| 1 | /*************************************************************************/ |
| 2 | /* Copyright (c) 2011-2021 Ivan Fratric and contributors. */ |
| 3 | /* */ |
| 4 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 5 | /* a copy of this software and associated documentation files (the */ |
| 6 | /* "Software"), to deal in the Software without restriction, including */ |
| 7 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 8 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 9 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 10 | /* the following conditions: */ |
| 11 | /* */ |
| 12 | /* The above copyright notice and this permission notice shall be */ |
| 13 | /* included in all copies or substantial portions of the Software. */ |
| 14 | /* */ |
| 15 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 16 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 17 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ |
| 18 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 19 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 20 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 21 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 22 | /*************************************************************************/ |
| 23 | |
| 24 | #include "polypartition.h" |
| 25 | |
| 26 | #include <math.h> |
| 27 | #include <string.h> |
| 28 | #include <algorithm> |
| 29 | |
| 30 | TPPLPoly::TPPLPoly() { |
| 31 | hole = false; |
| 32 | numpoints = 0; |
| 33 | points = NULL; |
| 34 | } |
| 35 | |
| 36 | TPPLPoly::~TPPLPoly() { |
| 37 | if (points) { |
| 38 | delete[] points; |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | void TPPLPoly::Clear() { |
| 43 | if (points) { |
| 44 | delete[] points; |
| 45 | } |
| 46 | hole = false; |
| 47 | numpoints = 0; |
| 48 | points = NULL; |
| 49 | } |
| 50 | |
| 51 | void TPPLPoly::Init(long numpoints) { |
| 52 | Clear(); |
| 53 | this->numpoints = numpoints; |
| 54 | points = new TPPLPoint[numpoints]; |
| 55 | } |
| 56 | |
| 57 | void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) { |
| 58 | Init(3); |
| 59 | points[0] = p1; |
| 60 | points[1] = p2; |
| 61 | points[2] = p3; |
| 62 | } |
| 63 | |
| 64 | TPPLPoly::TPPLPoly(const TPPLPoly &src) : |
| 65 | TPPLPoly() { |
| 66 | hole = src.hole; |
| 67 | numpoints = src.numpoints; |
| 68 | |
| 69 | if (numpoints > 0) { |
| 70 | points = new TPPLPoint[numpoints]; |
| 71 | memcpy(points, src.points, numpoints * sizeof(TPPLPoint)); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | TPPLPoly &TPPLPoly::operator=(const TPPLPoly &src) { |
| 76 | Clear(); |
| 77 | hole = src.hole; |
| 78 | numpoints = src.numpoints; |
| 79 | |
| 80 | if (numpoints > 0) { |
| 81 | points = new TPPLPoint[numpoints]; |
| 82 | memcpy(points, src.points, numpoints * sizeof(TPPLPoint)); |
| 83 | } |
| 84 | |
| 85 | return *this; |
| 86 | } |
| 87 | |
| 88 | TPPLOrientation TPPLPoly::GetOrientation() const { |
| 89 | long i1, i2; |
| 90 | tppl_float area = 0; |
| 91 | for (i1 = 0; i1 < numpoints; i1++) { |
| 92 | i2 = i1 + 1; |
| 93 | if (i2 == numpoints) { |
| 94 | i2 = 0; |
| 95 | } |
| 96 | area += points[i1].x * points[i2].y - points[i1].y * points[i2].x; |
| 97 | } |
| 98 | if (area > 0) { |
| 99 | return TPPL_ORIENTATION_CCW; |
| 100 | } |
| 101 | if (area < 0) { |
| 102 | return TPPL_ORIENTATION_CW; |
| 103 | } |
| 104 | return TPPL_ORIENTATION_NONE; |
| 105 | } |
| 106 | |
| 107 | void TPPLPoly::SetOrientation(TPPLOrientation orientation) { |
| 108 | TPPLOrientation polyorientation = GetOrientation(); |
| 109 | if (polyorientation != TPPL_ORIENTATION_NONE && polyorientation != orientation) { |
| 110 | Invert(); |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | void TPPLPoly::Invert() { |
| 115 | std::reverse(points, points + numpoints); |
| 116 | } |
| 117 | |
| 118 | TPPLPartition::PartitionVertex::PartitionVertex() : |
| 119 | previous(NULL), next(NULL) { |
| 120 | } |
| 121 | |
| 122 | TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) { |
| 123 | TPPLPoint r; |
| 124 | tppl_float n = sqrt(p.x * p.x + p.y * p.y); |
| 125 | if (n != 0) { |
| 126 | r = p / n; |
| 127 | } else { |
| 128 | r.x = 0; |
| 129 | r.y = 0; |
| 130 | } |
| 131 | return r; |
| 132 | } |
| 133 | |
| 134 | tppl_float TPPLPartition::Distance(const TPPLPoint &p1, const TPPLPoint &p2) { |
| 135 | tppl_float dx, dy; |
| 136 | dx = p2.x - p1.x; |
| 137 | dy = p2.y - p1.y; |
| 138 | return (sqrt(dx * dx + dy * dy)); |
| 139 | } |
| 140 | |
| 141 | // Checks if two lines intersect. |
| 142 | int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22) { |
| 143 | if ((p11.x == p21.x) && (p11.y == p21.y)) { |
| 144 | return 0; |
| 145 | } |
| 146 | if ((p11.x == p22.x) && (p11.y == p22.y)) { |
| 147 | return 0; |
| 148 | } |
| 149 | if ((p12.x == p21.x) && (p12.y == p21.y)) { |
| 150 | return 0; |
| 151 | } |
| 152 | if ((p12.x == p22.x) && (p12.y == p22.y)) { |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | TPPLPoint v1ort, v2ort, v; |
| 157 | tppl_float dot11, dot12, dot21, dot22; |
| 158 | |
| 159 | v1ort.x = p12.y - p11.y; |
| 160 | v1ort.y = p11.x - p12.x; |
| 161 | |
| 162 | v2ort.x = p22.y - p21.y; |
| 163 | v2ort.y = p21.x - p22.x; |
| 164 | |
| 165 | v = p21 - p11; |
| 166 | dot21 = v.x * v1ort.x + v.y * v1ort.y; |
| 167 | v = p22 - p11; |
| 168 | dot22 = v.x * v1ort.x + v.y * v1ort.y; |
| 169 | |
| 170 | v = p11 - p21; |
| 171 | dot11 = v.x * v2ort.x + v.y * v2ort.y; |
| 172 | v = p12 - p21; |
| 173 | dot12 = v.x * v2ort.x + v.y * v2ort.y; |
| 174 | |
| 175 | if (dot11 * dot12 > 0) { |
| 176 | return 0; |
| 177 | } |
| 178 | if (dot21 * dot22 > 0) { |
| 179 | return 0; |
| 180 | } |
| 181 | |
| 182 | return 1; |
| 183 | } |
| 184 | |
| 185 | // Removes holes from inpolys by merging them with non-holes. |
| 186 | int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) { |
| 187 | TPPLPolyList polys; |
| 188 | TPPLPolyList::Element *holeiter, *polyiter, *iter, *iter2; |
| 189 | long i, i2, holepointindex, polypointindex; |
| 190 | TPPLPoint holepoint, polypoint, bestpolypoint; |
| 191 | TPPLPoint linep1, linep2; |
| 192 | TPPLPoint v1, v2; |
| 193 | TPPLPoly newpoly; |
| 194 | bool hasholes; |
| 195 | bool pointvisible; |
| 196 | bool pointfound; |
| 197 | |
| 198 | // Check for the trivial case of no holes. |
| 199 | hasholes = false; |
| 200 | for (iter = inpolys->front(); iter; iter = iter->next()) { |
| 201 | if (iter->get().IsHole()) { |
| 202 | hasholes = true; |
| 203 | break; |
| 204 | } |
| 205 | } |
| 206 | if (!hasholes) { |
| 207 | for (iter = inpolys->front(); iter; iter = iter->next()) { |
| 208 | outpolys->push_back(iter->get()); |
| 209 | } |
| 210 | return 1; |
| 211 | } |
| 212 | |
| 213 | polys = *inpolys; |
| 214 | |
| 215 | while (1) { |
| 216 | // Find the hole point with the largest x. |
| 217 | hasholes = false; |
| 218 | for (iter = polys.front(); iter; iter = iter->next()) { |
| 219 | if (!iter->get().IsHole()) { |
| 220 | continue; |
| 221 | } |
| 222 | |
| 223 | if (!hasholes) { |
| 224 | hasholes = true; |
| 225 | holeiter = iter; |
| 226 | holepointindex = 0; |
| 227 | } |
| 228 | |
| 229 | for (i = 0; i < iter->get().GetNumPoints(); i++) { |
| 230 | if (iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) { |
| 231 | holeiter = iter; |
| 232 | holepointindex = i; |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | if (!hasholes) { |
| 237 | break; |
| 238 | } |
| 239 | holepoint = holeiter->get().GetPoint(holepointindex); |
