| 1 | /* |
| 2 | * Elliptic curves over GF(p): curve-specific data and functions |
| 3 | * |
| 4 | * Copyright The Mbed TLS Contributors |
| 5 | * SPDX-License-Identifier: Apache-2.0 |
| 6 | * |
| 7 | * Licensed under the Apache License, Version 2.0 (the "License"); you may |
| 8 | * not use this file except in compliance with the License. |
| 9 | * You may obtain a copy of the License at |
| 10 | * |
| 11 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | * |
| 13 | * Unless required by applicable law or agreed to in writing, software |
| 14 | * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | * See the License for the specific language governing permissions and |
| 17 | * limitations under the License. |
| 18 | */ |
| 19 | |
| 20 | #include "common.h" |
| 21 | |
| 22 | #if defined(MBEDTLS_ECP_C) |
| 23 | |
| 24 | #include "mbedtls/ecp.h" |
| 25 | #include "mbedtls/platform_util.h" |
| 26 | #include "mbedtls/error.h" |
| 27 | #include "mbedtls/bn_mul.h" |
| 28 | |
| 29 | #include "ecp_invasive.h" |
| 30 | |
| 31 | #include <string.h> |
| 32 | |
| 33 | #if !defined(MBEDTLS_ECP_ALT) |
| 34 | |
| 35 | /* Parameter validation macros based on platform_util.h */ |
| 36 | #define ECP_VALIDATE_RET(cond) \ |
| 37 | MBEDTLS_INTERNAL_VALIDATE_RET(cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA) |
| 38 | #define ECP_VALIDATE(cond) \ |
| 39 | MBEDTLS_INTERNAL_VALIDATE(cond) |
| 40 | |
| 41 | #define ECP_MPI_INIT(s, n, p) { s, (n), (mbedtls_mpi_uint *) (p) } |
| 42 | |
| 43 | #define ECP_MPI_INIT_ARRAY(x) \ |
| 44 | ECP_MPI_INIT(1, sizeof(x) / sizeof(mbedtls_mpi_uint), x) |
| 45 | |
| 46 | /* |
| 47 | * Note: the constants are in little-endian order |
| 48 | * to be directly usable in MPIs |
| 49 | */ |
| 50 | |
| 51 | /* |
| 52 | * Domain parameters for secp192r1 |
| 53 | */ |
| 54 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 55 | static const mbedtls_mpi_uint secp192r1_p[] = { |
| 56 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 57 | MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 58 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 59 | }; |
| 60 | static const mbedtls_mpi_uint secp192r1_b[] = { |
| 61 | MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE), |
| 62 | MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F), |
| 63 | MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64), |
| 64 | }; |
| 65 | static const mbedtls_mpi_uint secp192r1_gx[] = { |
| 66 | MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4), |
| 67 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C), |
| 68 | MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18), |
| 69 | }; |
| 70 | static const mbedtls_mpi_uint secp192r1_gy[] = { |
| 71 | MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73), |
| 72 | MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63), |
| 73 | MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07), |
| 74 | }; |
| 75 | static const mbedtls_mpi_uint secp192r1_n[] = { |
| 76 | MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14), |
| 77 | MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF), |
| 78 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 79 | }; |
| 80 | #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ |
| 81 | |
| 82 | /* |
| 83 | * Domain parameters for secp224r1 |
| 84 | */ |
| 85 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) |
| 86 | static const mbedtls_mpi_uint secp224r1_p[] = { |
| 87 | MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), |
| 88 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), |
| 89 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 90 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00), |
| 91 | }; |
| 92 | static const mbedtls_mpi_uint secp224r1_b[] = { |
| 93 | MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27), |
| 94 | MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50), |
| 95 | MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C), |
| 96 | MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4), |
| 97 | }; |
| 98 | static const mbedtls_mpi_uint secp224r1_gx[] = { |
| 99 | MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34), |
| 100 | MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A), |
| 101 | MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B), |
| 102 | MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7), |
| 103 | }; |
| 104 | static const mbedtls_mpi_uint secp224r1_gy[] = { |
| 105 | MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44), |
| 106 | MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD), |
| 107 | MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5), |
| 108 | MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD), |
| 109 | }; |
| 110 | static const mbedtls_mpi_uint secp224r1_n[] = { |
| 111 | MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13), |
| 112 | MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF), |
| 113 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 114 | MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF), |
| 115 | }; |
| 116 | #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ |
| 117 | |
| 118 | /* |
| 119 | * Domain parameters for secp256r1 |
| 120 | */ |
| 121 | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) |
| 122 | static const mbedtls_mpi_uint secp256r1_p[] = { |
| 123 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 124 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00), |
| 125 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), |
| 126 | MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), |
| 127 | }; |
| 128 | static const mbedtls_mpi_uint secp256r1_b[] = { |
| 129 | MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B), |
| 130 | MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65), |
| 131 | MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3), |
| 132 | MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A), |
| 133 | }; |
| 134 | static const mbedtls_mpi_uint secp256r1_gx[] = { |
| 135 | MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4), |
| 136 | MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77), |
| 137 | MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8), |
| 138 | MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B), |
| 139 | }; |
| 140 | static const mbedtls_mpi_uint secp256r1_gy[] = { |
| 141 | MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB), |
| 142 | MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B), |
| 143 | MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E), |
| 144 | MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F), |
| 145 | }; |
| 146 | static const mbedtls_mpi_uint secp256r1_n[] = { |
| 147 | MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3), |
| 148 | MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC), |
| 149 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 150 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), |
| 151 | }; |
| 152 | #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ |
| 153 | |
| 154 | /* |
| 155 | * Domain parameters for secp384r1 |
| 156 | */ |
| 157 | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 158 | static const mbedtls_mpi_uint secp384r1_p[] = { |
| 159 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00), |
| 160 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF), |
| 161 | MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 162 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 163 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 164 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 165 | }; |
| 166 | static const mbedtls_mpi_uint secp384r1_b[] = { |
| 167 | MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A), |
| 168 | MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6), |
| 169 | MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03), |
| 170 | MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18), |
| 171 | MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98), |
| 172 | MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3), |
| 173 | }; |
