| 1 | // ======================================================================== // |
| 2 | // Copyright 2009-2019 Intel Corporation // |
| 3 | // // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); // |
| 5 | // you may not use this file except in compliance with the License. // |
| 6 | // You may obtain a copy of the License at // |
| 7 | // // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 // |
| 9 | // // |
| 10 | // Unless required by applicable law or agreed to in writing, software // |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, // |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // |
| 13 | // See the License for the specific language governing permissions and // |
| 14 | // limitations under the License. // |
| 15 | // ======================================================================== // |
| 16 | |
| 17 | #include "autoencoder.h" |
| 18 | |
| 19 | namespace oidn { |
| 20 | |
| 21 | // -------------------------------------------------------------------------- |
| 22 | // AutoencoderFilter |
| 23 | // -------------------------------------------------------------------------- |
| 24 | |
| 25 | AutoencoderFilter::AutoencoderFilter(const Ref<Device>& device) |
| 26 | : Filter(device) |
| 27 | { |
| 28 | } |
| 29 | |
| 30 | void AutoencoderFilter::setImage(const std::string& name, const Image& data) |
| 31 | { |
| 32 | if (name == "color" ) |
| 33 | color = data; |
| 34 | else if (name == "albedo" ) |
| 35 | albedo = data; |
| 36 | else if (name == "normal" ) |
| 37 | normal = data; |
| 38 | else if (name == "output" ) |
| 39 | output = data; |
| 40 | |
| 41 | dirty = true; |
| 42 | } |
| 43 | |
| 44 | void AutoencoderFilter::set1i(const std::string& name, int value) |
| 45 | { |
| 46 | if (name == "hdr" ) |
| 47 | hdr = value; |
| 48 | else if (name == "srgb" ) |
| 49 | srgb = value; |
| 50 | else if (name == "maxMemoryMB" ) |
| 51 | maxMemoryMB = value; |
| 52 | |
| 53 | dirty = true; |
| 54 | } |
| 55 | |
| 56 | int AutoencoderFilter::get1i(const std::string& name) |
| 57 | { |
| 58 | if (name == "hdr" ) |
| 59 | return hdr; |
| 60 | else if (name == "srgb" ) |
| 61 | return srgb; |
| 62 | else if (name == "maxMemoryMB" ) |
| 63 | return maxMemoryMB; |
| 64 | else if (name == "alignment" ) |
| 65 | return alignment; |
| 66 | else if (name == "overlap" ) |
| 67 | return overlap; |
| 68 | else |
| 69 | throw Exception(Error::InvalidArgument, "invalid parameter" ); |
| 70 | } |
| 71 | |
| 72 | void AutoencoderFilter::set1f(const std::string& name, float value) |
| 73 | { |
| 74 | if (name == "hdrScale" ) |
| 75 | hdrScale = value; |
| 76 | |
| 77 | dirty = true; |
| 78 | } |
| 79 | |
| 80 | float AutoencoderFilter::get1f(const std::string& name) |
| 81 | { |
| 82 | if (name == "hdrScale" ) |
| 83 | return hdrScale; |
| 84 | else |
| 85 | throw Exception(Error::InvalidArgument, "invalid parameter" ); |
| 86 | } |
| 87 | |
| 88 | void AutoencoderFilter::commit() |
| 89 | { |
| 90 | if (!dirty) |
| 91 | return; |
| 92 | |
| 93 | // -- GODOT start -- |
