1 | /* |
2 | * Multi-precision integer library |
3 | * |
4 | * Copyright The Mbed TLS Contributors |
5 | * SPDX-License-Identifier: Apache-2.0 |
6 | * |
7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
8 | * not use this file except in compliance with the License. |
9 | * You may obtain a copy of the License at |
10 | * |
11 | * http://www.apache.org/licenses/LICENSE-2.0 |
12 | * |
13 | * Unless required by applicable law or agreed to in writing, software |
14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
16 | * See the License for the specific language governing permissions and |
17 | * limitations under the License. |
18 | */ |
19 | |
20 | /* |
21 | * The following sources were referenced in the design of this Multi-precision |
22 | * Integer library: |
23 | * |
24 | * [1] Handbook of Applied Cryptography - 1997 |
25 | * Menezes, van Oorschot and Vanstone |
26 | * |
27 | * [2] Multi-Precision Math |
28 | * Tom St Denis |
29 | * https://github.com/libtom/libtommath/blob/develop/tommath.pdf |
30 | * |
31 | * [3] GNU Multi-Precision Arithmetic Library |
32 | * https://gmplib.org/manual/index.html |
33 | * |
34 | */ |
35 | |
36 | #include "common.h" |
37 | |
38 | #if defined(MBEDTLS_BIGNUM_C) |
39 | |
40 | #include "mbedtls/bignum.h" |
41 | #include "mbedtls/bn_mul.h" |
42 | #include "mbedtls/platform_util.h" |
43 | #include "mbedtls/error.h" |
44 | #include "constant_time_internal.h" |
45 | |
46 | #include <limits.h> |
47 | #include <string.h> |
48 | |
49 | #include "mbedtls/platform.h" |
50 | |
51 | #define MPI_VALIDATE_RET(cond) \ |
52 | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_MPI_BAD_INPUT_DATA) |
53 | #define MPI_VALIDATE(cond) \ |
54 | MBEDTLS_INTERNAL_VALIDATE(cond) |
55 | |
56 | #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */ |
57 | #define biL (ciL << 3) /* bits in limb */ |
58 | #define biH (ciL << 2) /* half limb size */ |
59 | |
60 | #define MPI_SIZE_T_MAX ((size_t) -1) /* SIZE_T_MAX is not standard */ |
61 | |
62 | /* |
63 | * Convert between bits/chars and number of limbs |
64 | * Divide first in order to avoid potential overflows |
65 | */ |
66 | #define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0)) |
67 | #define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0)) |
68 | |
69 | /* Implementation that should never be optimized out by the compiler */ |
70 | static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n) |
71 | { |
72 | mbedtls_platform_zeroize(v, ciL * n); |
73 | } |
74 | |
75 | /* |
76 | * Initialize one MPI |
77 | */ |
78 | void mbedtls_mpi_init(mbedtls_mpi *X) |
79 | { |
80 | MPI_VALIDATE(X != NULL); |
81 | |
82 | X->s = 1; |
83 | X->n = 0; |
84 | X->p = NULL; |
85 | } |
86 | |
87 | /* |
88 | * Unallocate one MPI |
89 | */ |
90 | void mbedtls_mpi_free(mbedtls_mpi *X) |
91 | { |
92 | if (X == NULL) { |
93 | return; |
94 | } |
95 | |
96 | if (X->p != NULL) { |
97 | mbedtls_mpi_zeroize(X->p, X->n); |
98 | mbedtls_free(X->p); |
99 | } |
100 | |
101 | X->s = 1; |
102 | X->n = 0; |
103 | X->p = NULL; |
104 | } |
105 | |
106 | /* |
107 | * Enlarge to the specified number of limbs |
108 | */ |
109 | int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs) |
110 | { |
111 | mbedtls_mpi_uint *p; |
112 | MPI_VALIDATE_RET(X != NULL); |
113 | |
114 | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { |
115 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
116 | } |
117 | |
118 | if (X->n < nblimbs) { |
119 | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) { |
120 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
121 | } |
122 | |
123 | if (X->p != NULL) { |
124 | memcpy(p, X->p, X->n * ciL); |
125 | mbedtls_mpi_zeroize(X->p, X->n); |
126 | mbedtls_free(X->p); |
127 | } |
128 | |
129 | X->n = nblimbs; |
130 | X->p = p; |
131 | } |
132 | |
133 | return 0; |
134 | } |
135 | |
136 | /* |
137 | * Resize down as much as possible, |
138 | * while keeping at least the specified number of limbs |
139 | */ |
140 | int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs) |
141 | { |
142 | mbedtls_mpi_uint *p; |
143 | size_t i; |
144 | MPI_VALIDATE_RET(X != NULL); |
145 | |
146 | if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) { |
147 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
148 | } |
149 | |
150 | /* Actually resize up if there are currently fewer than nblimbs limbs. */ |
151 | if (X->n <= nblimbs) { |
152 | return mbedtls_mpi_grow(X, nblimbs); |
153 | } |
154 | /* After this point, then X->n > nblimbs and in particular X->n > 0. */ |
155 | |
156 | for (i = X->n - 1; i > 0; i--) { |
157 | if (X->p[i] != 0) { |
158 | break; |
159 | } |
160 | } |
161 | i++; |
162 | |
163 | if (i < nblimbs) { |
164 | i = nblimbs; |
165 | } |
166 | |
167 | if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) { |
168 | return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
169 | } |
170 | |
171 | if (X->p != NULL) { |
172 | memcpy(p, X->p, i * ciL); |
173 | mbedtls_mpi_zeroize(X->p, X->n); |
174 | mbedtls_free(X->p); |
175 | } |
176 | |
177 | X->n = i; |
178 | X->p = p; |
179 | |
180 | return 0; |
181 | } |
182 | |
183 | /* Resize X to have exactly n limbs and set it to 0. */ |
184 | static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs) |
185 | { |
186 | if (limbs == 0) { |
187 | mbedtls_mpi_free(X); |
188 | return 0; |
189 | } else if (X->n == limbs) { |
190 | memset(X->p, 0, limbs * ciL); |
191 | X->s = 1; |
192 | return 0; |
193 | } else { |
194 | mbedtls_mpi_free(X); |
195 | return mbedtls_mpi_grow(X, limbs); |
196 | } |
197 | } |
198 | |
199 | /* |
200 | * Copy the contents of Y into X. |
201 | * |
202 | * This function is not constant-time. Leading zeros in Y may be removed. |
203 | * |
204 | * Ensure that X does not shrink. This is not guaranteed by the public API, |
205 | * but some code in the bignum module relies on this property, for example |
206 | * in mbedtls_mpi_exp_mod(). |
207 | */ |
208 | int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y) |
209 | { |
210 | int ret = 0; |
211 | size_t i; |
212 | MPI_VALIDATE_RET(X != NULL); |
213 | MPI_VALIDATE_RET(Y != NULL); |
214 | |
215 | if (X == Y) { |
216 | return 0; |
217 | } |
218 | |
219 | if (Y->n == 0) { |
220 | if (X->n != 0) { |
221 | X->s = 1; |
222 | memset(X->p, 0, X->n * ciL); |
223 | } |
224 | return 0; |
225 | } |
226 | |
227 | for (i = Y->n - 1; i > 0; i--) { |
228 | if (Y->p[i] != 0) { |
229 | break; |
230 | } |
231 | } |
232 | i++; |
233 | |
234 | X->s = Y->s; |
235 | |
236 | if (X->n < i) { |
237 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i)); |
238 | } else { |
239 | memset(X->p + i, 0, (X->n - i) * ciL); |
240 | } |
241 | |
242 | memcpy(X->p, Y->p, i * ciL); |
243 | |
244 | cleanup: |
245 | |
246 | return ret; |
247 | } |
248 | |
249 | /* |
250 | * Swap the contents of X and Y |
251 | */ |
252 | void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y) |
253 | { |
254 | mbedtls_mpi T; |
255 | MPI_VALIDATE(X != NULL); |
256 | MPI_VALIDATE(Y != NULL); |
257 | |
258 | memcpy(&T, X, sizeof(mbedtls_mpi)); |
259 | memcpy(X, Y, sizeof(mbedtls_mpi)); |
260 | memcpy(Y, &T, sizeof(mbedtls_mpi)); |
261 | } |
262 | |
263 | static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z) |
264 | { |
265 | if (z >= 0) { |
266 | return z; |
267 | } |
268 | /* Take care to handle the most negative value (-2^(biL-1)) correctly. |
269 | * A naive -z would have undefined behavior. |
270 | * Write this in a way that makes popular compilers happy (GCC, Clang, |
271 | * MSVC). */ |
272 | return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z; |
273 | } |
274 | |
275 | /* |
276 | * Set value from integer |
277 | */ |
278 | int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z) |
279 | { |
280 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
281 | MPI_VALIDATE_RET(X != NULL); |
282 | |
283 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1)); |
284 | memset(X->p, 0, X->n * ciL); |
285 | |
286 | X->p[0] = mpi_sint_abs(z); |
287 | X->s = (z < 0) ? -1 : 1; |
288 | |
289 | cleanup: |
290 | |
291 | return ret; |
292 | } |
293 | |
294 | /* |
295 | * Get a specific bit |
296 | */ |
297 | int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos) |
298 | { |
299 | MPI_VALIDATE_RET(X != NULL); |
300 | |
301 | if (X->n * biL <= pos) { |
302 | return 0; |
303 | } |
304 | |
305 | return (X->p[pos / biL] >> (pos % biL)) & 0x01; |
306 | } |
307 | |
308 | /* Get a specific byte, without range checks. */ |
309 | #define GET_BYTE(X, i) \ |
310 | (((X)->p[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff) |
311 | |
312 | /* |
313 | * Set a bit to a specific value of 0 or 1 |
314 | */ |
315 | int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val) |
316 | { |
317 | int ret = 0; |
318 | size_t off = pos / biL; |
319 | size_t idx = pos % biL; |
320 | MPI_VALIDATE_RET(X != NULL); |
321 | |
322 | if (val != 0 && val != 1) { |
323 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
324 | } |
325 | |
326 | if (X->n * biL <= pos) { |
327 | if (val == 0) { |
328 | return 0; |
329 | } |
330 | |
331 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1)); |
332 | } |
333 | |
334 | X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx); |
335 | X->p[off] |= (mbedtls_mpi_uint) val << idx; |
336 | |
337 | cleanup: |
338 | |
339 | return ret; |
340 | } |
341 | |
342 | /* |
343 | * Return the number of less significant zero-bits |
344 | */ |
345 | size_t mbedtls_mpi_lsb(const mbedtls_mpi *X) |
346 | { |
347 | size_t i, j, count = 0; |
348 | MBEDTLS_INTERNAL_VALIDATE_RET(X != NULL, 0); |
349 | |
350 | for (i = 0; i < X->n; i++) { |
351 | for (j = 0; j < biL; j++, count++) { |
352 | if (((X->p[i] >> j) & 1) != 0) { |
353 | return count; |
354 | } |
355 | } |
356 | } |
357 | |
358 | return 0; |
359 | } |
360 | |
361 | /* |
362 | * Count leading zero bits in a given integer |
363 | */ |
364 | static size_t mbedtls_clz(const mbedtls_mpi_uint x) |
365 | { |
366 | size_t j; |
367 | mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1); |
368 | |
369 | for (j = 0; j < biL; j++) { |
370 | if (x & mask) { |
371 | break; |
372 | } |
373 | |
374 | mask >>= 1; |
375 | } |
376 | |
377 | return j; |
378 | } |
379 | |
380 | /* |
381 | * Return the number of bits |
382 | */ |
383 | size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X) |
384 | { |
385 | size_t i, j; |
386 | |
387 | if (X->n == 0) { |
388 | return 0; |
389 | } |
390 | |
391 | for (i = X->n - 1; i > 0; i--) { |
392 | if (X->p[i] != 0) { |
393 | break; |
394 | } |
395 | } |
396 | |
397 | j = biL - mbedtls_clz(X->p[i]); |
398 | |
399 | return (i * biL) + j; |
400 | } |
401 | |
402 | /* |
403 | * Return the total size in bytes |
404 | */ |
405 | size_t mbedtls_mpi_size(const mbedtls_mpi *X) |
406 | { |
407 | return (mbedtls_mpi_bitlen(X) + 7) >> 3; |
408 | } |
409 | |
410 | /* |
411 | * Convert an ASCII character to digit value |
412 | */ |
413 | static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c) |
414 | { |
415 | *d = 255; |
416 | |
417 | if (c >= 0x30 && c <= 0x39) { |
418 | *d = c - 0x30; |
419 | } |
420 | if (c >= 0x41 && c <= 0x46) { |
421 | *d = c - 0x37; |
422 | } |
423 | if (c >= 0x61 && c <= 0x66) { |
424 | *d = c - 0x57; |
425 | } |
426 | |
427 | if (*d >= (mbedtls_mpi_uint) radix) { |
428 | return MBEDTLS_ERR_MPI_INVALID_CHARACTER; |
429 | } |
430 | |
431 | return 0; |
432 | } |
433 | |
434 | /* |
435 | * Import from an ASCII string |
436 | */ |
437 | int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s) |
438 | { |
439 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
440 | size_t i, j, slen, n; |
441 | int sign = 1; |
442 | mbedtls_mpi_uint d; |
443 | mbedtls_mpi T; |
444 | MPI_VALIDATE_RET(X != NULL); |
445 | MPI_VALIDATE_RET(s != NULL); |
446 | |
447 | if (radix < 2 || radix > 16) { |
448 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
449 | } |
450 | |
451 | mbedtls_mpi_init(&T); |
452 | |
453 | if (s[0] == 0) { |
454 | mbedtls_mpi_free(X); |
455 | return 0; |
456 | } |
457 | |
458 | if (s[0] == '-') { |
459 | ++s; |
460 | sign = -1; |
461 | } |
462 | |
463 | slen = strlen(s); |
464 | |
465 | if (radix == 16) { |
466 | if (slen > MPI_SIZE_T_MAX >> 2) { |
467 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
468 | } |
469 | |
470 | n = BITS_TO_LIMBS(slen << 2); |
471 | |
472 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n)); |
473 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
474 | |
475 | for (i = slen, j = 0; i > 0; i--, j++) { |
476 | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1])); |