| 174 | static const mbedtls_mpi_uint secp384r1_gx[] = { |
| 175 | MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A), |
| 176 | MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55), |
| 177 | MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59), |
| 178 | MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E), |
| 179 | MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E), |
| 180 | MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA), |
| 181 | }; |
| 182 | static const mbedtls_mpi_uint secp384r1_gy[] = { |
| 183 | MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A), |
| 184 | MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A), |
| 185 | MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9), |
| 186 | MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8), |
| 187 | MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D), |
| 188 | MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36), |
| 189 | }; |
| 190 | static const mbedtls_mpi_uint secp384r1_n[] = { |
| 191 | MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC), |
| 192 | MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58), |
| 193 | MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7), |
| 194 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 195 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 196 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 197 | }; |
| 198 | #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ |
| 199 | |
| 200 | /* |
| 201 | * Domain parameters for secp521r1 |
| 202 | */ |
| 203 | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) |
| 204 | static const mbedtls_mpi_uint secp521r1_p[] = { |
| 205 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 206 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 207 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 208 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 209 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 210 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 211 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 212 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 213 | MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01), |
| 214 | }; |
| 215 | static const mbedtls_mpi_uint secp521r1_b[] = { |
| 216 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF), |
| 217 | MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35), |
| 218 | MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16), |
| 219 | MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56), |
| 220 | MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8), |
| 221 | MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2), |
| 222 | MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92), |
| 223 | MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95), |
| 224 | MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00), |
| 225 | }; |
| 226 | static const mbedtls_mpi_uint secp521r1_gx[] = { |
| 227 | MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9), |
| 228 | MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33), |
| 229 | MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE), |
| 230 | MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1), |
| 231 | MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8), |
| 232 | MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C), |
| 233 | MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E), |
| 234 | MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85), |
| 235 | MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00), |
| 236 | }; |
| 237 | static const mbedtls_mpi_uint secp521r1_gy[] = { |
| 238 | MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88), |
| 239 | MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35), |
| 240 | MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5), |
| 241 | MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97), |
| 242 | MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17), |
| 243 | MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98), |
| 244 | MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C), |
| 245 | MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39), |
| 246 | MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01), |
| 247 | }; |
| 248 | static const mbedtls_mpi_uint secp521r1_n[] = { |
| 249 | MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB), |
| 250 | MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B), |
| 251 | MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F), |
| 252 | MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51), |
| 253 | MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 254 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 255 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 256 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 257 | MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01), |
| 258 | }; |
| 259 | #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ |
| 260 | |
| 261 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) |
| 262 | static const mbedtls_mpi_uint secp192k1_p[] = { |
| 263 | MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), |
| 264 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 265 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 266 | }; |
| 267 | static const mbedtls_mpi_uint secp192k1_a[] = { |
| 268 | MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00), |
| 269 | }; |
| 270 | static const mbedtls_mpi_uint secp192k1_b[] = { |
| 271 | MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00), |
| 272 | }; |
| 273 | static const mbedtls_mpi_uint secp192k1_gx[] = { |
| 274 | MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D), |
| 275 | MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26), |
| 276 | MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB), |
| 277 | }; |
| 278 | static const mbedtls_mpi_uint secp192k1_gy[] = { |
| 279 | MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40), |
| 280 | MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84), |
| 281 | MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B), |
| 282 | }; |
| 283 | static const mbedtls_mpi_uint secp192k1_n[] = { |
| 284 | MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F), |
| 285 | MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF), |
| 286 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 287 | }; |
| 288 | #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ |
| 289 | |
| 290 | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) |
| 291 | static const mbedtls_mpi_uint secp224k1_p[] = { |
| 292 | MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), |
| 293 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 294 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 295 | MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF), |
| 296 | }; |
| 297 | static const mbedtls_mpi_uint secp224k1_a[] = { |
| 298 | MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00), |
| 299 | }; |
| 300 | static const mbedtls_mpi_uint secp224k1_b[] = { |
| 301 | MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00), |
| 302 | }; |
| 303 | static const mbedtls_mpi_uint secp224k1_gx[] = { |
| 304 | MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F), |
| 305 | MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69), |
| 306 | MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D), |
| 307 | MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1), |
| 308 | }; |
| 309 | static const mbedtls_mpi_uint secp224k1_gy[] = { |
| 310 | MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2), |
| 311 | MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7), |
| 312 | MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F), |
| 313 | MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E), |
| 314 | }; |
| 315 | static const mbedtls_mpi_uint secp224k1_n[] = { |
| 316 | MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA), |
| 317 | MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00), |
| 318 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00), |
