1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // SSE2 variant of methods for lossless decoder |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "src/dsp/dsp.h" |
15 | |
16 | #if defined(WEBP_USE_SSE2) |
17 | |
18 | #include "src/dsp/common_sse2.h" |
19 | #include "src/dsp/lossless.h" |
20 | #include "src/dsp/lossless_common.h" |
21 | #include <emmintrin.h> |
22 | |
23 | //------------------------------------------------------------------------------ |
24 | // Predictor Transform |
25 | |
26 | static WEBP_INLINE uint32_t ClampedAddSubtractFull_SSE2(uint32_t c0, |
27 | uint32_t c1, |
28 | uint32_t c2) { |
29 | const __m128i zero = _mm_setzero_si128(); |
30 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); |
31 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); |
32 | const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); |
33 | const __m128i V1 = _mm_add_epi16(C0, C1); |
34 | const __m128i V2 = _mm_sub_epi16(V1, C2); |
35 | const __m128i b = _mm_packus_epi16(V2, V2); |
36 | return (uint32_t)_mm_cvtsi128_si32(b); |
37 | } |
38 | |
39 | static WEBP_INLINE uint32_t ClampedAddSubtractHalf_SSE2(uint32_t c0, |
40 | uint32_t c1, |
41 | uint32_t c2) { |
42 | const __m128i zero = _mm_setzero_si128(); |
43 | const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c0), zero); |
44 | const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c1), zero); |
45 | const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)c2), zero); |
46 | const __m128i avg = _mm_add_epi16(C1, C0); |
47 | const __m128i A0 = _mm_srli_epi16(avg, 1); |
48 | const __m128i A1 = _mm_sub_epi16(A0, B0); |
49 | const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
50 | const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
51 | const __m128i A3 = _mm_srai_epi16(A2, 1); |
52 | const __m128i A4 = _mm_add_epi16(A0, A3); |
53 | const __m128i A5 = _mm_packus_epi16(A4, A4); |
54 | return (uint32_t)_mm_cvtsi128_si32(A5); |
55 | } |
56 | |
57 | static WEBP_INLINE uint32_t Select_SSE2(uint32_t a, uint32_t b, uint32_t c) { |
58 | int pa_minus_pb; |
59 | const __m128i zero = _mm_setzero_si128(); |
60 | const __m128i A0 = _mm_cvtsi32_si128((int)a); |
61 | const __m128i B0 = _mm_cvtsi32_si128((int)b); |
62 | const __m128i C0 = _mm_cvtsi32_si128((int)c); |
63 | const __m128i AC0 = _mm_subs_epu8(A0, C0); |
64 | const __m128i CA0 = _mm_subs_epu8(C0, A0); |
65 | const __m128i BC0 = _mm_subs_epu8(B0, C0); |
66 | const __m128i CB0 = _mm_subs_epu8(C0, B0); |
67 | const __m128i AC = _mm_or_si128(AC0, CA0); |
68 | const __m128i BC = _mm_or_si128(BC0, CB0); |
69 | const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
70 | const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
71 | const __m128i diff = _mm_sub_epi16(pb, pa); |
72 | { |
73 | int16_t out[8]; |
74 | _mm_storeu_si128((__m128i*)out, diff); |
75 | pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
76 | } |
77 | return (pa_minus_pb <= 0) ? a : b; |
78 | } |
79 | |
80 | static WEBP_INLINE void Average2_m128i(const __m128i* const a0, |
81 | const __m128i* const a1, |
82 | __m128i* const avg) { |
83 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
84 | const __m128i ones = _mm_set1_epi8(1); |
85 | const __m128i avg1 = _mm_avg_epu8(*a0, *a1); |
86 | const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones); |
87 | *avg = _mm_sub_epi8(avg1, one); |
88 | } |
89 | |
90 | static WEBP_INLINE void Average2_uint32_SSE2(const uint32_t a0, |
91 | const uint32_t a1, |
92 | __m128i* const avg) { |
93 | // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1) |
94 | const __m128i ones = _mm_set1_epi8(1); |
95 | const __m128i A0 = _mm_cvtsi32_si128((int)a0); |
96 | const __m128i A1 = _mm_cvtsi32_si128((int)a1); |
97 | const __m128i avg1 = _mm_avg_epu8(A0, A1); |
98 | const __m128i one = _mm_and_si128(_mm_xor_si128(A0, A1), ones); |
99 | *avg = _mm_sub_epi8(avg1, one); |