| 240 | |
| 241 | pointfound = false; |
| 242 | for (iter = polys.front(); iter; iter = iter->next()) { |
| 243 | if (iter->get().IsHole()) { |
| 244 | continue; |
| 245 | } |
| 246 | for (i = 0; i < iter->get().GetNumPoints(); i++) { |
| 247 | if (iter->get().GetPoint(i).x <= holepoint.x) { |
| 248 | continue; |
| 249 | } |
| 250 | if (!InCone(iter->get().GetPoint((i + iter->get().GetNumPoints() - 1) % (iter->get().GetNumPoints())), |
| 251 | iter->get().GetPoint(i), |
| 252 | iter->get().GetPoint((i + 1) % (iter->get().GetNumPoints())), |
| 253 | holepoint)) { |
| 254 | continue; |
| 255 | } |
| 256 | polypoint = iter->get().GetPoint(i); |
| 257 | if (pointfound) { |
| 258 | v1 = Normalize(polypoint - holepoint); |
| 259 | v2 = Normalize(bestpolypoint - holepoint); |
| 260 | if (v2.x > v1.x) { |
| 261 | continue; |
| 262 | } |
| 263 | } |
| 264 | pointvisible = true; |
| 265 | for (iter2 = polys.front(); iter2; iter2 = iter2->next()) { |
| 266 | if (iter2->get().IsHole()) { |
| 267 | continue; |
| 268 | } |
| 269 | for (i2 = 0; i2 < iter2->get().GetNumPoints(); i2++) { |
| 270 | linep1 = iter2->get().GetPoint(i2); |
| 271 | linep2 = iter2->get().GetPoint((i2 + 1) % (iter2->get().GetNumPoints())); |
| 272 | if (Intersects(holepoint, polypoint, linep1, linep2)) { |
| 273 | pointvisible = false; |
| 274 | break; |
| 275 | } |
| 276 | } |
| 277 | if (!pointvisible) { |
| 278 | break; |
| 279 | } |
| 280 | } |
| 281 | if (pointvisible) { |
| 282 | pointfound = true; |
| 283 | bestpolypoint = polypoint; |
| 284 | polyiter = iter; |
| 285 | polypointindex = i; |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | if (!pointfound) { |
| 291 | return 0; |
| 292 | } |
| 293 | |
| 294 | newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2); |
| 295 | i2 = 0; |
| 296 | for (i = 0; i <= polypointindex; i++) { |
| 297 | newpoly[i2] = polyiter->get().GetPoint(i); |
| 298 | i2++; |
| 299 | } |
| 300 | for (i = 0; i <= holeiter->get().GetNumPoints(); i++) { |
| 301 | newpoly[i2] = holeiter->get().GetPoint((i + holepointindex) % holeiter->get().GetNumPoints()); |
| 302 | i2++; |
| 303 | } |
| 304 | for (i = polypointindex; i < polyiter->get().GetNumPoints(); i++) { |
| 305 | newpoly[i2] = polyiter->get().GetPoint(i); |
| 306 | i2++; |
| 307 | } |
| 308 | |
| 309 | polys.erase(holeiter); |
| 310 | polys.erase(polyiter); |
| 311 | polys.push_back(newpoly); |
| 312 | } |
| 313 | |
| 314 | for (iter = polys.front(); iter; iter = iter->next()) { |
| 315 | outpolys->push_back(iter->get()); |
| 316 | } |
| 317 | |
| 318 | return 1; |
| 319 | } |
| 320 | |
| 321 | bool TPPLPartition::IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) { |
| 322 | tppl_float tmp; |
| 323 | tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y); |
| 324 | if (tmp > 0) { |
| 325 | return 1; |
| 326 | } else { |
| 327 | return 0; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | bool TPPLPartition::IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) { |
| 332 | tppl_float tmp; |
| 333 | tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y); |
| 334 | if (tmp < 0) { |
| 335 | return 1; |
| 336 | } else { |
| 337 | return 0; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | bool TPPLPartition::IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) { |
| 342 | if (IsConvex(p1, p, p2)) { |
| 343 | return false; |
| 344 | } |
| 345 | if (IsConvex(p2, p, p3)) { |
| 346 | return false; |
| 347 | } |
| 348 | if (IsConvex(p3, p, p1)) { |
| 349 | return false; |
| 350 | } |
| 351 | return true; |
| 352 | } |
| 353 | |
| 354 | bool TPPLPartition::InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) { |
| 355 | bool convex; |
| 356 | |
| 357 | convex = IsConvex(p1, p2, p3); |
| 358 | |
| 359 | if (convex) { |
| 360 | if (!IsConvex(p1, p2, p)) { |
| 361 | return false; |
| 362 | } |
| 363 | if (!IsConvex(p2, p3, p)) { |
| 364 | return false; |
| 365 | } |
| 366 | return true; |
| 367 | } else { |
| 368 | if (IsConvex(p1, p2, p)) { |
| 369 | return true; |
| 370 | } |
| 371 | if (IsConvex(p2, p3, p)) { |
| 372 | return true; |
| 373 | } |
| 374 | return false; |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) { |
| 379 | TPPLPoint p1, p2, p3; |
| 380 | |
| 381 | p1 = v->previous->p; |
| 382 | p2 = v->p; |
| 383 | p3 = v->next->p; |
| 384 | |
| 385 | return InCone(p1, p2, p3, p); |
| 386 | } |
| 387 | |
| 388 | void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) { |
| 389 | PartitionVertex *v1 = NULL, *v3 = NULL; |
| 390 | v1 = v->previous; |
| 391 | v3 = v->next; |
| 392 | v->isConvex = !IsReflex(v1->p, v->p, v3->p); |
| 393 | } |
| 394 | |
| 395 | void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) { |
| 396 | long i; |
| 397 | PartitionVertex *v1 = NULL, *v3 = NULL; |
| 398 | TPPLPoint vec1, vec3; |
| 399 | |
| 400 | v1 = v->previous; |
| 401 | v3 = v->next; |
| 402 | |
| 403 | v->isConvex = IsConvex(v1->p, v->p, v3->p); |
| 404 | |
| 405 | vec1 = Normalize(v1->p - v->p); |
| 406 | vec3 = Normalize(v3->p - v->p); |
| 407 | v->angle = vec1.x * vec3.x + vec1.y * vec3.y; |
| 408 | |
| 409 | if (v->isConvex) { |
| 410 | v->isEar = true; |
| 411 | for (i = 0; i < numvertices; i++) { |
| 412 | if ((vertices[i].p.x == v->p.x) && (vertices[i].p.y == v->p.y)) { |
| 413 | continue; |
| 414 | } |
| 415 | if ((vertices[i].p.x == v1->p.x) && (vertices[i].p.y == v1->p.y)) { |
| 416 | continue; |
| 417 | } |
| 418 | if ((vertices[i].p.x == v3->p.x) && (vertices[i].p.y == v3->p.y)) { |
| 419 | continue; |
| 420 | } |
| 421 | if (IsInside(v1->p, v->p, v3->p, vertices[i].p)) { |
| 422 | v->isEar = false; |
| 423 | break; |
| 424 | } |
| 425 | } |
| 426 | } else { |
| 427 | v->isEar = false; |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | // Triangulation by ear removal. |
| 432 | int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) { |
| 433 | if (!poly->Valid()) { |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | long numvertices; |
| 438 | PartitionVertex *vertices = NULL; |
| 439 | PartitionVertex *ear = NULL; |
| 440 | TPPLPoly triangle; |
| 441 | long i, j; |
| 442 | bool earfound; |
| 443 | |
| 444 | if (poly->GetNumPoints() < 3) { |
| 445 | return 0; |
| 446 | } |
| 447 | if (poly->GetNumPoints() == 3) { |
| 448 | triangles->push_back(*poly); |
| 449 | return 1; |
| 450 | } |
| 451 | |
| 452 | numvertices = poly->GetNumPoints(); |
| 453 | |
| 454 | vertices = new PartitionVertex[numvertices]; |
| 455 | for (i = 0; i < numvertices; i++) { |
| 456 | vertices[i].isActive = true; |
| 457 | vertices[i].p = poly->GetPoint(i); |
| 458 | if (i == (numvertices - 1)) { |
| 459 | vertices[i].next = &(vertices[0]); |
| 460 | } else { |
| 461 | vertices[i].next = &(vertices[i + 1]); |
| 462 | } |
| 463 | if (i == 0) { |
| 464 | vertices[i].previous = &(vertices[numvertices - 1]); |
| 465 | } else { |
| 466 | vertices[i].previous = &(vertices[i - 1]); |
| 467 | } |
| 468 | } |
| 469 | for (i = 0; i < numvertices; i++) { |
| 470 | UpdateVertex(&vertices[i], vertices, numvertices); |
| 471 | } |
| 472 | |
| 473 | for (i = 0; i < numvertices - 3; i++) { |
| 474 | earfound = false; |
| 475 | // Find the most extruded ear. |
| 476 | for (j = 0; j < numvertices; j++) { |
| 477 | if (!vertices[j].isActive) { |
| 478 | continue; |
| 479 | } |
| 480 | if (!vertices[j].isEar) { |
| 481 | continue; |
| 482 | } |
| 483 | if (!earfound) { |
| 484 | earfound = true; |
| 485 | ear = &(vertices[j]); |
| 486 | } else { |