| 319 | MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00), |
| 320 | }; |
| 321 | #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ |
| 322 | |
| 323 | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 324 | static const mbedtls_mpi_uint secp256k1_p[] = { |
| 325 | MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF), |
| 326 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 327 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 328 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 329 | }; |
| 330 | static const mbedtls_mpi_uint secp256k1_a[] = { |
| 331 | MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00), |
| 332 | }; |
| 333 | static const mbedtls_mpi_uint secp256k1_b[] = { |
| 334 | MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00), |
| 335 | }; |
| 336 | static const mbedtls_mpi_uint secp256k1_gx[] = { |
| 337 | MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59), |
| 338 | MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02), |
| 339 | MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55), |
| 340 | MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79), |
| 341 | }; |
| 342 | static const mbedtls_mpi_uint secp256k1_gy[] = { |
| 343 | MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C), |
| 344 | MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD), |
| 345 | MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D), |
| 346 | MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48), |
| 347 | }; |
| 348 | static const mbedtls_mpi_uint secp256k1_n[] = { |
| 349 | MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF), |
| 350 | MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA), |
| 351 | MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 352 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF), |
| 353 | }; |
| 354 | #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ |
| 355 | |
| 356 | /* |
| 357 | * Domain parameters for brainpoolP256r1 (RFC 5639 3.4) |
| 358 | */ |
| 359 | #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) |
| 360 | static const mbedtls_mpi_uint brainpoolP256r1_p[] = { |
| 361 | MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20), |
| 362 | MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E), |
| 363 | MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E), |
| 364 | MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9), |
| 365 | }; |
| 366 | static const mbedtls_mpi_uint brainpoolP256r1_a[] = { |
| 367 | MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9), |
| 368 | MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB), |
| 369 | MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE), |
| 370 | MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D), |
| 371 | }; |
| 372 | static const mbedtls_mpi_uint brainpoolP256r1_b[] = { |
| 373 | MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B), |
| 374 | MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95), |
| 375 | MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3), |
| 376 | MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26), |
| 377 | }; |
| 378 | static const mbedtls_mpi_uint brainpoolP256r1_gx[] = { |
| 379 | MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A), |
| 380 | MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9), |
| 381 | MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C), |
| 382 | MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B), |
| 383 | }; |
| 384 | static const mbedtls_mpi_uint brainpoolP256r1_gy[] = { |
| 385 | MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C), |
| 386 | MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2), |
| 387 | MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97), |
| 388 | MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54), |
| 389 | }; |
| 390 | static const mbedtls_mpi_uint brainpoolP256r1_n[] = { |
| 391 | MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90), |
| 392 | MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C), |
| 393 | MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E), |
| 394 | MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9), |
| 395 | }; |
| 396 | #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ |
| 397 | |
| 398 | /* |
| 399 | * Domain parameters for brainpoolP384r1 (RFC 5639 3.6) |
| 400 | */ |
| 401 | #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) |
| 402 | static const mbedtls_mpi_uint brainpoolP384r1_p[] = { |
| 403 | MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87), |
| 404 | MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC), |
| 405 | MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12), |
| 406 | MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15), |
| 407 | MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F), |
| 408 | MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C), |
| 409 | }; |
| 410 | static const mbedtls_mpi_uint brainpoolP384r1_a[] = { |
| 411 | MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04), |
| 412 | MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A), |
| 413 | MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13), |
| 414 | MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2), |
| 415 | MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C), |
| 416 | MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B), |
| 417 | }; |
| 418 | static const mbedtls_mpi_uint brainpoolP384r1_b[] = { |
| 419 | MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A), |
| 420 | MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C), |
| 421 | MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E), |
| 422 | MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F), |
| 423 | MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B), |
| 424 | MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04), |
| 425 | }; |
| 426 | static const mbedtls_mpi_uint brainpoolP384r1_gx[] = { |
| 427 | MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF), |
| 428 | MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8), |
| 429 | MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB), |
| 430 | MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88), |
| 431 | MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2), |
| 432 | MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D), |
| 433 | }; |
| 434 | static const mbedtls_mpi_uint brainpoolP384r1_gy[] = { |
| 435 | MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42), |
| 436 | MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E), |
| 437 | MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1), |
| 438 | MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62), |
| 439 | MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C), |
| 440 | MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A), |
| 441 | }; |
| 442 | static const mbedtls_mpi_uint brainpoolP384r1_n[] = { |
| 443 | MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B), |
| 444 | MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF), |
| 445 | MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F), |
| 446 | MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15), |
| 447 | MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F), |
| 448 | MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C), |
| 449 | }; |
| 450 | #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ |
| 451 | |
| 452 | /* |
| 453 | * Domain parameters for brainpoolP512r1 (RFC 5639 3.7) |
| 454 | */ |
| 455 | #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) |
| 456 | static const mbedtls_mpi_uint brainpoolP512r1_p[] = { |
| 457 | MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28), |
| 458 | MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28), |
| 459 | MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE), |
| 460 | MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D), |
| 461 | MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6), |
| 462 | MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB), |
| 463 | MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F), |