100 | } |
101 | |
102 | static WEBP_INLINE __m128i Average2_uint32_16_SSE2(uint32_t a0, uint32_t a1) { |
103 | const __m128i zero = _mm_setzero_si128(); |
104 | const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a0), zero); |
105 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); |
106 | const __m128i sum = _mm_add_epi16(A1, A0); |
107 | return _mm_srli_epi16(sum, 1); |
108 | } |
109 | |
110 | static WEBP_INLINE uint32_t Average2_SSE2(uint32_t a0, uint32_t a1) { |
111 | __m128i output; |
112 | Average2_uint32_SSE2(a0, a1, &output); |
113 | return (uint32_t)_mm_cvtsi128_si32(output); |
114 | } |
115 | |
116 | static WEBP_INLINE uint32_t Average3_SSE2(uint32_t a0, uint32_t a1, |
117 | uint32_t a2) { |
118 | const __m128i zero = _mm_setzero_si128(); |
119 | const __m128i avg1 = Average2_uint32_16_SSE2(a0, a2); |
120 | const __m128i A1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128((int)a1), zero); |
121 | const __m128i sum = _mm_add_epi16(avg1, A1); |
122 | const __m128i avg2 = _mm_srli_epi16(sum, 1); |
123 | const __m128i A2 = _mm_packus_epi16(avg2, avg2); |
124 | return (uint32_t)_mm_cvtsi128_si32(A2); |
125 | } |
126 | |
127 | static WEBP_INLINE uint32_t Average4_SSE2(uint32_t a0, uint32_t a1, |
128 | uint32_t a2, uint32_t a3) { |
129 | const __m128i avg1 = Average2_uint32_16_SSE2(a0, a1); |
130 | const __m128i avg2 = Average2_uint32_16_SSE2(a2, a3); |
131 | const __m128i sum = _mm_add_epi16(avg2, avg1); |
132 | const __m128i avg3 = _mm_srli_epi16(sum, 1); |
133 | const __m128i A0 = _mm_packus_epi16(avg3, avg3); |
134 | return (uint32_t)_mm_cvtsi128_si32(A0); |
135 | } |
136 | |
137 | static uint32_t Predictor5_SSE2(const uint32_t* const left, |
138 | const uint32_t* const top) { |
139 | const uint32_t pred = Average3_SSE2(*left, top[0], top[1]); |
140 | return pred; |
141 | } |
142 | static uint32_t Predictor6_SSE2(const uint32_t* const left, |
143 | const uint32_t* const top) { |
144 | const uint32_t pred = Average2_SSE2(*left, top[-1]); |
145 | return pred; |
146 | } |
147 | static uint32_t Predictor7_SSE2(const uint32_t* const left, |
148 | const uint32_t* const top) { |
149 | const uint32_t pred = Average2_SSE2(*left, top[0]); |
150 | return pred; |
151 | } |
152 | static uint32_t Predictor8_SSE2(const uint32_t* const left, |
153 | const uint32_t* const top) { |
154 | const uint32_t pred = Average2_SSE2(top[-1], top[0]); |
155 | (void)left; |
156 | return pred; |
157 | } |
158 | static uint32_t Predictor9_SSE2(const uint32_t* const left, |
159 | const uint32_t* const top) { |
160 | const uint32_t pred = Average2_SSE2(top[0], top[1]); |
161 | (void)left; |
162 | return pred; |
163 | } |
164 | static uint32_t Predictor10_SSE2(const uint32_t* const left, |
165 | const uint32_t* const top) { |
166 | const uint32_t pred = Average4_SSE2(*left, top[-1], top[0], top[1]); |
167 | return pred; |
168 | } |
169 | static uint32_t Predictor11_SSE2(const uint32_t* const left, |
170 | const uint32_t* const top) { |
171 | const uint32_t pred = Select_SSE2(top[0], *left, top[-1]); |
172 | return pred; |
173 | } |
174 | static uint32_t Predictor12_SSE2(const uint32_t* const left, |
175 | const uint32_t* const top) { |
176 | const uint32_t pred = ClampedAddSubtractFull_SSE2(*left, top[0], top[-1]); |
177 | return pred; |
178 | } |
179 | static uint32_t Predictor13_SSE2(const uint32_t* const left, |
180 | const uint32_t* const top) { |
181 | const uint32_t pred = ClampedAddSubtractHalf_SSE2(*left, top[0], top[-1]); |
182 | return pred; |
183 | } |
184 | |
185 | // Batch versions of those functions. |
186 | |
187 | // Predictor0: ARGB_BLACK. |
188 | static void PredictorAdd0_SSE2(const uint32_t* in, const uint32_t* upper, |
189 | int num_pixels, uint32_t* out) { |
190 | int i; |
191 | const __m128i black = _mm_set1_epi32((int)ARGB_BLACK); |
192 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