477 | X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2); |
478 | } |
479 | } else { |
480 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
481 | |
482 | for (i = 0; i < slen; i++) { |
483 | MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i])); |
484 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix)); |
485 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d)); |
486 | } |
487 | } |
488 | |
489 | if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) { |
490 | X->s = -1; |
491 | } |
492 | |
493 | cleanup: |
494 | |
495 | mbedtls_mpi_free(&T); |
496 | |
497 | return ret; |
498 | } |
499 | |
500 | /* |
501 | * Helper to write the digits high-order first. |
502 | */ |
503 | static int mpi_write_hlp(mbedtls_mpi *X, int radix, |
504 | char **p, const size_t buflen) |
505 | { |
506 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
507 | mbedtls_mpi_uint r; |
508 | size_t length = 0; |
509 | char *p_end = *p + buflen; |
510 | |
511 | do { |
512 | if (length >= buflen) { |
513 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
514 | } |
515 | |
516 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix)); |
517 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix)); |
518 | /* |
519 | * Write the residue in the current position, as an ASCII character. |
520 | */ |
521 | if (r < 0xA) { |
522 | *(--p_end) = (char) ('0' + r); |
523 | } else { |
524 | *(--p_end) = (char) ('A' + (r - 0xA)); |
525 | } |
526 | |
527 | length++; |
528 | } while (mbedtls_mpi_cmp_int(X, 0) != 0); |
529 | |
530 | memmove(*p, p_end, length); |
531 | *p += length; |
532 | |
533 | cleanup: |
534 | |
535 | return ret; |
536 | } |
537 | |
538 | /* |
539 | * Export into an ASCII string |
540 | */ |
541 | int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix, |
542 | char *buf, size_t buflen, size_t *olen) |
543 | { |
544 | int ret = 0; |
545 | size_t n; |
546 | char *p; |
547 | mbedtls_mpi T; |
548 | MPI_VALIDATE_RET(X != NULL); |
549 | MPI_VALIDATE_RET(olen != NULL); |
550 | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); |
551 | |
552 | if (radix < 2 || radix > 16) { |
553 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
554 | } |
555 | |
556 | n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */ |
557 | if (radix >= 4) { |
558 | n >>= 1; /* Number of 4-adic digits necessary to present |
559 | * `n`. If radix > 4, this might be a strict |
560 | * overapproximation of the number of |
561 | * radix-adic digits needed to present `n`. */ |
562 | } |
563 | if (radix >= 16) { |
564 | n >>= 1; /* Number of hexadecimal digits necessary to |
565 | * present `n`. */ |
566 | |
567 | } |
568 | n += 1; /* Terminating null byte */ |
569 | n += 1; /* Compensate for the divisions above, which round down `n` |
570 | * in case it's not even. */ |
571 | n += 1; /* Potential '-'-sign. */ |
572 | n += (n & 1); /* Make n even to have enough space for hexadecimal writing, |
573 | * which always uses an even number of hex-digits. */ |
574 | |
575 | if (buflen < n) { |
576 | *olen = n; |
577 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
578 | } |
579 | |
580 | p = buf; |
581 | mbedtls_mpi_init(&T); |
582 | |
583 | if (X->s == -1) { |
584 | *p++ = '-'; |
585 | buflen--; |
586 | } |
587 | |
588 | if (radix == 16) { |
589 | int c; |
590 | size_t i, j, k; |
591 | |
592 | for (i = X->n, k = 0; i > 0; i--) { |
593 | for (j = ciL; j > 0; j--) { |
594 | c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF; |
595 | |
596 | if (c == 0 && k == 0 && (i + j) != 2) { |
597 | continue; |
598 | } |
599 | |
600 | *(p++) = "0123456789ABCDEF" [c / 16]; |
601 | *(p++) = "0123456789ABCDEF" [c % 16]; |
602 | k = 1; |
603 | } |
604 | } |
605 | } else { |
606 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X)); |
607 | |
608 | if (T.s == -1) { |
609 | T.s = 1; |
610 | } |
611 | |
612 | MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen)); |
613 | } |
614 | |
615 | *p++ = '\0'; |
616 | *olen = p - buf; |
617 | |
618 | cleanup: |
619 | |
620 | mbedtls_mpi_free(&T); |
621 | |
622 | return ret; |
623 | } |
624 | |
625 | #if defined(MBEDTLS_FS_IO) |
626 | /* |
627 | * Read X from an opened file |
628 | */ |
629 | int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin) |
630 | { |
631 | mbedtls_mpi_uint d; |
632 | size_t slen; |
633 | char *p; |
634 | /* |
635 | * Buffer should have space for (short) label and decimal formatted MPI, |
636 | * newline characters and '\0' |
637 | */ |
638 | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; |
639 | |
640 | MPI_VALIDATE_RET(X != NULL); |
641 | MPI_VALIDATE_RET(fin != NULL); |
642 | |
643 | if (radix < 2 || radix > 16) { |
644 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
645 | } |
646 | |
647 | memset(s, 0, sizeof(s)); |
648 | if (fgets(s, sizeof(s) - 1, fin) == NULL) { |
649 | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; |
650 | } |
651 | |
652 | slen = strlen(s); |
653 | if (slen == sizeof(s) - 2) { |
654 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
655 | } |
656 | |
657 | if (slen > 0 && s[slen - 1] == '\n') { |
658 | slen--; s[slen] = '\0'; |
659 | } |
660 | if (slen > 0 && s[slen - 1] == '\r') { |
661 | slen--; s[slen] = '\0'; |
662 | } |
663 | |
664 | p = s + slen; |
665 | while (p-- > s) { |
666 | if (mpi_get_digit(&d, radix, *p) != 0) { |
667 | break; |
668 | } |
669 | } |
670 | |
671 | return mbedtls_mpi_read_string(X, radix, p + 1); |
672 | } |
673 | |
674 | /* |
675 | * Write X into an opened file (or stdout if fout == NULL) |
676 | */ |
677 | int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout) |
678 | { |
679 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
680 | size_t n, slen, plen; |
681 | /* |
682 | * Buffer should have space for (short) label and decimal formatted MPI, |
683 | * newline characters and '\0' |
684 | */ |
685 | char s[MBEDTLS_MPI_RW_BUFFER_SIZE]; |
686 | MPI_VALIDATE_RET(X != NULL); |
687 | |
688 | if (radix < 2 || radix > 16) { |
689 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
690 | } |
691 | |
692 | memset(s, 0, sizeof(s)); |
693 | |
694 | MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n)); |
695 | |
696 | if (p == NULL) { |
697 | p = "" ; |
698 | } |
699 | |
700 | plen = strlen(p); |
701 | slen = strlen(s); |
702 | s[slen++] = '\r'; |
703 | s[slen++] = '\n'; |
704 | |
705 | if (fout != NULL) { |
706 | if (fwrite(p, 1, plen, fout) != plen || |
707 | fwrite(s, 1, slen, fout) != slen) { |
708 | return MBEDTLS_ERR_MPI_FILE_IO_ERROR; |
709 | } |
710 | } else { |
711 | mbedtls_printf("%s%s" , p, s); |
712 | } |
713 | |
714 | cleanup: |
715 | |
716 | return ret; |
717 | } |
718 | #endif /* MBEDTLS_FS_IO */ |
719 | |
720 | |
721 | /* Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint |
722 | * into the storage form used by mbedtls_mpi. */ |
723 | |
724 | static mbedtls_mpi_uint mpi_uint_bigendian_to_host_c(mbedtls_mpi_uint x) |
725 | { |
726 | uint8_t i; |
727 | unsigned char *x_ptr; |
728 | mbedtls_mpi_uint tmp = 0; |
729 | |
730 | for (i = 0, x_ptr = (unsigned char *) &x; i < ciL; i++, x_ptr++) { |
731 | tmp <<= CHAR_BIT; |
732 | tmp |= (mbedtls_mpi_uint) *x_ptr; |
733 | } |
734 | |
735 | return tmp; |
736 | } |
737 | |
738 | static mbedtls_mpi_uint mpi_uint_bigendian_to_host(mbedtls_mpi_uint x) |
739 | { |
740 | #if defined(__BYTE_ORDER__) |
741 | |
742 | /* Nothing to do on bigendian systems. */ |
743 | #if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) |
744 | return x; |
745 | #endif /* __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ */ |
746 | |
747 | #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) |
748 | |
749 | /* For GCC and Clang, have builtins for byte swapping. */ |
750 | #if defined(__GNUC__) && defined(__GNUC_PREREQ) |
751 | #if __GNUC_PREREQ(4, 3) |
752 | #define have_bswap |
753 | #endif |
754 | #endif |
755 | |
756 | #if defined(__clang__) && defined(__has_builtin) |
757 | #if __has_builtin(__builtin_bswap32) && \ |
758 | __has_builtin(__builtin_bswap64) |
759 | #define have_bswap |
760 | #endif |
761 | #endif |
762 | |
763 | #if defined(have_bswap) |
764 | /* The compiler is hopefully able to statically evaluate this! */ |
765 | switch (sizeof(mbedtls_mpi_uint)) { |
766 | case 4: |
767 | return __builtin_bswap32(x); |
768 | case 8: |
769 | return __builtin_bswap64(x); |
770 | } |
771 | #endif |
772 | #endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */ |
773 | #endif /* __BYTE_ORDER__ */ |
774 | |
775 | /* Fall back to C-based reordering if we don't know the byte order |
776 | * or we couldn't use a compiler-specific builtin. */ |
777 | return mpi_uint_bigendian_to_host_c(x); |
778 | } |
779 | |
780 | static void mpi_bigendian_to_host(mbedtls_mpi_uint * const p, size_t limbs) |
781 | { |
782 | mbedtls_mpi_uint *cur_limb_left; |
783 | mbedtls_mpi_uint *cur_limb_right; |
784 | if (limbs == 0) { |
785 | return; |
786 | } |
787 | |
788 | /* |
789 | * Traverse limbs and |
790 | * - adapt byte-order in each limb |
791 | * - swap the limbs themselves. |
792 | * For that, simultaneously traverse the limbs from left to right |
793 | * and from right to left, as long as the left index is not bigger |
794 | * than the right index (it's not a problem if limbs is odd and the |
795 | * indices coincide in the last iteration). |
796 | */ |
797 | for (cur_limb_left = p, cur_limb_right = p + (limbs - 1); |
798 | cur_limb_left <= cur_limb_right; |
799 | cur_limb_left++, cur_limb_right--) { |
800 | mbedtls_mpi_uint tmp; |
801 | /* Note that if cur_limb_left == cur_limb_right, |
802 | * this code effectively swaps the bytes only once. */ |
803 | tmp = mpi_uint_bigendian_to_host(*cur_limb_left); |
804 | *cur_limb_left = mpi_uint_bigendian_to_host(*cur_limb_right); |
805 | *cur_limb_right = tmp; |
806 | } |
807 | } |
808 | |
809 | /* |
810 | * Import X from unsigned binary data, little endian |
811 | */ |
812 | int mbedtls_mpi_read_binary_le(mbedtls_mpi *X, |
813 | const unsigned char *buf, size_t buflen) |
814 | { |
815 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
816 | size_t i; |
817 | size_t const limbs = CHARS_TO_LIMBS(buflen); |
818 | |
819 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
820 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
821 | |
822 | for (i = 0; i < buflen; i++) { |
823 | X->p[i / ciL] |= ((mbedtls_mpi_uint) buf[i]) << ((i % ciL) << 3); |
824 | } |
825 | |
826 | cleanup: |
827 | |
828 | /* |
829 | * This function is also used to import keys. However, wiping the buffers |
830 | * upon failure is not necessary because failure only can happen before any |
831 | * input is copied. |
832 | */ |
833 | return ret; |
834 | } |
835 | |
836 | /* |
837 | * Import X from unsigned binary data, big endian |
838 | */ |
839 | int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen) |
840 | { |
841 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
842 | size_t const limbs = CHARS_TO_LIMBS(buflen); |
843 | size_t const overhead = (limbs * ciL) - buflen; |
844 | unsigned char *Xp; |
845 | |
846 | MPI_VALIDATE_RET(X != NULL); |
847 | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); |
848 | |
849 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
850 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
851 | |
852 | /* Avoid calling `memcpy` with NULL source or destination argument, |
853 | * even if buflen is 0. */ |
854 | if (buflen != 0) { |
855 | Xp = (unsigned char *) X->p; |
856 | memcpy(Xp + overhead, buf, buflen); |
857 | |
858 | mpi_bigendian_to_host(X->p, limbs); |
859 | } |
860 | |
861 | cleanup: |
862 | |
863 | /* |
864 | * This function is also used to import keys. However, wiping the buffers |
865 | * upon failure is not necessary because failure only can happen before any |
866 | * input is copied. |
867 | */ |
868 | return ret; |
869 | } |
870 | |
871 | /* |
872 | * Export X into unsigned binary data, little endian |
873 | */ |
874 | int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X, |
875 | unsigned char *buf, size_t buflen) |
876 | { |
877 | size_t stored_bytes = X->n * ciL; |
878 | size_t bytes_to_copy; |
879 | size_t i; |
880 | |
881 | if (stored_bytes < buflen) { |
882 | bytes_to_copy = stored_bytes; |
883 | } else { |
884 | bytes_to_copy = buflen; |
885 | |
886 | /* The output buffer is smaller than the allocated size of X. |
887 | * However X may fit if its leading bytes are zero. */ |
888 | for (i = bytes_to_copy; i < stored_bytes; i++) { |
889 | if (GET_BYTE(X, i) != 0) { |
890 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
891 | } |
892 | } |
893 | } |