| 94 | //device->executeTask([&]() |
| 95 | //{ |
| 96 | // GODOT end -- |
| 97 | |
| 98 | if (mayiuse(avx512_common)) |
| 99 | net = buildNet<16>(); |
| 100 | else |
| 101 | net = buildNet<8>(); |
| 102 | |
| 103 | // GODOT start -- |
| 104 | //}); |
| 105 | // GODOT end -- |
| 106 | |
| 107 | dirty = false; |
| 108 | } |
| 109 | |
| 110 | void AutoencoderFilter::execute() |
| 111 | { |
| 112 | if (dirty) |
| 113 | throw Exception(Error::InvalidOperation, "changes to the filter are not committed" ); |
| 114 | |
| 115 | if (!net) |
| 116 | return; |
| 117 | // -- GODOT start -- |
| 118 | //device->executeTask([&]() |
| 119 | //{ |
| 120 | // -- GODOT end -- |
| 121 | Progress progress; |
| 122 | progress.func = progressFunc; |
| 123 | progress.userPtr = progressUserPtr; |
| 124 | progress.taskCount = tileCountH * tileCountW; |
| 125 | |
| 126 | // Iterate over the tiles |
| 127 | int tileIndex = 0; |
| 128 | |
| 129 | for (int i = 0; i < tileCountH; ++i) |
| 130 | { |
| 131 | const int h = i * (tileH - 2*overlap); // input tile position (including overlap) |
| 132 | const int overlapBeginH = i > 0 ? overlap : 0; // overlap on the top |
| 133 | const int overlapEndH = i < tileCountH-1 ? overlap : 0; // overlap on the bottom |
| 134 | const int tileH1 = min(H - h, tileH); // input tile size (including overlap) |
| 135 | const int tileH2 = tileH1 - overlapBeginH - overlapEndH; // output tile size |
| 136 | const int alignOffsetH = tileH - roundUp(tileH1, alignment); // align to the bottom in the tile buffer |
| 137 | |
| 138 | for (int j = 0; j < tileCountW; ++j) |
| 139 | { |
| 140 | const int w = j * (tileW - 2*overlap); // input tile position (including overlap) |
| 141 | const int overlapBeginW = j > 0 ? overlap : 0; // overlap on the left |
| 142 | const int overlapEndW = j < tileCountW-1 ? overlap : 0; // overlap on the right |
| 143 | const int tileW1 = min(W - w, tileW); // input tile size (including overlap) |
| 144 | const int tileW2 = tileW1 - overlapBeginW - overlapEndW; // output tile size |
| 145 | const int alignOffsetW = tileW - roundUp(tileW1, alignment); // align to the right in the tile buffer |
| 146 | |
| 147 | // Set the input tile |
| 148 | inputReorder->setTile(h, w, |
| 149 | alignOffsetH, alignOffsetW, |
| 150 | tileH1, tileW1); |
| 151 | |
| 152 | // Set the output tile |
| 153 | outputReorder->setTile(alignOffsetH + overlapBeginH, alignOffsetW + overlapBeginW, |
| 154 | h + overlapBeginH, w + overlapBeginW, |
| 155 | tileH2, tileW2); |
| 156 | |
| 157 | //printf("Tile: %d %d -> %d %d\n", w+overlapBeginW, h+overlapBeginH, w+overlapBeginW+tileW2, h+overlapBeginH+tileH2); |
| 158 | |
| 159 | // Denoise the tile |
| 160 | net->execute(progress, tileIndex); |
| 161 | |
| 162 | // Next tile |
| 163 | tileIndex++; |
| 164 | } |
| 165 | } |
| 166 | // -- GODOT start -- |
| 167 | //}); |
| 168 | // -- GODOT end -- |
| 169 | } |
| 170 | |
| 171 | void AutoencoderFilter::computeTileSize() |
| 172 | { |
| 173 | const int minTileSize = 3*overlap; |