| 464 | MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA), |
| 465 | }; |
| 466 | static const mbedtls_mpi_uint brainpoolP512r1_a[] = { |
| 467 | MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7), |
| 468 | MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F), |
| 469 | MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A), |
| 470 | MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D), |
| 471 | MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8), |
| 472 | MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94), |
| 473 | MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2), |
| 474 | MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78), |
| 475 | }; |
| 476 | static const mbedtls_mpi_uint brainpoolP512r1_b[] = { |
| 477 | MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28), |
| 478 | MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98), |
| 479 | MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77), |
| 480 | MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B), |
| 481 | MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B), |
| 482 | MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8), |
| 483 | MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA), |
| 484 | MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D), |
| 485 | }; |
| 486 | static const mbedtls_mpi_uint brainpoolP512r1_gx[] = { |
| 487 | MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B), |
| 488 | MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C), |
| 489 | MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50), |
| 490 | MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF), |
| 491 | MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4), |
| 492 | MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85), |
| 493 | MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A), |
| 494 | MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81), |
| 495 | }; |
| 496 | static const mbedtls_mpi_uint brainpoolP512r1_gy[] = { |
| 497 | MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78), |
| 498 | MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1), |
| 499 | MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B), |
| 500 | MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2), |
| 501 | MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0), |
| 502 | MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2), |
| 503 | MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0), |
| 504 | MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D), |
| 505 | }; |
| 506 | static const mbedtls_mpi_uint brainpoolP512r1_n[] = { |
| 507 | MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5), |
| 508 | MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D), |
| 509 | MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41), |
| 510 | MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55), |
| 511 | MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6), |
| 512 | MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB), |
| 513 | MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F), |
| 514 | MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA), |
| 515 | }; |
| 516 | #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ |
| 517 | |
| 518 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \ |
| 519 | defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ |
| 520 | defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ |
| 521 | defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \ |
| 522 | defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \ |
| 523 | defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \ |
| 524 | defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \ |
| 525 | defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \ |
| 526 | defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ |
| 527 | defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ |
| 528 | defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 529 | /* For these curves, we build the group parameters dynamically. */ |
| 530 | #define ECP_LOAD_GROUP |
| 531 | #endif |
| 532 | |
| 533 | #if defined(ECP_LOAD_GROUP) |
| 534 | /* |
| 535 | * Create an MPI from embedded constants |
| 536 | * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint)) |
| 537 | */ |
| 538 | static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len) |
| 539 | { |
| 540 | X->s = 1; |
| 541 | X->n = len / sizeof(mbedtls_mpi_uint); |
| 542 | X->p = (mbedtls_mpi_uint *) p; |
| 543 | } |
| 544 | |
| 545 | /* |
| 546 | * Set an MPI to static value 1 |
| 547 | */ |
| 548 | static inline void ecp_mpi_set1(mbedtls_mpi *X) |
| 549 | { |
| 550 | static mbedtls_mpi_uint one[] = { 1 }; |
| 551 | X->s = 1; |
| 552 | X->n = 1; |
| 553 | X->p = one; |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * Make group available from embedded constants |
| 558 | */ |
| 559 | static int ecp_group_load(mbedtls_ecp_group *grp, |
| 560 | const mbedtls_mpi_uint *p, size_t plen, |
| 561 | const mbedtls_mpi_uint *a, size_t alen, |
| 562 | const mbedtls_mpi_uint *b, size_t blen, |
| 563 | const mbedtls_mpi_uint *gx, size_t gxlen, |
| 564 | const mbedtls_mpi_uint *gy, size_t gylen, |
| 565 | const mbedtls_mpi_uint *n, size_t nlen) |
| 566 | { |
| 567 | ecp_mpi_load(&grp->P, p, plen); |
| 568 | if (a != NULL) { |
| 569 | ecp_mpi_load(&grp->A, a, alen); |
| 570 | } |
| 571 | ecp_mpi_load(&grp->B, b, blen); |
| 572 | ecp_mpi_load(&grp->N, n, nlen); |
| 573 | |
| 574 | ecp_mpi_load(&grp->G.X, gx, gxlen); |
| 575 | ecp_mpi_load(&grp->G.Y, gy, gylen); |
| 576 | ecp_mpi_set1(&grp->G.Z); |
| 577 | |
| 578 | grp->pbits = mbedtls_mpi_bitlen(&grp->P); |
| 579 | grp->nbits = mbedtls_mpi_bitlen(&grp->N); |
| 580 | |
| 581 | grp->h = 1; |
| 582 | |
| 583 | return 0; |
| 584 | } |
| 585 | #endif /* ECP_LOAD_GROUP */ |
| 586 | |
| 587 | #if defined(MBEDTLS_ECP_NIST_OPTIM) |
| 588 | /* Forward declarations */ |
| 589 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 590 | static int ecp_mod_p192(mbedtls_mpi *); |
| 591 | #endif |
| 592 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) |
| 593 | static int ecp_mod_p224(mbedtls_mpi *); |
| 594 | #endif |
| 595 | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) |
| 596 | static int ecp_mod_p256(mbedtls_mpi *); |
| 597 | #endif |
| 598 | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 599 | static int ecp_mod_p384(mbedtls_mpi *); |
| 600 | #endif |
| 601 | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) |
| 602 | static int ecp_mod_p521(mbedtls_mpi *); |
| 603 | #endif |
| 604 | |
| 605 | #define NIST_MODP(P) grp->modp = ecp_mod_ ## P; |
| 606 | #else |
| 607 | #define NIST_MODP(P) |
| 608 | #endif /* MBEDTLS_ECP_NIST_OPTIM */ |
| 609 | |
| 610 | /* Additional forward declarations */ |
| 611 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 612 | static int ecp_mod_p255(mbedtls_mpi *); |
| 613 | #endif |
| 614 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 615 | static int ecp_mod_p448(mbedtls_mpi *); |
| 616 | #endif |
| 617 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) |
| 618 | static int ecp_mod_p192k1(mbedtls_mpi *); |
| 619 | #endif |
| 620 | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) |
| 621 | static int ecp_mod_p224k1(mbedtls_mpi *); |
| 622 | #endif |
| 623 | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 624 | static int ecp_mod_p256k1(mbedtls_mpi *); |
| 625 | #endif |
| 626 | |
| 627 | #if defined(ECP_LOAD_GROUP) |
| 628 | #define LOAD_GROUP_A(G) ecp_group_load(grp, \ |
| 629 | G ## _p, sizeof(G ## _p), \ |
| 630 | G ## _a, sizeof(G ## _a), \ |
| 631 | G ## _b, sizeof(G ## _b), \ |
| 632 | G ## _gx, sizeof(G ## _gx), \ |
| 633 | G ## _gy, sizeof(G ## _gy), \ |
| 634 | G ## _n, sizeof(G ## _n)) |
| 635 | |
| 636 | #define LOAD_GROUP(G) ecp_group_load(grp, \ |
| 637 | G ## _p, sizeof(G ## _p), \ |
| 638 | NULL, 0, \ |
| 639 | G ## _b, sizeof(G ## _b), \ |
| 640 | G ## _gx, sizeof(G ## _gx), \ |
| 641 | G ## _gy, sizeof(G ## _gy), \ |
| 642 | G ## _n, sizeof(G ## _n)) |
