1 | // |
2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
3 | // |
4 | // This software is provided 'as-is', without any express or implied |
5 | // warranty. In no event will the authors be held liable for any damages |
6 | // arising from the use of this software. |
7 | // Permission is granted to anyone to use this software for any purpose, |
8 | // including commercial applications, and to alter it and redistribute it |
9 | // freely, subject to the following restrictions: |
10 | // 1. The origin of this software must not be misrepresented; you must not |
11 | // claim that you wrote the original software. If you use this software |
12 | // in a product, an acknowledgment in the product documentation would be |
13 | // appreciated but is not required. |
14 | // 2. Altered source versions must be plainly marked as such, and must not be |
15 | // misrepresented as being the original software. |
16 | // 3. This notice may not be removed or altered from any source distribution. |
17 | // |
18 | |
19 | #ifndef RECAST_H |
20 | #define RECAST_H |
21 | |
22 | /// The value of PI used by Recast. |
23 | static const float RC_PI = 3.14159265f; |
24 | |
25 | /// Used to ignore unused function parameters and silence any compiler warnings. |
26 | template<class T> void rcIgnoreUnused(const T&) { } |
27 | |
28 | /// Recast log categories. |
29 | /// @see rcContext |
30 | enum rcLogCategory |
31 | { |
32 | RC_LOG_PROGRESS = 1, ///< A progress log entry. |
33 | RC_LOG_WARNING, ///< A warning log entry. |
34 | RC_LOG_ERROR ///< An error log entry. |
35 | }; |
36 | |
37 | /// Recast performance timer categories. |
38 | /// @see rcContext |
39 | enum rcTimerLabel |
40 | { |
41 | /// The user defined total time of the build. |
42 | RC_TIMER_TOTAL, |
43 | /// A user defined build time. |
44 | RC_TIMER_TEMP, |
45 | /// The time to rasterize the triangles. (See: #rcRasterizeTriangle) |
46 | RC_TIMER_RASTERIZE_TRIANGLES, |
47 | /// The time to build the compact heightfield. (See: #rcBuildCompactHeightfield) |
48 | RC_TIMER_BUILD_COMPACTHEIGHTFIELD, |
49 | /// The total time to build the contours. (See: #rcBuildContours) |
50 | RC_TIMER_BUILD_CONTOURS, |
51 | /// The time to trace the boundaries of the contours. (See: #rcBuildContours) |
52 | RC_TIMER_BUILD_CONTOURS_TRACE, |
53 | /// The time to simplify the contours. (See: #rcBuildContours) |
54 | RC_TIMER_BUILD_CONTOURS_SIMPLIFY, |
55 | /// The time to filter ledge spans. (See: #rcFilterLedgeSpans) |
56 | RC_TIMER_FILTER_BORDER, |
57 | /// The time to filter low height spans. (See: #rcFilterWalkableLowHeightSpans) |
58 | RC_TIMER_FILTER_WALKABLE, |
59 | /// The time to apply the median filter. (See: #rcMedianFilterWalkableArea) |
60 | RC_TIMER_MEDIAN_AREA, |
61 | /// The time to filter low obstacles. (See: #rcFilterLowHangingWalkableObstacles) |
62 | RC_TIMER_FILTER_LOW_OBSTACLES, |
63 | /// The time to build the polygon mesh. (See: #rcBuildPolyMesh) |
64 | RC_TIMER_BUILD_POLYMESH, |
65 | /// The time to merge polygon meshes. (See: #rcMergePolyMeshes) |
66 | RC_TIMER_MERGE_POLYMESH, |
67 | /// The time to erode the walkable area. (See: #rcErodeWalkableArea) |
68 | RC_TIMER_ERODE_AREA, |
69 | /// The time to mark a box area. (See: #rcMarkBoxArea) |
70 | RC_TIMER_MARK_BOX_AREA, |
71 | /// The time to mark a cylinder area. (See: #rcMarkCylinderArea) |
72 | RC_TIMER_MARK_CYLINDER_AREA, |
73 | /// The time to mark a convex polygon area. (See: #rcMarkConvexPolyArea) |
74 | RC_TIMER_MARK_CONVEXPOLY_AREA, |
75 | /// The total time to build the distance field. (See: #rcBuildDistanceField) |
76 | RC_TIMER_BUILD_DISTANCEFIELD, |
77 | /// The time to build the distances of the distance field. (See: #rcBuildDistanceField) |
