1 | // Copyright 2014 Google Inc. All Rights Reserved. |
2 | // |
3 | // Use of this source code is governed by a BSD-style license |
4 | // that can be found in the COPYING file in the root of the source |
5 | // tree. An additional intellectual property rights grant can be found |
6 | // in the file PATENTS. All contributing project authors may |
7 | // be found in the AUTHORS file in the root of the source tree. |
8 | // ----------------------------------------------------------------------------- |
9 | // |
10 | // YUV->RGB conversion functions |
11 | // |
12 | // Author: Skal (pascal.massimino@gmail.com) |
13 | |
14 | #include "src/dsp/yuv.h" |
15 | |
16 | #if defined(WEBP_USE_SSE41) |
17 | |
18 | #include <stdlib.h> |
19 | #include <smmintrin.h> |
20 | |
21 | #include "src/dsp/common_sse41.h" |
22 | #include "src/utils/utils.h" |
23 | |
24 | //----------------------------------------------------------------------------- |
25 | // Convert spans of 32 pixels to various RGB formats for the fancy upsampler. |
26 | |
27 | // These constants are 14b fixed-point version of ITU-R BT.601 constants. |
28 | // R = (19077 * y + 26149 * v - 14234) >> 6 |
29 | // G = (19077 * y - 6419 * u - 13320 * v + 8708) >> 6 |
30 | // B = (19077 * y + 33050 * u - 17685) >> 6 |
31 | static void ConvertYUV444ToRGB_SSE41(const __m128i* const Y0, |
32 | const __m128i* const U0, |
33 | const __m128i* const V0, |
34 | __m128i* const R, |
35 | __m128i* const G, |
36 | __m128i* const B) { |
37 | const __m128i k19077 = _mm_set1_epi16(19077); |
38 | const __m128i k26149 = _mm_set1_epi16(26149); |
39 | const __m128i k14234 = _mm_set1_epi16(14234); |
40 | // 33050 doesn't fit in a signed short: only use this with unsigned arithmetic |
41 | const __m128i k33050 = _mm_set1_epi16((short)33050); |
42 | const __m128i k17685 = _mm_set1_epi16(17685); |
43 | const __m128i k6419 = _mm_set1_epi16(6419); |
44 | const __m128i k13320 = _mm_set1_epi16(13320); |
45 | const __m128i k8708 = _mm_set1_epi16(8708); |
46 | |
47 | const __m128i Y1 = _mm_mulhi_epu16(*Y0, k19077); |
48 | |
49 | const __m128i R0 = _mm_mulhi_epu16(*V0, k26149); |
50 | const __m128i R1 = _mm_sub_epi16(Y1, k14234); |
51 | const __m128i R2 = _mm_add_epi16(R1, R0); |
52 | |
53 | const __m128i G0 = _mm_mulhi_epu16(*U0, k6419); |
54 | const __m128i G1 = _mm_mulhi_epu16(*V0, k13320); |
55 | const __m128i G2 = _mm_add_epi16(Y1, k8708); |
56 | const __m128i G3 = _mm_add_epi16(G0, G1); |
57 | const __m128i G4 = _mm_sub_epi16(G2, G3); |
58 | |
59 | // be careful with the saturated *unsigned* arithmetic here! |
60 | const __m128i B0 = _mm_mulhi_epu16(*U0, k33050); |
61 | const __m128i B1 = _mm_adds_epu16(B0, Y1); |
62 | const __m128i B2 = _mm_subs_epu16(B1, k17685); |
63 | |
64 | // use logical shift for B2, which can be larger than 32767 |
65 | *R = _mm_srai_epi16(R2, 6); // range: [-14234, 30815] |
66 | *G = _mm_srai_epi16(G4, 6); // range: [-10953, 27710] |
67 | *B = _mm_srli_epi16(B2, 6); // range: [0, 34238] |
68 | } |
69 | |
70 | // Load the bytes into the *upper* part of 16b words. That's "<< 8", basically. |
71 | static WEBP_INLINE __m128i Load_HI_16_SSE41(const uint8_t* src) { |
72 | const __m128i zero = _mm_setzero_si128(); |
