1/**************************************************************************/
2/* vector2.h */
3/**************************************************************************/
4/* This file is part of: */
5/* GODOT ENGINE */
6/* https://godotengine.org */
7/**************************************************************************/
8/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
9/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
10/* */
11/* Permission is hereby granted, free of charge, to any person obtaining */
12/* a copy of this software and associated documentation files (the */
13/* "Software"), to deal in the Software without restriction, including */
14/* without limitation the rights to use, copy, modify, merge, publish, */
15/* distribute, sublicense, and/or sell copies of the Software, and to */
16/* permit persons to whom the Software is furnished to do so, subject to */
17/* the following conditions: */
18/* */
19/* The above copyright notice and this permission notice shall be */
20/* included in all copies or substantial portions of the Software. */
21/* */
22/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
23/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
24/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
25/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
26/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
27/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
28/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
29/**************************************************************************/
30
31#ifndef VECTOR2_H
32#define VECTOR2_H
33
34#include "core/error/error_macros.h"
35#include "core/math/math_funcs.h"
36
37class String;
38struct Vector2i;
39
40struct _NO_DISCARD_ Vector2 {
41 static const int AXIS_COUNT = 2;
42
43 enum Axis {
44 AXIS_X,
45 AXIS_Y,
46 };
47
48 union {
49 struct {
50 union {
51 real_t x;
52 real_t width;
53 };
54 union {
55 real_t y;
56 real_t height;
57 };
58 };
59
60 real_t coord[2] = { 0 };
61 };
62
63 _FORCE_INLINE_ real_t &operator[](int p_idx) {
64 DEV_ASSERT((unsigned int)p_idx < 2);
65 return coord[p_idx];
66 }
67 _FORCE_INLINE_ const real_t &operator[](int p_idx) const {
68 DEV_ASSERT((unsigned int)p_idx < 2);
69 return coord[p_idx];
70 }
71
72 _FORCE_INLINE_ Vector2::Axis min_axis_index() const {
73 return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
74 }
75
76 _FORCE_INLINE_ Vector2::Axis max_axis_index() const {
77 return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X;
78 }
79
80 void normalize();
81 Vector2 normalized() const;
82 bool is_normalized() const;
83
84 real_t length() const;
85 real_t length_squared() const;
86 Vector2 limit_length(const real_t p_len = 1.0) const;
87
88 Vector2 min(const Vector2 &p_vector2) const {
89 return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y));
90 }
91
92 Vector2 max(const Vector2 &p_vector2) const {
93 return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y));
94 }
95
96 real_t distance_to(const Vector2 &p_vector2) const;
97 real_t distance_squared_to(const Vector2 &p_vector2) const;
98 real_t angle_to(const Vector2 &p_vector2) const;
99 real_t angle_to_point(const Vector2 &p_vector2) const;
100 _FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
101
102 real_t dot(const Vector2 &p_other) const;
103 real_t cross(const Vector2 &p_other) const;
104 Vector2 posmod(const real_t p_mod) const;
105 Vector2 posmodv(const Vector2 &p_modv) const;
106 Vector2 project(const Vector2 &p_to) const;
107
108 Vector2 plane_project(const real_t p_d, const Vector2 &p_vec) const;
109
110 _FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const;
111 _FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const;
112 _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const;
113 _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
114 _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
115 _FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const;
116
117 Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const;
118
119 Vector2 slide(const Vector2 &p_normal) const;
120 Vector2 bounce(const Vector2 &p_normal) const;
121 Vector2 reflect(const Vector2 &p_normal) const;
122
123 bool is_equal_approx(const Vector2 &p_v) const;
124 bool is_zero_approx() const;
125 bool is_finite() const;
126
127 Vector2 operator+(const Vector2 &p_v) const;
128 void operator+=(const Vector2 &p_v);
129 Vector2 operator-(const Vector2 &p_v) const;
130 void operator-=(const Vector2 &p_v);
131 Vector2 operator*(const Vector2 &p_v1) const;
132
133 Vector2 operator*(const real_t &rvalue) const;
134 void operator*=(const real_t &rvalue);
135 void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; }
136
137 Vector2 operator/(const Vector2 &p_v1) const;
138
139 Vector2 operator/(const real_t &rvalue) const;
140
141 void operator/=(const real_t &rvalue);
142 void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; }
143
144 Vector2 operator-() const;
145
146 bool operator==(const Vector2 &p_vec2) const;
147 bool operator!=(const Vector2 &p_vec2) const;
148
149 bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); }