193 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
194 | const __m128i res = _mm_add_epi8(src, black); |
195 | _mm_storeu_si128((__m128i*)&out[i], res); |
196 | } |
197 | if (i != num_pixels) { |
198 | VP8LPredictorsAdd_C[0](in + i, NULL, num_pixels - i, out + i); |
199 | } |
200 | (void)upper; |
201 | } |
202 | |
203 | // Predictor1: left. |
204 | static void PredictorAdd1_SSE2(const uint32_t* in, const uint32_t* upper, |
205 | int num_pixels, uint32_t* out) { |
206 | int i; |
207 | __m128i prev = _mm_set1_epi32((int)out[-1]); |
208 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
209 | // a | b | c | d |
210 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
211 | // 0 | a | b | c |
212 | const __m128i shift0 = _mm_slli_si128(src, 4); |
213 | // a | a + b | b + c | c + d |
214 | const __m128i sum0 = _mm_add_epi8(src, shift0); |
215 | // 0 | 0 | a | a + b |
216 | const __m128i shift1 = _mm_slli_si128(sum0, 8); |
217 | // a | a + b | a + b + c | a + b + c + d |
218 | const __m128i sum1 = _mm_add_epi8(sum0, shift1); |
219 | const __m128i res = _mm_add_epi8(sum1, prev); |
220 | _mm_storeu_si128((__m128i*)&out[i], res); |
221 | // replicate prev output on the four lanes |
222 | prev = _mm_shuffle_epi32(res, (3 << 0) | (3 << 2) | (3 << 4) | (3 << 6)); |
223 | } |
224 | if (i != num_pixels) { |
225 | VP8LPredictorsAdd_C[1](in + i, upper + i, num_pixels - i, out + i); |
226 | } |
227 | } |
228 | |
229 | // Macro that adds 32-bit integers from IN using mod 256 arithmetic |
230 | // per 8 bit channel. |
231 | #define GENERATE_PREDICTOR_1(X, IN) \ |
232 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
233 | int num_pixels, uint32_t* out) { \ |
234 | int i; \ |
235 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
236 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
237 | const __m128i other = _mm_loadu_si128((const __m128i*)&(IN)); \ |
238 | const __m128i res = _mm_add_epi8(src, other); \ |
239 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
240 | } \ |
241 | if (i != num_pixels) { \ |
242 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
243 | } \ |
244 | } |
245 | |
246 | // Predictor2: Top. |
247 | GENERATE_PREDICTOR_1(2, upper[i]) |
248 | // Predictor3: Top-right. |
249 | GENERATE_PREDICTOR_1(3, upper[i + 1]) |
250 | // Predictor4: Top-left. |
251 | GENERATE_PREDICTOR_1(4, upper[i - 1]) |
252 | #undef GENERATE_PREDICTOR_1 |
253 | |
254 | // Due to averages with integers, values cannot be accumulated in parallel for |
255 | // predictors 5 to 7. |
256 | GENERATE_PREDICTOR_ADD(Predictor5_SSE2, PredictorAdd5_SSE2) |
257 | GENERATE_PREDICTOR_ADD(Predictor6_SSE2, PredictorAdd6_SSE2) |
258 | GENERATE_PREDICTOR_ADD(Predictor7_SSE2, PredictorAdd7_SSE2) |
259 | |
260 | #define GENERATE_PREDICTOR_2(X, IN) \ |
261 | static void PredictorAdd##X##_SSE2(const uint32_t* in, const uint32_t* upper, \ |
262 | int num_pixels, uint32_t* out) { \ |
263 | int i; \ |
264 | for (i = 0; i + 4 <= num_pixels; i += 4) { \ |
265 | const __m128i Tother = _mm_loadu_si128((const __m128i*)&(IN)); \ |
266 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); \ |
267 | const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \ |
268 | __m128i avg, res; \ |
269 | Average2_m128i(&T, &Tother, &avg); \ |
270 | res = _mm_add_epi8(avg, src); \ |
271 | _mm_storeu_si128((__m128i*)&out[i], res); \ |
272 | } \ |
273 | if (i != num_pixels) { \ |
274 | VP8LPredictorsAdd_C[(X)](in + i, upper + i, num_pixels - i, out + i); \ |
275 | } \ |
276 | } |
277 | // Predictor8: average TL T. |
278 | GENERATE_PREDICTOR_2(8, upper[i - 1]) |
279 | // Predictor9: average T TR. |
280 | GENERATE_PREDICTOR_2(9, upper[i + 1]) |
281 | #undef GENERATE_PREDICTOR_2 |
282 | |
283 | // Predictor10: average of (average of (L,TL), average of (T, TR)). |
284 | #define DO_PRED10(OUT) do { \ |
285 | __m128i avgLTL, avg; \ |