73 | return _mm_unpacklo_epi8(zero, _mm_loadl_epi64((const __m128i*)src)); |
74 | } |
75 | |
76 | // Load and replicate the U/V samples |
77 | static WEBP_INLINE __m128i Load_UV_HI_8_SSE41(const uint8_t* src) { |
78 | const __m128i zero = _mm_setzero_si128(); |
79 | const __m128i tmp0 = _mm_cvtsi32_si128(WebPMemToInt32(src)); |
80 | const __m128i tmp1 = _mm_unpacklo_epi8(zero, tmp0); |
81 | return _mm_unpacklo_epi16(tmp1, tmp1); // replicate samples |
82 | } |
83 | |
84 | // Convert 32 samples of YUV444 to R/G/B |
85 | static void YUV444ToRGB_SSE41(const uint8_t* const y, |
86 | const uint8_t* const u, |
87 | const uint8_t* const v, |
88 | __m128i* const R, __m128i* const G, |
89 | __m128i* const B) { |
90 | const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_HI_16_SSE41(u), |
91 | V0 = Load_HI_16_SSE41(v); |
92 | ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); |
93 | } |
94 | |
95 | // Convert 32 samples of YUV420 to R/G/B |
96 | static void YUV420ToRGB_SSE41(const uint8_t* const y, |
97 | const uint8_t* const u, |
98 | const uint8_t* const v, |
99 | __m128i* const R, __m128i* const G, |
100 | __m128i* const B) { |
101 | const __m128i Y0 = Load_HI_16_SSE41(y), U0 = Load_UV_HI_8_SSE41(u), |
102 | V0 = Load_UV_HI_8_SSE41(v); |
103 | ConvertYUV444ToRGB_SSE41(&Y0, &U0, &V0, R, G, B); |
104 | } |
105 | |
106 | // Pack the planar buffers |
107 | // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... |
108 | // triplet by triplet in the output buffer rgb as rgbrgbrgbrgb ... |
109 | static WEBP_INLINE void PlanarTo24b_SSE41( |
110 | __m128i* const in0, __m128i* const in1, __m128i* const in2, |
111 | __m128i* const in3, __m128i* const in4, __m128i* const in5, |
112 | uint8_t* const rgb) { |
113 | // The input is 6 registers of sixteen 8b but for the sake of explanation, |
114 | // let's take 6 registers of four 8b values. |
115 | // To pack, we will keep taking one every two 8b integer and move it |
116 | // around as follows: |
117 | // Input: |
118 | // r0r1r2r3 | r4r5r6r7 | g0g1g2g3 | g4g5g6g7 | b0b1b2b3 | b4b5b6b7 |
119 | // Split the 6 registers in two sets of 3 registers: the first set as the even |
120 | // 8b bytes, the second the odd ones: |
121 | // r0r2r4r6 | g0g2g4g6 | b0b2b4b6 | r1r3r5r7 | g1g3g5g7 | b1b3b5b7 |
122 | // Repeat the same permutations twice more: |
123 | // r0r4g0g4 | b0b4r1r5 | g1g5b1b5 | r2r6g2g6 | b2b6r3r7 | g3g7b3b7 |
124 | // r0g0b0r1 | g1b1r2g2 | b2r3g3b3 | r4g4b4r5 | g5b5r6g6 | b6r7g7b7 |
125 | VP8PlanarTo24b_SSE41(in0, in1, in2, in3, in4, in5); |
126 | |
127 | _mm_storeu_si128((__m128i*)(rgb + 0), *in0); |
128 | _mm_storeu_si128((__m128i*)(rgb + 16), *in1); |
129 | _mm_storeu_si128((__m128i*)(rgb + 32), *in2); |
130 | _mm_storeu_si128((__m128i*)(rgb + 48), *in3); |
131 | _mm_storeu_si128((__m128i*)(rgb + 64), *in4); |
132 | _mm_storeu_si128((__m128i*)(rgb + 80), *in5); |
133 | } |
134 | |
135 | void VP8YuvToRgb32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
136 | uint8_t* dst) { |
137 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
138 | __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; |
139 | |
140 | YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
141 | YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); |
