| 1 | // ======================================================================== // |
| 2 | // Copyright 2009-2019 Intel Corporation // |
| 3 | // // |
| 4 | // Licensed under the Apache License, Version 2.0 (the "License"); // |
| 5 | // you may not use this file except in compliance with the License. // |
| 6 | // You may obtain a copy of the License at // |
| 7 | // // |
| 8 | // http://www.apache.org/licenses/LICENSE-2.0 // |
| 9 | // // |
| 10 | // Unless required by applicable law or agreed to in writing, software // |
| 11 | // distributed under the License is distributed on an "AS IS" BASIS, // |
| 12 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // |
| 13 | // See the License for the specific language governing permissions and // |
| 14 | // limitations under the License. // |
| 15 | // ======================================================================== // |
| 16 | |
| 17 | #include "upsample.h" |
| 18 | #include "weights_reorder.h" |
| 19 | #include "network.h" |
| 20 | // -- GODOT start -- |
| 21 | #include <cstring> |
| 22 | // -- GODOT end -- |
| 23 | |
| 24 | namespace oidn { |
| 25 | |
| 26 | template<int K> |
| 27 | Network<K>::Network(const Ref<Device>& device, const std::map<std::string, Tensor>& weightMap) |
| 28 | : device(device), |
| 29 | eng(engine::cpu, 0), |
| 30 | sm(eng), |
| 31 | weightMap(weightMap) |
| 32 | { |
| 33 | } |
| 34 | |
| 35 | template<int K> |
| 36 | void Network<K>::execute(const Progress& progress, int taskIndex) |
| 37 | { |
| 38 | if (progress.func) |
| 39 | { |
| 40 | const double value = double(taskIndex) / double(progress.taskCount); |
| 41 | if (!progress.func(progress.userPtr, value)) |
| 42 | throw Exception(Error::Cancelled, "execution was cancelled" ); |
| 43 | } |
| 44 | |
| 45 | for (size_t i = 0; i < nodes.size(); ++i) |
| 46 | { |
| 47 | nodes[i]->execute(sm); |
| 48 | |
| 49 | if (progress.func) |
| 50 | { |
| 51 | const double value = (double(taskIndex) + double(i+1) / double(nodes.size())) / double(progress.taskCount); |
| 52 | if (!progress.func(progress.userPtr, value)) |
| 53 | throw Exception(Error::Cancelled, "execution was cancelled" ); |
| 54 | } |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | template<int K> |
| 59 | std::shared_ptr<memory> Network<K>::allocTensor(const memory::dims& dims, |
| 60 | memory::format_tag format, |
| 61 | void* data) |
| 62 | { |
| 63 | if (format == memory::format_tag::any) |
| 64 | { |
| 65 | if (dims.size() == 4) |
| 66 | format = BlockedFormat<K>::nChwKc; |
| 67 | else if (dims.size() == 1) |
| 68 | format = memory::format_tag::x; |
| 69 | else |
| 70 | assert(0); |
| 71 | } |
| 72 | memory::desc desc(dims, memory::data_type::f32, format); |
| 73 | if (data == nullptr) |
| 74 | { |
| 75 | const size_t bytes = getTensorSize(dims) * sizeof(float); |
| 76 | if (format == BlockedFormat<K>::nChwKc) |
| 77 | activationAllocBytes += bytes; |
| 78 | totalAllocBytes += bytes; |
| 79 | |
| 80 | return std::make_shared<memory>(desc, eng); |
| 81 | } |
| 82 | else |
| 83 | { |
| 84 | return std::make_shared<memory>(desc, eng, data); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | template<int K> |
| 89 | std::shared_ptr<memory> Network<K>::castTensor(const memory::dims& dims, |
| 90 | const std::shared_ptr<memory>& src, |
| 91 | size_t srcOffset, |
| 92 | memory::format_tag format) |
| 93 | { |
| 94 | const mkldnn_memory_desc_t& srcDesc = src->get_desc().data; |
