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 354 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 355 | { |
| 356 | // We can unpack with any value on the upper 32 bits, provided it's the |
| 357 | // same on both operands (so that their sum of abs diff is zero). Here we |
| 358 | // use T. |
| 359 | const __m128i T_lo = _mm_unpacklo_epi32(T, T); |
| 360 | const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); |
| 361 | const __m128i T_hi = _mm_unpackhi_epi32(T, T); |
| 362 | const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); |
| 363 | const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); |
| 364 | const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); |
| 365 | pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| |
| 366 | } |
| 367 | DO_PRED11(0); |
| 368 | DO_PRED11_SHIFT; |
| 369 | DO_PRED11(1); |
| 370 | DO_PRED11_SHIFT; |
| 371 | DO_PRED11(2); |
| 372 | DO_PRED11_SHIFT; |
| 373 | DO_PRED11(3); |
| 374 | } |
| 375 | if (i != num_pixels) { |
| 376 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
| 377 | } |
| 378 | } |
| 379 | #undef DO_PRED11 |
| 380 | #undef DO_PRED11_SHIFT |
| 381 | |
| 382 | // Predictor12: ClampedAddSubtractFull. |
| 383 | #define DO_PRED12(DIFF, LANE, OUT) do { \ |
| 384 | const __m128i all = _mm_add_epi16(L, (DIFF)); \ |
| 385 | const __m128i alls = _mm_packus_epi16(all, all); \ |
| 386 | const __m128i res = _mm_add_epi8(src, alls); \ |
| 387 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \ |
| 388 | L = _mm_unpacklo_epi8(res, zero); \ |
| 389 | } while (0) |
| 390 | |
| 391 | #define DO_PRED12_SHIFT(DIFF, LANE) do { \ |
| 392 | /* Shift the pre-computed value for the next iteration.*/ \ |
| 393 | if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ |
| 394 | src = _mm_srli_si128(src, 4); \ |
| 395 | } while (0) |
| 396 | |
| 397 | static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, |
| 398 | int num_pixels, uint32_t* out) { |
| 399 | int i; |
| 400 | const __m128i zero = _mm_setzero_si128(); |
| 401 | const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]); |
| 402 | __m128i L = _mm_unpacklo_epi8(L8, zero); |
| 403 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 404 | // Load 4 pixels at a time. |
| 405 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
| 406 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
| 407 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
| 408 | const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
| 409 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
| 410 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
| 411 | const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
| 412 | __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
| 413 | __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
| 414 | DO_PRED12(diff_lo, 0, 0); |
| 415 | DO_PRED12_SHIFT(diff_lo, 0); |
| 416 | DO_PRED12(diff_lo, 1, 1); |
| 417 | DO_PRED12_SHIFT(diff_lo, 1); |
| 418 | DO_PRED12(diff_hi, 0, 2); |
| 419 | DO_PRED12_SHIFT(diff_hi, 0); |
| 420 | DO_PRED12(diff_hi, 1, 3); |
| 421 | } |
| 422 | if (i != num_pixels) { |
| 423 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
| 424 | } |
| 425 | } |
| 426 | #undef DO_PRED12 |
| 427 | #undef DO_PRED12_SHIFT |
| 428 | |
| 429 | // Due to averages with integers, values cannot be accumulated in parallel for |
| 430 | // predictors 13. |
| 431 | GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) |
| 432 | |
| 433 | //------------------------------------------------------------------------------ |
| 434 | // Subtract-Green Transform |
| 435 | |
| 436 | static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, |
| 437 | uint32_t* dst) { |
| 438 | int i; |
| 439 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 440 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
| 441 | const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
| 442 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| 443 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
| 444 | const __m128i out = _mm_add_epi8(in, C); |
| 445 | _mm_storeu_si128((__m128i*)&dst[i], out); |
| 446 | } |
| 447 | // fallthrough and finish off with plain-C |
| 448 | if (i != num_pixels) { |
| 449 | VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | //------------------------------------------------------------------------------ |
| 454 | // Color Transform |
| 455 | |
| 456 | static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, |
| 457 | const uint32_t* const src, |
| 458 | int num_pixels, uint32_t* dst) { |
| 459 | // sign-extended multiplying constants, pre-shifted by 5. |
| 460 | #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend |
| 461 | #define MK_CST_16(HI, LO) \ |
| 462 | _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) |
| 463 | const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); |
| 464 | const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); |
| 465 | #undef MK_CST_16 |
| 466 | #undef CST |
| 467 | const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks |
| 468 | int i; |
| 469 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
| 470 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
| 471 | const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
| 472 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
| 473 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
| 474 | const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
| 475 | const __m128i E = _mm_add_epi8(in, D); // x r' x b' |