142 | YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); |
143 | YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); |
144 | |
145 | // Cast to 8b and store as RRRRGGGGBBBB. |
146 | rgb0 = _mm_packus_epi16(R0, R1); |
147 | rgb1 = _mm_packus_epi16(R2, R3); |
148 | rgb2 = _mm_packus_epi16(G0, G1); |
149 | rgb3 = _mm_packus_epi16(G2, G3); |
150 | rgb4 = _mm_packus_epi16(B0, B1); |
151 | rgb5 = _mm_packus_epi16(B2, B3); |
152 | |
153 | // Pack as RGBRGBRGBRGB. |
154 | PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); |
155 | } |
156 | |
157 | void VP8YuvToBgr32_SSE41(const uint8_t* y, const uint8_t* u, const uint8_t* v, |
158 | uint8_t* dst) { |
159 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
160 | __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; |
161 | |
162 | YUV444ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
163 | YUV444ToRGB_SSE41(y + 8, u + 8, v + 8, &R1, &G1, &B1); |
164 | YUV444ToRGB_SSE41(y + 16, u + 16, v + 16, &R2, &G2, &B2); |
165 | YUV444ToRGB_SSE41(y + 24, u + 24, v + 24, &R3, &G3, &B3); |
166 | |
167 | // Cast to 8b and store as BBBBGGGGRRRR. |
168 | bgr0 = _mm_packus_epi16(B0, B1); |
169 | bgr1 = _mm_packus_epi16(B2, B3); |
170 | bgr2 = _mm_packus_epi16(G0, G1); |
171 | bgr3 = _mm_packus_epi16(G2, G3); |
172 | bgr4 = _mm_packus_epi16(R0, R1); |
173 | bgr5= _mm_packus_epi16(R2, R3); |
174 | |
175 | // Pack as BGRBGRBGRBGR. |
176 | PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); |
177 | } |
178 | |
179 | //----------------------------------------------------------------------------- |
180 | // Arbitrary-length row conversion functions |
181 | |
182 | static void YuvToRgbRow_SSE41(const uint8_t* y, |
183 | const uint8_t* u, const uint8_t* v, |
184 | uint8_t* dst, int len) { |
185 | int n; |
186 | for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { |
187 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
188 | __m128i rgb0, rgb1, rgb2, rgb3, rgb4, rgb5; |
189 | |
190 | YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
191 | YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); |
192 | YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); |
193 | YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); |
194 | |
195 | // Cast to 8b and store as RRRRGGGGBBBB. |
196 | rgb0 = _mm_packus_epi16(R0, R1); |
197 | rgb1 = _mm_packus_epi16(R2, R3); |
198 | rgb2 = _mm_packus_epi16(G0, G1); |
199 | rgb3 = _mm_packus_epi16(G2, G3); |
200 | rgb4 = _mm_packus_epi16(B0, B1); |
201 | rgb5 = _mm_packus_epi16(B2, B3); |
202 | |
203 | // Pack as RGBRGBRGBRGB. |
204 | PlanarTo24b_SSE41(&rgb0, &rgb1, &rgb2, &rgb3, &rgb4, &rgb5, dst); |
205 | |
206 | y += 32; |
207 | u += 16; |
208 | v += 16; |
209 | } |
210 | for (; n < len; ++n) { // Finish off |
211 | VP8YuvToRgb(y[0], u[0], v[0], dst); |
212 | dst += 3; |
213 | y += 1; |
214 | u += (n & 1); |
215 | v += (n & 1); |
216 | } |
217 | } |
218 | |
219 | static void YuvToBgrRow_SSE41(const uint8_t* y, |
220 | const uint8_t* u, const uint8_t* v, |
221 | uint8_t* dst, int len) { |
222 | int n; |
223 | for (n = 0; n + 32 <= len; n += 32, dst += 32 * 3) { |
224 | __m128i R0, R1, R2, R3, G0, G1, G2, G3, B0, B1, B2, B3; |
225 | __m128i bgr0, bgr1, bgr2, bgr3, bgr4, bgr5; |
226 | |