| 487 | if (vertices[j].angle > ear->angle) { |
| 488 | ear = &(vertices[j]); |
| 489 | } |
| 490 | } |
| 491 | } |
| 492 | if (!earfound) { |
| 493 | delete[] vertices; |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | triangle.Triangle(ear->previous->p, ear->p, ear->next->p); |
| 498 | triangles->push_back(triangle); |
| 499 | |
| 500 | ear->isActive = false; |
| 501 | ear->previous->next = ear->next; |
| 502 | ear->next->previous = ear->previous; |
| 503 | |
| 504 | if (i == numvertices - 4) { |
| 505 | break; |
| 506 | } |
| 507 | |
| 508 | UpdateVertex(ear->previous, vertices, numvertices); |
| 509 | UpdateVertex(ear->next, vertices, numvertices); |
| 510 | } |
| 511 | for (i = 0; i < numvertices; i++) { |
| 512 | if (vertices[i].isActive) { |
| 513 | triangle.Triangle(vertices[i].previous->p, vertices[i].p, vertices[i].next->p); |
| 514 | triangles->push_back(triangle); |
| 515 | break; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | delete[] vertices; |
| 520 | |
| 521 | return 1; |
| 522 | } |
| 523 | |
| 524 | int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) { |
| 525 | TPPLPolyList outpolys; |
| 526 | TPPLPolyList::Element *iter; |
| 527 | |
| 528 | if (!RemoveHoles(inpolys, &outpolys)) { |
| 529 | return 0; |
| 530 | } |
| 531 | for (iter = outpolys.front(); iter; iter = iter->next()) { |
| 532 | if (!Triangulate_EC(&(iter->get()), triangles)) { |
| 533 | return 0; |
| 534 | } |
| 535 | } |
| 536 | return 1; |
| 537 | } |
| 538 | |
| 539 | int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) { |
| 540 | if (!poly->Valid()) { |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | TPPLPolyList triangles; |
| 545 | TPPLPolyList::Element *iter1, *iter2; |
| 546 | TPPLPoly *poly1 = NULL, *poly2 = NULL; |
| 547 | TPPLPoly newpoly; |
| 548 | TPPLPoint d1, d2, p1, p2, p3; |
| 549 | long i11, i12, i21, i22, i13, i23, j, k; |
| 550 | bool isdiagonal; |
| 551 | long numreflex; |
| 552 | |
| 553 | // Check if the poly is already convex. |
| 554 | numreflex = 0; |
| 555 | for (i11 = 0; i11 < poly->GetNumPoints(); i11++) { |
| 556 | if (i11 == 0) { |
| 557 | i12 = poly->GetNumPoints() - 1; |
| 558 | } else { |
| 559 | i12 = i11 - 1; |
| 560 | } |
| 561 | if (i11 == (poly->GetNumPoints() - 1)) { |
| 562 | i13 = 0; |
| 563 | } else { |
| 564 | i13 = i11 + 1; |
| 565 | } |
| 566 | if (IsReflex(poly->GetPoint(i12), poly->GetPoint(i11), poly->GetPoint(i13))) { |
| 567 | numreflex = 1; |
| 568 | break; |
| 569 | } |
| 570 | } |
| 571 | if (numreflex == 0) { |
| 572 | parts->push_back(*poly); |
| 573 | return 1; |
| 574 | } |
| 575 | |
| 576 | if (!Triangulate_EC(poly, &triangles)) { |
| 577 | return 0; |
| 578 | } |
| 579 | |
| 580 | for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) { |
| 581 | poly1 = &(iter1->get()); |
| 582 | for (i11 = 0; i11 < poly1->GetNumPoints(); i11++) { |
| 583 | d1 = poly1->GetPoint(i11); |
| 584 | i12 = (i11 + 1) % (poly1->GetNumPoints()); |
| 585 | d2 = poly1->GetPoint(i12); |
| 586 | |
| 587 | isdiagonal = false; |
| 588 | for (iter2 = iter1; iter2; iter2 = iter2->next()) { |
| 589 | if (iter1 == iter2) { |
| 590 | continue; |
| 591 | } |
| 592 | poly2 = &(iter2->get()); |
| 593 | |
| 594 | for (i21 = 0; i21 < poly2->GetNumPoints(); i21++) { |
| 595 | if ((d2.x != poly2->GetPoint(i21).x) || (d2.y != poly2->GetPoint(i21).y)) { |
| 596 | continue; |
| 597 | } |
| 598 | i22 = (i21 + 1) % (poly2->GetNumPoints()); |
| 599 | if ((d1.x != poly2->GetPoint(i22).x) || (d1.y != poly2->GetPoint(i22).y)) { |
| 600 | continue; |
| 601 | } |
| 602 | isdiagonal = true; |
| 603 | break; |
| 604 | } |
| 605 | if (isdiagonal) { |
| 606 | break; |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | if (!isdiagonal) { |
| 611 | continue; |
| 612 | } |
| 613 | |
| 614 | p2 = poly1->GetPoint(i11); |
| 615 | if (i11 == 0) { |
| 616 | i13 = poly1->GetNumPoints() - 1; |
| 617 | } else { |
| 618 | i13 = i11 - 1; |
| 619 | } |
| 620 | p1 = poly1->GetPoint(i13); |
| 621 | if (i22 == (poly2->GetNumPoints() - 1)) { |
| 622 | i23 = 0; |
| 623 | } else { |
| 624 | i23 = i22 + 1; |
| 625 | } |
| 626 | p3 = poly2->GetPoint(i23); |
| 627 | |
| 628 | if (!IsConvex(p1, p2, p3)) { |
| 629 | continue; |
| 630 | } |
| 631 | |
| 632 | p2 = poly1->GetPoint(i12); |
| 633 | if (i12 == (poly1->GetNumPoints() - 1)) { |
| 634 | i13 = 0; |
| 635 | } else { |
| 636 | i13 = i12 + 1; |
| 637 | } |
| 638 | p3 = poly1->GetPoint(i13); |
| 639 | if (i21 == 0) { |
| 640 | i23 = poly2->GetNumPoints() - 1; |
| 641 | } else { |
| 642 | i23 = i21 - 1; |
| 643 | } |
| 644 | p1 = poly2->GetPoint(i23); |
| 645 | |
| 646 | if (!IsConvex(p1, p2, p3)) { |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | newpoly.Init(poly1->GetNumPoints() + poly2->GetNumPoints() - 2); |
| 651 | k = 0; |
| 652 | for (j = i12; j != i11; j = (j + 1) % (poly1->GetNumPoints())) { |
| 653 | newpoly[k] = poly1->GetPoint(j); |
| 654 | k++; |
| 655 | } |
| 656 | for (j = i22; j != i21; j = (j + 1) % (poly2->GetNumPoints())) { |
| 657 | newpoly[k] = poly2->GetPoint(j); |
| 658 | k++; |
| 659 | } |
| 660 | |
| 661 | triangles.erase(iter2); |
| 662 | iter1->get() = newpoly; |
| 663 | poly1 = &(iter1->get()); |
| 664 | i11 = -1; |
| 665 | |
| 666 | continue; |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) { |
| 671 | parts->push_back(iter1->get()); |
| 672 | } |
| 673 | |
| 674 | return 1; |
| 675 | } |
| 676 | |
| 677 | int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) { |
| 678 | TPPLPolyList outpolys; |
| 679 | TPPLPolyList::Element *iter; |
| 680 | |
| 681 | if (!RemoveHoles(inpolys, &outpolys)) { |
| 682 | return 0; |
| 683 | } |
| 684 | for (iter = outpolys.front(); iter; iter = iter->next()) { |
| 685 | if (!ConvexPartition_HM(&(iter->get()), parts)) { |
| 686 | return 0; |
| 687 | } |
| 688 | } |
| 689 | return 1; |
| 690 | } |
| 691 | |
| 692 | // Minimum-weight polygon triangulation by dynamic programming. |
| 693 | // Time complexity: O(n^3) |
| 694 | // Space complexity: O(n^2) |
| 695 | int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) { |
| 696 | if (!poly->Valid()) { |
| 697 | return 0; |
| 698 | } |
| 699 | |
| 700 | long i, j, k, gap, n; |
| 701 | DPState **dpstates = NULL; |
| 702 | TPPLPoint p1, p2, p3, p4; |
| 703 | long bestvertex; |
| 704 | tppl_float weight, minweight, d1, d2; |
| 705 | Diagonal diagonal, newdiagonal; |
| 706 | DiagonalList diagonals; |
| 707 | TPPLPoly triangle; |
| 708 | int ret = 1; |
| 709 | |
| 710 | n = poly->GetNumPoints(); |
| 711 | dpstates = new DPState *[n]; |
| 712 | for (i = 1; i < n; i++) { |
| 713 | dpstates[i] = new DPState[i]; |
| 714 | } |
| 715 | |
| 716 | // Initialize states and visibility. |
| 717 | for (i = 0; i < (n - 1); i++) { |
| 718 | p1 = poly->GetPoint(i); |
| 719 | for (j = i + 1; j < n; j++) { |
| 720 | dpstates[j][i].visible = true; |
| 721 | dpstates[j][i].weight = 0; |
| 722 | dpstates[j][i].bestvertex = -1; |
| 723 | if (j != (i + 1)) { |
| 724 | p2 = poly->GetPoint(j); |
| 725 | |
| 726 | // Visibility check. |
| 727 | if (i == 0) { |
| 728 | p3 = poly->GetPoint(n - 1); |
| 729 | } else { |
| 730 | p3 = poly->GetPoint(i - 1); |
| 731 | } |
| 732 | if (i == (n - 1)) { |
| 733 | p4 = poly->GetPoint(0); |
| 734 | } else { |
| 735 | p4 = poly->GetPoint(i + 1); |
| 736 | } |
| 737 | if (!InCone(p3, p1, p4, p2)) { |
| 738 | dpstates[j][i].visible = false; |
| 739 | continue; |
| 740 | } |
| 741 | |
| 742 | if (j == 0) { |
| 743 | p3 = poly->GetPoint(n - 1); |