| 643 | #endif /* ECP_LOAD_GROUP */ |
| 644 | |
| 645 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 646 | /* Constants used by ecp_use_curve25519() */ |
| 647 | static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42; |
| 648 | static const unsigned char curve25519_part_of_n[] = { |
| 649 | 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6, |
| 650 | 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED, |
| 651 | }; |
| 652 | |
| 653 | /* |
| 654 | * Specialized function for creating the Curve25519 group |
| 655 | */ |
| 656 | static int ecp_use_curve25519(mbedtls_ecp_group *grp) |
| 657 | { |
| 658 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 659 | |
| 660 | /* Actually ( A + 2 ) / 4 */ |
| 661 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24)); |
| 662 | |
| 663 | /* P = 2^255 - 19 */ |
| 664 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1)); |
| 665 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255)); |
| 666 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19)); |
| 667 | grp->pbits = mbedtls_mpi_bitlen(&grp->P); |
| 668 | |
| 669 | /* N = 2^252 + 27742317777372353535851937790883648493 */ |
| 670 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N, |
| 671 | curve25519_part_of_n, sizeof(curve25519_part_of_n))); |
| 672 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1)); |
| 673 | |
| 674 | /* Y intentionally not set, since we use x/z coordinates. |
| 675 | * This is used as a marker to identify Montgomery curves! */ |
| 676 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9)); |
| 677 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1)); |
| 678 | mbedtls_mpi_free(&grp->G.Y); |
| 679 | |
| 680 | /* Actually, the required msb for private keys */ |
| 681 | grp->nbits = 254; |
| 682 | |
| 683 | cleanup: |
| 684 | if (ret != 0) { |
| 685 | mbedtls_ecp_group_free(grp); |
| 686 | } |
| 687 | |
| 688 | return ret; |
| 689 | } |
| 690 | #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ |
| 691 | |
| 692 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 693 | /* Constants used by ecp_use_curve448() */ |
| 694 | static const mbedtls_mpi_sint curve448_a24 = 0x98AA; |
| 695 | static const unsigned char curve448_part_of_n[] = { |
| 696 | 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24, |
| 697 | 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93, |
| 698 | 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC, |
| 699 | 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D, |
| 700 | }; |
| 701 | |
| 702 | /* |
| 703 | * Specialized function for creating the Curve448 group |
| 704 | */ |
| 705 | static int ecp_use_curve448(mbedtls_ecp_group *grp) |
| 706 | { |
| 707 | mbedtls_mpi Ns; |
| 708 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 709 | |
| 710 | mbedtls_mpi_init(&Ns); |
| 711 | |
| 712 | /* Actually ( A + 2 ) / 4 */ |
| 713 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24)); |
| 714 | |
| 715 | /* P = 2^448 - 2^224 - 1 */ |
| 716 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1)); |
| 717 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224)); |
| 718 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1)); |
| 719 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224)); |
| 720 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1)); |
| 721 | grp->pbits = mbedtls_mpi_bitlen(&grp->P); |
| 722 | |
| 723 | /* Y intentionally not set, since we use x/z coordinates. |
| 724 | * This is used as a marker to identify Montgomery curves! */ |
| 725 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5)); |
| 726 | MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1)); |
| 727 | mbedtls_mpi_free(&grp->G.Y); |
| 728 | |
| 729 | /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */ |
| 730 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1)); |
| 731 | MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns, |
| 732 | curve448_part_of_n, sizeof(curve448_part_of_n))); |
| 733 | MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns)); |
| 734 | |
| 735 | /* Actually, the required msb for private keys */ |
| 736 | grp->nbits = 447; |
| 737 | |
| 738 | cleanup: |
| 739 | mbedtls_mpi_free(&Ns); |
| 740 | if (ret != 0) { |
| 741 | mbedtls_ecp_group_free(grp); |
| 742 | } |
| 743 | |
| 744 | return ret; |
| 745 | } |
| 746 | #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ |
| 747 | |
| 748 | /* |
| 749 | * Set a group using well-known domain parameters |
| 750 | */ |
| 751 | int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id) |
| 752 | { |
| 753 | ECP_VALIDATE_RET(grp != NULL); |
| 754 | mbedtls_ecp_group_free(grp); |
| 755 | |
| 756 | mbedtls_ecp_group_init(grp); |
| 757 | |
| 758 | grp->id = id; |
| 759 | |
| 760 | switch (id) { |
| 761 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 762 | case MBEDTLS_ECP_DP_SECP192R1: |
| 763 | NIST_MODP(p192); |
| 764 | return LOAD_GROUP(secp192r1); |
| 765 | #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ |
| 766 | |
| 767 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) |
| 768 | case MBEDTLS_ECP_DP_SECP224R1: |
| 769 | NIST_MODP(p224); |
| 770 | return LOAD_GROUP(secp224r1); |
| 771 | #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ |
| 772 | |
| 773 | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) |
| 774 | case MBEDTLS_ECP_DP_SECP256R1: |
| 775 | NIST_MODP(p256); |
| 776 | return LOAD_GROUP(secp256r1); |
| 777 | #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ |
| 778 | |
| 779 | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 780 | case MBEDTLS_ECP_DP_SECP384R1: |
| 781 | NIST_MODP(p384); |
| 782 | return LOAD_GROUP(secp384r1); |
| 783 | #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ |
| 784 | |
| 785 | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) |
| 786 | case MBEDTLS_ECP_DP_SECP521R1: |
| 787 | NIST_MODP(p521); |
| 788 | return LOAD_GROUP(secp521r1); |
| 789 | #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ |
| 790 | |
| 791 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) |
| 792 | case MBEDTLS_ECP_DP_SECP192K1: |
| 793 | grp->modp = ecp_mod_p192k1; |
| 794 | return LOAD_GROUP_A(secp192k1); |
| 795 | #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ |
| 796 | |
| 797 | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) |
| 798 | case MBEDTLS_ECP_DP_SECP224K1: |
| 799 | grp->modp = ecp_mod_p224k1; |
| 800 | return LOAD_GROUP_A(secp224k1); |
| 801 | #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ |
| 802 | |
| 803 | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 804 | case MBEDTLS_ECP_DP_SECP256K1: |
| 805 | grp->modp = ecp_mod_p256k1; |
| 806 | return LOAD_GROUP_A(secp256k1); |
| 807 | #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ |
| 808 | |
| 809 | #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) |
| 810 | case MBEDTLS_ECP_DP_BP256R1: |
| 811 | return LOAD_GROUP_A(brainpoolP256r1); |
| 812 | #endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */ |
| 813 | |
| 814 | #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) |
| 815 | case MBEDTLS_ECP_DP_BP384R1: |
| 816 | return LOAD_GROUP_A(brainpoolP384r1); |
| 817 | #endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */ |
| 818 | |
| 819 | #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) |
| 820 | case MBEDTLS_ECP_DP_BP512R1: |
| 821 | return LOAD_GROUP_A(brainpoolP512r1); |
| 822 | #endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */ |
| 823 | |
| 824 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 825 | case MBEDTLS_ECP_DP_CURVE25519: |
| 826 | grp->modp = ecp_mod_p255; |
| 827 | return ecp_use_curve25519(grp); |
| 828 | #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ |
| 829 | |
| 830 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 831 | case MBEDTLS_ECP_DP_CURVE448: |
| 832 | grp->modp = ecp_mod_p448; |
| 833 | return ecp_use_curve448(grp); |
| 834 | #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ |
| 835 | |
| 836 | default: |
| 837 | grp->id = MBEDTLS_ECP_DP_NONE; |
| 838 | return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | #if defined(MBEDTLS_ECP_NIST_OPTIM) |