286 | Average2_m128i(&L, &TL, &avgLTL); \ |
287 | Average2_m128i(&avgTTR, &avgLTL, &avg); \ |
288 | L = _mm_add_epi8(avg, src); \ |
289 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ |
290 | } while (0) |
291 | |
292 | #define DO_PRED10_SHIFT do { \ |
293 | /* Rotate the pre-computed values for the next iteration.*/ \ |
294 | avgTTR = _mm_srli_si128(avgTTR, 4); \ |
295 | TL = _mm_srli_si128(TL, 4); \ |
296 | src = _mm_srli_si128(src, 4); \ |
297 | } while (0) |
298 | |
299 | static void PredictorAdd10_SSE2(const uint32_t* in, const uint32_t* upper, |
300 | int num_pixels, uint32_t* out) { |
301 | int i; |
302 | __m128i L = _mm_cvtsi32_si128((int)out[-1]); |
303 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
304 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
305 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
306 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
307 | const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]); |
308 | __m128i avgTTR; |
309 | Average2_m128i(&T, &TR, &avgTTR); |
310 | DO_PRED10(0); |
311 | DO_PRED10_SHIFT; |
312 | DO_PRED10(1); |
313 | DO_PRED10_SHIFT; |
314 | DO_PRED10(2); |
315 | DO_PRED10_SHIFT; |
316 | DO_PRED10(3); |
317 | } |
318 | if (i != num_pixels) { |
319 | VP8LPredictorsAdd_C[10](in + i, upper + i, num_pixels - i, out + i); |
320 | } |
321 | } |
322 | #undef DO_PRED10 |
323 | #undef DO_PRED10_SHIFT |
324 | |
325 | // Predictor11: select. |
326 | #define DO_PRED11(OUT) do { \ |
327 | const __m128i L_lo = _mm_unpacklo_epi32(L, T); \ |
328 | const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); \ |
329 | const __m128i pb = _mm_sad_epu8(L_lo, TL_lo); /* pb = sum |L-TL|*/ \ |
330 | const __m128i mask = _mm_cmpgt_epi32(pb, pa); \ |
331 | const __m128i A = _mm_and_si128(mask, L); \ |
332 | const __m128i B = _mm_andnot_si128(mask, T); \ |
333 | const __m128i pred = _mm_or_si128(A, B); /* pred = (pa > b)? L : T*/ \ |
334 | L = _mm_add_epi8(src, pred); \ |
335 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(L); \ |
336 | } while (0) |
337 | |
338 | #define DO_PRED11_SHIFT do { \ |
339 | /* Shift the pre-computed value for the next iteration.*/ \ |
340 | T = _mm_srli_si128(T, 4); \ |
341 | TL = _mm_srli_si128(TL, 4); \ |
342 | src = _mm_srli_si128(src, 4); \ |
343 | pa = _mm_srli_si128(pa, 4); \ |
344 | } while (0) |
345 | |
346 | static void PredictorAdd11_SSE2(const uint32_t* in, const uint32_t* upper, |
347 | int num_pixels, uint32_t* out) { |
348 | int i; |
349 | __m128i pa; |
350 | __m128i L = _mm_cvtsi32_si128((int)out[-1]); |
351 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
352 | __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
353 | __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
354 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
355 | { |
356 | // We can unpack with any value on the upper 32 bits, provided it's the |
357 | // same on both operands (so that their sum of abs diff is zero). Here we |
358 | // use T. |
359 | const __m128i T_lo = _mm_unpacklo_epi32(T, T); |
360 | const __m128i TL_lo = _mm_unpacklo_epi32(TL, T); |
361 | const __m128i T_hi = _mm_unpackhi_epi32(T, T); |
362 | const __m128i TL_hi = _mm_unpackhi_epi32(TL, T); |
363 | const __m128i s_lo = _mm_sad_epu8(T_lo, TL_lo); |
364 | const __m128i s_hi = _mm_sad_epu8(T_hi, TL_hi); |
365 | pa = _mm_packs_epi32(s_lo, s_hi); // pa = sum |T-TL| |
366 | } |
367 | DO_PRED11(0); |
368 | DO_PRED11_SHIFT; |
369 | DO_PRED11(1); |
370 | DO_PRED11_SHIFT; |
371 | DO_PRED11(2); |
372 | DO_PRED11_SHIFT; |
373 | DO_PRED11(3); |
374 | } |
375 | if (i != num_pixels) { |
376 | VP8LPredictorsAdd_C[11](in + i, upper + i, num_pixels - i, out + i); |
377 | } |
378 | } |
379 | #undef DO_PRED11 |
380 | #undef DO_PRED11_SHIFT |
381 | |
382 | // Predictor12: ClampedAddSubtractFull. |
383 | #define DO_PRED12(DIFF, LANE, OUT) do { \ |
384 | const __m128i all = _mm_add_epi16(L, (DIFF)); \ |
