| 1 | /**************************************************************************/ |
| 2 | /* vector2.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef VECTOR2_H |
| 32 | #define VECTOR2_H |
| 33 | |
| 34 | #include "core/error/error_macros.h" |
| 35 | #include "core/math/math_funcs.h" |
| 36 | |
| 37 | class String; |
| 38 | struct Vector2i; |
| 39 | |
| 40 | struct _NO_DISCARD_ Vector2 { |
| 41 | static const int AXIS_COUNT = 2; |
| 42 | |
| 43 | enum Axis { |
| 44 | AXIS_X, |
| 45 | AXIS_Y, |
| 46 | }; |
| 47 | |
| 48 | union { |
| 49 | struct { |
| 50 | union { |
| 51 | real_t x; |
| 52 | real_t width; |
| 53 | }; |
| 54 | union { |
| 55 | real_t y; |
| 56 | real_t height; |
| 57 | }; |
| 58 | }; |
| 59 | |
| 60 | real_t coord[2] = { 0 }; |
| 61 | }; |
| 62 | |
| 63 | _FORCE_INLINE_ real_t &operator[](int p_idx) { |
| 64 | DEV_ASSERT((unsigned int)p_idx < 2); |
| 65 | return coord[p_idx]; |
| 66 | } |
| 67 | _FORCE_INLINE_ const real_t &operator[](int p_idx) const { |
| 68 | DEV_ASSERT((unsigned int)p_idx < 2); |
| 69 | return coord[p_idx]; |
| 70 | } |
| 71 | |
| 72 | _FORCE_INLINE_ Vector2::Axis min_axis_index() const { |
| 73 | return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y; |
| 74 | } |
| 75 | |
| 76 | _FORCE_INLINE_ Vector2::Axis max_axis_index() const { |
| 77 | return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X; |
| 78 | } |
| 79 | |
| 80 | void normalize(); |
| 81 | Vector2 normalized() const; |
| 82 | bool is_normalized() const; |
| 83 | |
| 84 | real_t length() const; |
| 85 | real_t length_squared() const; |
| 86 | Vector2 limit_length(const real_t p_len = 1.0) const; |
| 87 | |
| 88 | Vector2 min(const Vector2 &p_vector2) const { |
| 89 | return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y)); |
| 90 | } |
| 91 | |
| 92 | Vector2 max(const Vector2 &p_vector2) const { |
| 93 | return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y)); |
| 94 | } |
| 95 | |
| 96 | real_t distance_to(const Vector2 &p_vector2) const; |
| 97 | real_t distance_squared_to(const Vector2 &p_vector2) const; |
| 98 | real_t angle_to(const Vector2 &p_vector2) const; |
| 99 | real_t angle_to_point(const Vector2 &p_vector2) const; |
| 100 | _FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const; |
| 101 | |
| 102 | real_t dot(const Vector2 &p_other) const; |
| 103 | real_t cross(const Vector2 &p_other) const; |
| 104 | Vector2 posmod(const real_t p_mod) const; |
| 105 | Vector2 posmodv(const Vector2 &p_modv) const; |
| 106 | Vector2 project(const Vector2 &p_to) const; |
| 107 | |
| 108 | Vector2 plane_project(const real_t p_d, const Vector2 &p_vec) const; |
| 109 | |
| 110 | _FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, const real_t p_weight) const; |
| 111 | _FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, const real_t p_weight) const; |
| 112 | _FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const; |
| 113 | _FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const; |
| 114 | _FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const; |
| 115 | _FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const; |
| 116 | |
| 117 | Vector2 move_toward(const Vector2 &p_to, const real_t p_delta) const; |
| 118 | |
| 119 | Vector2 slide(const Vector2 &p_normal) const; |
| 120 | Vector2 bounce(const Vector2 &p_normal) const; |
| 121 | Vector2 reflect(const Vector2 &p_normal) const; |
| 122 | |
| 123 | bool is_equal_approx(const Vector2 &p_v) const; |
| 124 | bool is_zero_approx() const; |
| 125 | bool is_finite() const; |
| 126 | |
| 127 | Vector2 operator+(const Vector2 &p_v) const; |
| 128 | void operator+=(const Vector2 &p_v); |