| 174 | const int estimatedBytesPerPixel = mayiuse(avx512_common) ? estimatedBytesPerPixel16 : estimatedBytesPerPixel8; |
| 175 | const int64_t maxTilePixels = (int64_t(maxMemoryMB)*1024*1024 - estimatedBytesBase) / estimatedBytesPerPixel; |
| 176 | |
| 177 | tileCountH = 1; |
| 178 | tileCountW = 1; |
| 179 | tileH = roundUp(H, alignment); |
| 180 | tileW = roundUp(W, alignment); |
| 181 | |
| 182 | // Divide the image into tiles until the tile size gets below the threshold |
| 183 | while (int64_t(tileH) * tileW > maxTilePixels) |
| 184 | { |
| 185 | if (tileH > minTileSize && tileH > tileW) |
| 186 | { |
| 187 | tileCountH++; |
| 188 | tileH = max(roundUp(ceilDiv(H - 2*overlap, tileCountH), alignment) + 2*overlap, minTileSize); |
| 189 | } |
| 190 | else if (tileW > minTileSize) |
| 191 | { |
| 192 | tileCountW++; |
| 193 | tileW = max(roundUp(ceilDiv(W - 2*overlap, tileCountW), alignment) + 2*overlap, minTileSize); |
| 194 | } |
| 195 | else |
| 196 | break; |
| 197 | } |
| 198 | |
| 199 | // Compute the final number of tiles |
| 200 | tileCountH = (H > tileH) ? ceilDiv(H - 2*overlap, tileH - 2*overlap) : 1; |
| 201 | tileCountW = (W > tileW) ? ceilDiv(W - 2*overlap, tileW - 2*overlap) : 1; |
| 202 | |
| 203 | if (device->isVerbose(2)) |
| 204 | { |
| 205 | std::cout << "Tile size : " << tileW << "x" << tileH << std::endl; |
| 206 | std::cout << "Tile count: " << tileCountW << "x" << tileCountH << std::endl; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | template<int K> |
| 211 | std::shared_ptr<Executable> AutoencoderFilter::buildNet() |
| 212 | { |
| 213 | H = color.height; |
| 214 | W = color.width; |
| 215 | |
| 216 | // Configure the network |
| 217 | int inputC; |
| 218 | void* weightPtr; |
| 219 | |
| 220 | if (srgb && hdr) |
| 221 | throw Exception(Error::InvalidOperation, "srgb and hdr modes cannot be enabled at the same time" ); |
| 222 | |
| 223 | if (color && !albedo && !normal && weightData.hdr) |
| 224 | { |
| 225 | inputC = 3; |
| 226 | weightPtr = hdr ? weightData.hdr : weightData.ldr; |
| 227 | } |
| 228 | else if (color && albedo && !normal && weightData.hdr_alb) |
| 229 | { |
| 230 | inputC = 6; |
| 231 | weightPtr = hdr ? weightData.hdr_alb : weightData.ldr_alb; |
| 232 | } |
| 233 | else if (color && albedo && normal && weightData.hdr_alb_nrm) |
| 234 | { |
| 235 | inputC = 9; |
| 236 | weightPtr = hdr ? weightData.hdr_alb_nrm : weightData.ldr_alb_nrm; |
| 237 | } |
| 238 | else |
| 239 | { |
| 240 | throw Exception(Error::InvalidOperation, "unsupported combination of input features" ); |
| 241 | } |
| 242 | |
| 243 | if (!output) |
| 244 | throw Exception(Error::InvalidOperation, "output image not specified" ); |
| 245 | |
| 246 | if ((color.format != Format::Float3) |
| 247 | || (albedo && albedo.format != Format::Float3) |
| 248 | || (normal && normal.format != Format::Float3) |
| 249 | || (output.format != Format::Float3)) |
| 250 | throw Exception(Error::InvalidOperation, "unsupported image format" ); |
| 251 | |