894 | |
895 | for (i = 0; i < bytes_to_copy; i++) { |
896 | buf[i] = GET_BYTE(X, i); |
897 | } |
898 | |
899 | if (stored_bytes < buflen) { |
900 | /* Write trailing 0 bytes */ |
901 | memset(buf + stored_bytes, 0, buflen - stored_bytes); |
902 | } |
903 | |
904 | return 0; |
905 | } |
906 | |
907 | /* |
908 | * Export X into unsigned binary data, big endian |
909 | */ |
910 | int mbedtls_mpi_write_binary(const mbedtls_mpi *X, |
911 | unsigned char *buf, size_t buflen) |
912 | { |
913 | size_t stored_bytes; |
914 | size_t bytes_to_copy; |
915 | unsigned char *p; |
916 | size_t i; |
917 | |
918 | MPI_VALIDATE_RET(X != NULL); |
919 | MPI_VALIDATE_RET(buflen == 0 || buf != NULL); |
920 | |
921 | stored_bytes = X->n * ciL; |
922 | |
923 | if (stored_bytes < buflen) { |
924 | /* There is enough space in the output buffer. Write initial |
925 | * null bytes and record the position at which to start |
926 | * writing the significant bytes. In this case, the execution |
927 | * trace of this function does not depend on the value of the |
928 | * number. */ |
929 | bytes_to_copy = stored_bytes; |
930 | p = buf + buflen - stored_bytes; |
931 | memset(buf, 0, buflen - stored_bytes); |
932 | } else { |
933 | /* The output buffer is smaller than the allocated size of X. |
934 | * However X may fit if its leading bytes are zero. */ |
935 | bytes_to_copy = buflen; |
936 | p = buf; |
937 | for (i = bytes_to_copy; i < stored_bytes; i++) { |
938 | if (GET_BYTE(X, i) != 0) { |
939 | return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL; |
940 | } |
941 | } |
942 | } |
943 | |
944 | for (i = 0; i < bytes_to_copy; i++) { |
945 | p[bytes_to_copy - i - 1] = GET_BYTE(X, i); |
946 | } |
947 | |
948 | return 0; |
949 | } |
950 | |
951 | /* |
952 | * Left-shift: X <<= count |
953 | */ |
954 | int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count) |
955 | { |
956 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
957 | size_t i, v0, t1; |
958 | mbedtls_mpi_uint r0 = 0, r1; |
959 | MPI_VALIDATE_RET(X != NULL); |
960 | |
961 | v0 = count / (biL); |
962 | t1 = count & (biL - 1); |
963 | |
964 | i = mbedtls_mpi_bitlen(X) + count; |
965 | |
966 | if (X->n * biL < i) { |
967 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i))); |
968 | } |
969 | |
970 | ret = 0; |
971 | |
972 | /* |
973 | * shift by count / limb_size |
974 | */ |
975 | if (v0 > 0) { |
976 | for (i = X->n; i > v0; i--) { |
977 | X->p[i - 1] = X->p[i - v0 - 1]; |
978 | } |
979 | |
980 | for (; i > 0; i--) { |
981 | X->p[i - 1] = 0; |
982 | } |
983 | } |
984 | |
985 | /* |
986 | * shift by count % limb_size |
987 | */ |
988 | if (t1 > 0) { |
989 | for (i = v0; i < X->n; i++) { |
990 | r1 = X->p[i] >> (biL - t1); |
991 | X->p[i] <<= t1; |
992 | X->p[i] |= r0; |
993 | r0 = r1; |
994 | } |
995 | } |
996 | |
997 | cleanup: |
998 | |
999 | return ret; |
1000 | } |
1001 | |
1002 | /* |
1003 | * Right-shift: X >>= count |
1004 | */ |
1005 | int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count) |
1006 | { |
1007 | size_t i, v0, v1; |
1008 | mbedtls_mpi_uint r0 = 0, r1; |
1009 | MPI_VALIDATE_RET(X != NULL); |
1010 | |
1011 | v0 = count / biL; |
1012 | v1 = count & (biL - 1); |
1013 | |
1014 | if (v0 > X->n || (v0 == X->n && v1 > 0)) { |
1015 | return mbedtls_mpi_lset(X, 0); |
1016 | } |
1017 | |
1018 | /* |
1019 | * shift by count / limb_size |
1020 | */ |
1021 | if (v0 > 0) { |
1022 | for (i = 0; i < X->n - v0; i++) { |
1023 | X->p[i] = X->p[i + v0]; |
1024 | } |
1025 | |
1026 | for (; i < X->n; i++) { |
1027 | X->p[i] = 0; |
1028 | } |
1029 | } |
1030 | |
1031 | /* |
1032 | * shift by count % limb_size |
1033 | */ |
1034 | if (v1 > 0) { |
1035 | for (i = X->n; i > 0; i--) { |
1036 | r1 = X->p[i - 1] << (biL - v1); |
1037 | X->p[i - 1] >>= v1; |
1038 | X->p[i - 1] |= r0; |
1039 | r0 = r1; |
1040 | } |
1041 | } |
1042 | |
1043 | return 0; |
1044 | } |
1045 | |
1046 | /* |
1047 | * Compare unsigned values |
1048 | */ |
1049 | int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y) |
1050 | { |
1051 | size_t i, j; |
1052 | MPI_VALIDATE_RET(X != NULL); |
1053 | MPI_VALIDATE_RET(Y != NULL); |
1054 | |
1055 | for (i = X->n; i > 0; i--) { |
1056 | if (X->p[i - 1] != 0) { |
1057 | break; |
1058 | } |
1059 | } |
1060 | |
1061 | for (j = Y->n; j > 0; j--) { |
1062 | if (Y->p[j - 1] != 0) { |
1063 | break; |
1064 | } |
1065 | } |
1066 | |
1067 | if (i == 0 && j == 0) { |
1068 | return 0; |
1069 | } |
1070 | |
1071 | if (i > j) { |
1072 | return 1; |
1073 | } |
1074 | if (j > i) { |
1075 | return -1; |
1076 | } |
1077 | |
1078 | for (; i > 0; i--) { |
1079 | if (X->p[i - 1] > Y->p[i - 1]) { |
1080 | return 1; |
1081 | } |
1082 | if (X->p[i - 1] < Y->p[i - 1]) { |
1083 | return -1; |
1084 | } |
1085 | } |
1086 | |
1087 | return 0; |
1088 | } |
1089 | |
1090 | /* |
1091 | * Compare signed values |
1092 | */ |
1093 | int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y) |
1094 | { |
1095 | size_t i, j; |
1096 | MPI_VALIDATE_RET(X != NULL); |
1097 | MPI_VALIDATE_RET(Y != NULL); |
1098 | |
1099 | for (i = X->n; i > 0; i--) { |
1100 | if (X->p[i - 1] != 0) { |
1101 | break; |
1102 | } |
1103 | } |
1104 | |
1105 | for (j = Y->n; j > 0; j--) { |
1106 | if (Y->p[j - 1] != 0) { |
1107 | break; |
1108 | } |
1109 | } |
1110 | |
1111 | if (i == 0 && j == 0) { |
1112 | return 0; |
1113 | } |
1114 | |
1115 | if (i > j) { |
1116 | return X->s; |
1117 | } |
1118 | if (j > i) { |
1119 | return -Y->s; |
1120 | } |
1121 | |
1122 | if (X->s > 0 && Y->s < 0) { |
1123 | return 1; |
1124 | } |
1125 | if (Y->s > 0 && X->s < 0) { |
1126 | return -1; |
1127 | } |
1128 | |
1129 | for (; i > 0; i--) { |
1130 | if (X->p[i - 1] > Y->p[i - 1]) { |
1131 | return X->s; |
1132 | } |
1133 | if (X->p[i - 1] < Y->p[i - 1]) { |
1134 | return -X->s; |
1135 | } |
1136 | } |
1137 | |
1138 | return 0; |
1139 | } |
1140 | |
1141 | /* |
1142 | * Compare signed values |
1143 | */ |
1144 | int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z) |
1145 | { |
1146 | mbedtls_mpi Y; |
1147 | mbedtls_mpi_uint p[1]; |
1148 | MPI_VALIDATE_RET(X != NULL); |
1149 | |
1150 | *p = mpi_sint_abs(z); |
1151 | Y.s = (z < 0) ? -1 : 1; |
1152 | Y.n = 1; |
1153 | Y.p = p; |
1154 | |
1155 | return mbedtls_mpi_cmp_mpi(X, &Y); |
1156 | } |
1157 | |
1158 | /* |
1159 | * Unsigned addition: X = |A| + |B| (HAC 14.7) |
1160 | */ |
1161 | int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1162 | { |
1163 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1164 | size_t i, j; |
1165 | mbedtls_mpi_uint *o, *p, c, tmp; |
1166 | MPI_VALIDATE_RET(X != NULL); |
1167 | MPI_VALIDATE_RET(A != NULL); |
1168 | MPI_VALIDATE_RET(B != NULL); |
1169 | |
1170 | if (X == B) { |
1171 | const mbedtls_mpi *T = A; A = X; B = T; |
1172 | } |
1173 | |
1174 | if (X != A) { |
1175 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); |
1176 | } |
1177 | |
1178 | /* |
1179 | * X should always be positive as a result of unsigned additions. |
1180 | */ |
1181 | X->s = 1; |
1182 | |
1183 | for (j = B->n; j > 0; j--) { |
1184 | if (B->p[j - 1] != 0) { |
1185 | break; |
1186 | } |
1187 | } |
1188 | |
1189 | /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0 |
1190 | * and B is 0 (of any size). */ |
1191 | if (j == 0) { |
1192 | return 0; |
1193 | } |
1194 | |
1195 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j)); |
1196 | |
1197 | o = B->p; p = X->p; c = 0; |
1198 | |
1199 | /* |
1200 | * tmp is used because it might happen that p == o |
1201 | */ |
1202 | for (i = 0; i < j; i++, o++, p++) { |
1203 | tmp = *o; |
1204 | *p += c; c = (*p < c); |
1205 | *p += tmp; c += (*p < tmp); |
1206 | } |
1207 | |
1208 | while (c != 0) { |
1209 | if (i >= X->n) { |
1210 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1)); |
1211 | p = X->p + i; |
1212 | } |
1213 | |
1214 | *p += c; c = (*p < c); i++; p++; |
1215 | } |
1216 | |
1217 | cleanup: |
1218 | |
1219 | return ret; |
1220 | } |
1221 | |
1222 | /** |
1223 | * Helper for mbedtls_mpi subtraction. |
1224 | * |
1225 | * Calculate l - r where l and r have the same size. |
1226 | * This function operates modulo (2^ciL)^n and returns the carry |
1227 | * (1 if there was a wraparound, i.e. if `l < r`, and 0 otherwise). |
1228 | * |
1229 | * d may be aliased to l or r. |
1230 | * |
1231 | * \param n Number of limbs of \p d, \p l and \p r. |
1232 | * \param[out] d The result of the subtraction. |
1233 | * \param[in] l The left operand. |
1234 | * \param[in] r The right operand. |
1235 | * |
1236 | * \return 1 if `l < r`. |
1237 | * 0 if `l >= r`. |
1238 | */ |
1239 | static mbedtls_mpi_uint mpi_sub_hlp(size_t n, |
1240 | mbedtls_mpi_uint *d, |
1241 | const mbedtls_mpi_uint *l, |
1242 | const mbedtls_mpi_uint *r) |
1243 | { |
1244 | size_t i; |
1245 | mbedtls_mpi_uint c = 0, t, z; |
1246 | |
1247 | for (i = 0; i < n; i++) { |
1248 | z = (l[i] < c); t = l[i] - c; |
1249 | c = (t < r[i]) + z; d[i] = t - r[i]; |
1250 | } |
1251 | |
1252 | return c; |
1253 | } |
1254 | |
1255 | /* |
1256 | * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10) |
1257 | */ |
1258 | int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1259 | { |
1260 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1261 | size_t n; |
1262 | mbedtls_mpi_uint carry; |
1263 | MPI_VALIDATE_RET(X != NULL); |
1264 | MPI_VALIDATE_RET(A != NULL); |
1265 | MPI_VALIDATE_RET(B != NULL); |
1266 | |
1267 | for (n = B->n; n > 0; n--) { |
1268 | if (B->p[n - 1] != 0) { |
1269 | break; |
1270 | } |
1271 | } |
1272 | if (n > A->n) { |
1273 | /* B >= (2^ciL)^n > A */ |
1274 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1275 | goto cleanup; |
1276 | } |
1277 | |
1278 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n)); |
1279 | |
1280 | /* Set the high limbs of X to match A. Don't touch the lower limbs |
1281 | * because X might be aliased to B, and we must not overwrite the |
1282 | * significant digits of B. */ |
1283 | if (A->n > n && A != X) { |
1284 | memcpy(X->p + n, A->p + n, (A->n - n) * ciL); |
1285 | } |
1286 | if (X->n > A->n) { |
1287 | memset(X->p + A->n, 0, (X->n - A->n) * ciL); |
1288 | } |
1289 | |
1290 | carry = mpi_sub_hlp(n, X->p, A->p, B->p); |
1291 | if (carry != 0) { |
1292 | /* Propagate the carry to the first nonzero limb of X. */ |
1293 | for (; n < X->n && X->p[n] == 0; n++) { |
1294 | --X->p[n]; |
1295 | } |
1296 | /* If we ran out of space for the carry, it means that the result |
1297 | * is negative. */ |
1298 | if (n == X->n) { |
1299 | ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1300 | goto cleanup; |
1301 | } |
1302 | --X->p[n]; |
1303 | } |
1304 | |
1305 | /* X should always be positive as a result of unsigned subtractions. */ |
1306 | X->s = 1; |
1307 | |
1308 | cleanup: |
1309 | return ret; |
1310 | } |
1311 | |
1312 | /* Common function for signed addition and subtraction. |
1313 | * Calculate A + B * flip_B where flip_B is 1 or -1. |
1314 | */ |
1315 | static int add_sub_mpi(mbedtls_mpi *X, |
1316 | const mbedtls_mpi *A, const mbedtls_mpi *B, |
1317 | int flip_B) |
1318 | { |
1319 | int ret, s; |
1320 | MPI_VALIDATE_RET(X != NULL); |
1321 | MPI_VALIDATE_RET(A != NULL); |
1322 | MPI_VALIDATE_RET(B != NULL); |
1323 | |
1324 | s = A->s; |
1325 | if (A->s * B->s * flip_B < 0) { |
1326 | int cmp = mbedtls_mpi_cmp_abs(A, B); |
1327 | if (cmp >= 0) { |
1328 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B)); |
1329 | /* If |A| = |B|, the result is 0 and we must set the sign bit |
1330 | * to +1 regardless of which of A or B was negative. Otherwise, |
1331 | * since |A| > |B|, the sign is the sign of A. */ |
1332 | X->s = cmp == 0 ? 1 : s; |
1333 | } else { |
1334 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A)); |
1335 | /* Since |A| < |B|, the sign is the opposite of A. */ |
1336 | X->s = -s; |
1337 | } |
1338 | } else { |
1339 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B)); |
1340 | X->s = s; |
1341 | } |
1342 | |
1343 | cleanup: |
1344 | |
1345 | return ret; |
1346 | } |
1347 | |
1348 | /* |
1349 | * Signed addition: X = A + B |
1350 | */ |
1351 | int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1352 | { |
1353 | return add_sub_mpi(X, A, B, 1); |
1354 | } |
1355 | |
1356 | /* |
1357 | * Signed subtraction: X = A - B |
1358 | */ |
1359 | int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1360 | { |
1361 | return add_sub_mpi(X, A, B, -1); |
1362 | } |
1363 | |
1364 | /* |
1365 | * Signed addition: X = A + b |
1366 | */ |
1367 | int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1368 | { |
1369 | mbedtls_mpi B; |
1370 | mbedtls_mpi_uint p[1]; |