| 129 | Vector2 operator-(const Vector2 &p_v) const; |
| 130 | void operator-=(const Vector2 &p_v); |
| 131 | Vector2 operator*(const Vector2 &p_v1) const; |
| 132 | |
| 133 | Vector2 operator*(const real_t &rvalue) const; |
| 134 | void operator*=(const real_t &rvalue); |
| 135 | void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } |
| 136 | |
| 137 | Vector2 operator/(const Vector2 &p_v1) const; |
| 138 | |
| 139 | Vector2 operator/(const real_t &rvalue) const; |
| 140 | |
| 141 | void operator/=(const real_t &rvalue); |
| 142 | void operator/=(const Vector2 &rvalue) { *this = *this / rvalue; } |
| 143 | |
| 144 | Vector2 operator-() const; |
| 145 | |
| 146 | bool operator==(const Vector2 &p_vec2) const; |
| 147 | bool operator!=(const Vector2 &p_vec2) const; |
| 148 | |
| 149 | bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); } |
| 150 | bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); } |
| 151 | bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); } |
| 152 | bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); } |
| 153 | |
| 154 | real_t angle() const; |
| 155 | static Vector2 from_angle(const real_t p_angle); |
| 156 | |
| 157 | _FORCE_INLINE_ Vector2 abs() const { |
| 158 | return Vector2(Math::abs(x), Math::abs(y)); |
| 159 | } |
| 160 | |
| 161 | Vector2 rotated(const real_t p_by) const; |
| 162 | Vector2 orthogonal() const { |
| 163 | return Vector2(y, -x); |
| 164 | } |
| 165 | |
| 166 | Vector2 sign() const; |
| 167 | Vector2 floor() const; |
| 168 | Vector2 ceil() const; |
| 169 | Vector2 round() const; |
| 170 | Vector2 snapped(const Vector2 &p_by) const; |
| 171 | Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const; |
| 172 | real_t aspect() const { return width / height; } |
| 173 | |
| 174 | operator String() const; |
| 175 | operator Vector2i() const; |
| 176 | |
| 177 | _FORCE_INLINE_ Vector2() {} |
| 178 | _FORCE_INLINE_ Vector2(const real_t p_x, const real_t p_y) { |
| 179 | x = p_x; |
| 180 | y = p_y; |
| 181 | } |
| 182 | }; |
| 183 | |
| 184 | _FORCE_INLINE_ Vector2 Vector2::plane_project(const real_t p_d, const Vector2 &p_vec) const { |
| 185 | return p_vec - *this * (dot(p_vec) - p_d); |
| 186 | } |
| 187 | |
| 188 | _FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const { |
| 189 | return Vector2(x + p_v.x, y + p_v.y); |
| 190 | } |
| 191 | |
| 192 | _FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) { |
| 193 | x += p_v.x; |
| 194 | y += p_v.y; |
| 195 | } |
| 196 | |
| 197 | _FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const { |
| 198 | return Vector2(x - p_v.x, y - p_v.y); |
| 199 | } |
| 200 | |
| 201 | _FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) { |
| 202 | x -= p_v.x; |
| 203 | y -= p_v.y; |
| 204 | } |
| 205 | |
| 206 | _FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const { |
| 207 | return Vector2(x * p_v1.x, y * p_v1.y); |
| 208 | } |
| 209 | |
| 210 | _FORCE_INLINE_ Vector2 Vector2::operator*(const real_t &rvalue) const { |
| 211 | return Vector2(x * rvalue, y * rvalue); |
| 212 | } |
| 213 | |
| 214 | _FORCE_INLINE_ void Vector2::operator*=(const real_t &rvalue) { |
| 215 | x *= rvalue; |
| 216 | y *= rvalue; |
| 217 | } |
| 218 | |
| 219 | _FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const { |
| 220 | return Vector2(x / p_v1.x, y / p_v1.y); |
| 221 | } |
| 222 | |
| 223 | _FORCE_INLINE_ Vector2 Vector2::operator/(const real_t &rvalue) const { |
| 224 | return Vector2(x / rvalue, y / rvalue); |
| 225 | } |
| 226 | |
| 227 | _FORCE_INLINE_ void Vector2::operator/=(const real_t &rvalue) { |
| 228 | x /= rvalue; |
| 229 | y /= rvalue; |