| 744 | } else { |
| 745 | p3 = poly->GetPoint(j - 1); |
| 746 | } |
| 747 | if (j == (n - 1)) { |
| 748 | p4 = poly->GetPoint(0); |
| 749 | } else { |
| 750 | p4 = poly->GetPoint(j + 1); |
| 751 | } |
| 752 | if (!InCone(p3, p2, p4, p1)) { |
| 753 | dpstates[j][i].visible = false; |
| 754 | continue; |
| 755 | } |
| 756 | |
| 757 | for (k = 0; k < n; k++) { |
| 758 | p3 = poly->GetPoint(k); |
| 759 | if (k == (n - 1)) { |
| 760 | p4 = poly->GetPoint(0); |
| 761 | } else { |
| 762 | p4 = poly->GetPoint(k + 1); |
| 763 | } |
| 764 | if (Intersects(p1, p2, p3, p4)) { |
| 765 | dpstates[j][i].visible = false; |
| 766 | break; |
| 767 | } |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | } |
| 772 | dpstates[n - 1][0].visible = true; |
| 773 | dpstates[n - 1][0].weight = 0; |
| 774 | dpstates[n - 1][0].bestvertex = -1; |
| 775 | |
| 776 | for (gap = 2; gap < n; gap++) { |
| 777 | for (i = 0; i < (n - gap); i++) { |
| 778 | j = i + gap; |
| 779 | if (!dpstates[j][i].visible) { |
| 780 | continue; |
| 781 | } |
| 782 | bestvertex = -1; |
| 783 | for (k = (i + 1); k < j; k++) { |
| 784 | if (!dpstates[k][i].visible) { |
| 785 | continue; |
| 786 | } |
| 787 | if (!dpstates[j][k].visible) { |
| 788 | continue; |
| 789 | } |
| 790 | |
| 791 | if (k <= (i + 1)) { |
| 792 | d1 = 0; |
| 793 | } else { |
| 794 | d1 = Distance(poly->GetPoint(i), poly->GetPoint(k)); |
| 795 | } |
| 796 | if (j <= (k + 1)) { |
| 797 | d2 = 0; |
| 798 | } else { |
| 799 | d2 = Distance(poly->GetPoint(k), poly->GetPoint(j)); |
| 800 | } |
| 801 | |
| 802 | weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2; |
| 803 | |
| 804 | if ((bestvertex == -1) || (weight < minweight)) { |
| 805 | bestvertex = k; |
| 806 | minweight = weight; |
| 807 | } |
| 808 | } |
| 809 | if (bestvertex == -1) { |
| 810 | for (i = 1; i < n; i++) { |
| 811 | delete[] dpstates[i]; |
| 812 | } |
| 813 | delete[] dpstates; |
| 814 | |
| 815 | return 0; |
| 816 | } |
| 817 | |
| 818 | dpstates[j][i].bestvertex = bestvertex; |
| 819 | dpstates[j][i].weight = minweight; |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | newdiagonal.index1 = 0; |
| 824 | newdiagonal.index2 = n - 1; |
| 825 | diagonals.push_back(newdiagonal); |
| 826 | while (!diagonals.is_empty()) { |
| 827 | diagonal = diagonals.front()->get(); |
| 828 | diagonals.pop_front(); |
| 829 | bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex; |
| 830 | if (bestvertex == -1) { |
| 831 | ret = 0; |
| 832 | break; |
| 833 | } |
| 834 | triangle.Triangle(poly->GetPoint(diagonal.index1), poly->GetPoint(bestvertex), poly->GetPoint(diagonal.index2)); |
| 835 | triangles->push_back(triangle); |
| 836 | if (bestvertex > (diagonal.index1 + 1)) { |
| 837 | newdiagonal.index1 = diagonal.index1; |
| 838 | newdiagonal.index2 = bestvertex; |
| 839 | diagonals.push_back(newdiagonal); |
| 840 | } |
| 841 | if (diagonal.index2 > (bestvertex + 1)) { |
| 842 | newdiagonal.index1 = bestvertex; |
| 843 | newdiagonal.index2 = diagonal.index2; |
| 844 | diagonals.push_back(newdiagonal); |
| 845 | } |
| 846 | } |
| 847 | |
| 848 | for (i = 1; i < n; i++) { |
| 849 | delete[] dpstates[i]; |
| 850 | } |
| 851 | delete[] dpstates; |
| 852 | |
| 853 | return ret; |
| 854 | } |
| 855 | |
| 856 | void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) { |
| 857 | Diagonal newdiagonal; |
| 858 | DiagonalList *pairs = NULL; |
| 859 | long w2; |
| 860 | |
| 861 | w2 = dpstates[a][b].weight; |
| 862 | if (w > w2) { |
| 863 | return; |
| 864 | } |
| 865 | |
| 866 | pairs = &(dpstates[a][b].pairs); |
| 867 | newdiagonal.index1 = i; |
| 868 | newdiagonal.index2 = j; |
| 869 | |
| 870 | if (w < w2) { |
| 871 | pairs->clear(); |
| 872 | pairs->push_front(newdiagonal); |
| 873 | dpstates[a][b].weight = w; |
| 874 | } else { |
| 875 | if ((!pairs->is_empty()) && (i <= pairs->front()->get().index1)) { |
| 876 | return; |
| 877 | } |
| 878 | while ((!pairs->is_empty()) && (pairs->front()->get().index2 >= j)) { |
| 879 | pairs->pop_front(); |
| 880 | } |
| 881 | pairs->push_front(newdiagonal); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { |
| 886 | DiagonalList *pairs = NULL; |
| 887 | DiagonalList::Element *iter, *lastiter; |
| 888 | long top; |
| 889 | long w; |
| 890 | |
| 891 | if (!dpstates[i][j].visible) { |
| 892 | return; |
| 893 | } |
| 894 | top = j; |
| 895 | w = dpstates[i][j].weight; |
| 896 | if (k - j > 1) { |
| 897 | if (!dpstates[j][k].visible) { |
| 898 | return; |
| 899 | } |
| 900 | w += dpstates[j][k].weight + 1; |
| 901 | } |
| 902 | if (j - i > 1) { |
| 903 | pairs = &(dpstates[i][j].pairs); |
| 904 | iter = pairs->back(); |
| 905 | lastiter = pairs->back(); |
| 906 | while (iter != pairs->front()) { |
| 907 | iter--; |
| 908 | if (!IsReflex(vertices[iter->get().index2].p, vertices[j].p, vertices[k].p)) { |
| 909 | lastiter = iter; |
| 910 | } else { |
| 911 | break; |
| 912 | } |
| 913 | } |
| 914 | if (lastiter == pairs->back()) { |
| 915 | w++; |
| 916 | } else { |
| 917 | if (IsReflex(vertices[k].p, vertices[i].p, vertices[lastiter->get().index1].p)) { |
| 918 | w++; |
| 919 | } else { |
| 920 | top = lastiter->get().index1; |
| 921 | } |
| 922 | } |
| 923 | } |
| 924 | UpdateState(i, k, w, top, j, dpstates); |
| 925 | } |
| 926 | |
| 927 | void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) { |
| 928 | DiagonalList *pairs = NULL; |
| 929 | DiagonalList::Element *iter, *lastiter; |
| 930 | long top; |
| 931 | long w; |
| 932 | |
| 933 | if (!dpstates[j][k].visible) { |
| 934 | return; |
| 935 | } |
| 936 | top = j; |
| 937 | w = dpstates[j][k].weight; |
| 938 | |
| 939 | if (j - i > 1) { |
| 940 | if (!dpstates[i][j].visible) { |
| 941 | return; |
| 942 | } |
| 943 | w += dpstates[i][j].weight + 1; |
| 944 | } |
| 945 | if (k - j > 1) { |
| 946 | pairs = &(dpstates[j][k].pairs); |
| 947 | |
| 948 | iter = pairs->front(); |
| 949 | if ((!pairs->is_empty()) && (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p))) { |
| 950 | lastiter = iter; |
| 951 | while (iter) { |
| 952 | if (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p)) { |
| 953 | lastiter = iter; |
| 954 | iter = iter->next(); |
| 955 | } else { |
| 956 | break; |
| 957 | } |
| 958 | } |
| 959 | if (IsReflex(vertices[lastiter->get().index2].p, vertices[k].p, vertices[i].p)) { |
| 960 | w++; |
| 961 | } else { |
| 962 | top = lastiter->get().index2; |
| 963 | } |
| 964 | } else { |
| 965 | w++; |
| 966 | } |
| 967 | } |
| 968 | UpdateState(i, k, w, j, top, dpstates); |
| 969 | } |
| 970 | |
| 971 | int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) { |
| 972 | if (!poly->Valid()) { |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | TPPLPoint p1, p2, p3, p4; |
| 977 | PartitionVertex *vertices = NULL; |
| 978 | DPState2 **dpstates = NULL; |
| 979 | long i, j, k, n, gap; |
| 980 | DiagonalList diagonals, diagonals2; |
| 981 | Diagonal diagonal, newdiagonal; |
| 982 | DiagonalList *pairs = NULL, *pairs2 = NULL; |
| 983 | DiagonalList::Element *iter, *iter2; |
| 984 | int ret; |
| 985 | TPPLPoly newpoly; |
| 986 | List<long> indices; |
| 987 | List<long>::Element *iiter; |
| 988 | bool ijreal, jkreal; |
| 989 | |
| 990 | n = poly->GetNumPoints(); |
| 991 | vertices = new PartitionVertex[n]; |
| 992 | |
| 993 | dpstates = new DPState2 *[n]; |
| 994 | for (i = 0; i < n; i++) { |
| 995 | dpstates[i] = new DPState2[n]; |
| 996 | } |
| 997 | |
| 998 | // Initialize vertex information. |
| 999 | for (i = 0; i < n; i++) { |