1371 | MPI_VALIDATE_RET(X != NULL); |
1372 | MPI_VALIDATE_RET(A != NULL); |
1373 | |
1374 | p[0] = mpi_sint_abs(b); |
1375 | B.s = (b < 0) ? -1 : 1; |
1376 | B.n = 1; |
1377 | B.p = p; |
1378 | |
1379 | return mbedtls_mpi_add_mpi(X, A, &B); |
1380 | } |
1381 | |
1382 | /* |
1383 | * Signed subtraction: X = A - b |
1384 | */ |
1385 | int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1386 | { |
1387 | mbedtls_mpi B; |
1388 | mbedtls_mpi_uint p[1]; |
1389 | MPI_VALIDATE_RET(X != NULL); |
1390 | MPI_VALIDATE_RET(A != NULL); |
1391 | |
1392 | p[0] = mpi_sint_abs(b); |
1393 | B.s = (b < 0) ? -1 : 1; |
1394 | B.n = 1; |
1395 | B.p = p; |
1396 | |
1397 | return mbedtls_mpi_sub_mpi(X, A, &B); |
1398 | } |
1399 | |
1400 | /** Helper for mbedtls_mpi multiplication. |
1401 | * |
1402 | * Add \p b * \p s to \p d. |
1403 | * |
1404 | * \param i The number of limbs of \p s. |
1405 | * \param[in] s A bignum to multiply, of size \p i. |
1406 | * It may overlap with \p d, but only if |
1407 | * \p d <= \p s. |
1408 | * Its leading limb must not be \c 0. |
1409 | * \param[in,out] d The bignum to add to. |
1410 | * It must be sufficiently large to store the |
1411 | * result of the multiplication. This means |
1412 | * \p i + 1 limbs if \p d[\p i - 1] started as 0 and \p b |
1413 | * is not known a priori. |
1414 | * \param b A scalar to multiply. |
1415 | */ |
1416 | static |
1417 | #if defined(__APPLE__) && defined(__arm__) |
1418 | /* |
1419 | * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn) |
1420 | * appears to need this to prevent bad ARM code generation at -O3. |
1421 | */ |
1422 | __attribute__((noinline)) |
1423 | #endif |
1424 | void mpi_mul_hlp(size_t i, |
1425 | const mbedtls_mpi_uint *s, |
1426 | mbedtls_mpi_uint *d, |
1427 | mbedtls_mpi_uint b) |
1428 | { |
1429 | mbedtls_mpi_uint c = 0, t = 0; |
1430 | (void) t; /* Unused in some architectures */ |
1431 | |
1432 | #if defined(MULADDC_HUIT) |
1433 | for (; i >= 8; i -= 8) { |
1434 | MULADDC_INIT |
1435 | MULADDC_HUIT |
1436 | MULADDC_STOP |
1437 | } |
1438 | |
1439 | for (; i > 0; i--) { |
1440 | MULADDC_INIT |
1441 | MULADDC_CORE |
1442 | MULADDC_STOP |
1443 | } |
1444 | #else /* MULADDC_HUIT */ |
1445 | for (; i >= 16; i -= 16) { |
1446 | MULADDC_INIT |
1447 | MULADDC_CORE MULADDC_CORE |
1448 | MULADDC_CORE MULADDC_CORE |
1449 | MULADDC_CORE MULADDC_CORE |
1450 | MULADDC_CORE MULADDC_CORE |
1451 | |
1452 | MULADDC_CORE MULADDC_CORE |
1453 | MULADDC_CORE MULADDC_CORE |
1454 | MULADDC_CORE MULADDC_CORE |
1455 | MULADDC_CORE MULADDC_CORE |
1456 | MULADDC_STOP |
1457 | } |
1458 | |
1459 | for (; i >= 8; i -= 8) { |
1460 | MULADDC_INIT |
1461 | MULADDC_CORE MULADDC_CORE |
1462 | MULADDC_CORE MULADDC_CORE |
1463 | |
1464 | MULADDC_CORE MULADDC_CORE |
1465 | MULADDC_CORE MULADDC_CORE |
1466 | MULADDC_STOP |
1467 | } |
1468 | |
1469 | for (; i > 0; i--) { |
1470 | MULADDC_INIT |
1471 | MULADDC_CORE |
1472 | MULADDC_STOP |
1473 | } |
1474 | #endif /* MULADDC_HUIT */ |
1475 | |
1476 | while (c != 0) { |
1477 | *d += c; c = (*d < c); d++; |
1478 | } |
1479 | } |
1480 | |
1481 | /* |
1482 | * Baseline multiplication: X = A * B (HAC 14.12) |
1483 | */ |
1484 | int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1485 | { |
1486 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1487 | size_t i, j; |
1488 | mbedtls_mpi TA, TB; |
1489 | int result_is_zero = 0; |
1490 | MPI_VALIDATE_RET(X != NULL); |
1491 | MPI_VALIDATE_RET(A != NULL); |
1492 | MPI_VALIDATE_RET(B != NULL); |
1493 | |
1494 | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB); |
1495 | |
1496 | if (X == A) { |
1497 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA; |
1498 | } |
1499 | if (X == B) { |
1500 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB; |
1501 | } |
1502 | |
1503 | for (i = A->n; i > 0; i--) { |
1504 | if (A->p[i - 1] != 0) { |
1505 | break; |
1506 | } |
1507 | } |
1508 | if (i == 0) { |
1509 | result_is_zero = 1; |
1510 | } |
1511 | |
1512 | for (j = B->n; j > 0; j--) { |
1513 | if (B->p[j - 1] != 0) { |
1514 | break; |
1515 | } |
1516 | } |
1517 | if (j == 0) { |
1518 | result_is_zero = 1; |
1519 | } |
1520 | |
1521 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j)); |
1522 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0)); |
1523 | |
1524 | for (; j > 0; j--) { |
1525 | mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]); |
1526 | } |
1527 | |
1528 | /* If the result is 0, we don't shortcut the operation, which reduces |
1529 | * but does not eliminate side channels leaking the zero-ness. We do |
1530 | * need to take care to set the sign bit properly since the library does |
1531 | * not fully support an MPI object with a value of 0 and s == -1. */ |
1532 | if (result_is_zero) { |
1533 | X->s = 1; |
1534 | } else { |
1535 | X->s = A->s * B->s; |
1536 | } |
1537 | |
1538 | cleanup: |
1539 | |
1540 | mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA); |
1541 | |
1542 | return ret; |
1543 | } |
1544 | |
1545 | /* |
1546 | * Baseline multiplication: X = A * b |
1547 | */ |
1548 | int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b) |
1549 | { |
1550 | MPI_VALIDATE_RET(X != NULL); |
1551 | MPI_VALIDATE_RET(A != NULL); |
1552 | |
1553 | /* mpi_mul_hlp can't deal with a leading 0. */ |
1554 | size_t n = A->n; |
1555 | while (n > 0 && A->p[n - 1] == 0) { |
1556 | --n; |
1557 | } |
1558 | |
1559 | /* The general method below doesn't work if n==0 or b==0. By chance |
1560 | * calculating the result is trivial in those cases. */ |
1561 | if (b == 0 || n == 0) { |
1562 | return mbedtls_mpi_lset(X, 0); |
1563 | } |
1564 | |
1565 | /* Calculate A*b as A + A*(b-1) to take advantage of mpi_mul_hlp */ |
1566 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1567 | /* In general, A * b requires 1 limb more than b. If |
1568 | * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same |
1569 | * number of limbs as A and the call to grow() is not required since |
1570 | * copy() will take care of the growth if needed. However, experimentally, |
1571 | * making the call to grow() unconditional causes slightly fewer |
1572 | * calls to calloc() in ECP code, presumably because it reuses the |
1573 | * same mpi for a while and this way the mpi is more likely to directly |
1574 | * grow to its final size. */ |
1575 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1)); |
1576 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A)); |
1577 | mpi_mul_hlp(n, A->p, X->p, b - 1); |
1578 | |
1579 | cleanup: |
1580 | return ret; |
1581 | } |
1582 | |
1583 | /* |
1584 | * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and |
1585 | * mbedtls_mpi_uint divisor, d |
1586 | */ |
1587 | static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1, |
1588 | mbedtls_mpi_uint u0, |
1589 | mbedtls_mpi_uint d, |
1590 | mbedtls_mpi_uint *r) |
1591 | { |
1592 | #if defined(MBEDTLS_HAVE_UDBL) |
1593 | mbedtls_t_udbl dividend, quotient; |
1594 | #else |
1595 | const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH; |
1596 | const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1; |
1597 | mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient; |
1598 | mbedtls_mpi_uint u0_msw, u0_lsw; |
1599 | size_t s; |
1600 | #endif |
1601 | |
1602 | /* |
1603 | * Check for overflow |
1604 | */ |
1605 | if (0 == d || u1 >= d) { |
1606 | if (r != NULL) { |
1607 | *r = ~(mbedtls_mpi_uint) 0u; |
1608 | } |
1609 | |
1610 | return ~(mbedtls_mpi_uint) 0u; |
1611 | } |
1612 | |
1613 | #if defined(MBEDTLS_HAVE_UDBL) |
1614 | dividend = (mbedtls_t_udbl) u1 << biL; |
1615 | dividend |= (mbedtls_t_udbl) u0; |
1616 | quotient = dividend / d; |
1617 | if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) { |
1618 | quotient = ((mbedtls_t_udbl) 1 << biL) - 1; |
1619 | } |
1620 | |
1621 | if (r != NULL) { |
1622 | *r = (mbedtls_mpi_uint) (dividend - (quotient * d)); |
1623 | } |
1624 | |
1625 | return (mbedtls_mpi_uint) quotient; |
1626 | #else |
1627 | |
1628 | /* |
1629 | * Algorithm D, Section 4.3.1 - The Art of Computer Programming |
1630 | * Vol. 2 - Seminumerical Algorithms, Knuth |
1631 | */ |
1632 | |
1633 | /* |
1634 | * Normalize the divisor, d, and dividend, u0, u1 |
1635 | */ |
1636 | s = mbedtls_clz(d); |
1637 | d = d << s; |
1638 | |
1639 | u1 = u1 << s; |
1640 | u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1)); |
1641 | u0 = u0 << s; |
1642 | |
1643 | d1 = d >> biH; |
1644 | d0 = d & uint_halfword_mask; |
1645 | |
1646 | u0_msw = u0 >> biH; |
1647 | u0_lsw = u0 & uint_halfword_mask; |
1648 | |
1649 | /* |
1650 | * Find the first quotient and remainder |
1651 | */ |
1652 | q1 = u1 / d1; |
1653 | r0 = u1 - d1 * q1; |
1654 | |
1655 | while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) { |
1656 | q1 -= 1; |
1657 | r0 += d1; |
1658 | |
1659 | if (r0 >= radix) { |
1660 | break; |
1661 | } |
1662 | } |
1663 | |
1664 | rAX = (u1 * radix) + (u0_msw - q1 * d); |
1665 | q0 = rAX / d1; |
1666 | r0 = rAX - q0 * d1; |
1667 | |
1668 | while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) { |
1669 | q0 -= 1; |
1670 | r0 += d1; |
1671 | |
1672 | if (r0 >= radix) { |
1673 | break; |
1674 | } |
1675 | } |
1676 | |
1677 | if (r != NULL) { |
1678 | *r = (rAX * radix + u0_lsw - q0 * d) >> s; |
1679 | } |
1680 | |
1681 | quotient = q1 * radix + q0; |
1682 | |
1683 | return quotient; |
1684 | #endif |
1685 | } |
1686 | |
1687 | /* |
1688 | * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20) |
1689 | */ |
1690 | int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, |
1691 | const mbedtls_mpi *B) |
1692 | { |
1693 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1694 | size_t i, n, t, k; |
1695 | mbedtls_mpi X, Y, Z, T1, T2; |
1696 | mbedtls_mpi_uint TP2[3]; |
1697 | MPI_VALIDATE_RET(A != NULL); |
1698 | MPI_VALIDATE_RET(B != NULL); |
1699 | |
1700 | if (mbedtls_mpi_cmp_int(B, 0) == 0) { |
1701 | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; |
1702 | } |
1703 | |
1704 | mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z); |
1705 | mbedtls_mpi_init(&T1); |
1706 | /* |
1707 | * Avoid dynamic memory allocations for constant-size T2. |
1708 | * |
1709 | * T2 is used for comparison only and the 3 limbs are assigned explicitly, |
1710 | * so nobody increase the size of the MPI and we're safe to use an on-stack |
1711 | * buffer. |
1712 | */ |
1713 | T2.s = 1; |
1714 | T2.n = sizeof(TP2) / sizeof(*TP2); |
1715 | T2.p = TP2; |
1716 | |
1717 | if (mbedtls_mpi_cmp_abs(A, B) < 0) { |
1718 | if (Q != NULL) { |
1719 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0)); |
1720 | } |
1721 | if (R != NULL) { |
1722 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A)); |
1723 | } |
1724 | return 0; |
1725 | } |
1726 | |
1727 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A)); |
1728 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B)); |
1729 | X.s = Y.s = 1; |
1730 | |
1731 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2)); |
1732 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0)); |
1733 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2)); |
1734 | |
1735 | k = mbedtls_mpi_bitlen(&Y) % biL; |
1736 | if (k < biL - 1) { |
1737 | k = biL - 1 - k; |
1738 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k)); |
1739 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k)); |
1740 | } else { |
1741 | k = 0; |
1742 | } |
1743 | |
1744 | n = X.n - 1; |
1745 | t = Y.n - 1; |
1746 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t))); |
1747 | |
1748 | while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) { |
1749 | Z.p[n - t]++; |
1750 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y)); |
1751 | } |
1752 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t))); |
1753 | |
1754 | for (i = n; i > t; i--) { |
1755 | if (X.p[i] >= Y.p[t]) { |
1756 | Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u; |
1757 | } else { |
1758 | Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1], |
1759 | Y.p[t], NULL); |
1760 | } |
1761 | |
1762 | T2.p[0] = (i < 2) ? 0 : X.p[i - 2]; |
1763 | T2.p[1] = (i < 1) ? 0 : X.p[i - 1]; |
1764 | T2.p[2] = X.p[i]; |
1765 | |
1766 | Z.p[i - t - 1]++; |
1767 | do { |
1768 | Z.p[i - t - 1]--; |
1769 | |
1770 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0)); |
1771 | T1.p[0] = (t < 1) ? 0 : Y.p[t - 1]; |
1772 | T1.p[1] = Y.p[t]; |
1773 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1])); |
1774 | } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0); |
1775 | |
1776 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1])); |