385 | const __m128i alls = _mm_packus_epi16(all, all); \ |
386 | const __m128i res = _mm_add_epi8(src, alls); \ |
387 | out[i + (OUT)] = (uint32_t)_mm_cvtsi128_si32(res); \ |
388 | L = _mm_unpacklo_epi8(res, zero); \ |
389 | } while (0) |
390 | |
391 | #define DO_PRED12_SHIFT(DIFF, LANE) do { \ |
392 | /* Shift the pre-computed value for the next iteration.*/ \ |
393 | if ((LANE) == 0) (DIFF) = _mm_srli_si128((DIFF), 8); \ |
394 | src = _mm_srli_si128(src, 4); \ |
395 | } while (0) |
396 | |
397 | static void PredictorAdd12_SSE2(const uint32_t* in, const uint32_t* upper, |
398 | int num_pixels, uint32_t* out) { |
399 | int i; |
400 | const __m128i zero = _mm_setzero_si128(); |
401 | const __m128i L8 = _mm_cvtsi32_si128((int)out[-1]); |
402 | __m128i L = _mm_unpacklo_epi8(L8, zero); |
403 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
404 | // Load 4 pixels at a time. |
405 | __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); |
406 | const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]); |
407 | const __m128i T_lo = _mm_unpacklo_epi8(T, zero); |
408 | const __m128i T_hi = _mm_unpackhi_epi8(T, zero); |
409 | const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]); |
410 | const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero); |
411 | const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero); |
412 | __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo); |
413 | __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi); |
414 | DO_PRED12(diff_lo, 0, 0); |
415 | DO_PRED12_SHIFT(diff_lo, 0); |
416 | DO_PRED12(diff_lo, 1, 1); |
417 | DO_PRED12_SHIFT(diff_lo, 1); |
418 | DO_PRED12(diff_hi, 0, 2); |
419 | DO_PRED12_SHIFT(diff_hi, 0); |
420 | DO_PRED12(diff_hi, 1, 3); |
421 | } |
422 | if (i != num_pixels) { |
423 | VP8LPredictorsAdd_C[12](in + i, upper + i, num_pixels - i, out + i); |
424 | } |
425 | } |
426 | #undef DO_PRED12 |
427 | #undef DO_PRED12_SHIFT |
428 | |
429 | // Due to averages with integers, values cannot be accumulated in parallel for |
430 | // predictors 13. |
431 | GENERATE_PREDICTOR_ADD(Predictor13_SSE2, PredictorAdd13_SSE2) |
432 | |
433 | //------------------------------------------------------------------------------ |
434 | // Subtract-Green Transform |
435 | |
436 | static void AddGreenToBlueAndRed_SSE2(const uint32_t* const src, int num_pixels, |
437 | uint32_t* dst) { |
438 | int i; |
439 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
440 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
441 | const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g |
442 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
443 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g |
444 | const __m128i out = _mm_add_epi8(in, C); |
445 | _mm_storeu_si128((__m128i*)&dst[i], out); |
446 | } |
447 | // fallthrough and finish off with plain-C |
448 | if (i != num_pixels) { |
449 | VP8LAddGreenToBlueAndRed_C(src + i, num_pixels - i, dst + i); |
450 | } |
451 | } |
452 | |
453 | //------------------------------------------------------------------------------ |
454 | // Color Transform |
455 | |
456 | static void TransformColorInverse_SSE2(const VP8LMultipliers* const m, |
457 | const uint32_t* const src, |
458 | int num_pixels, uint32_t* dst) { |
459 | // sign-extended multiplying constants, pre-shifted by 5. |
460 | #define CST(X) (((int16_t)(m->X << 8)) >> 5) // sign-extend |
461 | #define MK_CST_16(HI, LO) \ |
462 | _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff))) |
463 | const __m128i mults_rb = MK_CST_16(CST(green_to_red_), CST(green_to_blue_)); |
464 | const __m128i mults_b2 = MK_CST_16(CST(red_to_blue_), 0); |
465 | #undef MK_CST_16 |
466 | #undef CST |
467 | const __m128i mask_ag = _mm_set1_epi32((int)0xff00ff00); // alpha-green masks |
468 | int i; |
469 | for (i = 0; i + 4 <= num_pixels; i += 4) { |