| 476 | const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 |
| 477 | const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 |
| 478 | const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 |
| 479 | const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 |
| 480 | const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' |
| 481 | const __m128i out = _mm_or_si128(J, A); |
| 482 | _mm_storeu_si128((__m128i*)&dst[i], out); |
| 483 | } |
| 484 | // Fall-back to C-version for left-overs. |
| 485 | if (i != num_pixels) { |
| 486 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | //------------------------------------------------------------------------------ |
| 491 | // Color-space conversion functions |
| 492 | |
| 493 | static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, |
| 494 | uint8_t* dst) { |
| 495 | const __m128i* in = (const __m128i*)src; |
| 496 | __m128i* out = (__m128i*)dst; |
| 497 | |
| 498 | while (num_pixels >= 32) { |
| 499 | // Load the BGRA buffers. |
| 500 | __m128i in0 = _mm_loadu_si128(in + 0); |
| 501 | __m128i in1 = _mm_loadu_si128(in + 1); |
| 502 | __m128i in2 = _mm_loadu_si128(in + 2); |
| 503 | __m128i in3 = _mm_loadu_si128(in + 3); |
| 504 | __m128i in4 = _mm_loadu_si128(in + 4); |
| 505 | __m128i in5 = _mm_loadu_si128(in + 5); |
| 506 | __m128i in6 = _mm_loadu_si128(in + 6); |
| 507 | __m128i in7 = _mm_loadu_si128(in + 7); |
| 508 | VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); |
| 509 | VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); |
| 510 | // At this points, in1/in5 contains red only, in2/in6 green only ... |
| 511 | // Pack the colors in 24b RGB. |
| 512 | VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); |
| 513 | _mm_storeu_si128(out + 0, in1); |
| 514 | _mm_storeu_si128(out + 1, in5); |
| 515 | _mm_storeu_si128(out + 2, in2); |
| 516 | _mm_storeu_si128(out + 3, in6); |
| 517 | _mm_storeu_si128(out + 4, in3); |
| 518 | _mm_storeu_si128(out + 5, in7); |
| 519 | in += 8; |
| 520 | out += 6; |
| 521 | num_pixels -= 32; |
| 522 | } |
| 523 | // left-overs |
| 524 | if (num_pixels > 0) { |
| 525 | VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, |
| 530 | int num_pixels, uint8_t* dst) { |
| 531 | const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff); |
| 532 | const __m128i* in = (const __m128i*)src; |
| 533 | __m128i* out = (__m128i*)dst; |
| 534 | while (num_pixels >= 8) { |
| 535 | const __m128i A1 = _mm_loadu_si128(in++); |
| 536 | const __m128i A2 = _mm_loadu_si128(in++); |
| 537 | const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 |
| 538 | const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 |
| 539 | const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A |
| 540 | const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A |
| 541 | const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); |
| 542 | const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); |
| 543 | const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); |
| 544 | const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); |
| 545 | const __m128i F1 = _mm_or_si128(E1, C1); |
| 546 | const __m128i F2 = _mm_or_si128(E2, C2); |
| 547 | _mm_storeu_si128(out++, F1); |
| 548 | _mm_storeu_si128(out++, F2); |
| 549 | num_pixels -= 8; |
| 550 | } |
| 551 | // left-overs |
| 552 | if (num_pixels > 0) { |
| 553 | VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, |
| 558 | int num_pixels, uint8_t* dst) { |
| 559 | const __m128i mask_0x0f = _mm_set1_epi8(0x0f); |
| 560 | const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0); |
| 561 | const __m128i* in = (const __m128i*)src; |
| 562 | __m128i* out = (__m128i*)dst; |
| 563 | while (num_pixels >= 8) { |
| 564 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| 565 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| 566 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
| 567 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
| 568 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
| 569 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
| 570 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
| 571 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
| 572 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
| 573 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
| 574 | const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- |
| 575 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 |
| 576 | const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- |
| 577 | const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 |
| 578 | const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 |
| 579 | #if (WEBP_SWAP_16BIT_CSP == 1) |
| 580 | const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 |
| 581 | #else |
| 582 | const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 |
| 583 | #endif |
| 584 | _mm_storeu_si128(out++, rgba); |
| 585 | num_pixels -= 8; |
| 586 | } |
| 587 | // left-overs |
| 588 | if (num_pixels > 0) { |
| 589 | VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, |
| 594 | int num_pixels, uint8_t* dst) { |
| 595 | const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0); |
| 596 | const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8); |
| 597 | const __m128i mask_0x07 = _mm_set1_epi8(0x07); |
| 598 | const __m128i* in = (const __m128i*)src; |
| 599 | __m128i* out = (__m128i*)dst; |
| 600 | while (num_pixels >= 8) { |