| 252 | if ((albedo && (albedo.width != W || albedo.height != H)) |
| 253 | || (normal && (normal.width != W || normal.height != H)) |
| 254 | || (output.width != W || output.height != H)) |
| 255 | throw Exception(Error::InvalidOperation, "image size mismatch" ); |
| 256 | |
| 257 | // Compute the tile size |
| 258 | computeTileSize(); |
| 259 | |
| 260 | // If the image size is zero, there is nothing else to do |
| 261 | if (H <= 0 || W <= 0) |
| 262 | return nullptr; |
| 263 | |
| 264 | // Parse the weights |
| 265 | const auto weightMap = parseTensors(weightPtr); |
| 266 | |
| 267 | // Create the network |
| 268 | std::shared_ptr<Network<K>> net = std::make_shared<Network<K>>(device, weightMap); |
| 269 | |
| 270 | // Compute the tensor sizes |
| 271 | const auto inputDims = memory::dims({1, inputC, tileH, tileW}); |
| 272 | const auto inputReorderDims = net->getInputReorderDims(inputDims, alignment); //-> concat0 |
| 273 | |
| 274 | const auto conv1Dims = net->getConvDims("conv1" , inputReorderDims); //-> temp0 |
| 275 | const auto conv1bDims = net->getConvDims("conv1b" , conv1Dims); //-> temp1 |
| 276 | const auto pool1Dims = net->getPoolDims(conv1bDims); //-> concat1 |
| 277 | const auto conv2Dims = net->getConvDims("conv2" , pool1Dims); //-> temp0 |
| 278 | const auto pool2Dims = net->getPoolDims(conv2Dims); //-> concat2 |
| 279 | const auto conv3Dims = net->getConvDims("conv3" , pool2Dims); //-> temp0 |
| 280 | const auto pool3Dims = net->getPoolDims(conv3Dims); //-> concat3 |
| 281 | const auto conv4Dims = net->getConvDims("conv4" , pool3Dims); //-> temp0 |
| 282 | const auto pool4Dims = net->getPoolDims(conv4Dims); //-> concat4 |
| 283 | const auto conv5Dims = net->getConvDims("conv5" , pool4Dims); //-> temp0 |
| 284 | const auto pool5Dims = net->getPoolDims(conv5Dims); //-> temp1 |
| 285 | const auto upsample4Dims = net->getUpsampleDims(pool5Dims); //-> concat4 |
| 286 | const auto concat4Dims = net->getConcatDims(upsample4Dims, pool4Dims); |
| 287 | const auto conv6Dims = net->getConvDims("conv6" , concat4Dims); //-> temp0 |
| 288 | const auto conv6bDims = net->getConvDims("conv6b" , conv6Dims); //-> temp1 |
| 289 | const auto upsample3Dims = net->getUpsampleDims(conv6bDims); //-> concat3 |
| 290 | const auto concat3Dims = net->getConcatDims(upsample3Dims, pool3Dims); |
| 291 | const auto conv7Dims = net->getConvDims("conv7" , concat3Dims); //-> temp0 |
| 292 | const auto conv7bDims = net->getConvDims("conv7b" , conv7Dims); //-> temp1 |
| 293 | const auto upsample2Dims = net->getUpsampleDims(conv7bDims); //-> concat2 |
| 294 | const auto concat2Dims = net->getConcatDims(upsample2Dims, pool2Dims); |
| 295 | const auto conv8Dims = net->getConvDims("conv8" , concat2Dims); //-> temp0 |
| 296 | const auto conv8bDims = net->getConvDims("conv8b" , conv8Dims); //-> temp1 |
| 297 | const auto upsample1Dims = net->getUpsampleDims(conv8bDims); //-> concat1 |
| 298 | const auto concat1Dims = net->getConcatDims(upsample1Dims, pool1Dims); |
| 299 | const auto conv9Dims = net->getConvDims("conv9" , concat1Dims); //-> temp0 |