| 95 | MAYBE_UNUSED(srcDesc); |
| 96 | assert(srcDesc.data_type == memory::data_type::f32); |
| 97 | assert(getTensorSize(src) >= srcOffset + getTensorSize(dims)); |
| 98 | |
| 99 | if (format == memory::format_tag::any) |
| 100 | { |
| 101 | if (dims.size() == 4) |
| 102 | format = BlockedFormat<K>::nChwKc; |
| 103 | else if (dims.size() == 1) |
| 104 | format = memory::format_tag::x; |
| 105 | else |
| 106 | assert(0); |
| 107 | } |
| 108 | memory::desc desc(dims, memory::data_type::f32, format); |
| 109 | float* srcPtr = (float*)src->get_data_handle() + srcOffset; |
| 110 | return std::make_shared<memory>(desc, eng, srcPtr); |
| 111 | } |
| 112 | |
| 113 | template<int K> |
| 114 | std::shared_ptr<memory> Network<K>::castTensor(const memory::dims& dims, |
| 115 | const std::shared_ptr<memory>& src, |
| 116 | const memory::dims& srcOffset) |
| 117 | { |
| 118 | return castTensor(dims, src, getTensorSize(srcOffset)); |
| 119 | } |
| 120 | |
| 121 | template<int K> |
| 122 | void Network<K>::zeroTensor(const std::shared_ptr<memory>& dst) |
| 123 | { |
| 124 | assert(getTensorType(dst) == memory::data_type::f32); |
| 125 | memset(dst->get_data_handle(), 0, getTensorSize(dst)*sizeof(float)); |
| 126 | } |
| 127 | |
| 128 | template<int K> |
| 129 | memory::dims Network<K>::getInputReorderDims(const memory::dims& srcDims, int alignment) |
| 130 | { |
| 131 | memory::dims dstDims = srcDims; |
| 132 | dstDims[1] = getPadded<K>(srcDims[1]); // round up C |
| 133 | dstDims[2] = roundUp(srcDims[2], memory::dim(alignment)); // round up H |
| 134 | dstDims[3] = roundUp(srcDims[3], memory::dim(alignment)); // round up W |
| 135 | return dstDims; |
| 136 | } |
| 137 | |
| 138 | template<int K> |
| 139 | std::shared_ptr<Node> Network<K>::addInputReorder(const Image& color, |
| 140 | const Image& albedo, |
| 141 | const Image& normal, |
| 142 | const std::shared_ptr<TransferFunction>& transferFunc, |
| 143 | int alignment, |
| 144 | const std::shared_ptr<memory>& userDst) |
| 145 | { |
| 146 | assert(color); |
| 147 | int inputC = 3; |
| 148 | if (albedo) inputC += 3; |
| 149 | if (normal) inputC += 3; |
| 150 | |
| 151 | memory::dims srcDims = {1, inputC, color.height, color.width}; |
| 152 | memory::dims dstDims = getInputReorderDims(srcDims, alignment); |
| 153 | |
| 154 | // Allocate padded memory |
| 155 | auto dst = userDst; |
| 156 | if (!dst) |
| 157 | dst = allocTensor(dstDims); |
| 158 | |
| 159 | // Push node |
| 160 | std::shared_ptr<Node> node; |
| 161 | |
| 162 | if (auto tf = std::dynamic_pointer_cast<LinearTransferFunction>(transferFunc)) |
| 163 | node = std::make_shared<InputReorderNode<K, LinearTransferFunction>>(color, albedo, normal, dst, tf); |
| 164 | else if (auto tf = std::dynamic_pointer_cast<GammaTransferFunction>(transferFunc)) |
| 165 | node = std::make_shared<InputReorderNode<K, GammaTransferFunction>>(color, albedo, normal, dst, tf); |
| 166 | else if (auto tf = std::dynamic_pointer_cast<LogTransferFunction>(transferFunc)) |
| 167 | node = std::make_shared<InputReorderNode<K, LogTransferFunction>>(color, albedo, normal, dst, tf); |
| 168 | else if (auto tf = std::dynamic_pointer_cast<PQXTransferFunction>(transferFunc)) |
| 169 | node = std::make_shared<InputReorderNode<K, PQXTransferFunction>>(color, albedo, normal, dst, tf); |
| 170 | else |
| 171 | assert(0); |
| 172 | |
| 173 | nodes.push_back(node); |
| 174 | return node; |
| 175 | } |
| 176 | |