| 601 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| 602 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| 603 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
| 604 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
| 605 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
| 606 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
| 607 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
| 608 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
| 609 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
| 610 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
| 611 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 |
| 612 | const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); |
| 613 | const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) |
| 614 | const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); |
| 615 | const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) |
| 616 | const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 |
| 617 | const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx |
| 618 | const __m128i b1 = _mm_srli_epi16(b0, 3); |
| 619 | const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx |
| 620 | #if (WEBP_SWAP_16BIT_CSP == 1) |
| 621 | const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 |
| 622 | #else |
| 623 | const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 |
| 624 | #endif |
| 625 | _mm_storeu_si128(out++, rgba); |
| 626 | num_pixels -= 8; |
| 627 | } |
| 628 | // left-overs |
| 629 | if (num_pixels > 0) { |
| 630 | VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | static void ConvertBGRAToBGR_SSE2(const uint32_t* src, |
| 635 | int num_pixels, uint8_t* dst) { |
| 636 | const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); |
| 637 | const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); |
| 638 | const __m128i* in = (const __m128i*)src; |
| 639 | const uint8_t* const end = dst + num_pixels * 3; |
| 640 | // the last storel_epi64 below writes 8 bytes starting at offset 18 |
| 641 | while (dst + 26 <= end) { |
| 642 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
| 643 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
| 644 | const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 |
| 645 | const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 |
| 646 | const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 |
| 647 | const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 |
| 648 | const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 |
| 649 | const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 |
| 650 | const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 |
| 651 | const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 |
| 652 | const __m128i c2 = _mm_srli_si128(c0, 8); |
| 653 | const __m128i c6 = _mm_srli_si128(c4, 8); |
| 654 | _mm_storel_epi64((__m128i*)(dst + 0), c0); |
| 655 | _mm_storel_epi64((__m128i*)(dst + 6), c2); |
| 656 | _mm_storel_epi64((__m128i*)(dst + 12), c4); |
| 657 | _mm_storel_epi64((__m128i*)(dst + 18), c6); |
| 658 | dst += 24; |
| 659 | num_pixels -= 8; |
| 660 | } |
| 661 | // left-overs |
| 662 | if (num_pixels > 0) { |
| 663 | VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | //------------------------------------------------------------------------------ |
| 668 | // Entry point |
| 669 | |
| 670 | extern void VP8LDspInitSSE2(void); |
| 671 | |
| 672 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { |
| 673 | VP8LPredictors[5] = Predictor5_SSE2; |
| 674 | VP8LPredictors[6] = Predictor6_SSE2; |
| 675 | VP8LPredictors[7] = Predictor7_SSE2; |
| 676 | VP8LPredictors[8] = Predictor8_SSE2; |
| 677 | VP8LPredictors[9] = Predictor9_SSE2; |
| 678 | VP8LPredictors[10] = Predictor10_SSE2; |
| 679 | VP8LPredictors[11] = Predictor11_SSE2; |
| 680 | VP8LPredictors[12] = Predictor12_SSE2; |
| 681 | VP8LPredictors[13] = Predictor13_SSE2; |
| 682 | |
| 683 | VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; |
| 684 | VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; |
| 685 | VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; |
| 686 | VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; |
| 687 | VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; |
| 688 | VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; |
| 689 | VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; |
| 690 | VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; |
| 691 | VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; |
| 692 | VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; |
| 693 | VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; |
| 694 | VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; |
| 695 | VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; |
| 696 | VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; |
| 697 | |
| 698 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; |
| 699 | VP8LTransformColorInverse = TransformColorInverse_SSE2; |
| 700 | |
| 701 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; |
| 702 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; |
| 703 | VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; |
| 704 | VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; |
| 705 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; |
| 706 | } |
| 707 | |
| 708 | #else // !WEBP_USE_SSE2 |
| 709 | |
| 710 | WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) |
| 711 | |
| 712 | #endif // WEBP_USE_SSE2 |
| 713 | |