227 | YUV420ToRGB_SSE41(y + 0, u + 0, v + 0, &R0, &G0, &B0); |
228 | YUV420ToRGB_SSE41(y + 8, u + 4, v + 4, &R1, &G1, &B1); |
229 | YUV420ToRGB_SSE41(y + 16, u + 8, v + 8, &R2, &G2, &B2); |
230 | YUV420ToRGB_SSE41(y + 24, u + 12, v + 12, &R3, &G3, &B3); |
231 | |
232 | // Cast to 8b and store as BBBBGGGGRRRR. |
233 | bgr0 = _mm_packus_epi16(B0, B1); |
234 | bgr1 = _mm_packus_epi16(B2, B3); |
235 | bgr2 = _mm_packus_epi16(G0, G1); |
236 | bgr3 = _mm_packus_epi16(G2, G3); |
237 | bgr4 = _mm_packus_epi16(R0, R1); |
238 | bgr5 = _mm_packus_epi16(R2, R3); |
239 | |
240 | // Pack as BGRBGRBGRBGR. |
241 | PlanarTo24b_SSE41(&bgr0, &bgr1, &bgr2, &bgr3, &bgr4, &bgr5, dst); |
242 | |
243 | y += 32; |
244 | u += 16; |
245 | v += 16; |
246 | } |
247 | for (; n < len; ++n) { // Finish off |
248 | VP8YuvToBgr(y[0], u[0], v[0], dst); |
249 | dst += 3; |
250 | y += 1; |
251 | u += (n & 1); |
252 | v += (n & 1); |
253 | } |
254 | } |
255 | |
256 | //------------------------------------------------------------------------------ |
257 | // Entry point |
258 | |
259 | extern void WebPInitSamplersSSE41(void); |
260 | |
261 | WEBP_TSAN_IGNORE_FUNCTION void WebPInitSamplersSSE41(void) { |
262 | WebPSamplers[MODE_RGB] = YuvToRgbRow_SSE41; |
263 | WebPSamplers[MODE_BGR] = YuvToBgrRow_SSE41; |
264 | } |
265 | |
266 | //------------------------------------------------------------------------------ |
267 | // RGB24/32 -> YUV converters |
268 | |
269 | // Load eight 16b-words from *src. |
270 | #define LOAD_16(src) _mm_loadu_si128((const __m128i*)(src)) |
271 | // Store either 16b-words into *dst |
272 | #define STORE_16(V, dst) _mm_storeu_si128((__m128i*)(dst), (V)) |
273 | |
274 | #define WEBP_SSE41_SHUFF(OUT) do { \ |
275 | const __m128i tmp0 = _mm_shuffle_epi8(A0, shuff0); \ |
276 | const __m128i tmp1 = _mm_shuffle_epi8(A1, shuff1); \ |
277 | const __m128i tmp2 = _mm_shuffle_epi8(A2, shuff2); \ |
278 | const __m128i tmp3 = _mm_shuffle_epi8(A3, shuff0); \ |
279 | const __m128i tmp4 = _mm_shuffle_epi8(A4, shuff1); \ |
280 | const __m128i tmp5 = _mm_shuffle_epi8(A5, shuff2); \ |
281 | \ |
282 | /* OR everything to get one channel */ \ |
283 | const __m128i tmp6 = _mm_or_si128(tmp0, tmp1); \ |
284 | const __m128i tmp7 = _mm_or_si128(tmp3, tmp4); \ |
285 | out[OUT + 0] = _mm_or_si128(tmp6, tmp2); \ |
286 | out[OUT + 1] = _mm_or_si128(tmp7, tmp5); \ |
287 | } while (0); |
288 | |
289 | // Unpack the 8b input rgbrgbrgbrgb ... as contiguous registers: |
290 | // rrrr... rrrr... gggg... gggg... bbbb... bbbb.... |
291 | // Similar to PlanarTo24bHelper(), but in reverse order. |
292 | static WEBP_INLINE void RGB24PackedToPlanar_SSE41( |
293 | const uint8_t* const rgb, __m128i* const out /*out[6]*/) { |
294 | const __m128i A0 = _mm_loadu_si128((const __m128i*)(rgb + 0)); |
295 | const __m128i A1 = _mm_loadu_si128((const __m128i*)(rgb + 16)); |
296 | const __m128i A2 = _mm_loadu_si128((const __m128i*)(rgb + 32)); |
297 | const __m128i A3 = _mm_loadu_si128((const __m128i*)(rgb + 48)); |
298 | const __m128i A4 = _mm_loadu_si128((const __m128i*)(rgb + 64)); |
299 | const __m128i A5 = _mm_loadu_si128((const __m128i*)(rgb + 80)); |
300 | |
301 | // Compute RR. |
302 | { |
303 | const __m128i shuff0 = _mm_set_epi8( |