| 177 | template<int K> |
| 178 | std::shared_ptr<Node> Network<K>::addOutputReorder(const std::shared_ptr<memory>& src, |
| 179 | const std::shared_ptr<TransferFunction>& transferFunc, |
| 180 | const Image& output) |
| 181 | { |
| 182 | memory::dims srcDims = getTensorDims(src); |
| 183 | assert(srcDims[1] == K); |
| 184 | |
| 185 | // Push node |
| 186 | std::shared_ptr<Node> node; |
| 187 | |
| 188 | if (auto tf = std::dynamic_pointer_cast<LinearTransferFunction>(transferFunc)) |
| 189 | node = std::make_shared<OutputReorderNode<K, LinearTransferFunction>>(src, output, tf); |
| 190 | else if (auto tf = std::dynamic_pointer_cast<GammaTransferFunction>(transferFunc)) |
| 191 | node = std::make_shared<OutputReorderNode<K, GammaTransferFunction>>(src, output, tf); |
| 192 | else if (auto tf = std::dynamic_pointer_cast<LogTransferFunction>(transferFunc)) |
| 193 | node = std::make_shared<OutputReorderNode<K, LogTransferFunction>>(src, output, tf); |
| 194 | else if (auto tf = std::dynamic_pointer_cast<PQXTransferFunction>(transferFunc)) |
| 195 | node = std::make_shared<OutputReorderNode<K, PQXTransferFunction>>(src, output, tf); |
| 196 | else |
| 197 | assert(0); |
| 198 | |
| 199 | nodes.push_back(node); |
| 200 | return node; |
| 201 | } |
| 202 | |
| 203 | template<int K> |
| 204 | memory::dims Network<K>::getConvDims(const std::string& name, const memory::dims& srcDims) |
| 205 | { |
| 206 | auto b = weightMap[name + "/b" ]; |
| 207 | memory::dims dstDims = srcDims; |
| 208 | dstDims[1] = getPadded<K>(b.dims[0]); // dstDims[C] = getPadded(OC) |
| 209 | return dstDims; |
| 210 | } |
| 211 | |
| 212 | template<int K> |
| 213 | std::shared_ptr<Node> Network<K>::addConv(const std::string& name, |
| 214 | const std::shared_ptr<memory>& src, |
| 215 | const std::shared_ptr<memory>& userDst, |
| 216 | bool relu) |
| 217 | { |
| 218 | const memory::dims strides = {1, 1}; |
| 219 | const memory::dims padding = {1, 1}; |
| 220 | |
| 221 | memory::dims srcDims = getTensorDims(src); |
| 222 | |
| 223 | // Get the weights |
| 224 | const auto& W = weightMap[name + "/W" ]; |
| 225 | if (W.ndims() != 4 || W.format != "oihw" ) |
| 226 | throw Exception(Error::InvalidOperation, "invalid convolution weights" ); |
| 227 | memory::dims weightsDims = W.dims; |
| 228 | auto userWeights = allocTensor(weightsDims, memory::format_tag::oihw, W.data); |
| 229 | |
| 230 | // Pad the weights |
| 231 | memory::dims weightsPadDims = weightsDims; |
| 232 | weightsPadDims[1] = getPadded<K>(weightsDims[1]); // IC |
| 233 | weightsPadDims[0] = getPadded<K>(weightsDims[0]); // OC |
| 234 | assert(srcDims[1] == weightsPadDims[1]); // srcDims[C] == weightsPadDims[IC] |
| 235 | auto weightsPad = allocTensor(weightsPadDims, memory::format_tag::oihw); |
| 236 | WeightsReorderNode<K>(userWeights, weightsPad).execute(sm); |
| 237 | |
| 238 | // Get the biases |
| 239 | const auto& b = weightMap[name + "/b" ]; |
| 240 | if (b.ndims() != 1) |
| 241 | throw Exception(Error::InvalidOperation, "invalid convolution biases" ); |
| 242 | memory::dims biasDims = b.dims; |
| 243 | |
| 244 | // Copy/pad the biases |
| 245 | memory::dims biasPadDims = {getPadded<K>(biasDims[0])}; |
| 246 | auto bias = allocTensor(biasPadDims); |
| 247 | if (biasDims[0] != biasPadDims[0]) |
| 248 | memset(bias->get_data_handle(), 0, biasPadDims[0]*sizeof(float)); |
| 249 | memcpy(bias->get_data_handle(), b.data, biasDims[0]*sizeof(float)); |