470 | const __m128i in = _mm_loadu_si128((const __m128i*)&src[i]); // argb |
471 | const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0 |
472 | const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0)); |
473 | const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0 |
474 | const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1 |
475 | const __m128i E = _mm_add_epi8(in, D); // x r' x b' |
476 | const __m128i F = _mm_slli_epi16(E, 8); // r' 0 b' 0 |
477 | const __m128i G = _mm_mulhi_epi16(F, mults_b2); // x db2 0 0 |
478 | const __m128i H = _mm_srli_epi32(G, 8); // 0 x db2 0 |
479 | const __m128i I = _mm_add_epi8(H, F); // r' x b'' 0 |
480 | const __m128i J = _mm_srli_epi16(I, 8); // 0 r' 0 b'' |
481 | const __m128i out = _mm_or_si128(J, A); |
482 | _mm_storeu_si128((__m128i*)&dst[i], out); |
483 | } |
484 | // Fall-back to C-version for left-overs. |
485 | if (i != num_pixels) { |
486 | VP8LTransformColorInverse_C(m, src + i, num_pixels - i, dst + i); |
487 | } |
488 | } |
489 | |
490 | //------------------------------------------------------------------------------ |
491 | // Color-space conversion functions |
492 | |
493 | static void ConvertBGRAToRGB_SSE2(const uint32_t* src, int num_pixels, |
494 | uint8_t* dst) { |
495 | const __m128i* in = (const __m128i*)src; |
496 | __m128i* out = (__m128i*)dst; |
497 | |
498 | while (num_pixels >= 32) { |
499 | // Load the BGRA buffers. |
500 | __m128i in0 = _mm_loadu_si128(in + 0); |
501 | __m128i in1 = _mm_loadu_si128(in + 1); |
502 | __m128i in2 = _mm_loadu_si128(in + 2); |
503 | __m128i in3 = _mm_loadu_si128(in + 3); |
504 | __m128i in4 = _mm_loadu_si128(in + 4); |
505 | __m128i in5 = _mm_loadu_si128(in + 5); |
506 | __m128i in6 = _mm_loadu_si128(in + 6); |
507 | __m128i in7 = _mm_loadu_si128(in + 7); |
508 | VP8L32bToPlanar_SSE2(&in0, &in1, &in2, &in3); |
509 | VP8L32bToPlanar_SSE2(&in4, &in5, &in6, &in7); |
510 | // At this points, in1/in5 contains red only, in2/in6 green only ... |
511 | // Pack the colors in 24b RGB. |
512 | VP8PlanarTo24b_SSE2(&in1, &in5, &in2, &in6, &in3, &in7); |
513 | _mm_storeu_si128(out + 0, in1); |
514 | _mm_storeu_si128(out + 1, in5); |
515 | _mm_storeu_si128(out + 2, in2); |
516 | _mm_storeu_si128(out + 3, in6); |
517 | _mm_storeu_si128(out + 4, in3); |
518 | _mm_storeu_si128(out + 5, in7); |
519 | in += 8; |
520 | out += 6; |
521 | num_pixels -= 32; |
522 | } |
523 | // left-overs |
524 | if (num_pixels > 0) { |
525 | VP8LConvertBGRAToRGB_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
526 | } |
527 | } |
528 | |
529 | static void ConvertBGRAToRGBA_SSE2(const uint32_t* src, |
530 | int num_pixels, uint8_t* dst) { |
531 | const __m128i red_blue_mask = _mm_set1_epi32(0x00ff00ff); |
532 | const __m128i* in = (const __m128i*)src; |
533 | __m128i* out = (__m128i*)dst; |
534 | while (num_pixels >= 8) { |
535 | const __m128i A1 = _mm_loadu_si128(in++); |
536 | const __m128i A2 = _mm_loadu_si128(in++); |
537 | const __m128i B1 = _mm_and_si128(A1, red_blue_mask); // R 0 B 0 |
538 | const __m128i B2 = _mm_and_si128(A2, red_blue_mask); // R 0 B 0 |
539 | const __m128i C1 = _mm_andnot_si128(red_blue_mask, A1); // 0 G 0 A |
540 | const __m128i C2 = _mm_andnot_si128(red_blue_mask, A2); // 0 G 0 A |
541 | const __m128i D1 = _mm_shufflelo_epi16(B1, _MM_SHUFFLE(2, 3, 0, 1)); |
542 | const __m128i D2 = _mm_shufflelo_epi16(B2, _MM_SHUFFLE(2, 3, 0, 1)); |
543 | const __m128i E1 = _mm_shufflehi_epi16(D1, _MM_SHUFFLE(2, 3, 0, 1)); |
544 | const __m128i E2 = _mm_shufflehi_epi16(D2, _MM_SHUFFLE(2, 3, 0, 1)); |
545 | const __m128i F1 = _mm_or_si128(E1, C1); |
546 | const __m128i F2 = _mm_or_si128(E2, C2); |
547 | _mm_storeu_si128(out++, F1); |
548 | _mm_storeu_si128(out++, F2); |
549 | num_pixels -= 8; |
550 | } |
551 | // left-overs |
552 | if (num_pixels > 0) { |
553 | VP8LConvertBGRAToRGBA_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