| 843 | /* |
| 844 | * Fast reduction modulo the primes used by the NIST curves. |
| 845 | * |
| 846 | * These functions are critical for speed, but not needed for correct |
| 847 | * operations. So, we make the choice to heavily rely on the internals of our |
| 848 | * bignum library, which creates a tight coupling between these functions and |
| 849 | * our MPI implementation. However, the coupling between the ECP module and |
| 850 | * MPI remains loose, since these functions can be deactivated at will. |
| 851 | */ |
| 852 | |
| 853 | #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) |
| 854 | /* |
| 855 | * Compared to the way things are presented in FIPS 186-3 D.2, |
| 856 | * we proceed in columns, from right (least significant chunk) to left, |
| 857 | * adding chunks to N in place, and keeping a carry for the next chunk. |
| 858 | * This avoids moving things around in memory, and uselessly adding zeros, |
| 859 | * compared to the more straightforward, line-oriented approach. |
| 860 | * |
| 861 | * For this prime we need to handle data in chunks of 64 bits. |
| 862 | * Since this is always a multiple of our basic mbedtls_mpi_uint, we can |
| 863 | * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it. |
| 864 | */ |
| 865 | |
| 866 | /* Add 64-bit chunks (dst += src) and update carry */ |
| 867 | static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry) |
| 868 | { |
| 869 | unsigned char i; |
| 870 | mbedtls_mpi_uint c = 0; |
| 871 | for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) { |
| 872 | *dst += c; c = (*dst < c); |
| 873 | *dst += *src; c += (*dst < *src); |
| 874 | } |
| 875 | *carry += c; |
| 876 | } |
| 877 | |
| 878 | /* Add carry to a 64-bit chunk and update carry */ |
| 879 | static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry) |
| 880 | { |
| 881 | unsigned char i; |
| 882 | for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) { |
| 883 | *dst += *carry; |
| 884 | *carry = (*dst < *carry); |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | #define WIDTH 8 / sizeof(mbedtls_mpi_uint) |
| 889 | #define A(i) N->p + (i) * WIDTH |
| 890 | #define ADD(i) add64(p, A(i), &c) |
| 891 | #define NEXT p += WIDTH; carry64(p, &c) |
| 892 | #define LAST p += WIDTH; *p = c; while (++p < end) *p = 0 |
| 893 | |
| 894 | /* |
| 895 | * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1) |
| 896 | */ |
| 897 | static int ecp_mod_p192(mbedtls_mpi *N) |
| 898 | { |
| 899 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 900 | mbedtls_mpi_uint c = 0; |
| 901 | mbedtls_mpi_uint *p, *end; |
| 902 | |
| 903 | /* Make sure we have enough blocks so that A(5) is legal */ |
| 904 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH)); |
| 905 | |
| 906 | p = N->p; |
| 907 | end = p + N->n; |
| 908 | |
| 909 | ADD(3); ADD(5); NEXT; // A0 += A3 + A5 |
| 910 | ADD(3); ADD(4); ADD(5); NEXT; // A1 += A3 + A4 + A5 |
| 911 | ADD(4); ADD(5); LAST; // A2 += A4 + A5 |
| 912 | |
| 913 | cleanup: |
| 914 | return ret; |
| 915 | } |
| 916 | |
| 917 | #undef WIDTH |
| 918 | #undef A |
| 919 | #undef ADD |
| 920 | #undef NEXT |
| 921 | #undef LAST |
| 922 | #endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */ |
| 923 | |
| 924 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \ |
| 925 | defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \ |
| 926 | defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 927 | /* |
| 928 | * The reader is advised to first understand ecp_mod_p192() since the same |
| 929 | * general structure is used here, but with additional complications: |
| 930 | * (1) chunks of 32 bits, and (2) subtractions. |
| 931 | */ |
| 932 | |
| 933 | /* |
| 934 | * For these primes, we need to handle data in chunks of 32 bits. |
| 935 | * This makes it more complicated if we use 64 bits limbs in MPI, |
| 936 | * which prevents us from using a uniform access method as for p192. |
| 937 | * |
| 938 | * So, we define a mini abstraction layer to access 32 bit chunks, |
| 939 | * load them in 'cur' for work, and store them back from 'cur' when done. |
| 940 | * |
| 941 | * While at it, also define the size of N in terms of 32-bit chunks. |
| 942 | */ |
| 943 | #define LOAD32 cur = A(i); |
| 944 | |
| 945 | #if defined(MBEDTLS_HAVE_INT32) /* 32 bit */ |
| 946 | |
| 947 | #define MAX32 N->n |
| 948 | #define A(j) N->p[j] |
| 949 | #define STORE32 N->p[i] = cur; |
| 950 | |
| 951 | #else /* 64-bit */ |
| 952 | |
| 953 | #define MAX32 N->n * 2 |
| 954 | #define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \ |
| 955 | (uint32_t) (N->p[(j)/2]) |
| 956 | #define STORE32 \ |
| 957 | if (i % 2) { \ |
| 958 | N->p[i/2] &= 0x00000000FFFFFFFF; \ |
| 959 | N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \ |
| 960 | } else { \ |
| 961 | N->p[i/2] &= 0xFFFFFFFF00000000; \ |
| 962 | N->p[i/2] |= (mbedtls_mpi_uint) cur; \ |
| 963 | } |
| 964 | |
| 965 | #endif /* sizeof( mbedtls_mpi_uint ) */ |
| 966 | |
| 967 | /* |
| 968 | * Helpers for addition and subtraction of chunks, with signed carry. |
| 969 | */ |
| 970 | static inline void add32(uint32_t *dst, uint32_t src, signed char *carry) |
| 971 | { |
| 972 | *dst += src; |
| 973 | *carry += (*dst < src); |
| 974 | } |
| 975 | |
| 976 | static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry) |
| 977 | { |
| 978 | *carry -= (*dst < src); |
| 979 | *dst -= src; |
| 980 | } |
| 981 | |
| 982 | #define ADD(j) add32(&cur, A(j), &c); |
| 983 | #define SUB(j) sub32(&cur, A(j), &c); |
| 984 | |
| 985 | #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */ |
| 986 | #define biL (ciL << 3) /* bits in limb */ |
| 987 | |
| 988 | /* |
| 989 | * Helpers for the main 'loop' |
| 990 | */ |
| 991 | #define INIT(b) \ |
| 992 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \ |
| 993 | signed char c = 0, cc; \ |
| 994 | uint32_t cur; \ |
| 995 | size_t i = 0, bits = (b); \ |
| 996 | /* N is the size of the product of two b-bit numbers, plus one */ \ |
| 997 | /* limb for fix_negative */ \ |
| 998 | MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1)); \ |
| 999 | LOAD32; |
| 1000 | |
| 1001 | #define NEXT \ |
| 1002 | STORE32; i++; LOAD32; \ |
| 1003 | cc = c; c = 0; \ |
| 1004 | if (cc < 0) \ |
| 1005 | sub32(&cur, -cc, &c); \ |
| 1006 | else \ |
| 1007 | add32(&cur, cc, &c); \ |
| 1008 | |
| 1009 | #define LAST \ |
| 1010 | STORE32; i++; \ |
| 1011 | cur = c > 0 ? c : 0; STORE32; \ |
| 1012 | cur = 0; while (++i < MAX32) { STORE32; } \ |
| 1013 | if (c < 0) mbedtls_ecp_fix_negative(N, c, bits); |
| 1014 | |
| 1015 | /* |
| 1016 | * If the result is negative, we get it in the form |
| 1017 | * c * 2^bits + N, with c negative and N positive shorter than 'bits' |
| 1018 | */ |
| 1019 | MBEDTLS_STATIC_TESTABLE |
| 1020 | void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits) |
| 1021 | { |
| 1022 | size_t i; |
| 1023 | |
| 1024 | /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so |
| 1025 | * set the absolute value to 0xfff...fff - N. There is no carry |
| 1026 | * since we're subtracting from all-bits-one. */ |
| 1027 | for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) { |
| 1028 | N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i]; |
| 1029 | } |
| 1030 | /* Add 1, taking care of the carry. */ |
| 1031 | i = 0; |
| 1032 | do { |
| 1033 | ++N->p[i]; |
| 1034 | } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint)); |
| 1035 | /* Invert the sign. |
| 1036 | * Now N = N0 - 2^bits where N0 is the initial value of N. */ |
| 1037 | N->s = -1; |
| 1038 | |
| 1039 | /* Add |c| * 2^bits to the absolute value. Since c and N are |
| 1040 | * negative, this adds c * 2^bits. */ |
| 1041 | mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c; |
| 1042 | #if defined(MBEDTLS_HAVE_INT64) |
| 1043 | if (bits == 224) { |
| 1044 | msw <<= 32; |
| 1045 | } |
| 1046 | #endif |
| 1047 | N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw; |
| 1048 | } |
| 1049 | |
| 1050 | #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) |
| 1051 | /* |
| 1052 | * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2) |