| 250 | |
| 251 | // Allocate memory for destination |
| 252 | memory::dims dstDims = srcDims; |
| 253 | dstDims[1] = weightsPadDims[0]; // dstDims[C] = weightsPadDims[OC] |
| 254 | |
| 255 | std::shared_ptr<memory> dst; |
| 256 | if (!userDst) |
| 257 | dst = allocTensor(dstDims); |
| 258 | else if (getTensorDims(userDst) == dstDims) |
| 259 | dst = userDst; |
| 260 | else |
| 261 | dst = castTensor(dstDims, userDst); |
| 262 | |
| 263 | // Create a convolution |
| 264 | // Let the convolution primitive choose the weights format |
| 265 | auto weightsDesc = memory::desc({ weightsPadDims }, memory::data_type::f32, memory::format_tag::any); |
| 266 | |
| 267 | auto convAlgo = (K == 16) ? convolution_winograd : convolution_direct; |
| 268 | auto convDesc = convolution_forward::desc( |
| 269 | prop_kind::forward_inference, convAlgo, |
| 270 | src->get_desc(), |
| 271 | weightsDesc, |
| 272 | bias->get_desc(), |
| 273 | dst->get_desc(), |
| 274 | strides, padding, padding, padding_kind::zero); |
| 275 | |
| 276 | // Incorporate relu |
| 277 | mkldnn::primitive_attr convAttr; |
| 278 | if (relu) |
| 279 | { |
| 280 | mkldnn::post_ops ops; |
| 281 | ops.append_eltwise( |
| 282 | 1.f, // scale factor, not used |
| 283 | algorithm::eltwise_relu, |
| 284 | 0.f, // max with |
| 285 | 0.f // unused |
| 286 | ); |
| 287 | convAttr.set_post_ops(ops); |
| 288 | } |
| 289 | convAttr.set_scratchpad_mode(scratchpad_mode_user); |
| 290 | |
| 291 | auto convPrimDesc = convolution_forward::primitive_desc(convDesc, convAttr, eng); |
| 292 | |
| 293 | // Reorder the weights to the final format, if necessary |
| 294 | auto weights = weightsPad; |
| 295 | if (convPrimDesc.weights_desc() != weightsPad->get_desc()) |
| 296 | { |
| 297 | weights = std::make_shared<memory>(convPrimDesc.weights_desc(), eng); |
| 298 | ReorderNode(weightsPad, weights).execute(sm); |
| 299 | } |
| 300 | |
| 301 | // Create convolution node and add it to the net |
| 302 | auto node = std::make_shared<ConvNode>(convPrimDesc, src, weights, bias, dst); |
| 303 | nodes.push_back(node); |
| 304 | return node; |
| 305 | } |
| 306 | |
| 307 | template<int K> |
| 308 | memory::dims Network<K>::getPoolDims(const memory::dims& srcDims) |
| 309 | { |
| 310 | memory::dims dstDims = srcDims; |
| 311 | dstDims[2] /= 2; // H/2 |
| 312 | dstDims[3] /= 2; // W/2 |
| 313 | return dstDims; |
| 314 | } |
| 315 | |
| 316 | template<int K> |
| 317 | std::shared_ptr<Node> Network<K>::addPool(const std::shared_ptr<memory>& src, |
| 318 | const std::shared_ptr<memory>& userDst) |
| 319 | { |
| 320 | const memory::dims kernel = {2, 2}; |
| 321 | const memory::dims strides = {2, 2}; |
| 322 | const memory::dims padding = {0, 0}; |
| 323 | |
| 324 | memory::dims srcDims = getTensorDims(src); |
| 325 | memory::dims dstDims = getPoolDims(srcDims); |
| 326 | |
| 327 | std::shared_ptr<memory> dst; |
| 328 | if (!userDst) |
| 329 | dst = allocTensor(dstDims); |
| 330 | else if (getTensorDims(userDst) == dstDims) |
| 331 | dst = userDst; |
| 332 | else |
| 333 | dst = castTensor(dstDims, userDst); |
| 334 | |
| 335 | auto poolDesc = pooling_forward::desc( |
| 336 | prop_kind::forward_inference, pooling_max, |
| 337 | src->get_desc(), |
| 338 | dst->get_desc(), |
| 339 | strides, kernel, padding, padding, padding_kind::zero); |
| 340 | |
| 341 | mkldnn::primitive_attr poolAttr; |
| 342 | poolAttr.set_scratchpad_mode(scratchpad_mode_user); |