1777 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1))); |
1778 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1)); |
1779 | |
1780 | if (mbedtls_mpi_cmp_int(&X, 0) < 0) { |
1781 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y)); |
1782 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1))); |
1783 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1)); |
1784 | Z.p[i - t - 1]--; |
1785 | } |
1786 | } |
1787 | |
1788 | if (Q != NULL) { |
1789 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z)); |
1790 | Q->s = A->s * B->s; |
1791 | } |
1792 | |
1793 | if (R != NULL) { |
1794 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k)); |
1795 | X.s = A->s; |
1796 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X)); |
1797 | |
1798 | if (mbedtls_mpi_cmp_int(R, 0) == 0) { |
1799 | R->s = 1; |
1800 | } |
1801 | } |
1802 | |
1803 | cleanup: |
1804 | |
1805 | mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z); |
1806 | mbedtls_mpi_free(&T1); |
1807 | mbedtls_platform_zeroize(TP2, sizeof(TP2)); |
1808 | |
1809 | return ret; |
1810 | } |
1811 | |
1812 | /* |
1813 | * Division by int: A = Q * b + R |
1814 | */ |
1815 | int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R, |
1816 | const mbedtls_mpi *A, |
1817 | mbedtls_mpi_sint b) |
1818 | { |
1819 | mbedtls_mpi B; |
1820 | mbedtls_mpi_uint p[1]; |
1821 | MPI_VALIDATE_RET(A != NULL); |
1822 | |
1823 | p[0] = mpi_sint_abs(b); |
1824 | B.s = (b < 0) ? -1 : 1; |
1825 | B.n = 1; |
1826 | B.p = p; |
1827 | |
1828 | return mbedtls_mpi_div_mpi(Q, R, A, &B); |
1829 | } |
1830 | |
1831 | /* |
1832 | * Modulo: R = A mod B |
1833 | */ |
1834 | int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B) |
1835 | { |
1836 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
1837 | MPI_VALIDATE_RET(R != NULL); |
1838 | MPI_VALIDATE_RET(A != NULL); |
1839 | MPI_VALIDATE_RET(B != NULL); |
1840 | |
1841 | if (mbedtls_mpi_cmp_int(B, 0) < 0) { |
1842 | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1843 | } |
1844 | |
1845 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B)); |
1846 | |
1847 | while (mbedtls_mpi_cmp_int(R, 0) < 0) { |
1848 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B)); |
1849 | } |
1850 | |
1851 | while (mbedtls_mpi_cmp_mpi(R, B) >= 0) { |
1852 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B)); |
1853 | } |
1854 | |
1855 | cleanup: |
1856 | |
1857 | return ret; |
1858 | } |
1859 | |
1860 | /* |
1861 | * Modulo: r = A mod b |
1862 | */ |
1863 | int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b) |
1864 | { |
1865 | size_t i; |
1866 | mbedtls_mpi_uint x, y, z; |
1867 | MPI_VALIDATE_RET(r != NULL); |
1868 | MPI_VALIDATE_RET(A != NULL); |
1869 | |
1870 | if (b == 0) { |
1871 | return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO; |
1872 | } |
1873 | |
1874 | if (b < 0) { |
1875 | return MBEDTLS_ERR_MPI_NEGATIVE_VALUE; |
1876 | } |
1877 | |
1878 | /* |
1879 | * handle trivial cases |
1880 | */ |
1881 | if (b == 1 || A->n == 0) { |
1882 | *r = 0; |
1883 | return 0; |
1884 | } |
1885 | |
1886 | if (b == 2) { |
1887 | *r = A->p[0] & 1; |
1888 | return 0; |
1889 | } |
1890 | |
1891 | /* |
1892 | * general case |
1893 | */ |
1894 | for (i = A->n, y = 0; i > 0; i--) { |
1895 | x = A->p[i - 1]; |
1896 | y = (y << biH) | (x >> biH); |
1897 | z = y / b; |
1898 | y -= z * b; |
1899 | |
1900 | x <<= biH; |
1901 | y = (y << biH) | (x >> biH); |
1902 | z = y / b; |
1903 | y -= z * b; |
1904 | } |
1905 | |
1906 | /* |
1907 | * If A is negative, then the current y represents a negative value. |
1908 | * Flipping it to the positive side. |
1909 | */ |
1910 | if (A->s < 0 && y != 0) { |
1911 | y = b - y; |
1912 | } |
1913 | |
1914 | *r = y; |
1915 | |
1916 | return 0; |
1917 | } |
1918 | |
1919 | /* |
1920 | * Fast Montgomery initialization (thanks to Tom St Denis) |
1921 | */ |
1922 | static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N) |
1923 | { |
1924 | mbedtls_mpi_uint x, m0 = N->p[0]; |
1925 | unsigned int i; |
1926 | |
1927 | x = m0; |
1928 | x += ((m0 + 2) & 4) << 1; |
1929 | |
1930 | for (i = biL; i >= 8; i /= 2) { |
1931 | x *= (2 - (m0 * x)); |
1932 | } |
1933 | |
1934 | *mm = ~x + 1; |
1935 | } |
1936 | |
1937 | /** Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36) |
1938 | * |
1939 | * \param[in,out] A One of the numbers to multiply. |
1940 | * It must have at least as many limbs as N |
1941 | * (A->n >= N->n), and any limbs beyond n are ignored. |
1942 | * On successful completion, A contains the result of |
1943 | * the multiplication A * B * R^-1 mod N where |
1944 | * R = (2^ciL)^n. |
1945 | * \param[in] B One of the numbers to multiply. |
1946 | * It must be nonzero and must not have more limbs than N |
1947 | * (B->n <= N->n). |
1948 | * \param[in] N The modulo. N must be odd. |
1949 | * \param mm The value calculated by `mpi_montg_init(&mm, N)`. |
1950 | * This is -N^-1 mod 2^ciL. |
1951 | * \param[in,out] T A bignum for temporary storage. |
1952 | * It must be at least twice the limb size of N plus 2 |
1953 | * (T->n >= 2 * (N->n + 1)). |
1954 | * Its initial content is unused and |
1955 | * its final content is indeterminate. |
1956 | * Note that unlike the usual convention in the library |
1957 | * for `const mbedtls_mpi*`, the content of T can change. |
1958 | */ |
1959 | static void mpi_montmul(mbedtls_mpi *A, |
1960 | const mbedtls_mpi *B, |
1961 | const mbedtls_mpi *N, |
1962 | mbedtls_mpi_uint mm, |
1963 | const mbedtls_mpi *T) |
1964 | { |
1965 | size_t i, n, m; |
1966 | mbedtls_mpi_uint u0, u1, *d; |
1967 | |
1968 | memset(T->p, 0, T->n * ciL); |
1969 | |
1970 | d = T->p; |
1971 | n = N->n; |
1972 | m = (B->n < n) ? B->n : n; |
1973 | |
1974 | for (i = 0; i < n; i++) { |
1975 | /* |
1976 | * T = (T + u0*B + u1*N) / 2^biL |
1977 | */ |
1978 | u0 = A->p[i]; |
1979 | u1 = (d[0] + u0 * B->p[0]) * mm; |
1980 | |
1981 | mpi_mul_hlp(m, B->p, d, u0); |
1982 | mpi_mul_hlp(n, N->p, d, u1); |
1983 | |
1984 | *d++ = u0; d[n + 1] = 0; |
1985 | } |
1986 | |
1987 | /* At this point, d is either the desired result or the desired result |
1988 | * plus N. We now potentially subtract N, avoiding leaking whether the |
1989 | * subtraction is performed through side channels. */ |
1990 | |
1991 | /* Copy the n least significant limbs of d to A, so that |
1992 | * A = d if d < N (recall that N has n limbs). */ |
1993 | memcpy(A->p, d, n * ciL); |
1994 | /* If d >= N then we want to set A to d - N. To prevent timing attacks, |
1995 | * do the calculation without using conditional tests. */ |
1996 | /* Set d to d0 + (2^biL)^n - N where d0 is the current value of d. */ |
1997 | d[n] += 1; |
1998 | d[n] -= mpi_sub_hlp(n, d, d, N->p); |
1999 | /* If d0 < N then d < (2^biL)^n |
2000 | * so d[n] == 0 and we want to keep A as it is. |
2001 | * If d0 >= N then d >= (2^biL)^n, and d <= (2^biL)^n + N < 2 * (2^biL)^n |
2002 | * so d[n] == 1 and we want to set A to the result of the subtraction |
2003 | * which is d - (2^biL)^n, i.e. the n least significant limbs of d. |
2004 | * This exactly corresponds to a conditional assignment. */ |
2005 | mbedtls_ct_mpi_uint_cond_assign(n, A->p, d, (unsigned char) d[n]); |
2006 | } |
2007 | |
2008 | /* |
2009 | * Montgomery reduction: A = A * R^-1 mod N |
2010 | * |
2011 | * See mpi_montmul() regarding constraints and guarantees on the parameters. |
2012 | */ |
2013 | static void mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N, |
2014 | mbedtls_mpi_uint mm, const mbedtls_mpi *T) |
2015 | { |
2016 | mbedtls_mpi_uint z = 1; |
2017 | mbedtls_mpi U; |
2018 | |
2019 | U.n = U.s = (int) z; |
2020 | U.p = &z; |
2021 | |
2022 | mpi_montmul(A, &U, N, mm, T); |
2023 | } |
2024 | |
2025 | /** |
2026 | * Select an MPI from a table without leaking the index. |
2027 | * |
2028 | * This is functionally equivalent to mbedtls_mpi_copy(R, T[idx]) except it |
2029 | * reads the entire table in order to avoid leaking the value of idx to an |
2030 | * attacker able to observe memory access patterns. |
2031 | * |
2032 | * \param[out] R Where to write the selected MPI. |
2033 | * \param[in] T The table to read from. |
2034 | * \param[in] T_size The number of elements in the table. |
2035 | * \param[in] idx The index of the element to select; |
2036 | * this must satisfy 0 <= idx < T_size. |
2037 | * |
2038 | * \return \c 0 on success, or a negative error code. |
2039 | */ |
2040 | static int mpi_select(mbedtls_mpi *R, const mbedtls_mpi *T, size_t T_size, size_t idx) |
2041 | { |
2042 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2043 | |
2044 | for (size_t i = 0; i < T_size; i++) { |
2045 | MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(R, &T[i], |
2046 | (unsigned char) mbedtls_ct_size_bool_eq(i, |
2047 | idx))); |
2048 | } |
2049 | |
2050 | cleanup: |
2051 | return ret; |
2052 | } |
2053 | |
2054 | /* |
2055 | * Sliding-window exponentiation: X = A^E mod N (HAC 14.85) |
2056 | */ |
2057 | int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, |
2058 | const mbedtls_mpi *E, const mbedtls_mpi *N, |
2059 | mbedtls_mpi *prec_RR) |
2060 | { |
2061 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2062 | size_t window_bitsize; |
2063 | size_t i, j, nblimbs; |
2064 | size_t bufsize, nbits; |
2065 | size_t exponent_bits_in_window = 0; |
2066 | mbedtls_mpi_uint ei, mm, state; |
2067 | mbedtls_mpi RR, T, W[(size_t) 1 << MBEDTLS_MPI_WINDOW_SIZE], WW, Apos; |
2068 | int neg; |
2069 | |
2070 | MPI_VALIDATE_RET(X != NULL); |
2071 | MPI_VALIDATE_RET(A != NULL); |
2072 | MPI_VALIDATE_RET(E != NULL); |
2073 | MPI_VALIDATE_RET(N != NULL); |
2074 | |
2075 | if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) { |
2076 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2077 | } |
2078 | |
2079 | if (mbedtls_mpi_cmp_int(E, 0) < 0) { |
2080 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2081 | } |
2082 | |
2083 | if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS || |
2084 | mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) { |
2085 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2086 | } |
2087 | |
2088 | /* |
2089 | * Init temps and window size |
2090 | */ |
2091 | mpi_montg_init(&mm, N); |
2092 | mbedtls_mpi_init(&RR); mbedtls_mpi_init(&T); |
2093 | mbedtls_mpi_init(&Apos); |
2094 | mbedtls_mpi_init(&WW); |
2095 | memset(W, 0, sizeof(W)); |
2096 | |
2097 | i = mbedtls_mpi_bitlen(E); |
2098 | |
2099 | window_bitsize = (i > 671) ? 6 : (i > 239) ? 5 : |
2100 | (i > 79) ? 4 : (i > 23) ? 3 : 1; |
2101 | |
2102 | #if (MBEDTLS_MPI_WINDOW_SIZE < 6) |
2103 | if (window_bitsize > MBEDTLS_MPI_WINDOW_SIZE) { |
2104 | window_bitsize = MBEDTLS_MPI_WINDOW_SIZE; |
2105 | } |
2106 | #endif |
2107 | |
2108 | const size_t w_table_used_size = (size_t) 1 << window_bitsize; |
2109 | |
2110 | /* |
2111 | * This function is not constant-trace: its memory accesses depend on the |
2112 | * exponent value. To defend against timing attacks, callers (such as RSA |
2113 | * and DHM) should use exponent blinding. However this is not enough if the |
2114 | * adversary can find the exponent in a single trace, so this function |
2115 | * takes extra precautions against adversaries who can observe memory |
2116 | * access patterns. |
2117 | * |
2118 | * This function performs a series of multiplications by table elements and |
2119 | * squarings, and we want the prevent the adversary from finding out which |
2120 | * table element was used, and from distinguishing between multiplications |
2121 | * and squarings. Firstly, when multiplying by an element of the window |
2122 | * W[i], we do a constant-trace table lookup to obfuscate i. This leaves |
2123 | * squarings as having a different memory access patterns from other |
2124 | * multiplications. So secondly, we put the accumulator X in the table as |
2125 | * well, and also do a constant-trace table lookup to multiply by X. |
2126 | * |
2127 | * This way, all multiplications take the form of a lookup-and-multiply. |
2128 | * The number of lookup-and-multiply operations inside each iteration of |
2129 | * the main loop still depends on the bits of the exponent, but since the |
2130 | * other operations in the loop don't have an easily recognizable memory |
2131 | * trace, an adversary is unlikely to be able to observe the exact |
2132 | * patterns. |
2133 | * |
2134 | * An adversary may still be able to recover the exponent if they can |
2135 | * observe both memory accesses and branches. However, branch prediction |
2136 | * exploitation typically requires many traces of execution over the same |