| 1000 | vertices[i].p = poly->GetPoint(i); |
| 1001 | vertices[i].isActive = true; |
| 1002 | if (i == 0) { |
| 1003 | vertices[i].previous = &(vertices[n - 1]); |
| 1004 | } else { |
| 1005 | vertices[i].previous = &(vertices[i - 1]); |
| 1006 | } |
| 1007 | if (i == (poly->GetNumPoints() - 1)) { |
| 1008 | vertices[i].next = &(vertices[0]); |
| 1009 | } else { |
| 1010 | vertices[i].next = &(vertices[i + 1]); |
| 1011 | } |
| 1012 | } |
| 1013 | for (i = 1; i < n; i++) { |
| 1014 | UpdateVertexReflexity(&(vertices[i])); |
| 1015 | } |
| 1016 | |
| 1017 | // Initialize states and visibility. |
| 1018 | for (i = 0; i < (n - 1); i++) { |
| 1019 | p1 = poly->GetPoint(i); |
| 1020 | for (j = i + 1; j < n; j++) { |
| 1021 | dpstates[i][j].visible = true; |
| 1022 | if (j == i + 1) { |
| 1023 | dpstates[i][j].weight = 0; |
| 1024 | } else { |
| 1025 | dpstates[i][j].weight = 2147483647; |
| 1026 | } |
| 1027 | if (j != (i + 1)) { |
| 1028 | p2 = poly->GetPoint(j); |
| 1029 | |
| 1030 | // Visibility check. |
| 1031 | if (!InCone(&vertices[i], p2)) { |
| 1032 | dpstates[i][j].visible = false; |
| 1033 | continue; |
| 1034 | } |
| 1035 | if (!InCone(&vertices[j], p1)) { |
| 1036 | dpstates[i][j].visible = false; |
| 1037 | continue; |
| 1038 | } |
| 1039 | |
| 1040 | for (k = 0; k < n; k++) { |
| 1041 | p3 = poly->GetPoint(k); |
| 1042 | if (k == (n - 1)) { |
| 1043 | p4 = poly->GetPoint(0); |
| 1044 | } else { |
| 1045 | p4 = poly->GetPoint(k + 1); |
| 1046 | } |
| 1047 | if (Intersects(p1, p2, p3, p4)) { |
| 1048 | dpstates[i][j].visible = false; |
| 1049 | break; |
| 1050 | } |
| 1051 | } |
| 1052 | } |
| 1053 | } |
| 1054 | } |
| 1055 | for (i = 0; i < (n - 2); i++) { |
| 1056 | j = i + 2; |
| 1057 | if (dpstates[i][j].visible) { |
| 1058 | dpstates[i][j].weight = 0; |
| 1059 | newdiagonal.index1 = i + 1; |
| 1060 | newdiagonal.index2 = i + 1; |
| 1061 | dpstates[i][j].pairs.push_back(newdiagonal); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | dpstates[0][n - 1].visible = true; |
| 1066 | vertices[0].isConvex = false; // By convention. |
| 1067 | |
| 1068 | for (gap = 3; gap < n; gap++) { |
| 1069 | for (i = 0; i < n - gap; i++) { |
| 1070 | if (vertices[i].isConvex) { |
| 1071 | continue; |
| 1072 | } |
| 1073 | k = i + gap; |
| 1074 | if (dpstates[i][k].visible) { |
| 1075 | if (!vertices[k].isConvex) { |
| 1076 | for (j = i + 1; j < k; j++) { |
| 1077 | TypeA(i, j, k, vertices, dpstates); |
| 1078 | } |
| 1079 | } else { |
| 1080 | for (j = i + 1; j < (k - 1); j++) { |
| 1081 | if (vertices[j].isConvex) { |
| 1082 | continue; |
| 1083 | } |
| 1084 | TypeA(i, j, k, vertices, dpstates); |
| 1085 | } |
| 1086 | TypeA(i, k - 1, k, vertices, dpstates); |
| 1087 | } |
| 1088 | } |
| 1089 | } |
| 1090 | for (k = gap; k < n; k++) { |
| 1091 | if (vertices[k].isConvex) { |
| 1092 | continue; |
| 1093 | } |
| 1094 | i = k - gap; |
| 1095 | if ((vertices[i].isConvex) && (dpstates[i][k].visible)) { |
| 1096 | TypeB(i, i + 1, k, vertices, dpstates); |
| 1097 | for (j = i + 2; j < k; j++) { |
| 1098 | if (vertices[j].isConvex) { |
| 1099 | continue; |
| 1100 | } |
| 1101 | TypeB(i, j, k, vertices, dpstates); |
| 1102 | } |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | // Recover solution. |
| 1108 | ret = 1; |
| 1109 | newdiagonal.index1 = 0; |
| 1110 | newdiagonal.index2 = n - 1; |
| 1111 | diagonals.push_front(newdiagonal); |
| 1112 | while (!diagonals.is_empty()) { |
| 1113 | diagonal = diagonals.front()->get(); |
| 1114 | diagonals.pop_front(); |
| 1115 | if ((diagonal.index2 - diagonal.index1) <= 1) { |
| 1116 | continue; |
| 1117 | } |
| 1118 | pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); |
| 1119 | if (pairs->is_empty()) { |
| 1120 | ret = 0; |
| 1121 | break; |
| 1122 | } |
| 1123 | if (!vertices[diagonal.index1].isConvex) { |
| 1124 | iter = pairs->back(); |
| 1125 | iter--; |
| 1126 | j = iter->get().index2; |
| 1127 | newdiagonal.index1 = j; |
| 1128 | newdiagonal.index2 = diagonal.index2; |
| 1129 | diagonals.push_front(newdiagonal); |
| 1130 | if ((j - diagonal.index1) > 1) { |
| 1131 | if (iter->get().index1 != iter->get().index2) { |
| 1132 | pairs2 = &(dpstates[diagonal.index1][j].pairs); |
| 1133 | while (1) { |
| 1134 | if (pairs2->is_empty()) { |
| 1135 | ret = 0; |
| 1136 | break; |
| 1137 | } |
| 1138 | iter2 = pairs2->back(); |
| 1139 | iter2--; |
| 1140 | if (iter->get().index1 != iter2->get().index1) { |
| 1141 | pairs2->pop_back(); |
| 1142 | } else { |
| 1143 | break; |
| 1144 | } |
| 1145 | } |
| 1146 | if (ret == 0) { |
| 1147 | break; |
| 1148 | } |
| 1149 | } |
| 1150 | newdiagonal.index1 = diagonal.index1; |
| 1151 | newdiagonal.index2 = j; |
| 1152 | diagonals.push_front(newdiagonal); |
| 1153 | } |
| 1154 | } else { |
| 1155 | iter = pairs->front(); |
| 1156 | j = iter->get().index1; |
| 1157 | newdiagonal.index1 = diagonal.index1; |
| 1158 | newdiagonal.index2 = j; |
| 1159 | diagonals.push_front(newdiagonal); |
| 1160 | if ((diagonal.index2 - j) > 1) { |
| 1161 | if (iter->get().index1 != iter->get().index2) { |
| 1162 | pairs2 = &(dpstates[j][diagonal.index2].pairs); |
| 1163 | while (1) { |
| 1164 | if (pairs2->is_empty()) { |
| 1165 | ret = 0; |
| 1166 | break; |
| 1167 | } |
| 1168 | iter2 = pairs2->front(); |
| 1169 | if (iter->get().index2 != iter2->get().index2) { |
| 1170 | pairs2->pop_front(); |
| 1171 | } else { |
| 1172 | break; |
| 1173 | } |
| 1174 | } |
| 1175 | if (ret == 0) { |
| 1176 | break; |
| 1177 | } |
| 1178 | } |
| 1179 | newdiagonal.index1 = j; |
| 1180 | newdiagonal.index2 = diagonal.index2; |
| 1181 | diagonals.push_front(newdiagonal); |
| 1182 | } |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | if (ret == 0) { |
| 1187 | for (i = 0; i < n; i++) { |
| 1188 | delete[] dpstates[i]; |
| 1189 | } |
| 1190 | delete[] dpstates; |
| 1191 | delete[] vertices; |
| 1192 | |
| 1193 | return ret; |
| 1194 | } |
| 1195 | |
| 1196 | newdiagonal.index1 = 0; |
| 1197 | newdiagonal.index2 = n - 1; |
| 1198 | diagonals.push_front(newdiagonal); |
| 1199 | while (!diagonals.is_empty()) { |
| 1200 | diagonal = diagonals.front()->get(); |
| 1201 | diagonals.pop_front(); |
| 1202 | if ((diagonal.index2 - diagonal.index1) <= 1) { |
| 1203 | continue; |
| 1204 | } |
| 1205 | |
| 1206 | indices.clear(); |
| 1207 | diagonals2.clear(); |
| 1208 | indices.push_back(diagonal.index1); |
| 1209 | indices.push_back(diagonal.index2); |
| 1210 | diagonals2.push_front(diagonal); |
| 1211 | |
| 1212 | while (!diagonals2.is_empty()) { |
| 1213 | diagonal = diagonals2.front()->get(); |
| 1214 | diagonals2.pop_front(); |
| 1215 | if ((diagonal.index2 - diagonal.index1) <= 1) { |
| 1216 | continue; |
| 1217 | } |
| 1218 | ijreal = true; |
| 1219 | jkreal = true; |
| 1220 | pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs); |
| 1221 | if (!vertices[diagonal.index1].isConvex) { |
| 1222 | iter = pairs->back(); |
| 1223 | iter--; |
| 1224 | j = iter->get().index2; |
| 1225 | if (iter->get().index1 != iter->get().index2) { |
| 1226 | ijreal = false; |
| 1227 | } |
| 1228 | } else { |
| 1229 | iter = pairs->front(); |
| 1230 | j = iter->get().index1; |
| 1231 | if (iter->get().index1 != iter->get().index2) { |
| 1232 | jkreal = false; |
| 1233 | } |
| 1234 | } |
| 1235 | |
| 1236 | newdiagonal.index1 = diagonal.index1; |
| 1237 | newdiagonal.index2 = j; |
| 1238 | if (ijreal) { |
| 1239 | diagonals.push_back(newdiagonal); |
| 1240 | } else { |
| 1241 | diagonals2.push_back(newdiagonal); |