304 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0); |
305 | const __m128i shuff1 = _mm_set_epi8( |
306 | -1, -1, -1, -1, -1, 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1); |
307 | const __m128i shuff2 = _mm_set_epi8( |
308 | 13, 10, 7, 4, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
309 | WEBP_SSE41_SHUFF(0) |
310 | } |
311 | // Compute GG. |
312 | { |
313 | const __m128i shuff0 = _mm_set_epi8( |
314 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1); |
315 | const __m128i shuff1 = _mm_set_epi8( |
316 | -1, -1, -1, -1, -1, 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1); |
317 | const __m128i shuff2 = _mm_set_epi8( |
318 | 14, 11, 8, 5, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
319 | WEBP_SSE41_SHUFF(2) |
320 | } |
321 | // Compute BB. |
322 | { |
323 | const __m128i shuff0 = _mm_set_epi8( |
324 | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 14, 11, 8, 5, 2); |
325 | const __m128i shuff1 = _mm_set_epi8( |
326 | -1, -1, -1, -1, -1, -1, 13, 10, 7, 4, 1, -1, -1, -1, -1, -1); |
327 | const __m128i shuff2 = _mm_set_epi8( |
328 | 15, 12, 9, 6, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1); |
329 | WEBP_SSE41_SHUFF(4) |
330 | } |
331 | } |
332 | |
333 | #undef WEBP_SSE41_SHUFF |
334 | |
335 | // Convert 8 packed ARGB to r[], g[], b[] |
336 | static WEBP_INLINE void RGB32PackedToPlanar_SSE41( |
337 | const uint32_t* const argb, __m128i* const rgb /*in[6]*/) { |
338 | const __m128i zero = _mm_setzero_si128(); |
339 | __m128i a0 = LOAD_16(argb + 0); |
340 | __m128i a1 = LOAD_16(argb + 4); |
341 | __m128i a2 = LOAD_16(argb + 8); |
342 | __m128i a3 = LOAD_16(argb + 12); |
343 | VP8L32bToPlanar_SSE41(&a0, &a1, &a2, &a3); |
344 | rgb[0] = _mm_unpacklo_epi8(a1, zero); |
345 | rgb[1] = _mm_unpackhi_epi8(a1, zero); |
346 | rgb[2] = _mm_unpacklo_epi8(a2, zero); |
347 | rgb[3] = _mm_unpackhi_epi8(a2, zero); |
348 | rgb[4] = _mm_unpacklo_epi8(a3, zero); |
349 | rgb[5] = _mm_unpackhi_epi8(a3, zero); |
350 | } |
351 | |
352 | // This macro computes (RG * MULT_RG + GB * MULT_GB + ROUNDER) >> DESCALE_FIX |
353 | // It's a macro and not a function because we need to use immediate values with |
354 | // srai_epi32, e.g. |
355 | #define TRANSFORM(RG_LO, RG_HI, GB_LO, GB_HI, MULT_RG, MULT_GB, \ |
356 | ROUNDER, DESCALE_FIX, OUT) do { \ |
357 | const __m128i V0_lo = _mm_madd_epi16(RG_LO, MULT_RG); \ |
358 | const __m128i V0_hi = _mm_madd_epi16(RG_HI, MULT_RG); \ |
359 | const __m128i V1_lo = _mm_madd_epi16(GB_LO, MULT_GB); \ |
360 | const __m128i V1_hi = _mm_madd_epi16(GB_HI, MULT_GB); \ |
361 | const __m128i V2_lo = _mm_add_epi32(V0_lo, V1_lo); \ |
362 | const __m128i V2_hi = _mm_add_epi32(V0_hi, V1_hi); \ |
363 | const __m128i V3_lo = _mm_add_epi32(V2_lo, ROUNDER); \ |
364 | const __m128i V3_hi = _mm_add_epi32(V2_hi, ROUNDER); \ |
365 | const __m128i V5_lo = _mm_srai_epi32(V3_lo, DESCALE_FIX); \ |
366 | const __m128i V5_hi = _mm_srai_epi32(V3_hi, DESCALE_FIX); \ |
367 | (OUT) = _mm_packs_epi32(V5_lo, V5_hi); \ |
368 | } while (0) |
369 | |
370 | #define MK_CST_16(A, B) _mm_set_epi16((B), (A), (B), (A), (B), (A), (B), (A)) |
371 | static WEBP_INLINE void ConvertRGBToY_SSE41(const __m128i* const R, |
372 | const __m128i* const G, |
373 | const __m128i* const B, |