2137 | * data, which is defeated by randomized blinding. |
2138 | * |
2139 | * To achieve this, we make a copy of X and we use the table entry in each |
2140 | * calculation from this point on. |
2141 | */ |
2142 | const size_t x_index = 0; |
2143 | mbedtls_mpi_init(&W[x_index]); |
2144 | mbedtls_mpi_copy(&W[x_index], X); |
2145 | |
2146 | j = N->n + 1; |
2147 | /* All W[i] and X must have at least N->n limbs for the mpi_montmul() |
2148 | * and mpi_montred() calls later. Here we ensure that W[1] and X are |
2149 | * large enough, and later we'll grow other W[i] to the same length. |
2150 | * They must not be shrunk midway through this function! |
2151 | */ |
2152 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[x_index], j)); |
2153 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], j)); |
2154 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2)); |
2155 | |
2156 | /* |
2157 | * Compensate for negative A (and correct at the end) |
2158 | */ |
2159 | neg = (A->s == -1); |
2160 | if (neg) { |
2161 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A)); |
2162 | Apos.s = 1; |
2163 | A = &Apos; |
2164 | } |
2165 | |
2166 | /* |
2167 | * If 1st call, pre-compute R^2 mod N |
2168 | */ |
2169 | if (prec_RR == NULL || prec_RR->p == NULL) { |
2170 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1)); |
2171 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL)); |
2172 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N)); |
2173 | |
2174 | if (prec_RR != NULL) { |
2175 | memcpy(prec_RR, &RR, sizeof(mbedtls_mpi)); |
2176 | } |
2177 | } else { |
2178 | memcpy(&RR, prec_RR, sizeof(mbedtls_mpi)); |
2179 | } |
2180 | |
2181 | /* |
2182 | * W[1] = A * R^2 * R^-1 mod N = A * R mod N |
2183 | */ |
2184 | if (mbedtls_mpi_cmp_mpi(A, N) >= 0) { |
2185 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N)); |
2186 | /* This should be a no-op because W[1] is already that large before |
2187 | * mbedtls_mpi_mod_mpi(), but it's necessary to avoid an overflow |
2188 | * in mpi_montmul() below, so let's make sure. */ |
2189 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1], N->n + 1)); |
2190 | } else { |
2191 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A)); |
2192 | } |
2193 | |
2194 | /* Note that this is safe because W[1] always has at least N->n limbs |
2195 | * (it grew above and was preserved by mbedtls_mpi_copy()). */ |
2196 | mpi_montmul(&W[1], &RR, N, mm, &T); |
2197 | |
2198 | /* |
2199 | * W[x_index] = R^2 * R^-1 mod N = R mod N |
2200 | */ |
2201 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[x_index], &RR)); |
2202 | mpi_montred(&W[x_index], N, mm, &T); |
2203 | |
2204 | |
2205 | if (window_bitsize > 1) { |
2206 | /* |
2207 | * W[i] = W[1] ^ i |
2208 | * |
2209 | * The first bit of the sliding window is always 1 and therefore we |
2210 | * only need to store the second half of the table. |
2211 | * |
2212 | * (There are two special elements in the table: W[0] for the |
2213 | * accumulator/result and W[1] for A in Montgomery form. Both of these |
2214 | * are already set at this point.) |
2215 | */ |
2216 | j = w_table_used_size / 2; |
2217 | |
2218 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1)); |
2219 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1])); |
2220 | |
2221 | for (i = 0; i < window_bitsize - 1; i++) { |
2222 | mpi_montmul(&W[j], &W[j], N, mm, &T); |
2223 | } |
2224 | |
2225 | /* |
2226 | * W[i] = W[i - 1] * W[1] |
2227 | */ |
2228 | for (i = j + 1; i < w_table_used_size; i++) { |
2229 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1)); |
2230 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1])); |
2231 | |
2232 | mpi_montmul(&W[i], &W[1], N, mm, &T); |
2233 | } |
2234 | } |
2235 | |
2236 | nblimbs = E->n; |
2237 | bufsize = 0; |
2238 | nbits = 0; |
2239 | state = 0; |
2240 | |
2241 | while (1) { |
2242 | if (bufsize == 0) { |
2243 | if (nblimbs == 0) { |
2244 | break; |
2245 | } |
2246 | |
2247 | nblimbs--; |
2248 | |
2249 | bufsize = sizeof(mbedtls_mpi_uint) << 3; |
2250 | } |
2251 | |
2252 | bufsize--; |
2253 | |
2254 | ei = (E->p[nblimbs] >> bufsize) & 1; |
2255 | |
2256 | /* |
2257 | * skip leading 0s |
2258 | */ |
2259 | if (ei == 0 && state == 0) { |
2260 | continue; |
2261 | } |
2262 | |
2263 | if (ei == 0 && state == 1) { |
2264 | /* |
2265 | * out of window, square W[x_index] |
2266 | */ |
2267 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); |
2268 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
2269 | continue; |
2270 | } |
2271 | |
2272 | /* |
2273 | * add ei to current window |
2274 | */ |
2275 | state = 2; |
2276 | |
2277 | nbits++; |
2278 | exponent_bits_in_window |= (ei << (window_bitsize - nbits)); |
2279 | |
2280 | if (nbits == window_bitsize) { |
2281 | /* |
2282 | * W[x_index] = W[x_index]^window_bitsize R^-1 mod N |
2283 | */ |
2284 | for (i = 0; i < window_bitsize; i++) { |
2285 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, |
2286 | x_index)); |
2287 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
2288 | } |
2289 | |
2290 | /* |
2291 | * W[x_index] = W[x_index] * W[exponent_bits_in_window] R^-1 mod N |
2292 | */ |
2293 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, |
2294 | exponent_bits_in_window)); |
2295 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
2296 | |
2297 | state--; |
2298 | nbits = 0; |
2299 | exponent_bits_in_window = 0; |
2300 | } |
2301 | } |
2302 | |
2303 | /* |
2304 | * process the remaining bits |
2305 | */ |
2306 | for (i = 0; i < nbits; i++) { |
2307 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, x_index)); |
2308 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
2309 | |
2310 | exponent_bits_in_window <<= 1; |
2311 | |
2312 | if ((exponent_bits_in_window & ((size_t) 1 << window_bitsize)) != 0) { |
2313 | MBEDTLS_MPI_CHK(mpi_select(&WW, W, w_table_used_size, 1)); |
2314 | mpi_montmul(&W[x_index], &WW, N, mm, &T); |
2315 | } |
2316 | } |
2317 | |
2318 | /* |
2319 | * W[x_index] = A^E * R * R^-1 mod N = A^E mod N |
2320 | */ |
2321 | mpi_montred(&W[x_index], N, mm, &T); |
2322 | |
2323 | if (neg && E->n != 0 && (E->p[0] & 1) != 0) { |
2324 | W[x_index].s = -1; |
2325 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&W[x_index], N, &W[x_index])); |
2326 | } |
2327 | |
2328 | /* |
2329 | * Load the result in the output variable. |
2330 | */ |
2331 | mbedtls_mpi_copy(X, &W[x_index]); |
2332 | |
2333 | cleanup: |
2334 | |
2335 | /* The first bit of the sliding window is always 1 and therefore the first |
2336 | * half of the table was unused. */ |
2337 | for (i = w_table_used_size/2; i < w_table_used_size; i++) { |
2338 | mbedtls_mpi_free(&W[i]); |
2339 | } |
2340 | |
2341 | mbedtls_mpi_free(&W[x_index]); |
2342 | mbedtls_mpi_free(&W[1]); |
2343 | mbedtls_mpi_free(&T); |
2344 | mbedtls_mpi_free(&Apos); |
2345 | mbedtls_mpi_free(&WW); |
2346 | |
2347 | if (prec_RR == NULL || prec_RR->p == NULL) { |
2348 | mbedtls_mpi_free(&RR); |
2349 | } |
2350 | |
2351 | return ret; |
2352 | } |
2353 | |
2354 | /* |
2355 | * Greatest common divisor: G = gcd(A, B) (HAC 14.54) |
2356 | */ |
2357 | int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B) |
2358 | { |
2359 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2360 | size_t lz, lzt; |
2361 | mbedtls_mpi TA, TB; |
2362 | |
2363 | MPI_VALIDATE_RET(G != NULL); |
2364 | MPI_VALIDATE_RET(A != NULL); |
2365 | MPI_VALIDATE_RET(B != NULL); |
2366 | |
2367 | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB); |
2368 | |
2369 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); |
2370 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); |
2371 | |
2372 | lz = mbedtls_mpi_lsb(&TA); |
2373 | lzt = mbedtls_mpi_lsb(&TB); |
2374 | |
2375 | /* The loop below gives the correct result when A==0 but not when B==0. |
2376 | * So have a special case for B==0. Leverage the fact that we just |
2377 | * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test |
2378 | * slightly more efficient than cmp_int(). */ |
2379 | if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) { |
2380 | ret = mbedtls_mpi_copy(G, A); |
2381 | goto cleanup; |
2382 | } |
2383 | |
2384 | if (lzt < lz) { |
2385 | lz = lzt; |
2386 | } |
2387 | |
2388 | TA.s = TB.s = 1; |
2389 | |
2390 | /* We mostly follow the procedure described in HAC 14.54, but with some |
2391 | * minor differences: |
2392 | * - Sequences of multiplications or divisions by 2 are grouped into a |
2393 | * single shift operation. |
2394 | * - The procedure in HAC assumes that 0 < TB <= TA. |
2395 | * - The condition TB <= TA is not actually necessary for correctness. |
2396 | * TA and TB have symmetric roles except for the loop termination |
2397 | * condition, and the shifts at the beginning of the loop body |
2398 | * remove any significance from the ordering of TA vs TB before |
2399 | * the shifts. |
2400 | * - If TA = 0, the loop goes through 0 iterations and the result is |
2401 | * correctly TB. |
2402 | * - The case TB = 0 was short-circuited above. |
2403 | * |
2404 | * For the correctness proof below, decompose the original values of |
2405 | * A and B as |
2406 | * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1 |
2407 | * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1 |
2408 | * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'), |
2409 | * and gcd(A',B') is odd or 0. |
2410 | * |
2411 | * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB). |
2412 | * The code maintains the following invariant: |
2413 | * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I) |
2414 | */ |
2415 | |
2416 | /* Proof that the loop terminates: |
2417 | * At each iteration, either the right-shift by 1 is made on a nonzero |
2418 | * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases |
2419 | * by at least 1, or the right-shift by 1 is made on zero and then |
2420 | * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted |
2421 | * since in that case TB is calculated from TB-TA with the condition TB>TA). |
2422 | */ |
2423 | while (mbedtls_mpi_cmp_int(&TA, 0) != 0) { |
2424 | /* Divisions by 2 preserve the invariant (I). */ |
2425 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA))); |
2426 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB))); |
2427 | |
2428 | /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd, |
2429 | * TA-TB is even so the division by 2 has an integer result. |
2430 | * Invariant (I) is preserved since any odd divisor of both TA and TB |
2431 | * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2 |
2432 | * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also |
2433 | * divides TA. |
2434 | */ |
2435 | if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) { |
2436 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB)); |
2437 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1)); |
2438 | } else { |
2439 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA)); |
2440 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1)); |
2441 | } |
2442 | /* Note that one of TA or TB is still odd. */ |
2443 | } |
2444 | |
2445 | /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k. |
2446 | * At the loop exit, TA = 0, so gcd(TA,TB) = TB. |
2447 | * - If there was at least one loop iteration, then one of TA or TB is odd, |
2448 | * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case, |
2449 | * lz = min(a,b) so gcd(A,B) = 2^lz * TB. |
2450 | * - If there was no loop iteration, then A was 0, and gcd(A,B) = B. |
2451 | * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well. |
2452 | */ |
2453 | |
2454 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz)); |
2455 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB)); |
2456 | |
2457 | cleanup: |
2458 | |
2459 | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB); |
2460 | |
2461 | return ret; |
2462 | } |
2463 | |
2464 | /* Fill X with n_bytes random bytes. |
2465 | * X must already have room for those bytes. |
2466 | * The ordering of the bytes returned from the RNG is suitable for |
2467 | * deterministic ECDSA (see RFC 6979 §3.3 and mbedtls_mpi_random()). |
2468 | * The size and sign of X are unchanged. |
2469 | * n_bytes must not be 0. |
2470 | */ |
2471 | static int mpi_fill_random_internal( |
2472 | mbedtls_mpi *X, size_t n_bytes, |
2473 | int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
2474 | { |
2475 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2476 | const size_t limbs = CHARS_TO_LIMBS(n_bytes); |
2477 | const size_t overhead = (limbs * ciL) - n_bytes; |
2478 | |
2479 | if (X->n < limbs) { |