554 | } |
555 | } |
556 | |
557 | static void ConvertBGRAToRGBA4444_SSE2(const uint32_t* src, |
558 | int num_pixels, uint8_t* dst) { |
559 | const __m128i mask_0x0f = _mm_set1_epi8(0x0f); |
560 | const __m128i mask_0xf0 = _mm_set1_epi8((char)0xf0); |
561 | const __m128i* in = (const __m128i*)src; |
562 | __m128i* out = (__m128i*)dst; |
563 | while (num_pixels >= 8) { |
564 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
565 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
566 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
567 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
568 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
569 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
570 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
571 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
572 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
573 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
574 | const __m128i ga1 = _mm_srli_epi16(ga0, 4); // g0-|g1-|...|a6-|a7- |
575 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf0); // -r0|-r1|...|-b6|-a7 |
576 | const __m128i ga2 = _mm_and_si128(ga1, mask_0x0f); // g0-|g1-|...|a6-|a7- |
577 | const __m128i rgba0 = _mm_or_si128(ga2, rb1); // rg0..rg7 | ba0..ba7 |
578 | const __m128i rgba1 = _mm_srli_si128(rgba0, 8); // ba0..ba7 | 0 |
579 | #if (WEBP_SWAP_16BIT_CSP == 1) |
580 | const __m128i rgba = _mm_unpacklo_epi8(rgba1, rgba0); // barg0...barg7 |
581 | #else |
582 | const __m128i rgba = _mm_unpacklo_epi8(rgba0, rgba1); // rgba0...rgba7 |
583 | #endif |
584 | _mm_storeu_si128(out++, rgba); |
585 | num_pixels -= 8; |
586 | } |
587 | // left-overs |
588 | if (num_pixels > 0) { |
589 | VP8LConvertBGRAToRGBA4444_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
590 | } |
591 | } |
592 | |
593 | static void ConvertBGRAToRGB565_SSE2(const uint32_t* src, |
594 | int num_pixels, uint8_t* dst) { |
595 | const __m128i mask_0xe0 = _mm_set1_epi8((char)0xe0); |
596 | const __m128i mask_0xf8 = _mm_set1_epi8((char)0xf8); |
597 | const __m128i mask_0x07 = _mm_set1_epi8(0x07); |
598 | const __m128i* in = (const __m128i*)src; |
599 | __m128i* out = (__m128i*)dst; |
600 | while (num_pixels >= 8) { |
601 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
602 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
603 | const __m128i v0l = _mm_unpacklo_epi8(bgra0, bgra4); // b0b4g0g4r0r4a0a4... |
604 | const __m128i v0h = _mm_unpackhi_epi8(bgra0, bgra4); // b2b6g2g6r2r6a2a6... |
605 | const __m128i v1l = _mm_unpacklo_epi8(v0l, v0h); // b0b2b4b6g0g2g4g6... |
606 | const __m128i v1h = _mm_unpackhi_epi8(v0l, v0h); // b1b3b5b7g1g3g5g7... |
607 | const __m128i v2l = _mm_unpacklo_epi8(v1l, v1h); // b0...b7 | g0...g7 |
608 | const __m128i v2h = _mm_unpackhi_epi8(v1l, v1h); // r0...r7 | a0...a7 |
609 | const __m128i ga0 = _mm_unpackhi_epi64(v2l, v2h); // g0...g7 | a0...a7 |
610 | const __m128i rb0 = _mm_unpacklo_epi64(v2h, v2l); // r0...r7 | b0...b7 |
611 | const __m128i rb1 = _mm_and_si128(rb0, mask_0xf8); // -r0..-r7|-b0..-b7 |
612 | const __m128i g_lo1 = _mm_srli_epi16(ga0, 5); |
613 | const __m128i g_lo2 = _mm_and_si128(g_lo1, mask_0x07); // g0-...g7-|xx (3b) |
614 | const __m128i g_hi1 = _mm_slli_epi16(ga0, 3); |
615 | const __m128i g_hi2 = _mm_and_si128(g_hi1, mask_0xe0); // -g0...-g7|xx (3b) |
616 | const __m128i b0 = _mm_srli_si128(rb1, 8); // -b0...-b7|0 |
617 | const __m128i rg1 = _mm_or_si128(rb1, g_lo2); // gr0...gr7|xx |
618 | const __m128i b1 = _mm_srli_epi16(b0, 3); |
619 | const __m128i gb1 = _mm_or_si128(b1, g_hi2); // bg0...bg7|xx |
620 | #if (WEBP_SWAP_16BIT_CSP == 1) |
621 | const __m128i rgba = _mm_unpacklo_epi8(gb1, rg1); // rggb0...rggb7 |
622 | #else |
623 | const __m128i rgba = _mm_unpacklo_epi8(rg1, gb1); // bgrb0...bgrb7 |
624 | #endif |
625 | _mm_storeu_si128(out++, rgba); |
626 | num_pixels -= 8; |