374 | __m128i* const Y) { |
375 | const __m128i kRG_y = MK_CST_16(16839, 33059 - 16384); |
376 | const __m128i kGB_y = MK_CST_16(16384, 6420); |
377 | const __m128i kHALF_Y = _mm_set1_epi32((16 << YUV_FIX) + YUV_HALF); |
378 | |
379 | const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); |
380 | const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); |
381 | const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); |
382 | const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); |
383 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_y, kGB_y, kHALF_Y, YUV_FIX, *Y); |
384 | } |
385 | |
386 | static WEBP_INLINE void ConvertRGBToUV_SSE41(const __m128i* const R, |
387 | const __m128i* const G, |
388 | const __m128i* const B, |
389 | __m128i* const U, |
390 | __m128i* const V) { |
391 | const __m128i kRG_u = MK_CST_16(-9719, -19081); |
392 | const __m128i kGB_u = MK_CST_16(0, 28800); |
393 | const __m128i kRG_v = MK_CST_16(28800, 0); |
394 | const __m128i kGB_v = MK_CST_16(-24116, -4684); |
395 | const __m128i kHALF_UV = _mm_set1_epi32(((128 << YUV_FIX) + YUV_HALF) << 2); |
396 | |
397 | const __m128i RG_lo = _mm_unpacklo_epi16(*R, *G); |
398 | const __m128i RG_hi = _mm_unpackhi_epi16(*R, *G); |
399 | const __m128i GB_lo = _mm_unpacklo_epi16(*G, *B); |
400 | const __m128i GB_hi = _mm_unpackhi_epi16(*G, *B); |
401 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_u, kGB_u, |
402 | kHALF_UV, YUV_FIX + 2, *U); |
403 | TRANSFORM(RG_lo, RG_hi, GB_lo, GB_hi, kRG_v, kGB_v, |
404 | kHALF_UV, YUV_FIX + 2, *V); |
405 | } |
406 | |
407 | #undef MK_CST_16 |
408 | #undef TRANSFORM |
409 | |
410 | static void ConvertRGB24ToY_SSE41(const uint8_t* rgb, uint8_t* y, int width) { |
411 | const int max_width = width & ~31; |
412 | int i; |
413 | for (i = 0; i < max_width; rgb += 3 * 16 * 2) { |
414 | __m128i rgb_plane[6]; |
415 | int j; |
416 | |
417 | RGB24PackedToPlanar_SSE41(rgb, rgb_plane); |
418 | |
419 | for (j = 0; j < 2; ++j, i += 16) { |
420 | const __m128i zero = _mm_setzero_si128(); |
421 | __m128i r, g, b, Y0, Y1; |
422 | |
423 | // Convert to 16-bit Y. |
424 | r = _mm_unpacklo_epi8(rgb_plane[0 + j], zero); |
425 | g = _mm_unpacklo_epi8(rgb_plane[2 + j], zero); |
426 | b = _mm_unpacklo_epi8(rgb_plane[4 + j], zero); |
427 | ConvertRGBToY_SSE41(&r, &g, &b, &Y0); |
428 | |
429 | // Convert to 16-bit Y. |
430 | r = _mm_unpackhi_epi8(rgb_plane[0 + j], zero); |
431 | g = _mm_unpackhi_epi8(rgb_plane[2 + j], zero); |
432 | b = _mm_unpackhi_epi8(rgb_plane[4 + j], zero); |
433 | ConvertRGBToY_SSE41(&r, &g, &b, &Y1); |
434 | |
435 | // Cast to 8-bit and store. |
436 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
437 | } |
438 | } |
439 | for (; i < width; ++i, rgb += 3) { // left-over |
440 | y[i] = VP8RGBToY(rgb[0], rgb[1], rgb[2], YUV_HALF); |
441 | } |
442 | } |
443 | |
444 | static void ConvertBGR24ToY_SSE41(const uint8_t* bgr, uint8_t* y, int width) { |
445 | const int max_width = width & ~31; |
446 | int i; |
447 | for (i = 0; i < max_width; bgr += 3 * 16 * 2) { |
448 | __m128i bgr_plane[6]; |
449 | int j; |
450 | |
451 | RGB24PackedToPlanar_SSE41(bgr, bgr_plane); |
452 | |
453 | for (j = 0; j < 2; ++j, i += 16) { |
454 | const __m128i zero = _mm_setzero_si128(); |