| 1053 | */ |
| 1054 | static int ecp_mod_p224(mbedtls_mpi *N) |
| 1055 | { |
| 1056 | INIT(224); |
| 1057 | |
| 1058 | SUB(7); SUB(11); NEXT; // A0 += -A7 - A11 |
| 1059 | SUB(8); SUB(12); NEXT; // A1 += -A8 - A12 |
| 1060 | SUB(9); SUB(13); NEXT; // A2 += -A9 - A13 |
| 1061 | SUB(10); ADD(7); ADD(11); NEXT; // A3 += -A10 + A7 + A11 |
| 1062 | SUB(11); ADD(8); ADD(12); NEXT; // A4 += -A11 + A8 + A12 |
| 1063 | SUB(12); ADD(9); ADD(13); NEXT; // A5 += -A12 + A9 + A13 |
| 1064 | SUB(13); ADD(10); LAST; // A6 += -A13 + A10 |
| 1065 | |
| 1066 | cleanup: |
| 1067 | return ret; |
| 1068 | } |
| 1069 | #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */ |
| 1070 | |
| 1071 | #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) |
| 1072 | /* |
| 1073 | * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3) |
| 1074 | */ |
| 1075 | static int ecp_mod_p256(mbedtls_mpi *N) |
| 1076 | { |
| 1077 | INIT(256); |
| 1078 | |
| 1079 | ADD(8); ADD(9); |
| 1080 | SUB(11); SUB(12); SUB(13); SUB(14); NEXT; // A0 |
| 1081 | |
| 1082 | ADD(9); ADD(10); |
| 1083 | SUB(12); SUB(13); SUB(14); SUB(15); NEXT; // A1 |
| 1084 | |
| 1085 | ADD(10); ADD(11); |
| 1086 | SUB(13); SUB(14); SUB(15); NEXT; // A2 |
| 1087 | |
| 1088 | ADD(11); ADD(11); ADD(12); ADD(12); ADD(13); |
| 1089 | SUB(15); SUB(8); SUB(9); NEXT; // A3 |
| 1090 | |
| 1091 | ADD(12); ADD(12); ADD(13); ADD(13); ADD(14); |
| 1092 | SUB(9); SUB(10); NEXT; // A4 |
| 1093 | |
| 1094 | ADD(13); ADD(13); ADD(14); ADD(14); ADD(15); |
| 1095 | SUB(10); SUB(11); NEXT; // A5 |
| 1096 | |
| 1097 | ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13); |
| 1098 | SUB(8); SUB(9); NEXT; // A6 |
| 1099 | |
| 1100 | ADD(15); ADD(15); ADD(15); ADD(8); |
| 1101 | SUB(10); SUB(11); SUB(12); SUB(13); LAST; // A7 |
| 1102 | |
| 1103 | cleanup: |
| 1104 | return ret; |
| 1105 | } |
| 1106 | #endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */ |
| 1107 | |
| 1108 | #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) |
| 1109 | /* |
| 1110 | * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4) |
| 1111 | */ |
| 1112 | static int ecp_mod_p384(mbedtls_mpi *N) |
| 1113 | { |
| 1114 | INIT(384); |
| 1115 | |
| 1116 | ADD(12); ADD(21); ADD(20); |
| 1117 | SUB(23); NEXT; // A0 |
| 1118 | |
| 1119 | ADD(13); ADD(22); ADD(23); |
| 1120 | SUB(12); SUB(20); NEXT; // A2 |
| 1121 | |
| 1122 | ADD(14); ADD(23); |
| 1123 | SUB(13); SUB(21); NEXT; // A2 |
| 1124 | |
| 1125 | ADD(15); ADD(12); ADD(20); ADD(21); |
| 1126 | SUB(14); SUB(22); SUB(23); NEXT; // A3 |
| 1127 | |
| 1128 | ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22); |
| 1129 | SUB(15); SUB(23); SUB(23); NEXT; // A4 |
| 1130 | |
| 1131 | ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23); |
| 1132 | SUB(16); NEXT; // A5 |
| 1133 | |
| 1134 | ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22); |
| 1135 | SUB(17); NEXT; // A6 |
| 1136 | |
| 1137 | ADD(19); ADD(16); ADD(15); ADD(23); |
| 1138 | SUB(18); NEXT; // A7 |
| 1139 | |
| 1140 | ADD(20); ADD(17); ADD(16); |
| 1141 | SUB(19); NEXT; // A8 |
| 1142 | |
| 1143 | ADD(21); ADD(18); ADD(17); |
| 1144 | SUB(20); NEXT; // A9 |
| 1145 | |
| 1146 | ADD(22); ADD(19); ADD(18); |
| 1147 | SUB(21); NEXT; // A10 |
| 1148 | |
| 1149 | ADD(23); ADD(20); ADD(19); |
| 1150 | SUB(22); LAST; // A11 |
| 1151 | |
| 1152 | cleanup: |
| 1153 | return ret; |
| 1154 | } |
| 1155 | #endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */ |
| 1156 | |
| 1157 | #undef A |
| 1158 | #undef LOAD32 |
| 1159 | #undef STORE32 |
| 1160 | #undef MAX32 |
| 1161 | #undef INIT |
| 1162 | #undef NEXT |
| 1163 | #undef LAST |
| 1164 | |
| 1165 | #endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED || |
| 1166 | MBEDTLS_ECP_DP_SECP256R1_ENABLED || |
| 1167 | MBEDTLS_ECP_DP_SECP384R1_ENABLED */ |
| 1168 | |
| 1169 | #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) |
| 1170 | /* |
| 1171 | * Here we have an actual Mersenne prime, so things are more straightforward. |
| 1172 | * However, chunks are aligned on a 'weird' boundary (521 bits). |
| 1173 | */ |
| 1174 | |
| 1175 | /* Size of p521 in terms of mbedtls_mpi_uint */ |
| 1176 | #define P521_WIDTH (521 / 8 / sizeof(mbedtls_mpi_uint) + 1) |
| 1177 | |
| 1178 | /* Bits to keep in the most significant mbedtls_mpi_uint */ |
| 1179 | #define P521_MASK 0x01FF |
| 1180 | |
| 1181 | /* |
| 1182 | * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5) |
| 1183 | * Write N as A1 + 2^521 A0, return A0 + A1 |
| 1184 | */ |
| 1185 | static int ecp_mod_p521(mbedtls_mpi *N) |
| 1186 | { |
| 1187 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1188 | size_t i; |
| 1189 | mbedtls_mpi M; |
| 1190 | mbedtls_mpi_uint Mp[P521_WIDTH + 1]; |
| 1191 | /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits: |
| 1192 | * we need to hold bits 513 to 1056, which is 34 limbs, that is |
| 1193 | * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */ |
| 1194 | |
| 1195 | if (N->n < P521_WIDTH) { |
| 1196 | return 0; |
| 1197 | } |
| 1198 | |
| 1199 | /* M = A1 */ |
| 1200 | M.s = 1; |
| 1201 | M.n = N->n - (P521_WIDTH - 1); |
| 1202 | if (M.n > P521_WIDTH + 1) { |
| 1203 | M.n = P521_WIDTH + 1; |
| 1204 | } |
| 1205 | M.p = Mp; |
| 1206 | memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint)); |
| 1207 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint)))); |
| 1208 | |
| 1209 | /* N = A0 */ |
| 1210 | N->p[P521_WIDTH - 1] &= P521_MASK; |
| 1211 | for (i = P521_WIDTH; i < N->n; i++) { |
| 1212 | N->p[i] = 0; |
| 1213 | } |
| 1214 | |
| 1215 | /* N = A0 + A1 */ |
| 1216 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M)); |
| 1217 | |
| 1218 | cleanup: |
| 1219 | return ret; |
| 1220 | } |
| 1221 | |
| 1222 | #undef P521_WIDTH |
| 1223 | #undef P521_MASK |
| 1224 | #endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */ |
| 1225 | |
| 1226 | #endif /* MBEDTLS_ECP_NIST_OPTIM */ |
| 1227 | |
| 1228 | #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) |
| 1229 | |
| 1230 | /* Size of p255 in terms of mbedtls_mpi_uint */ |
| 1231 | #define P255_WIDTH (255 / 8 / sizeof(mbedtls_mpi_uint) + 1) |
| 1232 | |
| 1233 | /* |
| 1234 | * Fast quasi-reduction modulo p255 = 2^255 - 19 |
| 1235 | * Write N as A0 + 2^255 A1, return A0 + 19 * A1 |
| 1236 | */ |
| 1237 | static int ecp_mod_p255(mbedtls_mpi *N) |
| 1238 | { |
| 1239 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1240 | size_t i; |
| 1241 | mbedtls_mpi M; |
| 1242 | mbedtls_mpi_uint Mp[P255_WIDTH + 2]; |
| 1243 | |
| 1244 | if (N->n < P255_WIDTH) { |
| 1245 | return 0; |
| 1246 | } |
| 1247 | |
| 1248 | /* M = A1 */ |
| 1249 | M.s = 1; |
| 1250 | M.n = N->n - (P255_WIDTH - 1); |
| 1251 | if (M.n > P255_WIDTH + 1) { |
| 1252 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 1253 | } |
| 1254 | M.p = Mp; |
| 1255 | memset(Mp, 0, sizeof(Mp)); |
| 1256 | memcpy(Mp, N->p + P255_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint)); |
| 1257 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 255 % (8 * sizeof(mbedtls_mpi_uint)))); |
| 1258 | M.n++; /* Make room for multiplication by 19 */ |
| 1259 | |
| 1260 | /* N = A0 */ |
| 1261 | MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(N, 255, 0)); |
| 1262 | for (i = P255_WIDTH; i < N->n; i++) { |
| 1263 | N->p[i] = 0; |
| 1264 | } |
| 1265 | |
| 1266 | /* N = A0 + 19 * A1 */ |
| 1267 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &M, 19)); |
| 1268 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M)); |
| 1269 | |
| 1270 | cleanup: |
| 1271 | return ret; |
| 1272 | } |
| 1273 | #endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */ |
| 1274 | |
| 1275 | #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) |
| 1276 | |
| 1277 | /* Size of p448 in terms of mbedtls_mpi_uint */ |
| 1278 | #define P448_WIDTH (448 / 8 / sizeof(mbedtls_mpi_uint)) |
| 1279 | |
| 1280 | /* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */ |
| 1281 | #define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y)) |
| 1282 | #define P224_WIDTH_MIN (28 / sizeof(mbedtls_mpi_uint)) |
| 1283 | #define P224_WIDTH_MAX DIV_ROUND_UP(28, sizeof(mbedtls_mpi_uint)) |