| 343 | |
| 344 | auto poolPrimDesc = pooling_forward::primitive_desc(poolDesc, poolAttr, eng); |
| 345 | |
| 346 | auto node = std::make_shared<PoolNode>(poolPrimDesc, src, dst); |
| 347 | nodes.push_back(node); |
| 348 | return node; |
| 349 | } |
| 350 | |
| 351 | template<int K> |
| 352 | memory::dims Network<K>::getUpsampleDims(const memory::dims& srcDims) |
| 353 | { |
| 354 | memory::dims dstDims = srcDims; |
| 355 | dstDims[2] *= 2; // H*2 |
| 356 | dstDims[3] *= 2; // W*2 |
| 357 | return dstDims; |
| 358 | } |
| 359 | |
| 360 | template<int K> |
| 361 | std::shared_ptr<Node> Network<K>::addUpsample(const std::shared_ptr<memory>& src, |
| 362 | const std::shared_ptr<memory>& userDst) |
| 363 | { |
| 364 | memory::dims srcDims = getTensorDims(src); |
| 365 | memory::dims dstDims = getUpsampleDims(srcDims); |
| 366 | |
| 367 | std::shared_ptr<memory> dst; |
| 368 | if (!userDst) |
| 369 | dst = allocTensor(dstDims); |
| 370 | else if (getTensorDims(userDst) == dstDims) |
| 371 | dst = userDst; |
| 372 | else |
| 373 | dst = castTensor(dstDims, userDst); |
| 374 | |
| 375 | // Create upsampling node and add it to net |
| 376 | auto node = std::make_shared<UpsampleNode<K>>(src, dst); |
| 377 | nodes.push_back(node); |
| 378 | return node; |
| 379 | } |
| 380 | |
| 381 | template<int K> |
| 382 | memory::dims Network<K>::getConcatDims(const memory::dims& src1Dims, const memory::dims& src2Dims) |
| 383 | { |
| 384 | assert(src1Dims[0] == src2Dims[0]); // N |
| 385 | assert(src1Dims[2] == src2Dims[2]); // H |
| 386 | assert(src1Dims[3] == src2Dims[3]); // W |
| 387 | |
| 388 | memory::dims dstDims = src1Dims; |
| 389 | dstDims[1] += src2Dims[1]; // C |
| 390 | return dstDims; |
| 391 | } |
| 392 | |
| 393 | template<int K> |
| 394 | std::shared_ptr<Node> Network<K>::addAutoexposure(const Image& color, |
| 395 | const std::shared_ptr<HDRTransferFunction>& transferFunc) |
| 396 | { |
| 397 | auto node = std::make_shared<AutoexposureNode>(color, transferFunc); |
| 398 | nodes.push_back(node); |
| 399 | return node; |
| 400 | } |
| 401 | |
| 402 | template <int K> |
| 403 | void Network<K>::finalize() |
| 404 | { |
| 405 | // Compute the size of the scratchpad |
| 406 | size_t scratchpadSize = 0; |
| 407 | for (const auto& node : nodes) |
| 408 | scratchpadSize = max(scratchpadSize, node->getScratchpadSize()); |
| 409 | |
| 410 | // Allocate the scratchpad |
| 411 | memory::dims scratchpadDims = { memory::dim(scratchpadSize) }; |
| 412 | memory::desc scratchpadDesc(scratchpadDims, memory::data_type::u8, memory::format_tag::x); |
| 413 | auto scratchpad = std::make_shared<memory>(scratchpadDesc, eng); |
| 414 | activationAllocBytes += scratchpadSize; |
| 415 | totalAllocBytes += scratchpadSize; |
| 416 | |
| 417 | // Set the scratchpad for the nodes |
| 418 | for (auto& node : nodes) |
| 419 | node->setScratchpad(scratchpad); |
| 420 | |
| 421 | // Free the weights |
| 422 | weightMap.clear(); |
| 423 | |
| 424 | // Print statistics |
| 425 | if (device->isVerbose(2)) |
| 426 | { |
| 427 | std::cout << "Activation bytes: " << activationAllocBytes << std::endl; |
| 428 | std::cout << "Scratchpad bytes: " << scratchpadSize << std::endl; |
| 429 | std::cout << "Total bytes : " << totalAllocBytes << std::endl; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | template class Network<8>; |
| 434 | template class Network<16>; |
| 435 | |
| 436 | } // namespace oidn |
| 437 | |