150 bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); }
151 bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); }
152 bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
153
154 real_t angle() const;
155 static Vector2 from_angle(const real_t p_angle);
156
157 _FORCE_INLINE_ Vector2 abs() const {
158 return Vector2(Math::abs(x), Math::abs(y));
159 }
160
161 Vector2 rotated(const real_t p_by) const;
162 Vector2 orthogonal() const {
163 return Vector2(y, -x);
164 }
165
166 Vector2 sign() const;
167 Vector2 floor() const;
168 Vector2 ceil() const;
169 Vector2 round() const;
170 Vector2 snapped(const Vector2 &p_by) const;
171 Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const;
172 real_t aspect() const { return width / height; }
173
174 operator String() const;
175 operator Vector2i() const;
176
177 _FORCE_INLINE_ Vector2() {}
178 _FORCE_INLINE_ Vector2(const real_t p_x, const real_t p_y) {
179 x = p_x;
180 y = p_y;
181 }
182};
183
184_FORCE_INLINE_ Vector2 Vector2::plane_project(const real_t p_d, const Vector2 &p_vec) const {
185 return p_vec - *this * (dot(p_vec) - p_d);
186}
187
188_FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
189 return Vector2(x + p_v.x, y + p_v.y);
190}
191
192_FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
193 x += p_v.x;
194 y += p_v.y;
195}
196
197_FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
198 return Vector2(x - p_v.x, y - p_v.y);
199}
200
201_FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
202 x -= p_v.x;
203 y -= p_v.y;
204}
205
206_FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
207 return Vector2(x * p_v1.x, y * p_v1.y);
208}
209
210_FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const {
211 return Vector2(x * rvalue, y * rvalue);
212}
213
214_FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) {
215 x *= rvalue;
216 y *= rvalue;
217}
218
219_FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
220 return Vector2(x / p_v1.x, y / p_v1.y);
221}
222
223_FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const {
224 return Vector2(x / rvalue, y / rvalue);
225}
226
227_FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) {
228 x /= rvalue;
229 y /= rvalue;
230}
231
232_FORCE_INLINE_ Vector2 Vector2::operator-() const {
233 return Vector2(-x, -y);
234}
235
236_FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
237 return x == p_vec2.x && y == p_vec2.y;
238}
239
240_FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
241 return x != p_vec2.x || y != p_vec2.y;
242}
243
244Vector2 Vector2::lerp(const Vector2 &p_to, const real_t p_weight) const {
245 Vector2 res = *this;
246 res.x = Math::lerp(res.x, p_to.x, p_weight);
247 res.y = Math::lerp(res.y, p_to.y, p_weight);
248 return res;
249}
250
251Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const {
252 real_t start_length_sq = length_squared();
253 real_t end_length_sq = p_to.length_squared();
254 if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
255 // Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
256 return lerp(p_to, p_weight);
257 }
258 real_t start_length = Math::sqrt(start_length_sq);
259 real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
260 real_t angle = angle_to(p_to);
261 return rotated(angle * p_weight) * (result_length / start_length);
262}
263
264Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const {
265 Vector2 res = *this;
266 res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
267 res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
268 return res;
269}
270
271Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
272 Vector2 res = *this;
273 res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
274 res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
275 return res;
276}
277
278Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
279 Vector2 res = *this;
280 res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
281 res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
282 return res;
283}
284
285Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const {
286 Vector2 res = *this;
287 res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
288 res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
289 return res;
290}
291
292Vector2 Vector2::direction_to(const Vector2 &p_to) const {
293 Vector2 ret(p_to.x - x, p_to.y - y);
294 ret.normalize();
295 return ret;
296}
297
298// Multiplication operators required to workaround issues with LLVM using implicit conversion
299// to Vector2i instead for integers where it should not.
300
301_FORCE_INLINE_ Vector2 operator*(const float p_scalar, const Vector2 &p_vec) {
302 return p_vec * p_scalar;
303}
304
305_FORCE_INLINE_ Vector2 operator*(const double p_scalar, const Vector2 &p_vec) {
306 return p_vec * p_scalar;
307}
308
309_FORCE_INLINE_ Vector2 operator*(const int32_t p_scalar, const Vector2 &p_vec) {
310 return p_vec * p_scalar;
311}
312
313_FORCE_INLINE_ Vector2 operator*(const int64_t p_scalar, const Vector2 &p_vec) {
314 return p_vec * p_scalar;
315}
316
317typedef Vector2 Size2;
318typedef Vector2 Point2;
319
320#endif // VECTOR2_H
321