| 230 | } |
| 231 | |
| 232 | _FORCE_INLINE_ Vector2 Vector2::operator-() const { |
| 233 | return Vector2(-x, -y); |
| 234 | } |
| 235 | |
| 236 | _FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const { |
| 237 | return x == p_vec2.x && y == p_vec2.y; |
| 238 | } |
| 239 | |
| 240 | _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const { |
| 241 | return x != p_vec2.x || y != p_vec2.y; |
| 242 | } |
| 243 | |
| 244 | Vector2 Vector2::lerp(const Vector2 &p_to, const real_t p_weight) const { |
| 245 | Vector2 res = *this; |
| 246 | res.x = Math::lerp(res.x, p_to.x, p_weight); |
| 247 | res.y = Math::lerp(res.y, p_to.y, p_weight); |
| 248 | return res; |
| 249 | } |
| 250 | |
| 251 | Vector2 Vector2::slerp(const Vector2 &p_to, const real_t p_weight) const { |
| 252 | real_t start_length_sq = length_squared(); |
| 253 | real_t end_length_sq = p_to.length_squared(); |
| 254 | if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) { |
| 255 | // Zero length vectors have no angle, so the best we can do is either lerp or throw an error. |
| 256 | return lerp(p_to, p_weight); |
| 257 | } |
| 258 | real_t start_length = Math::sqrt(start_length_sq); |
| 259 | real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight); |
| 260 | real_t angle = angle_to(p_to); |
| 261 | return rotated(angle * p_weight) * (result_length / start_length); |
| 262 | } |
| 263 | |
| 264 | Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight) const { |
| 265 | Vector2 res = *this; |
| 266 | res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight); |
| 267 | res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight); |
| 268 | return res; |
| 269 | } |
| 270 | |
| 271 | Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const { |
| 272 | Vector2 res = *this; |
| 273 | res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 274 | res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t); |
| 275 | return res; |
| 276 | } |
| 277 | |
| 278 | Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const { |
| 279 | Vector2 res = *this; |
| 280 | res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); |
| 281 | res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); |
| 282 | return res; |
| 283 | } |
| 284 | |
| 285 | Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, const real_t p_t) const { |
| 286 | Vector2 res = *this; |
| 287 | res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t); |
| 288 | res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t); |
| 289 | return res; |
| 290 | } |
| 291 | |
| 292 | Vector2 Vector2::direction_to(const Vector2 &p_to) const { |
| 293 | Vector2 ret(p_to.x - x, p_to.y - y); |
| 294 | ret.normalize(); |
| 295 | return ret; |
| 296 | } |
| 297 | |
| 298 | // Multiplication operators required to workaround issues with LLVM using implicit conversion |
| 299 | // to Vector2i instead for integers where it should not. |
| 300 | |
| 301 | _FORCE_INLINE_ Vector2 operator*(const float p_scalar, const Vector2 &p_vec) { |
| 302 | return p_vec * p_scalar; |
| 303 | } |
| 304 | |
| 305 | _FORCE_INLINE_ Vector2 operator*(const double p_scalar, const Vector2 &p_vec) { |
| 306 | return p_vec * p_scalar; |
| 307 | } |
| 308 | |
| 309 | _FORCE_INLINE_ Vector2 operator*(const int32_t p_scalar, const Vector2 &p_vec) { |
| 310 | return p_vec * p_scalar; |
| 311 | } |
| 312 | |
| 313 | _FORCE_INLINE_ Vector2 operator*(const int64_t p_scalar, const Vector2 &p_vec) { |
| 314 | return p_vec * p_scalar; |
| 315 | } |
| 316 | |
| 317 | typedef Vector2 Size2; |
| 318 | typedef Vector2 Point2; |
| 319 | |
| 320 | #endif // VECTOR2_H |
| 321 | |