627 | } |
628 | // left-overs |
629 | if (num_pixels > 0) { |
630 | VP8LConvertBGRAToRGB565_C((const uint32_t*)in, num_pixels, (uint8_t*)out); |
631 | } |
632 | } |
633 | |
634 | static void ConvertBGRAToBGR_SSE2(const uint32_t* src, |
635 | int num_pixels, uint8_t* dst) { |
636 | const __m128i mask_l = _mm_set_epi32(0, 0x00ffffff, 0, 0x00ffffff); |
637 | const __m128i mask_h = _mm_set_epi32(0x00ffffff, 0, 0x00ffffff, 0); |
638 | const __m128i* in = (const __m128i*)src; |
639 | const uint8_t* const end = dst + num_pixels * 3; |
640 | // the last storel_epi64 below writes 8 bytes starting at offset 18 |
641 | while (dst + 26 <= end) { |
642 | const __m128i bgra0 = _mm_loadu_si128(in++); // bgra0|bgra1|bgra2|bgra3 |
643 | const __m128i bgra4 = _mm_loadu_si128(in++); // bgra4|bgra5|bgra6|bgra7 |
644 | const __m128i a0l = _mm_and_si128(bgra0, mask_l); // bgr0|0|bgr0|0 |
645 | const __m128i a4l = _mm_and_si128(bgra4, mask_l); // bgr0|0|bgr0|0 |
646 | const __m128i a0h = _mm_and_si128(bgra0, mask_h); // 0|bgr0|0|bgr0 |
647 | const __m128i a4h = _mm_and_si128(bgra4, mask_h); // 0|bgr0|0|bgr0 |
648 | const __m128i b0h = _mm_srli_epi64(a0h, 8); // 000b|gr00|000b|gr00 |
649 | const __m128i b4h = _mm_srli_epi64(a4h, 8); // 000b|gr00|000b|gr00 |
650 | const __m128i c0 = _mm_or_si128(a0l, b0h); // rgbrgb00|rgbrgb00 |
651 | const __m128i c4 = _mm_or_si128(a4l, b4h); // rgbrgb00|rgbrgb00 |
652 | const __m128i c2 = _mm_srli_si128(c0, 8); |
653 | const __m128i c6 = _mm_srli_si128(c4, 8); |
654 | _mm_storel_epi64((__m128i*)(dst + 0), c0); |
655 | _mm_storel_epi64((__m128i*)(dst + 6), c2); |
656 | _mm_storel_epi64((__m128i*)(dst + 12), c4); |
657 | _mm_storel_epi64((__m128i*)(dst + 18), c6); |
658 | dst += 24; |
659 | num_pixels -= 8; |
660 | } |
661 | // left-overs |
662 | if (num_pixels > 0) { |
663 | VP8LConvertBGRAToBGR_C((const uint32_t*)in, num_pixels, dst); |
664 | } |
665 | } |
666 | |
667 | //------------------------------------------------------------------------------ |
668 | // Entry point |
669 | |
670 | extern void VP8LDspInitSSE2(void); |
671 | |
672 | WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInitSSE2(void) { |
673 | VP8LPredictors[5] = Predictor5_SSE2; |
674 | VP8LPredictors[6] = Predictor6_SSE2; |
675 | VP8LPredictors[7] = Predictor7_SSE2; |
676 | VP8LPredictors[8] = Predictor8_SSE2; |
677 | VP8LPredictors[9] = Predictor9_SSE2; |
678 | VP8LPredictors[10] = Predictor10_SSE2; |
679 | VP8LPredictors[11] = Predictor11_SSE2; |
680 | VP8LPredictors[12] = Predictor12_SSE2; |
681 | VP8LPredictors[13] = Predictor13_SSE2; |
682 | |
683 | VP8LPredictorsAdd[0] = PredictorAdd0_SSE2; |
684 | VP8LPredictorsAdd[1] = PredictorAdd1_SSE2; |
685 | VP8LPredictorsAdd[2] = PredictorAdd2_SSE2; |
686 | VP8LPredictorsAdd[3] = PredictorAdd3_SSE2; |
687 | VP8LPredictorsAdd[4] = PredictorAdd4_SSE2; |
688 | VP8LPredictorsAdd[5] = PredictorAdd5_SSE2; |
689 | VP8LPredictorsAdd[6] = PredictorAdd6_SSE2; |
690 | VP8LPredictorsAdd[7] = PredictorAdd7_SSE2; |
691 | VP8LPredictorsAdd[8] = PredictorAdd8_SSE2; |
692 | VP8LPredictorsAdd[9] = PredictorAdd9_SSE2; |
693 | VP8LPredictorsAdd[10] = PredictorAdd10_SSE2; |
694 | VP8LPredictorsAdd[11] = PredictorAdd11_SSE2; |
695 | VP8LPredictorsAdd[12] = PredictorAdd12_SSE2; |
696 | VP8LPredictorsAdd[13] = PredictorAdd13_SSE2; |
697 | |
698 | VP8LAddGreenToBlueAndRed = AddGreenToBlueAndRed_SSE2; |
699 | VP8LTransformColorInverse = TransformColorInverse_SSE2; |
700 | |
701 | VP8LConvertBGRAToRGB = ConvertBGRAToRGB_SSE2; |
702 | VP8LConvertBGRAToRGBA = ConvertBGRAToRGBA_SSE2; |
703 | VP8LConvertBGRAToRGBA4444 = ConvertBGRAToRGBA4444_SSE2; |
704 | VP8LConvertBGRAToRGB565 = ConvertBGRAToRGB565_SSE2; |
705 | VP8LConvertBGRAToBGR = ConvertBGRAToBGR_SSE2; |
706 | } |
707 | |
708 | #else // !WEBP_USE_SSE2 |
709 | |
710 | WEBP_DSP_INIT_STUB(VP8LDspInitSSE2) |
711 | |
712 | #endif // WEBP_USE_SSE2 |
713 | |