| 300 | const auto conv9bDims = net->getConvDims("conv9b" , conv9Dims); //-> temp1 |
| 301 | const auto upsample0Dims = net->getUpsampleDims(conv9bDims); //-> concat0 |
| 302 | const auto concat0Dims = net->getConcatDims(upsample0Dims, inputReorderDims); |
| 303 | const auto conv10Dims = net->getConvDims("conv10" , concat0Dims); //-> temp0 |
| 304 | const auto conv10bDims = net->getConvDims("conv10b" , conv10Dims); //-> temp1 |
| 305 | const auto conv11Dims = net->getConvDims("conv11" , conv10bDims); //-> temp0 |
| 306 | |
| 307 | const auto outputDims = memory::dims({1, 3, tileH, tileW}); |
| 308 | |
| 309 | // Allocate two temporary ping-pong buffers to decrease memory usage |
| 310 | const auto temp0Dims = getMaxTensorDims({ |
| 311 | conv1Dims, |
| 312 | conv2Dims, |
| 313 | conv3Dims, |
| 314 | conv4Dims, |
| 315 | conv5Dims, |
| 316 | conv6Dims, |
| 317 | conv7Dims, |
| 318 | conv8Dims, |
| 319 | conv9Dims, |
| 320 | conv10Dims, |
| 321 | conv11Dims |
| 322 | }); |
| 323 | |
| 324 | const auto temp1Dims = getMaxTensorDims({ |
| 325 | conv1bDims, |
| 326 | pool5Dims, |
| 327 | conv6bDims, |
| 328 | conv7bDims, |
| 329 | conv8bDims, |
| 330 | conv9bDims, |
| 331 | conv10bDims, |
| 332 | }); |
| 333 | |
| 334 | auto temp0 = net->allocTensor(temp0Dims); |
| 335 | auto temp1 = net->allocTensor(temp1Dims); |
| 336 | |
| 337 | // Allocate enough memory to hold the concat outputs. Then use the first |
| 338 | // half to hold the previous conv output and the second half to hold the |
| 339 | // pool/orig image output. This works because everything is C dimension |
| 340 | // outermost, padded to K floats, and all the concats are on the C dimension. |
| 341 | auto concat0Dst = net->allocTensor(concat0Dims); |
| 342 | auto concat1Dst = net->allocTensor(concat1Dims); |
| 343 | auto concat2Dst = net->allocTensor(concat2Dims); |
| 344 | auto concat3Dst = net->allocTensor(concat3Dims); |
| 345 | auto concat4Dst = net->allocTensor(concat4Dims); |
| 346 | |
| 347 | // Transfer function |
| 348 | std::shared_ptr<TransferFunction> transferFunc = makeTransferFunc(); |
| 349 | |
| 350 | // Autoexposure |
| 351 | if (auto tf = std::dynamic_pointer_cast<HDRTransferFunction>(transferFunc)) |
| 352 | { |
| 353 | if (isnan(hdrScale)) |
| 354 | net->addAutoexposure(color, tf); |
| 355 | else |
| 356 | tf->setExposure(hdrScale); |
| 357 | } |
| 358 | |
| 359 | // Input reorder |
| 360 | auto inputReorderDst = net->castTensor(inputReorderDims, concat0Dst, upsample0Dims); |
| 361 | inputReorder = net->addInputReorder(color, albedo, normal, |
| 362 | transferFunc, |
| 363 | alignment, inputReorderDst); |
| 364 | |
| 365 | // conv1 |
| 366 | auto conv1 = net->addConv("conv1" , inputReorder->getDst(), temp0); |
| 367 | |
| 368 | // conv1b |
| 369 | auto conv1b = net->addConv("conv1b" , conv1->getDst(), temp1); |
| 370 | |
| 371 | // pool1 |
| 372 | // Adjust pointer for pool1 to eliminate concat1 |
| 373 | auto pool1Dst = net->castTensor(pool1Dims, concat1Dst, upsample1Dims); |