2480 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2481 | } |
2482 | |
2483 | memset(X->p, 0, overhead); |
2484 | memset((unsigned char *) X->p + limbs * ciL, 0, (X->n - limbs) * ciL); |
2485 | MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X->p + overhead, n_bytes)); |
2486 | mpi_bigendian_to_host(X->p, limbs); |
2487 | |
2488 | cleanup: |
2489 | return ret; |
2490 | } |
2491 | |
2492 | /* |
2493 | * Fill X with size bytes of random. |
2494 | * |
2495 | * Use a temporary bytes representation to make sure the result is the same |
2496 | * regardless of the platform endianness (useful when f_rng is actually |
2497 | * deterministic, eg for tests). |
2498 | */ |
2499 | int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size, |
2500 | int (*f_rng)(void *, unsigned char *, size_t), |
2501 | void *p_rng) |
2502 | { |
2503 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2504 | size_t const limbs = CHARS_TO_LIMBS(size); |
2505 | |
2506 | MPI_VALIDATE_RET(X != NULL); |
2507 | MPI_VALIDATE_RET(f_rng != NULL); |
2508 | |
2509 | /* Ensure that target MPI has exactly the necessary number of limbs */ |
2510 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs)); |
2511 | if (size == 0) { |
2512 | return 0; |
2513 | } |
2514 | |
2515 | ret = mpi_fill_random_internal(X, size, f_rng, p_rng); |
2516 | |
2517 | cleanup: |
2518 | return ret; |
2519 | } |
2520 | |
2521 | int mbedtls_mpi_random(mbedtls_mpi *X, |
2522 | mbedtls_mpi_sint min, |
2523 | const mbedtls_mpi *N, |
2524 | int (*f_rng)(void *, unsigned char *, size_t), |
2525 | void *p_rng) |
2526 | { |
2527 | int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2528 | int count; |
2529 | unsigned lt_lower = 1, lt_upper = 0; |
2530 | size_t n_bits = mbedtls_mpi_bitlen(N); |
2531 | size_t n_bytes = (n_bits + 7) / 8; |
2532 | mbedtls_mpi lower_bound; |
2533 | |
2534 | if (min < 0) { |
2535 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2536 | } |
2537 | if (mbedtls_mpi_cmp_int(N, min) <= 0) { |
2538 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2539 | } |
2540 | |
2541 | /* |
2542 | * When min == 0, each try has at worst a probability 1/2 of failing |
2543 | * (the msb has a probability 1/2 of being 0, and then the result will |
2544 | * be < N), so after 30 tries failure probability is a most 2**(-30). |
2545 | * |
2546 | * When N is just below a power of 2, as is the case when generating |
2547 | * a random scalar on most elliptic curves, 1 try is enough with |
2548 | * overwhelming probability. When N is just above a power of 2, |
2549 | * as when generating a random scalar on secp224k1, each try has |
2550 | * a probability of failing that is almost 1/2. |
2551 | * |
2552 | * The probabilities are almost the same if min is nonzero but negligible |
2553 | * compared to N. This is always the case when N is crypto-sized, but |
2554 | * it's convenient to support small N for testing purposes. When N |
2555 | * is small, use a higher repeat count, otherwise the probability of |
2556 | * failure is macroscopic. |
2557 | */ |
2558 | count = (n_bytes > 4 ? 30 : 250); |
2559 | |
2560 | mbedtls_mpi_init(&lower_bound); |
2561 | |
2562 | /* Ensure that target MPI has exactly the same number of limbs |
2563 | * as the upper bound, even if the upper bound has leading zeros. |
2564 | * This is necessary for the mbedtls_mpi_lt_mpi_ct() check. */ |
2565 | MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, N->n)); |
2566 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&lower_bound, N->n)); |
2567 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&lower_bound, min)); |
2568 | |
2569 | /* |
2570 | * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA) |
2571 | * when f_rng is a suitably parametrized instance of HMAC_DRBG: |
2572 | * - use the same byte ordering; |
2573 | * - keep the leftmost n_bits bits of the generated octet string; |
2574 | * - try until result is in the desired range. |
2575 | * This also avoids any bias, which is especially important for ECDSA. |
2576 | */ |
2577 | do { |
2578 | MBEDTLS_MPI_CHK(mpi_fill_random_internal(X, n_bytes, f_rng, p_rng)); |
2579 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, 8 * n_bytes - n_bits)); |
2580 | |
2581 | if (--count == 0) { |
2582 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2583 | goto cleanup; |
2584 | } |
2585 | |
2586 | MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, &lower_bound, <_lower)); |
2587 | MBEDTLS_MPI_CHK(mbedtls_mpi_lt_mpi_ct(X, N, <_upper)); |
2588 | } while (lt_lower != 0 || lt_upper == 0); |
2589 | |
2590 | cleanup: |
2591 | mbedtls_mpi_free(&lower_bound); |
2592 | return ret; |
2593 | } |
2594 | |
2595 | /* |
2596 | * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64) |
2597 | */ |
2598 | int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N) |
2599 | { |
2600 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2601 | mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2; |
2602 | MPI_VALIDATE_RET(X != NULL); |
2603 | MPI_VALIDATE_RET(A != NULL); |
2604 | MPI_VALIDATE_RET(N != NULL); |
2605 | |
2606 | if (mbedtls_mpi_cmp_int(N, 1) <= 0) { |
2607 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2608 | } |
2609 | |
2610 | mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2); |
2611 | mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV); |
2612 | mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2); |
2613 | |
2614 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N)); |
2615 | |
2616 | if (mbedtls_mpi_cmp_int(&G, 1) != 0) { |
2617 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2618 | goto cleanup; |
2619 | } |
2620 | |
2621 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N)); |
2622 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA)); |
2623 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N)); |
2624 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N)); |
2625 | |
2626 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1)); |
2627 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0)); |
2628 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0)); |
2629 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1)); |
2630 | |
2631 | do { |
2632 | while ((TU.p[0] & 1) == 0) { |
2633 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1)); |
2634 | |
2635 | if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) { |
2636 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB)); |
2637 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA)); |
2638 | } |
2639 | |
2640 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1)); |
2641 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1)); |
2642 | } |
2643 | |
2644 | while ((TV.p[0] & 1) == 0) { |
2645 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1)); |
2646 | |
2647 | if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) { |
2648 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB)); |
2649 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA)); |
2650 | } |
2651 | |
2652 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1)); |
2653 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1)); |
2654 | } |
2655 | |
2656 | if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) { |
2657 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV)); |
2658 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1)); |
2659 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2)); |
2660 | } else { |
2661 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU)); |
2662 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1)); |
2663 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2)); |
2664 | } |
2665 | } while (mbedtls_mpi_cmp_int(&TU, 0) != 0); |
2666 | |
2667 | while (mbedtls_mpi_cmp_int(&V1, 0) < 0) { |
2668 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N)); |
2669 | } |
2670 | |
2671 | while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) { |
2672 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N)); |
2673 | } |
2674 | |
2675 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1)); |
2676 | |
2677 | cleanup: |
2678 | |
2679 | mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2); |
2680 | mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV); |
2681 | mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2); |
2682 | |
2683 | return ret; |
2684 | } |
2685 | |
2686 | #if defined(MBEDTLS_GENPRIME) |
2687 | |
2688 | static const int small_prime[] = |
2689 | { |
2690 | 3, 5, 7, 11, 13, 17, 19, 23, |
2691 | 29, 31, 37, 41, 43, 47, 53, 59, |
2692 | 61, 67, 71, 73, 79, 83, 89, 97, |
2693 | 101, 103, 107, 109, 113, 127, 131, 137, |
2694 | 139, 149, 151, 157, 163, 167, 173, 179, |
2695 | 181, 191, 193, 197, 199, 211, 223, 227, |
2696 | 229, 233, 239, 241, 251, 257, 263, 269, |
2697 | 271, 277, 281, 283, 293, 307, 311, 313, |
2698 | 317, 331, 337, 347, 349, 353, 359, 367, |
2699 | 373, 379, 383, 389, 397, 401, 409, 419, |
2700 | 421, 431, 433, 439, 443, 449, 457, 461, |
2701 | 463, 467, 479, 487, 491, 499, 503, 509, |
2702 | 521, 523, 541, 547, 557, 563, 569, 571, |
2703 | 577, 587, 593, 599, 601, 607, 613, 617, |
2704 | 619, 631, 641, 643, 647, 653, 659, 661, |
2705 | 673, 677, 683, 691, 701, 709, 719, 727, |
2706 | 733, 739, 743, 751, 757, 761, 769, 773, |
2707 | 787, 797, 809, 811, 821, 823, 827, 829, |
2708 | 839, 853, 857, 859, 863, 877, 881, 883, |
2709 | 887, 907, 911, 919, 929, 937, 941, 947, |
2710 | 953, 967, 971, 977, 983, 991, 997, -103 |
2711 | }; |
2712 | |
2713 | /* |
2714 | * Small divisors test (X must be positive) |
2715 | * |
2716 | * Return values: |
2717 | * 0: no small factor (possible prime, more tests needed) |
2718 | * 1: certain prime |
2719 | * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime |
2720 | * other negative: error |
2721 | */ |
2722 | static int mpi_check_small_factors(const mbedtls_mpi *X) |
2723 | { |
2724 | int ret = 0; |
2725 | size_t i; |
2726 | mbedtls_mpi_uint r; |
2727 | |
2728 | if ((X->p[0] & 1) == 0) { |
2729 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2730 | } |
2731 | |
2732 | for (i = 0; small_prime[i] > 0; i++) { |
2733 | if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0) { |
2734 | return 1; |
2735 | } |
2736 | |
2737 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i])); |
2738 | |
2739 | if (r == 0) { |
2740 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2741 | } |
2742 | } |
2743 | |
2744 | cleanup: |
2745 | return ret; |
2746 | } |
2747 | |
2748 | /* |
2749 | * Miller-Rabin pseudo-primality test (HAC 4.24) |
2750 | */ |
2751 | static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds, |
2752 | int (*f_rng)(void *, unsigned char *, size_t), |
2753 | void *p_rng) |
2754 | { |
2755 | int ret, count; |
2756 | size_t i, j, k, s; |
2757 | mbedtls_mpi W, R, T, A, RR; |
2758 | |
2759 | MPI_VALIDATE_RET(X != NULL); |
2760 | MPI_VALIDATE_RET(f_rng != NULL); |
2761 | |
2762 | mbedtls_mpi_init(&W); mbedtls_mpi_init(&R); |
2763 | mbedtls_mpi_init(&T); mbedtls_mpi_init(&A); |
2764 | mbedtls_mpi_init(&RR); |
2765 | |
2766 | /* |
2767 | * W = |X| - 1 |
2768 | * R = W >> lsb( W ) |
2769 | */ |
2770 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1)); |
2771 | s = mbedtls_mpi_lsb(&W); |
2772 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W)); |
2773 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s)); |
2774 | |
2775 | for (i = 0; i < rounds; i++) { |
2776 | /* |
2777 | * pick a random A, 1 < A < |X| - 1 |
2778 | */ |
2779 | count = 0; |
2780 | do { |
2781 | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng)); |
2782 | |
2783 | j = mbedtls_mpi_bitlen(&A); |
2784 | k = mbedtls_mpi_bitlen(&W); |
2785 | if (j > k) { |
2786 | A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1; |
2787 | } |
2788 | |
2789 | if (count++ > 30) { |
2790 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2791 | goto cleanup; |
2792 | } |
2793 | |
2794 | } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 || |
2795 | mbedtls_mpi_cmp_int(&A, 1) <= 0); |
2796 | |
2797 | /* |
2798 | * A = A^R mod |X| |
2799 | */ |
2800 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR)); |
2801 | |
2802 | if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 || |
2803 | mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2804 | continue; |
2805 | } |
2806 | |
2807 | j = 1; |
2808 | while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) { |
2809 | /* |
2810 | * A = A * A mod |X| |
2811 | */ |
2812 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A)); |
2813 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X)); |