455 | __m128i r, g, b, Y0, Y1; |
456 | |
457 | // Convert to 16-bit Y. |
458 | b = _mm_unpacklo_epi8(bgr_plane[0 + j], zero); |
459 | g = _mm_unpacklo_epi8(bgr_plane[2 + j], zero); |
460 | r = _mm_unpacklo_epi8(bgr_plane[4 + j], zero); |
461 | ConvertRGBToY_SSE41(&r, &g, &b, &Y0); |
462 | |
463 | // Convert to 16-bit Y. |
464 | b = _mm_unpackhi_epi8(bgr_plane[0 + j], zero); |
465 | g = _mm_unpackhi_epi8(bgr_plane[2 + j], zero); |
466 | r = _mm_unpackhi_epi8(bgr_plane[4 + j], zero); |
467 | ConvertRGBToY_SSE41(&r, &g, &b, &Y1); |
468 | |
469 | // Cast to 8-bit and store. |
470 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
471 | } |
472 | } |
473 | for (; i < width; ++i, bgr += 3) { // left-over |
474 | y[i] = VP8RGBToY(bgr[2], bgr[1], bgr[0], YUV_HALF); |
475 | } |
476 | } |
477 | |
478 | static void ConvertARGBToY_SSE41(const uint32_t* argb, uint8_t* y, int width) { |
479 | const int max_width = width & ~15; |
480 | int i; |
481 | for (i = 0; i < max_width; i += 16) { |
482 | __m128i Y0, Y1, rgb[6]; |
483 | RGB32PackedToPlanar_SSE41(&argb[i], rgb); |
484 | ConvertRGBToY_SSE41(&rgb[0], &rgb[2], &rgb[4], &Y0); |
485 | ConvertRGBToY_SSE41(&rgb[1], &rgb[3], &rgb[5], &Y1); |
486 | STORE_16(_mm_packus_epi16(Y0, Y1), y + i); |
487 | } |
488 | for (; i < width; ++i) { // left-over |
489 | const uint32_t p = argb[i]; |
490 | y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff, |
491 | YUV_HALF); |
492 | } |
493 | } |
494 | |
495 | // Horizontal add (doubled) of two 16b values, result is 16b. |
496 | // in: A | B | C | D | ... -> out: 2*(A+B) | 2*(C+D) | ... |
497 | static void HorizontalAddPack_SSE41(const __m128i* const A, |
498 | const __m128i* const B, |
499 | __m128i* const out) { |
500 | const __m128i k2 = _mm_set1_epi16(2); |
501 | const __m128i C = _mm_madd_epi16(*A, k2); |
502 | const __m128i D = _mm_madd_epi16(*B, k2); |
503 | *out = _mm_packs_epi32(C, D); |
504 | } |
505 | |
506 | static void ConvertARGBToUV_SSE41(const uint32_t* argb, |
507 | uint8_t* u, uint8_t* v, |
508 | int src_width, int do_store) { |
509 | const int max_width = src_width & ~31; |
510 | int i; |
511 | for (i = 0; i < max_width; i += 32, u += 16, v += 16) { |
512 | __m128i rgb[6], U0, V0, U1, V1; |
513 | RGB32PackedToPlanar_SSE41(&argb[i], rgb); |
514 | HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); |
515 | HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); |
516 | HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); |
517 | ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U0, &V0); |
518 | |
519 | RGB32PackedToPlanar_SSE41(&argb[i + 16], rgb); |
520 | HorizontalAddPack_SSE41(&rgb[0], &rgb[1], &rgb[0]); |
521 | HorizontalAddPack_SSE41(&rgb[2], &rgb[3], &rgb[2]); |
522 | HorizontalAddPack_SSE41(&rgb[4], &rgb[5], &rgb[4]); |
523 | ConvertRGBToUV_SSE41(&rgb[0], &rgb[2], &rgb[4], &U1, &V1); |
524 | |
525 | U0 = _mm_packus_epi16(U0, U1); |
526 | V0 = _mm_packus_epi16(V0, V1); |
527 | if (!do_store) { |
528 | const __m128i prev_u = LOAD_16(u); |
529 | const __m128i prev_v = LOAD_16(v); |
530 | U0 = _mm_avg_epu8(U0, prev_u); |
531 | V0 = _mm_avg_epu8(V0, prev_v); |
532 | } |
533 | STORE_16(U0, u); |
534 | STORE_16(V0, v); |
535 | } |
536 | if (i < src_width) { // left-over |