| 1242 | } |
| 1243 | |
| 1244 | newdiagonal.index1 = j; |
| 1245 | newdiagonal.index2 = diagonal.index2; |
| 1246 | if (jkreal) { |
| 1247 | diagonals.push_back(newdiagonal); |
| 1248 | } else { |
| 1249 | diagonals2.push_back(newdiagonal); |
| 1250 | } |
| 1251 | |
| 1252 | indices.push_back(j); |
| 1253 | } |
| 1254 | |
| 1255 | //std::sort(indices.begin(), indices.end()); |
| 1256 | indices.sort(); |
| 1257 | newpoly.Init((long)indices.size()); |
| 1258 | k = 0; |
| 1259 | for (iiter = indices.front(); iiter != indices.back(); iiter = iiter->next()) { |
| 1260 | newpoly[k] = vertices[iiter->get()].p; |
| 1261 | k++; |
| 1262 | } |
| 1263 | parts->push_back(newpoly); |
| 1264 | } |
| 1265 | |
| 1266 | for (i = 0; i < n; i++) { |
| 1267 | delete[] dpstates[i]; |
| 1268 | } |
| 1269 | delete[] dpstates; |
| 1270 | delete[] vertices; |
| 1271 | |
| 1272 | return ret; |
| 1273 | } |
| 1274 | |
| 1275 | // Creates a monotone partition of a list of polygons that |
| 1276 | // can contain holes. Triangulates a set of polygons by |
| 1277 | // first partitioning them into monotone polygons. |
| 1278 | // Time complexity: O(n*log(n)), n is the number of vertices. |
| 1279 | // Space complexity: O(n) |
| 1280 | // The algorithm used here is outlined in the book |
| 1281 | // "Computational Geometry: Algorithms and Applications" |
| 1282 | // by Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. |
| 1283 | int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) { |
| 1284 | TPPLPolyList::Element *iter; |
| 1285 | MonotoneVertex *vertices = NULL; |
| 1286 | long i, numvertices, vindex, vindex2, newnumvertices, maxnumvertices; |
| 1287 | long polystartindex, polyendindex; |
| 1288 | TPPLPoly *poly = NULL; |
| 1289 | MonotoneVertex *v = NULL, *v2 = NULL, *vprev = NULL, *vnext = NULL; |
| 1290 | ScanLineEdge newedge; |
| 1291 | bool error = false; |
| 1292 | |
| 1293 | numvertices = 0; |
| 1294 | for (iter = inpolys->front(); iter; iter = iter->next()) { |
| 1295 | numvertices += iter->get().GetNumPoints(); |
| 1296 | } |
| 1297 | |
| 1298 | maxnumvertices = numvertices * 3; |
| 1299 | vertices = new MonotoneVertex[maxnumvertices]; |
| 1300 | newnumvertices = numvertices; |
| 1301 | |
| 1302 | polystartindex = 0; |
| 1303 | for (iter = inpolys->front(); iter; iter = iter->next()) { |
| 1304 | poly = &(iter->get()); |
| 1305 | polyendindex = polystartindex + poly->GetNumPoints() - 1; |
| 1306 | for (i = 0; i < poly->GetNumPoints(); i++) { |
| 1307 | vertices[i + polystartindex].p = poly->GetPoint(i); |
| 1308 | if (i == 0) { |
| 1309 | vertices[i + polystartindex].previous = polyendindex; |
| 1310 | } else { |
| 1311 | vertices[i + polystartindex].previous = i + polystartindex - 1; |
| 1312 | } |
| 1313 | if (i == (poly->GetNumPoints() - 1)) { |
| 1314 | vertices[i + polystartindex].next = polystartindex; |
| 1315 | } else { |
| 1316 | vertices[i + polystartindex].next = i + polystartindex + 1; |
| 1317 | } |
| 1318 | } |
| 1319 | polystartindex = polyendindex + 1; |
| 1320 | } |
| 1321 | |
| 1322 | // Construct the priority queue. |
| 1323 | long *priority = new long[numvertices]; |
| 1324 | for (i = 0; i < numvertices; i++) { |
| 1325 | priority[i] = i; |
| 1326 | } |
| 1327 | std::sort(priority, &(priority[numvertices]), VertexSorter(vertices)); |
| 1328 | |
| 1329 | // Determine vertex types. |
| 1330 | TPPLVertexType *vertextypes = new TPPLVertexType[maxnumvertices]; |
| 1331 | for (i = 0; i < numvertices; i++) { |
| 1332 | v = &(vertices[i]); |
| 1333 | vprev = &(vertices[v->previous]); |
| 1334 | vnext = &(vertices[v->next]); |
| 1335 | |
| 1336 | if (Below(vprev->p, v->p) && Below(vnext->p, v->p)) { |
| 1337 | if (IsConvex(vnext->p, vprev->p, v->p)) { |
| 1338 | vertextypes[i] = TPPL_VERTEXTYPE_START; |
| 1339 | } else { |
| 1340 | vertextypes[i] = TPPL_VERTEXTYPE_SPLIT; |
| 1341 | } |
| 1342 | } else if (Below(v->p, vprev->p) && Below(v->p, vnext->p)) { |
| 1343 | if (IsConvex(vnext->p, vprev->p, v->p)) { |
| 1344 | vertextypes[i] = TPPL_VERTEXTYPE_END; |
| 1345 | } else { |
| 1346 | vertextypes[i] = TPPL_VERTEXTYPE_MERGE; |
| 1347 | } |
| 1348 | } else { |
| 1349 | vertextypes[i] = TPPL_VERTEXTYPE_REGULAR; |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | // Helpers. |
| 1354 | long *helpers = new long[maxnumvertices]; |
| 1355 | |
| 1356 | // Binary search tree that holds edges intersecting the scanline. |
| 1357 | // Note that while set doesn't actually have to be implemented as |
| 1358 | // a tree, complexity requirements for operations are the same as |
| 1359 | // for the balanced binary search tree. |
| 1360 | RBSet<ScanLineEdge> edgeTree; |
| 1361 | // Store iterators to the edge tree elements. |
| 1362 | // This makes deleting existing edges much faster. |
| 1363 | RBSet<ScanLineEdge>::Element **edgeTreeIterators, *edgeIter; |
| 1364 | edgeTreeIterators = new RBSet<ScanLineEdge>::Element *[maxnumvertices]; |
| 1365 | //Pair<RBSet<ScanLineEdge>::iterator, bool> edgeTreeRet; |
| 1366 | for (i = 0; i < numvertices; i++) { |
| 1367 | edgeTreeIterators[i] = nullptr; |
| 1368 | } |
| 1369 | |
| 1370 | // For each vertex. |
| 1371 | for (i = 0; i < numvertices; i++) { |
| 1372 | vindex = priority[i]; |
| 1373 | v = &(vertices[vindex]); |
| 1374 | vindex2 = vindex; |
| 1375 | v2 = v; |
| 1376 | |
| 1377 | // Depending on the vertex type, do the appropriate action. |
| 1378 | // Comments in the following sections are copied from |
| 1379 | // "Computational Geometry: Algorithms and Applications". |
| 1380 | // Notation: e_i = e subscript i, v_i = v subscript i, etc. |
| 1381 | switch (vertextypes[vindex]) { |
| 1382 | case TPPL_VERTEXTYPE_START: |
| 1383 | // Insert e_i in T and set helper(e_i) to v_i. |
| 1384 | newedge.p1 = v->p; |
| 1385 | newedge.p2 = vertices[v->next].p; |
| 1386 | newedge.index = vindex; |
| 1387 | //edgeTreeRet = edgeTree.insert(newedge); |
| 1388 | //edgeTreeIterators[vindex] = edgeTreeRet.first; |
| 1389 | edgeTreeIterators[vindex] = edgeTree.insert(newedge); |
| 1390 | helpers[vindex] = vindex; |
| 1391 | break; |
| 1392 | |
| 1393 | case TPPL_VERTEXTYPE_END: |
| 1394 | if (edgeTreeIterators[v->previous] == edgeTree.back()) { |
| 1395 | error = true; |
| 1396 | break; |
| 1397 | } |
| 1398 | // If helper(e_i - 1) is a merge vertex |
| 1399 | if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) { |
| 1400 | // Insert the diagonal connecting vi to helper(e_i - 1) in D. |
| 1401 | AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous], |
| 1402 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1403 | } |
| 1404 | // Delete e_i - 1 from T |
| 1405 | edgeTree.erase(edgeTreeIterators[v->previous]); |
| 1406 | break; |
| 1407 | |
| 1408 | case TPPL_VERTEXTYPE_SPLIT: |
| 1409 | // Search in T to find the edge e_j directly left of v_i. |
| 1410 | newedge.p1 = v->p; |
| 1411 | newedge.p2 = v->p; |
| 1412 | edgeIter = edgeTree.lower_bound(newedge); |
| 1413 | if (edgeIter == nullptr || edgeIter == edgeTree.front()) { |
| 1414 | error = true; |
| 1415 | break; |
| 1416 | } |
| 1417 | edgeIter--; |
| 1418 | // Insert the diagonal connecting vi to helper(e_j) in D. |
| 1419 | AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index], |
| 1420 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1421 | vindex2 = newnumvertices - 2; |
| 1422 | v2 = &(vertices[vindex2]); |
| 1423 | // helper(e_j) in v_i. |
| 1424 | helpers[edgeIter->get().index] = vindex; |