| 374 | auto pool1 = net->addPool(conv1b->getDst(), pool1Dst); |
| 375 | |
| 376 | // conv2 |
| 377 | auto conv2 = net->addConv("conv2" , pool1->getDst(), temp0); |
| 378 | |
| 379 | // pool2 |
| 380 | // Adjust pointer for pool2 to eliminate concat2 |
| 381 | auto pool2Dst = net->castTensor(pool2Dims, concat2Dst, upsample2Dims); |
| 382 | auto pool2 = net->addPool(conv2->getDst(), pool2Dst); |
| 383 | |
| 384 | // conv3 |
| 385 | auto conv3 = net->addConv("conv3" , pool2->getDst(), temp0); |
| 386 | |
| 387 | // pool3 |
| 388 | // Adjust pointer for pool3 to eliminate concat3 |
| 389 | auto pool3Dst = net->castTensor(pool3Dims, concat3Dst, upsample3Dims); |
| 390 | auto pool3 = net->addPool(conv3->getDst(), pool3Dst); |
| 391 | |
| 392 | // conv4 |
| 393 | auto conv4 = net->addConv("conv4" , pool3->getDst(), temp0); |
| 394 | |
| 395 | // pool4 |
| 396 | // Adjust pointer for pool4 to eliminate concat4 |
| 397 | auto pool4Dst = net->castTensor(pool4Dims, concat4Dst, upsample4Dims); |
| 398 | auto pool4 = net->addPool(conv4->getDst(), pool4Dst); |
| 399 | |
| 400 | // conv5 |
| 401 | auto conv5 = net->addConv("conv5" , pool4->getDst(), temp0); |
| 402 | |
| 403 | // pool5 |
| 404 | auto pool5 = net->addPool(conv5->getDst(), temp1); |
| 405 | |
| 406 | // upsample4 |
| 407 | auto upsample4Dst = net->castTensor(upsample4Dims, concat4Dst); |
| 408 | auto upsample4 = net->addUpsample(pool5->getDst(), upsample4Dst); |
| 409 | |
| 410 | // conv6 |
| 411 | auto conv6 = net->addConv("conv6" , concat4Dst, temp0); |
| 412 | |
| 413 | // conv6b |
| 414 | auto conv6b = net->addConv("conv6b" , conv6->getDst(), temp1); |
| 415 | |
| 416 | // upsample3 |
| 417 | auto upsample3Dst = net->castTensor(upsample3Dims, concat3Dst); |
| 418 | auto upsample3 = net->addUpsample(conv6b->getDst(), upsample3Dst); |
| 419 | |
| 420 | // conv7 |
| 421 | auto conv7 = net->addConv("conv7" , concat3Dst, temp0); |
| 422 | |
| 423 | // conv7b |
| 424 | auto conv7b = net->addConv("conv7b" , conv7->getDst(), temp1); |
| 425 | |
| 426 | // upsample2 |
| 427 | auto upsample2Dst = net->castTensor(upsample2Dims, concat2Dst); |
| 428 | auto upsample2 = net->addUpsample(conv7b->getDst(), upsample2Dst); |
| 429 | |
| 430 | // conv8 |
| 431 | auto conv8 = net->addConv("conv8" , concat2Dst, temp0); |
| 432 | |
| 433 | // conv8b |
| 434 | auto conv8b = net->addConv("conv8b" , conv8->getDst(), temp1); |
| 435 | |
| 436 | // upsample1 |
| 437 | auto upsample1Dst = net->castTensor(upsample1Dims, concat1Dst); |
| 438 | auto upsample1 = net->addUpsample(conv8b->getDst(), upsample1Dst); |
| 439 | |
| 440 | // conv9 |
| 441 | auto conv9 = net->addConv("conv9" , concat1Dst, temp0); |
| 442 | |
| 443 | // conv9b |
| 444 | auto conv9b = net->addConv("conv9b" , conv9->getDst(), temp1); |
| 445 | |
| 446 | // upsample0 |
| 447 | auto upsample0Dst = net->castTensor(upsample0Dims, concat0Dst); |
| 448 | auto upsample0 = net->addUpsample(conv9b->getDst(), upsample0Dst); |
| 449 | |
| 450 | // conv10 |