537 | WebPConvertARGBToUV_C(argb + i, u, v, src_width - i, do_store); |
538 | } |
539 | } |
540 | |
541 | // Convert 16 packed ARGB 16b-values to r[], g[], b[] |
542 | static WEBP_INLINE void RGBA32PackedToPlanar_16b_SSE41( |
543 | const uint16_t* const rgbx, |
544 | __m128i* const r, __m128i* const g, __m128i* const b) { |
545 | const __m128i in0 = LOAD_16(rgbx + 0); // r0 | g0 | b0 |x| r1 | g1 | b1 |x |
546 | const __m128i in1 = LOAD_16(rgbx + 8); // r2 | g2 | b2 |x| r3 | g3 | b3 |x |
547 | const __m128i in2 = LOAD_16(rgbx + 16); // r4 | ... |
548 | const __m128i in3 = LOAD_16(rgbx + 24); // r6 | ... |
549 | // aarrggbb as 16-bit. |
550 | const __m128i shuff0 = |
551 | _mm_set_epi8(-1, -1, -1, -1, 13, 12, 5, 4, 11, 10, 3, 2, 9, 8, 1, 0); |
552 | const __m128i shuff1 = |
553 | _mm_set_epi8(13, 12, 5, 4, -1, -1, -1, -1, 11, 10, 3, 2, 9, 8, 1, 0); |
554 | const __m128i A0 = _mm_shuffle_epi8(in0, shuff0); |
555 | const __m128i A1 = _mm_shuffle_epi8(in1, shuff1); |
556 | const __m128i A2 = _mm_shuffle_epi8(in2, shuff0); |
557 | const __m128i A3 = _mm_shuffle_epi8(in3, shuff1); |
558 | // R0R1G0G1 |
559 | // B0B1**** |
560 | // R2R3G2G3 |
561 | // B2B3**** |
562 | // (OR is used to free port 5 for the unpack) |
563 | const __m128i B0 = _mm_unpacklo_epi32(A0, A1); |
564 | const __m128i B1 = _mm_or_si128(A0, A1); |
565 | const __m128i B2 = _mm_unpacklo_epi32(A2, A3); |
566 | const __m128i B3 = _mm_or_si128(A2, A3); |
567 | // Gather the channels. |
568 | *r = _mm_unpacklo_epi64(B0, B2); |
569 | *g = _mm_unpackhi_epi64(B0, B2); |
570 | *b = _mm_unpackhi_epi64(B1, B3); |
571 | } |
572 | |
573 | static void ConvertRGBA32ToUV_SSE41(const uint16_t* rgb, |
574 | uint8_t* u, uint8_t* v, int width) { |
575 | const int max_width = width & ~15; |
576 | const uint16_t* const last_rgb = rgb + 4 * max_width; |
577 | while (rgb < last_rgb) { |
578 | __m128i r, g, b, U0, V0, U1, V1; |
579 | RGBA32PackedToPlanar_16b_SSE41(rgb + 0, &r, &g, &b); |
580 | ConvertRGBToUV_SSE41(&r, &g, &b, &U0, &V0); |
581 | RGBA32PackedToPlanar_16b_SSE41(rgb + 32, &r, &g, &b); |
582 | ConvertRGBToUV_SSE41(&r, &g, &b, &U1, &V1); |
583 | STORE_16(_mm_packus_epi16(U0, U1), u); |
584 | STORE_16(_mm_packus_epi16(V0, V1), v); |
585 | u += 16; |
586 | v += 16; |
587 | rgb += 2 * 32; |
588 | } |
589 | if (max_width < width) { // left-over |
590 | WebPConvertRGBA32ToUV_C(rgb, u, v, width - max_width); |
591 | } |
592 | } |
593 | |
594 | //------------------------------------------------------------------------------ |
595 | |
596 | extern void WebPInitConvertARGBToYUVSSE41(void); |
597 | |
598 | WEBP_TSAN_IGNORE_FUNCTION void WebPInitConvertARGBToYUVSSE41(void) { |
599 | WebPConvertARGBToY = ConvertARGBToY_SSE41; |
600 | WebPConvertARGBToUV = ConvertARGBToUV_SSE41; |
601 | |
602 | WebPConvertRGB24ToY = ConvertRGB24ToY_SSE41; |
603 | WebPConvertBGR24ToY = ConvertBGR24ToY_SSE41; |
604 | |
605 | WebPConvertRGBA32ToUV = ConvertRGBA32ToUV_SSE41; |
606 | } |
607 | |
608 | //------------------------------------------------------------------------------ |
609 | |
610 | #else // !WEBP_USE_SSE41 |
611 | |
612 | WEBP_DSP_INIT_STUB() |
613 | WEBP_DSP_INIT_STUB(WebPInitConvertARGBToYUVSSE41) |
614 | |
615 | #endif // WEBP_USE_SSE41 |
616 | |