| 1425 | // Insert e_i in T and set helper(e_i) to v_i. |
| 1426 | newedge.p1 = v2->p; |
| 1427 | newedge.p2 = vertices[v2->next].p; |
| 1428 | newedge.index = vindex2; |
| 1429 | //edgeTreeRet = edgeTree.insert(newedge); |
| 1430 | //edgeTreeIterators[vindex2] = edgeTreeRet.first; |
| 1431 | edgeTreeIterators[vindex2] = edgeTree.insert(newedge); |
| 1432 | helpers[vindex2] = vindex2; |
| 1433 | break; |
| 1434 | |
| 1435 | case TPPL_VERTEXTYPE_MERGE: |
| 1436 | if (edgeTreeIterators[v->previous] == edgeTree.back()) { |
| 1437 | error = true; |
| 1438 | break; |
| 1439 | } |
| 1440 | // if helper(e_i - 1) is a merge vertex |
| 1441 | if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) { |
| 1442 | // Insert the diagonal connecting vi to helper(e_i - 1) in D. |
| 1443 | AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous], |
| 1444 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1445 | vindex2 = newnumvertices - 2; |
| 1446 | v2 = &(vertices[vindex2]); |
| 1447 | } |
| 1448 | // Delete e_i - 1 from T. |
| 1449 | edgeTree.erase(edgeTreeIterators[v->previous]); |
| 1450 | // Search in T to find the edge e_j directly left of v_i. |
| 1451 | newedge.p1 = v->p; |
| 1452 | newedge.p2 = v->p; |
| 1453 | edgeIter = edgeTree.lower_bound(newedge); |
| 1454 | if (edgeIter == nullptr || edgeIter == edgeTree.front()) { |
| 1455 | error = true; |
| 1456 | break; |
| 1457 | } |
| 1458 | edgeIter--; |
| 1459 | // If helper(e_j) is a merge vertex. |
| 1460 | if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) { |
| 1461 | // Insert the diagonal connecting v_i to helper(e_j) in D. |
| 1462 | AddDiagonal(vertices, &newnumvertices, vindex2, helpers[edgeIter->get().index], |
| 1463 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1464 | } |
| 1465 | // helper(e_j) <- v_i |
| 1466 | helpers[edgeIter->get().index] = vindex2; |
| 1467 | break; |
| 1468 | |
| 1469 | case TPPL_VERTEXTYPE_REGULAR: |
| 1470 | // If the interior of P lies to the right of v_i. |
| 1471 | if (Below(v->p, vertices[v->previous].p)) { |
| 1472 | if (edgeTreeIterators[v->previous] == edgeTree.back()) { |
| 1473 | error = true; |
| 1474 | break; |
| 1475 | } |
| 1476 | // If helper(e_i - 1) is a merge vertex. |
| 1477 | if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) { |
| 1478 | // Insert the diagonal connecting v_i to helper(e_i - 1) in D. |
| 1479 | AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous], |
| 1480 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1481 | vindex2 = newnumvertices - 2; |
| 1482 | v2 = &(vertices[vindex2]); |
| 1483 | } |
| 1484 | // Delete e_i - 1 from T. |
| 1485 | edgeTree.erase(edgeTreeIterators[v->previous]); |
| 1486 | // Insert e_i in T and set helper(e_i) to v_i. |
| 1487 | newedge.p1 = v2->p; |
| 1488 | newedge.p2 = vertices[v2->next].p; |
| 1489 | newedge.index = vindex2; |
| 1490 | //edgeTreeRet = edgeTree.insert(newedge); |
| 1491 | //edgeTreeIterators[vindex2] = edgeTreeRet.first; |
| 1492 | edgeTreeIterators[vindex2] = edgeTree.insert(newedge); |
| 1493 | helpers[vindex2] = vindex; |
| 1494 | } else { |
| 1495 | // Search in T to find the edge e_j directly left of v_i. |
| 1496 | newedge.p1 = v->p; |
| 1497 | newedge.p2 = v->p; |
| 1498 | edgeIter = edgeTree.lower_bound(newedge); |
| 1499 | if (edgeIter == nullptr || edgeIter == edgeTree.front()) { |
| 1500 | error = true; |
| 1501 | break; |
| 1502 | } |
| 1503 | edgeIter = edgeIter->prev(); |
| 1504 | // If helper(e_j) is a merge vertex. |
| 1505 | if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) { |
| 1506 | // Insert the diagonal connecting v_i to helper(e_j) in D. |
| 1507 | AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index], |
| 1508 | vertextypes, edgeTreeIterators, &edgeTree, helpers); |
| 1509 | } |
| 1510 | // helper(e_j) <- v_i. |
| 1511 | helpers[edgeIter->get().index] = vindex; |
| 1512 | } |
| 1513 | break; |
| 1514 | } |
| 1515 | |
| 1516 | if (error) |
| 1517 | break; |
| 1518 | } |
| 1519 | |
| 1520 | char *used = new char[newnumvertices]; |
| 1521 | memset(used, 0, newnumvertices * sizeof(char)); |
| 1522 | |
| 1523 | if (!error) { |
| 1524 | // Return result. |
| 1525 | long size; |
| 1526 | TPPLPoly mpoly; |
| 1527 | for (i = 0; i < newnumvertices; i++) { |
| 1528 | if (used[i]) { |
| 1529 | continue; |
| 1530 | } |
| 1531 | v = &(vertices[i]); |
| 1532 | vnext = &(vertices[v->next]); |
| 1533 | size = 1; |
| 1534 | while (vnext != v) { |
| 1535 | vnext = &(vertices[vnext->next]); |
| 1536 | size++; |
| 1537 | } |
| 1538 | mpoly.Init(size); |
| 1539 | v = &(vertices[i]); |
| 1540 | mpoly[0] = v->p; |
| 1541 | vnext = &(vertices[v->next]); |
| 1542 | size = 1; |
| 1543 | used[i] = 1; |
| 1544 | used[v->next] = 1; |
| 1545 | while (vnext != v) { |
| 1546 | mpoly[size] = vnext->p; |
| 1547 | used[vnext->next] = 1; |
| 1548 | vnext = &(vertices[vnext->next]); |
| 1549 | size++; |
| 1550 | } |
| 1551 | monotonePolys->push_back(mpoly); |
| 1552 | } |
| 1553 | } |
| 1554 | |
| 1555 | // Cleanup. |
| 1556 | delete[] vertices; |
| 1557 | delete[] priority; |
| 1558 | delete[] vertextypes; |
| 1559 | delete[] edgeTreeIterators; |
| 1560 | delete[] helpers; |
| 1561 | delete[] used; |
| 1562 | |
| 1563 | if (error) { |
| 1564 | return 0; |
| 1565 | } else { |
| 1566 | return 1; |
| 1567 | } |
| 1568 | } |
| 1569 | |
| 1570 | // Adds a diagonal to the doubly-connected list of vertices. |
| 1571 | void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2, |
| 1572 | TPPLVertexType *vertextypes, RBSet<ScanLineEdge>::Element **edgeTreeIterators, |
| 1573 | RBSet<ScanLineEdge> *edgeTree, long *helpers) { |
| 1574 | long newindex1, newindex2; |
| 1575 | |
| 1576 | newindex1 = *numvertices; |
| 1577 | (*numvertices)++; |
| 1578 | newindex2 = *numvertices; |
| 1579 | (*numvertices)++; |
| 1580 | |
| 1581 | vertices[newindex1].p = vertices[index1].p; |
| 1582 | vertices[newindex2].p = vertices[index2].p; |
| 1583 | |
| 1584 | vertices[newindex2].next = vertices[index2].next; |
| 1585 | vertices[newindex1].next = vertices[index1].next; |
| 1586 | |
| 1587 | vertices[vertices[index2].next].previous = newindex2; |
| 1588 | vertices[vertices[index1].next].previous = newindex1; |
| 1589 | |
| 1590 | vertices[index1].next = newindex2; |
| 1591 | vertices[newindex2].previous = index1; |
| 1592 | |
| 1593 | vertices[index2].next = newindex1; |
| 1594 | vertices[newindex1].previous = index2; |
| 1595 | |
| 1596 | // Update all relevant structures. |
| 1597 | vertextypes[newindex1] = vertextypes[index1]; |
| 1598 | edgeTreeIterators[newindex1] = edgeTreeIterators[index1]; |
| 1599 | helpers[newindex1] = helpers[index1]; |
| 1600 | if (edgeTreeIterators[newindex1] != edgeTree->back()) { |
| 1601 | edgeTreeIterators[newindex1]->get().index = newindex1; |
| 1602 | } |
| 1603 | vertextypes[newindex2] = vertextypes[index2]; |
| 1604 | edgeTreeIterators[newindex2] = edgeTreeIterators[index2]; |
| 1605 | helpers[newindex2] = helpers[index2]; |
| 1606 | if (edgeTreeIterators[newindex2] != edgeTree->back()) { |
| 1607 | edgeTreeIterators[newindex2]->get().index = newindex2; |
| 1608 | } |
| 1609 | } |
| 1610 | |
| 1611 | bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) { |
| 1612 | if (p1.y < p2.y) { |
| 1613 | return true; |
| 1614 | } else if (p1.y == p2.y) { |
| 1615 | if (p1.x < p2.x) { |
| 1616 | return true; |
| 1617 | } |
| 1618 | } |
| 1619 | return false; |
| 1620 | } |
| 1621 | |
| 1622 | // Sorts in the falling order of y values, if y is equal, x is used instead. |