| 451 | auto conv10 = net->addConv("conv10" , concat0Dst, temp0); |
| 452 | |
| 453 | // conv10b |
| 454 | auto conv10b = net->addConv("conv10b" , conv10->getDst(), temp1); |
| 455 | |
| 456 | // conv11 |
| 457 | auto conv11 = net->addConv("conv11" , conv10b->getDst(), temp0, false /* no relu */); |
| 458 | |
| 459 | // Output reorder |
| 460 | outputReorder = net->addOutputReorder(conv11->getDst(), transferFunc, output); |
| 461 | |
| 462 | net->finalize(); |
| 463 | return net; |
| 464 | } |
| 465 | |
| 466 | std::shared_ptr<TransferFunction> AutoencoderFilter::makeTransferFunc() |
| 467 | { |
| 468 | if (hdr) |
| 469 | return std::make_shared<PQXTransferFunction>(); |
| 470 | else if (srgb) |
| 471 | return std::make_shared<LinearTransferFunction>(); |
| 472 | else |
| 473 | return std::make_shared<GammaTransferFunction>(); |
| 474 | } |
| 475 | |
| 476 | // -- GODOT start -- |
| 477 | // Godot doesn't need Raytracing filters. Removing them saves space in the weights files. |
| 478 | #if 0 |
| 479 | // -- GODOT end -- |
| 480 | |
| 481 | // -------------------------------------------------------------------------- |
| 482 | // RTFilter |
| 483 | // -------------------------------------------------------------------------- |
| 484 | |
| 485 | namespace weights |
| 486 | { |
| 487 | // LDR |
| 488 | extern unsigned char rt_ldr[]; // color |
| 489 | extern unsigned char rt_ldr_alb[]; // color, albedo |
| 490 | extern unsigned char rt_ldr_alb_nrm[]; // color, albedo, normal |
| 491 | |
| 492 | // HDR |
| 493 | extern unsigned char rt_hdr[]; // color |
| 494 | extern unsigned char rt_hdr_alb[]; // color, albedo |
| 495 | extern unsigned char rt_hdr_alb_nrm[]; // color, albedo, normal |
| 496 | } |
| 497 | |
| 498 | RTFilter::RTFilter(const Ref<Device>& device) |
| 499 | : AutoencoderFilter(device) |
| 500 | { |
| 501 | weightData.ldr = weights::rt_ldr; |
| 502 | weightData.ldr_alb = weights::rt_ldr_alb; |
| 503 | weightData.ldr_alb_nrm = weights::rt_ldr_alb_nrm; |
| 504 | weightData.hdr = weights::rt_hdr; |
| 505 | weightData.hdr_alb = weights::rt_hdr_alb; |
| 506 | weightData.hdr_alb_nrm = weights::rt_hdr_alb_nrm; |
| 507 | } |
| 508 | // -- GODOT start -- |
| 509 | #endif |
| 510 | // -- GODOT end -- |
| 511 | |
| 512 | // -------------------------------------------------------------------------- |
| 513 | // RTLightmapFilter |
| 514 | // -------------------------------------------------------------------------- |
| 515 | |
| 516 | namespace weights |
| 517 | { |
| 518 | // HDR |
| 519 | extern unsigned char rtlightmap_hdr[]; // color |
| 520 | } |
| 521 | |
| 522 | RTLightmapFilter::RTLightmapFilter(const Ref<Device>& device) |
| 523 | : AutoencoderFilter(device) |
| 524 | { |
| 525 | weightData.hdr = weights::rtlightmap_hdr; |
| 526 | |
| 527 | hdr = true; |
| 528 | } |
| 529 | |
| 530 | std::shared_ptr<TransferFunction> RTLightmapFilter::makeTransferFunc() |
| 531 | { |
| 532 | return std::make_shared<LogTransferFunction>(); |
| 533 | } |
| 534 | |
| 535 | } // namespace oidn |
| 536 | |