2814 | |
2815 | if (mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2816 | break; |
2817 | } |
2818 | |
2819 | j++; |
2820 | } |
2821 | |
2822 | /* |
2823 | * not prime if A != |X| - 1 or A == 1 |
2824 | */ |
2825 | if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 || |
2826 | mbedtls_mpi_cmp_int(&A, 1) == 0) { |
2827 | ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2828 | break; |
2829 | } |
2830 | } |
2831 | |
2832 | cleanup: |
2833 | mbedtls_mpi_free(&W); mbedtls_mpi_free(&R); |
2834 | mbedtls_mpi_free(&T); mbedtls_mpi_free(&A); |
2835 | mbedtls_mpi_free(&RR); |
2836 | |
2837 | return ret; |
2838 | } |
2839 | |
2840 | /* |
2841 | * Pseudo-primality test: small factors, then Miller-Rabin |
2842 | */ |
2843 | int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds, |
2844 | int (*f_rng)(void *, unsigned char *, size_t), |
2845 | void *p_rng) |
2846 | { |
2847 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
2848 | mbedtls_mpi XX; |
2849 | MPI_VALIDATE_RET(X != NULL); |
2850 | MPI_VALIDATE_RET(f_rng != NULL); |
2851 | |
2852 | XX.s = 1; |
2853 | XX.n = X->n; |
2854 | XX.p = X->p; |
2855 | |
2856 | if (mbedtls_mpi_cmp_int(&XX, 0) == 0 || |
2857 | mbedtls_mpi_cmp_int(&XX, 1) == 0) { |
2858 | return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2859 | } |
2860 | |
2861 | if (mbedtls_mpi_cmp_int(&XX, 2) == 0) { |
2862 | return 0; |
2863 | } |
2864 | |
2865 | if ((ret = mpi_check_small_factors(&XX)) != 0) { |
2866 | if (ret == 1) { |
2867 | return 0; |
2868 | } |
2869 | |
2870 | return ret; |
2871 | } |
2872 | |
2873 | return mpi_miller_rabin(&XX, rounds, f_rng, p_rng); |
2874 | } |
2875 | |
2876 | #if !defined(MBEDTLS_DEPRECATED_REMOVED) |
2877 | /* |
2878 | * Pseudo-primality test, error probability 2^-80 |
2879 | */ |
2880 | int mbedtls_mpi_is_prime(const mbedtls_mpi *X, |
2881 | int (*f_rng)(void *, unsigned char *, size_t), |
2882 | void *p_rng) |
2883 | { |
2884 | MPI_VALIDATE_RET(X != NULL); |
2885 | MPI_VALIDATE_RET(f_rng != NULL); |
2886 | |
2887 | /* |
2888 | * In the past our key generation aimed for an error rate of at most |
2889 | * 2^-80. Since this function is deprecated, aim for the same certainty |
2890 | * here as well. |
2891 | */ |
2892 | return mbedtls_mpi_is_prime_ext(X, 40, f_rng, p_rng); |
2893 | } |
2894 | #endif |
2895 | |
2896 | /* |
2897 | * Prime number generation |
2898 | * |
2899 | * To generate an RSA key in a way recommended by FIPS 186-4, both primes must |
2900 | * be either 1024 bits or 1536 bits long, and flags must contain |
2901 | * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR. |
2902 | */ |
2903 | int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags, |
2904 | int (*f_rng)(void *, unsigned char *, size_t), |
2905 | void *p_rng) |
2906 | { |
2907 | #ifdef MBEDTLS_HAVE_INT64 |
2908 | // ceil(2^63.5) |
2909 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL |
2910 | #else |
2911 | // ceil(2^31.5) |
2912 | #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U |
2913 | #endif |
2914 | int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE; |
2915 | size_t k, n; |
2916 | int rounds; |
2917 | mbedtls_mpi_uint r; |
2918 | mbedtls_mpi Y; |
2919 | |
2920 | MPI_VALIDATE_RET(X != NULL); |
2921 | MPI_VALIDATE_RET(f_rng != NULL); |
2922 | |
2923 | if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) { |
2924 | return MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
2925 | } |
2926 | |
2927 | mbedtls_mpi_init(&Y); |
2928 | |
2929 | n = BITS_TO_LIMBS(nbits); |
2930 | |
2931 | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) { |
2932 | /* |
2933 | * 2^-80 error probability, number of rounds chosen per HAC, table 4.4 |
2934 | */ |
2935 | rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 : |
2936 | (nbits >= 650) ? 4 : (nbits >= 350) ? 8 : |
2937 | (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27); |
2938 | } else { |
2939 | /* |
2940 | * 2^-100 error probability, number of rounds computed based on HAC, |
2941 | * fact 4.48 |
2942 | */ |
2943 | rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 : |
2944 | (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 : |
2945 | (nbits >= 750) ? 8 : (nbits >= 500) ? 13 : |
2946 | (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51); |
2947 | } |
2948 | |
2949 | while (1) { |
2950 | MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng)); |
2951 | /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */ |
2952 | if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) { |
2953 | continue; |
2954 | } |
2955 | |
2956 | k = n * biL; |
2957 | if (k > nbits) { |
2958 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits)); |
2959 | } |
2960 | X->p[0] |= 1; |
2961 | |
2962 | if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) { |
2963 | ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng); |
2964 | |
2965 | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
2966 | goto cleanup; |
2967 | } |
2968 | } else { |
2969 | /* |
2970 | * A necessary condition for Y and X = 2Y + 1 to be prime |
2971 | * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3). |
2972 | * Make sure it is satisfied, while keeping X = 3 mod 4 |
2973 | */ |
2974 | |
2975 | X->p[0] |= 2; |
2976 | |
2977 | MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3)); |
2978 | if (r == 0) { |
2979 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8)); |
2980 | } else if (r == 1) { |
2981 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4)); |
2982 | } |
2983 | |
2984 | /* Set Y = (X-1) / 2, which is X / 2 because X is odd */ |
2985 | MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X)); |
2986 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1)); |
2987 | |
2988 | while (1) { |
2989 | /* |
2990 | * First, check small factors for X and Y |
2991 | * before doing Miller-Rabin on any of them |
2992 | */ |
2993 | if ((ret = mpi_check_small_factors(X)) == 0 && |
2994 | (ret = mpi_check_small_factors(&Y)) == 0 && |
2995 | (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng)) |
2996 | == 0 && |
2997 | (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng)) |
2998 | == 0) { |
2999 | goto cleanup; |
3000 | } |
3001 | |
3002 | if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
3003 | goto cleanup; |
3004 | } |
3005 | |
3006 | /* |
3007 | * Next candidates. We want to preserve Y = (X-1) / 2 and |
3008 | * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3) |
3009 | * so up Y by 6 and X by 12. |
3010 | */ |
3011 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12)); |
3012 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6)); |
3013 | } |
3014 | } |
3015 | } |
3016 | |
3017 | cleanup: |
3018 | |
3019 | mbedtls_mpi_free(&Y); |
3020 | |
3021 | return ret; |
3022 | } |
3023 | |
3024 | #endif /* MBEDTLS_GENPRIME */ |
3025 | |
3026 | #if defined(MBEDTLS_SELF_TEST) |
3027 | |
3028 | #define GCD_PAIR_COUNT 3 |
3029 | |
3030 | static const int gcd_pairs[GCD_PAIR_COUNT][3] = |
3031 | { |
3032 | { 693, 609, 21 }, |
3033 | { 1764, 868, 28 }, |
3034 | { 768454923, 542167814, 1 } |
3035 | }; |
3036 | |
3037 | /* |
3038 | * Checkup routine |
3039 | */ |
3040 | int mbedtls_mpi_self_test(int verbose) |
3041 | { |
3042 | int ret, i; |
3043 | mbedtls_mpi A, E, N, X, Y, U, V; |
3044 | |
3045 | mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X); |
3046 | mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V); |
3047 | |
3048 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16, |
3049 | "EFE021C2645FD1DC586E69184AF4A31E" \ |
3050 | "D5F53E93B5F123FA41680867BA110131" \ |
3051 | "944FE7952E2517337780CB0DB80E61AA" \ |
3052 | "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" )); |
3053 | |
3054 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16, |
3055 | "B2E7EFD37075B9F03FF989C7C5051C20" \ |
3056 | "34D2A323810251127E7BF8625A4F49A5" \ |
3057 | "F3E27F4DA8BD59C47D6DAABA4C8127BD" \ |
3058 | "5B5C25763222FEFCCFC38B832366C29E" )); |
3059 | |
3060 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16, |
3061 | "0066A198186C18C10B2F5ED9B522752A" \ |
3062 | "9830B69916E535C8F047518A889A43A5" \ |
3063 | "94B6BED27A168D31D4A52F88925AA8F5" )); |
3064 | |
3065 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N)); |
3066 | |
3067 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
3068 | "602AB7ECA597A3D6B56FF9829A5E8B85" \ |
3069 | "9E857EA95A03512E2BAE7391688D264A" \ |
3070 | "A5663B0341DB9CCFD2C4C5F421FEC814" \ |
3071 | "8001B72E848A38CAE1C65F78E56ABDEF" \ |
3072 | "E12D3C039B8A02D6BE593F0BBBDA56F1" \ |
3073 | "ECF677152EF804370C1A305CAF3B5BF1" \ |
3074 | "30879B56C61DE584A0F53A2447A51E" )); |
3075 | |
3076 | if (verbose != 0) { |
3077 | mbedtls_printf(" MPI test #1 (mul_mpi): " ); |
3078 | } |
3079 | |
3080 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
3081 | if (verbose != 0) { |
3082 | mbedtls_printf("failed\n" ); |
3083 | } |
3084 | |
3085 | ret = 1; |
3086 | goto cleanup; |
3087 | } |
3088 | |
3089 | if (verbose != 0) { |
3090 | mbedtls_printf("passed\n" ); |
3091 | } |
3092 | |
3093 | MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N)); |
3094 | |
3095 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
3096 | "256567336059E52CAE22925474705F39A94" )); |
3097 | |
3098 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16, |
3099 | "6613F26162223DF488E9CD48CC132C7A" \ |
3100 | "0AC93C701B001B092E4E5B9F73BCD27B" \ |
3101 | "9EE50D0657C77F374E903CDFA4C642" )); |
3102 | |
3103 | if (verbose != 0) { |
3104 | mbedtls_printf(" MPI test #2 (div_mpi): " ); |
3105 | } |
3106 | |
3107 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 || |
3108 | mbedtls_mpi_cmp_mpi(&Y, &V) != 0) { |
3109 | if (verbose != 0) { |
3110 | mbedtls_printf("failed\n" ); |
3111 | } |
3112 | |
3113 | ret = 1; |
3114 | goto cleanup; |
3115 | } |
3116 | |
3117 | if (verbose != 0) { |
3118 | mbedtls_printf("passed\n" ); |
3119 | } |
3120 | |
3121 | MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL)); |
3122 | |
3123 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
3124 | "36E139AEA55215609D2816998ED020BB" \ |
3125 | "BD96C37890F65171D948E9BC7CBAA4D9" \ |
3126 | "325D24D6A3C12710F10A09FA08AB87" )); |
3127 | |
3128 | if (verbose != 0) { |
3129 | mbedtls_printf(" MPI test #3 (exp_mod): " ); |
3130 | } |
3131 | |
3132 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
3133 | if (verbose != 0) { |
3134 | mbedtls_printf("failed\n" ); |
3135 | } |
3136 | |
3137 | ret = 1; |
3138 | goto cleanup; |
3139 | } |
3140 | |
3141 | if (verbose != 0) { |
3142 | mbedtls_printf("passed\n" ); |
3143 | } |
3144 | |
3145 | MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N)); |
3146 | |
3147 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16, |
3148 | "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \ |
3149 | "C3DBA76456363A10869622EAC2DD84EC" \ |
3150 | "C5B8A74DAC4D09E03B5E0BE779F2DF61" )); |
3151 | |
3152 | if (verbose != 0) { |
3153 | mbedtls_printf(" MPI test #4 (inv_mod): " ); |
3154 | } |
3155 | |
3156 | if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) { |
3157 | if (verbose != 0) { |
3158 | mbedtls_printf("failed\n" ); |
3159 | } |
3160 | |
3161 | ret = 1; |
3162 | goto cleanup; |
3163 | } |
3164 | |
3165 | if (verbose != 0) { |
3166 | mbedtls_printf("passed\n" ); |
3167 | } |
3168 | |
3169 | if (verbose != 0) { |
3170 | mbedtls_printf(" MPI test #5 (simple gcd): " ); |
3171 | } |
3172 | |
3173 | for (i = 0; i < GCD_PAIR_COUNT; i++) { |
3174 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0])); |
3175 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1])); |
3176 | |
3177 | MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y)); |
3178 | |
3179 | if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) { |
3180 | if (verbose != 0) { |
3181 | mbedtls_printf("failed at %d\n" , i); |
3182 | } |
3183 | |
3184 | ret = 1; |
3185 | goto cleanup; |
3186 | } |
3187 | } |
3188 | |
3189 | if (verbose != 0) { |
3190 | mbedtls_printf("passed\n" ); |
3191 | } |
3192 | |
3193 | cleanup: |
3194 | |
3195 | if (ret != 0 && verbose != 0) { |
3196 | mbedtls_printf("Unexpected error, return code = %08X\n" , (unsigned int) ret); |
3197 | } |
3198 | |
3199 | mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X); |
3200 | mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V); |
3201 | |
3202 | if (verbose != 0) { |
3203 | mbedtls_printf("\n" ); |
3204 | } |
3205 | |
3206 | return ret; |
3207 | } |
3208 | |
3209 | #endif /* MBEDTLS_SELF_TEST */ |
3210 | |
3211 | #endif /* MBEDTLS_BIGNUM_C */ |
3212 | |