| 1623 | bool TPPLPartition::VertexSorter::operator()(long index1, long index2) { |
| 1624 | if (vertices[index1].p.y > vertices[index2].p.y) { |
| 1625 | return true; |
| 1626 | } else if (vertices[index1].p.y == vertices[index2].p.y) { |
| 1627 | if (vertices[index1].p.x > vertices[index2].p.x) { |
| 1628 | return true; |
| 1629 | } |
| 1630 | } |
| 1631 | return false; |
| 1632 | } |
| 1633 | |
| 1634 | bool TPPLPartition::ScanLineEdge::IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const { |
| 1635 | tppl_float tmp; |
| 1636 | tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y); |
| 1637 | if (tmp > 0) { |
| 1638 | return 1; |
| 1639 | } |
| 1640 | |
| 1641 | return 0; |
| 1642 | } |
| 1643 | |
| 1644 | bool TPPLPartition::ScanLineEdge::operator<(const ScanLineEdge &other) const { |
| 1645 | if (other.p1.y == other.p2.y) { |
| 1646 | if (p1.y == p2.y) { |
| 1647 | return (p1.y < other.p1.y); |
| 1648 | } |
| 1649 | return IsConvex(p1, p2, other.p1); |
| 1650 | } else if (p1.y == p2.y) { |
| 1651 | return !IsConvex(other.p1, other.p2, p1); |
| 1652 | } else if (p1.y < other.p1.y) { |
| 1653 | return !IsConvex(other.p1, other.p2, p1); |
| 1654 | } else { |
| 1655 | return IsConvex(p1, p2, other.p1); |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | // Triangulates monotone polygon. |
| 1660 | // Time complexity: O(n) |
| 1661 | // Space complexity: O(n) |
| 1662 | int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles) { |
| 1663 | if (!inPoly->Valid()) { |
| 1664 | return 0; |
| 1665 | } |
| 1666 | |
| 1667 | long i, i2, j, topindex, bottomindex, leftindex, rightindex, vindex; |
| 1668 | TPPLPoint *points = NULL; |
| 1669 | long numpoints; |
| 1670 | TPPLPoly triangle; |
| 1671 | |
| 1672 | numpoints = inPoly->GetNumPoints(); |
| 1673 | points = inPoly->GetPoints(); |
| 1674 | |
| 1675 | // Trivial case. |
| 1676 | if (numpoints == 3) { |
| 1677 | triangles->push_back(*inPoly); |
| 1678 | return 1; |
| 1679 | } |
| 1680 | |
| 1681 | topindex = 0; |
| 1682 | bottomindex = 0; |
| 1683 | for (i = 1; i < numpoints; i++) { |
| 1684 | if (Below(points[i], points[bottomindex])) { |
| 1685 | bottomindex = i; |
| 1686 | } |
| 1687 | if (Below(points[topindex], points[i])) { |
| 1688 | topindex = i; |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | // Check if the poly is really monotone. |
| 1693 | i = topindex; |
| 1694 | while (i != bottomindex) { |
| 1695 | i2 = i + 1; |
| 1696 | if (i2 >= numpoints) { |
| 1697 | i2 = 0; |
| 1698 | } |
| 1699 | if (!Below(points[i2], points[i])) { |
| 1700 | return 0; |
| 1701 | } |
| 1702 | i = i2; |
| 1703 | } |
| 1704 | i = bottomindex; |
| 1705 | while (i != topindex) { |
| 1706 | i2 = i + 1; |
| 1707 | if (i2 >= numpoints) { |
| 1708 | i2 = 0; |
| 1709 | } |
| 1710 | if (!Below(points[i], points[i2])) { |
| 1711 | return 0; |
| 1712 | } |
| 1713 | i = i2; |
| 1714 | } |
| 1715 | |
| 1716 | char *vertextypes = new char[numpoints]; |
| 1717 | long *priority = new long[numpoints]; |
| 1718 | |
| 1719 | // Merge left and right vertex chains. |
| 1720 | priority[0] = topindex; |
| 1721 | vertextypes[topindex] = 0; |
| 1722 | leftindex = topindex + 1; |
| 1723 | if (leftindex >= numpoints) { |
| 1724 | leftindex = 0; |
| 1725 | } |
| 1726 | rightindex = topindex - 1; |
| 1727 | if (rightindex < 0) { |
| 1728 | rightindex = numpoints - 1; |
| 1729 | } |
| 1730 | for (i = 1; i < (numpoints - 1); i++) { |
| 1731 | if (leftindex == bottomindex) { |
| 1732 | priority[i] = rightindex; |
| 1733 | rightindex--; |
| 1734 | if (rightindex < 0) { |
| 1735 | rightindex = numpoints - 1; |
| 1736 | } |
| 1737 | vertextypes[priority[i]] = -1; |
| 1738 | } else if (rightindex == bottomindex) { |
| 1739 | priority[i] = leftindex; |
| 1740 | leftindex++; |
| 1741 | if (leftindex >= numpoints) { |
| 1742 | leftindex = 0; |
| 1743 | } |
| 1744 | vertextypes[priority[i]] = 1; |
| 1745 | } else { |
| 1746 | if (Below(points[leftindex], points[rightindex])) { |
| 1747 | priority[i] = rightindex; |
| 1748 | rightindex--; |
| 1749 | if (rightindex < 0) { |
| 1750 | rightindex = numpoints - 1; |
| 1751 | } |
| 1752 | vertextypes[priority[i]] = -1; |
| 1753 | } else { |
| 1754 | priority[i] = leftindex; |
| 1755 | leftindex++; |
| 1756 | if (leftindex >= numpoints) { |
| 1757 | leftindex = 0; |
| 1758 | } |
| 1759 | vertextypes[priority[i]] = 1; |
| 1760 | } |
| 1761 | } |
| 1762 | } |
| 1763 | priority[i] = bottomindex; |
| 1764 | vertextypes[bottomindex] = 0; |
| 1765 | |
| 1766 | long *stack = new long[numpoints]; |
| 1767 | long stackptr = 0; |
| 1768 | |
| 1769 | stack[0] = priority[0]; |
| 1770 | stack[1] = priority[1]; |
| 1771 | stackptr = 2; |
| 1772 | |
| 1773 | // For each vertex from top to bottom trim as many triangles as possible. |
| 1774 | for (i = 2; i < (numpoints - 1); i++) { |
| 1775 | vindex = priority[i]; |
| 1776 | if (vertextypes[vindex] != vertextypes[stack[stackptr - 1]]) { |
| 1777 | for (j = 0; j < (stackptr - 1); j++) { |
| 1778 | if (vertextypes[vindex] == 1) { |
| 1779 | triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]); |
| 1780 | } else { |
| 1781 | triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]); |
| 1782 | } |
| 1783 | triangles->push_back(triangle); |
| 1784 | } |
| 1785 | stack[0] = priority[i - 1]; |
| 1786 | stack[1] = priority[i]; |
| 1787 | stackptr = 2; |
| 1788 | } else { |
| 1789 | stackptr--; |
| 1790 | while (stackptr > 0) { |
| 1791 | if (vertextypes[vindex] == 1) { |
| 1792 | if (IsConvex(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]])) { |
| 1793 | triangle.Triangle(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]]); |
| 1794 | triangles->push_back(triangle); |
| 1795 | stackptr--; |
| 1796 | } else { |
| 1797 | break; |
| 1798 | } |
| 1799 | } else { |
| 1800 | if (IsConvex(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]])) { |
| 1801 | triangle.Triangle(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]]); |
| 1802 | triangles->push_back(triangle); |
| 1803 | stackptr--; |
| 1804 | } else { |
| 1805 | break; |
| 1806 | } |
| 1807 | } |
| 1808 | } |
| 1809 | stackptr++; |
| 1810 | stack[stackptr] = vindex; |
| 1811 | stackptr++; |
| 1812 | } |
| 1813 | } |
| 1814 | vindex = priority[i]; |
| 1815 | for (j = 0; j < (stackptr - 1); j++) { |
| 1816 | if (vertextypes[stack[j + 1]] == 1) { |
| 1817 | triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]); |
| 1818 | } else { |
| 1819 | triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]); |
| 1820 | } |
| 1821 | triangles->push_back(triangle); |
| 1822 | } |
| 1823 | |
| 1824 | delete[] priority; |
| 1825 | delete[] vertextypes; |
| 1826 | delete[] stack; |
| 1827 | |
| 1828 | return 1; |
| 1829 | } |
| 1830 | |
| 1831 | int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) { |
| 1832 | TPPLPolyList monotone; |
| 1833 | TPPLPolyList::Element *iter; |
| 1834 | |
| 1835 | if (!MonotonePartition(inpolys, &monotone)) { |
| 1836 | return 0; |
| 1837 | } |
| 1838 | for (iter = monotone.front(); iter; iter = iter->next()) { |
| 1839 | if (!TriangulateMonotone(&(iter->get()), triangles)) { |
| 1840 | return 0; |
| 1841 | } |
| 1842 | } |
| 1843 | return 1; |
| 1844 | } |
| 1845 | |
| 1846 | int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles) { |
| 1847 | TPPLPolyList polys; |
| 1848 | polys.push_back(*poly); |
| 1849 | |
| 1850 | return Triangulate_MONO(&polys, triangles); |
| 1851 | } |
| 1852 | |