| 1284 | #define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224) |
| 1285 | |
| 1286 | /* |
| 1287 | * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1 |
| 1288 | * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return |
| 1289 | * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference |
| 1290 | * implementation of Curve448, which uses its own special 56-bit limbs rather |
| 1291 | * than a generic bignum library. We could squeeze some extra speed out on |
| 1292 | * 32-bit machines by splitting N up into 32-bit limbs and doing the |
| 1293 | * arithmetic using the limbs directly as we do for the NIST primes above, |
| 1294 | * but for 64-bit targets it should use half the number of operations if we do |
| 1295 | * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds. |
| 1296 | */ |
| 1297 | static int ecp_mod_p448(mbedtls_mpi *N) |
| 1298 | { |
| 1299 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1300 | size_t i; |
| 1301 | mbedtls_mpi M, Q; |
| 1302 | mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH]; |
| 1303 | |
| 1304 | if (N->n <= P448_WIDTH) { |
| 1305 | return 0; |
| 1306 | } |
| 1307 | |
| 1308 | /* M = A1 */ |
| 1309 | M.s = 1; |
| 1310 | M.n = N->n - (P448_WIDTH); |
| 1311 | if (M.n > P448_WIDTH) { |
| 1312 | /* Shouldn't be called with N larger than 2^896! */ |
| 1313 | return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; |
| 1314 | } |
| 1315 | M.p = Mp; |
| 1316 | memset(Mp, 0, sizeof(Mp)); |
| 1317 | memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint)); |
| 1318 | |
| 1319 | /* N = A0 */ |
| 1320 | for (i = P448_WIDTH; i < N->n; i++) { |
| 1321 | N->p[i] = 0; |
| 1322 | } |
| 1323 | |
| 1324 | /* N += A1 */ |
| 1325 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M)); |
| 1326 | |
| 1327 | /* Q = B1, N += B1 */ |
| 1328 | Q = M; |
| 1329 | Q.p = Qp; |
| 1330 | memcpy(Qp, Mp, sizeof(Qp)); |
| 1331 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224)); |
| 1332 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q)); |
| 1333 | |
| 1334 | /* M = (B0 + B1) * 2^224, N += M */ |
| 1335 | if (sizeof(mbedtls_mpi_uint) > 4) { |
| 1336 | Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS); |
| 1337 | } |
| 1338 | for (i = P224_WIDTH_MAX; i < M.n; ++i) { |
| 1339 | Mp[i] = 0; |
| 1340 | } |
| 1341 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q)); |
| 1342 | M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */ |
| 1343 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224)); |
| 1344 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M)); |
| 1345 | |
| 1346 | cleanup: |
| 1347 | return ret; |
| 1348 | } |
| 1349 | #endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */ |
| 1350 | |
| 1351 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \ |
| 1352 | defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \ |
| 1353 | defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 1354 | /* |
| 1355 | * Fast quasi-reduction modulo P = 2^s - R, |
| 1356 | * with R about 33 bits, used by the Koblitz curves. |
| 1357 | * |
| 1358 | * Write N as A0 + 2^224 A1, return A0 + R * A1. |
| 1359 | * Actually do two passes, since R is big. |
| 1360 | */ |
| 1361 | #define P_KOBLITZ_MAX (256 / 8 / sizeof(mbedtls_mpi_uint)) // Max limbs in P |
| 1362 | #define P_KOBLITZ_R (8 / sizeof(mbedtls_mpi_uint)) // Limbs in R |
| 1363 | static inline int ecp_mod_koblitz(mbedtls_mpi *N, mbedtls_mpi_uint *Rp, size_t p_limbs, |
| 1364 | size_t adjust, size_t shift, mbedtls_mpi_uint mask) |
| 1365 | { |
| 1366 | int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| 1367 | size_t i; |
| 1368 | mbedtls_mpi M, R; |
| 1369 | mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1]; |
| 1370 | |
| 1371 | if (N->n < p_limbs) { |
| 1372 | return 0; |
| 1373 | } |
| 1374 | |
| 1375 | /* Init R */ |
| 1376 | R.s = 1; |
| 1377 | R.p = Rp; |
| 1378 | R.n = P_KOBLITZ_R; |
| 1379 | |
| 1380 | /* Common setup for M */ |
| 1381 | M.s = 1; |
| 1382 | M.p = Mp; |
| 1383 | |
| 1384 | /* M = A1 */ |
| 1385 | M.n = N->n - (p_limbs - adjust); |
| 1386 | if (M.n > p_limbs + adjust) { |
| 1387 | M.n = p_limbs + adjust; |
| 1388 | } |
| 1389 | memset(Mp, 0, sizeof(Mp)); |
| 1390 | memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint)); |
| 1391 | if (shift != 0) { |
| 1392 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift)); |
| 1393 | } |
| 1394 | M.n += R.n; /* Make room for multiplication by R */ |
| 1395 | |
| 1396 | /* N = A0 */ |
| 1397 | if (mask != 0) { |
| 1398 | N->p[p_limbs - 1] &= mask; |
| 1399 | } |
| 1400 | for (i = p_limbs; i < N->n; i++) { |
| 1401 | N->p[i] = 0; |
| 1402 | } |
| 1403 | |
| 1404 | /* N = A0 + R * A1 */ |
| 1405 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R)); |
| 1406 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M)); |
| 1407 | |
| 1408 | /* Second pass */ |
| 1409 | |
| 1410 | /* M = A1 */ |
| 1411 | M.n = N->n - (p_limbs - adjust); |
| 1412 | if (M.n > p_limbs + adjust) { |
| 1413 | M.n = p_limbs + adjust; |
| 1414 | } |
| 1415 | memset(Mp, 0, sizeof(Mp)); |
| 1416 | memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint)); |
| 1417 | if (shift != 0) { |
| 1418 | MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift)); |
| 1419 | } |
| 1420 | M.n += R.n; /* Make room for multiplication by R */ |
| 1421 | |
| 1422 | /* N = A0 */ |
| 1423 | if (mask != 0) { |
| 1424 | N->p[p_limbs - 1] &= mask; |
| 1425 | } |
| 1426 | for (i = p_limbs; i < N->n; i++) { |
| 1427 | N->p[i] = 0; |
| 1428 | } |
| 1429 | |
| 1430 | /* N = A0 + R * A1 */ |
| 1431 | MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R)); |
| 1432 | MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M)); |
| 1433 | |
| 1434 | cleanup: |
| 1435 | return ret; |
| 1436 | } |
| 1437 | #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) || |
| 1438 | MBEDTLS_ECP_DP_SECP224K1_ENABLED) || |
| 1439 | MBEDTLS_ECP_DP_SECP256K1_ENABLED) */ |
| 1440 | |
| 1441 | #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) |
| 1442 | /* |
| 1443 | * Fast quasi-reduction modulo p192k1 = 2^192 - R, |
| 1444 | * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x0100001119 |
| 1445 | */ |
| 1446 | static int ecp_mod_p192k1(mbedtls_mpi *N) |
| 1447 | { |
| 1448 | static mbedtls_mpi_uint Rp[] = { |
| 1449 | MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, |
| 1450 | 0x00) |
| 1451 | }; |
| 1452 | |
| 1453 | return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0, |
| 1454 | 0); |
| 1455 | } |
| 1456 | #endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */ |
| 1457 | |
| 1458 | #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) |
| 1459 | /* |
| 1460 | * Fast quasi-reduction modulo p224k1 = 2^224 - R, |
| 1461 | * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93 |
| 1462 | */ |
| 1463 | static int ecp_mod_p224k1(mbedtls_mpi *N) |
| 1464 | { |
| 1465 | static mbedtls_mpi_uint Rp[] = { |
| 1466 | MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00, |
| 1467 | 0x00) |
| 1468 | }; |
| 1469 | |
| 1470 | #if defined(MBEDTLS_HAVE_INT64) |
| 1471 | return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF); |
| 1472 | #else |
| 1473 | return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0, |
| 1474 | 0); |
| 1475 | #endif |
| 1476 | } |
| 1477 | |
| 1478 | #endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */ |
| 1479 | |
| 1480 | #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) |
| 1481 | /* |
| 1482 | * Fast quasi-reduction modulo p256k1 = 2^256 - R, |
| 1483 | * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1 |
| 1484 | */ |
| 1485 | static int ecp_mod_p256k1(mbedtls_mpi *N) |
| 1486 | { |
| 1487 | static mbedtls_mpi_uint Rp[] = { |
| 1488 | MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, |
| 1489 | 0x00) |
| 1490 | }; |
| 1491 | return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0, |
| 1492 | 0); |
| 1493 | } |
| 1494 | #endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */ |
| 1495 | |
| 1496 | #endif /* !MBEDTLS_ECP_ALT */ |
| 1497 | |
| 1498 | #endif /* MBEDTLS_ECP_C */ |
| 1499 | |