78 | RC_TIMER_BUILD_DISTANCEFIELD_DIST, |
79 | /// The time to blur the distance field. (See: #rcBuildDistanceField) |
80 | RC_TIMER_BUILD_DISTANCEFIELD_BLUR, |
81 | /// The total time to build the regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) |
82 | RC_TIMER_BUILD_REGIONS, |
83 | /// The total time to apply the watershed algorithm. (See: #rcBuildRegions) |
84 | RC_TIMER_BUILD_REGIONS_WATERSHED, |
85 | /// The time to expand regions while applying the watershed algorithm. (See: #rcBuildRegions) |
86 | RC_TIMER_BUILD_REGIONS_EXPAND, |
87 | /// The time to flood regions while applying the watershed algorithm. (See: #rcBuildRegions) |
88 | RC_TIMER_BUILD_REGIONS_FLOOD, |
89 | /// The time to filter out small regions. (See: #rcBuildRegions, #rcBuildRegionsMonotone) |
90 | RC_TIMER_BUILD_REGIONS_FILTER, |
91 | /// The time to build heightfield layers. (See: #rcBuildHeightfieldLayers) |
92 | RC_TIMER_BUILD_LAYERS, |
93 | /// The time to build the polygon mesh detail. (See: #rcBuildPolyMeshDetail) |
94 | RC_TIMER_BUILD_POLYMESHDETAIL, |
95 | /// The time to merge polygon mesh details. (See: #rcMergePolyMeshDetails) |
96 | RC_TIMER_MERGE_POLYMESHDETAIL, |
97 | /// The maximum number of timers. (Used for iterating timers.) |
98 | RC_MAX_TIMERS |
99 | }; |
100 | |
101 | /// Provides an interface for optional logging and performance tracking of the Recast |
102 | /// build process. |
103 | /// |
104 | /// This class does not provide logging or timer functionality on its |
105 | /// own. Both must be provided by a concrete implementation |
106 | /// by overriding the protected member functions. Also, this class does not |
107 | /// provide an interface for extracting log messages. (Only adding them.) |
108 | /// So concrete implementations must provide one. |
109 | /// |
110 | /// If no logging or timers are required, just pass an instance of this |
111 | /// class through the Recast build process. |
112 | /// |
113 | /// @ingroup recast |
114 | class rcContext |
115 | { |
116 | public: |
117 | /// Constructor. |
118 | /// @param[in] state TRUE if the logging and performance timers should be enabled. [Default: true] |
119 | inline rcContext(bool state = true) : m_logEnabled(state), m_timerEnabled(state) {} |
120 | virtual ~rcContext() {} |
121 | |
122 | /// Enables or disables logging. |
123 | /// @param[in] state TRUE if logging should be enabled. |
124 | inline void enableLog(bool state) { m_logEnabled = state; } |
125 | |
126 | /// Clears all log entries. |
127 | inline void resetLog() { if (m_logEnabled) doResetLog(); } |
128 | |
129 | /// Logs a message. |
130 | /// |
131 | /// Example: |
132 | /// @code |
133 | /// // Where ctx is an instance of rcContext and filepath is a char array. |
134 | /// ctx->log(RC_LOG_ERROR, "buildTiledNavigation: Could not load '%s'", filepath); |
135 | /// @endcode |
136 | /// |
137 | /// @param[in] category The category of the message. |
138 | /// @param[in] format The message. |
139 | void log(const rcLogCategory category, const char* format, ...); |
140 | |
141 | /// Enables or disables the performance timers. |
142 | /// @param[in] state TRUE if timers should be enabled. |
143 | inline void enableTimer(bool state) { m_timerEnabled = state; } |
144 | |
145 | /// Clears all performance timers. (Resets all to unused.) |
146 | inline void resetTimers() { if (m_timerEnabled) doResetTimers(); } |
147 | |
148 | /// Starts the specified performance timer. |
149 | /// @param label The category of the timer. |
150 | inline void startTimer(const rcTimerLabel label) { if (m_timerEnabled) doStartTimer(label); } |
151 | |
152 | /// Stops the specified performance timer. |
153 | /// @param label The category of the timer. |
154 | inline void stopTimer(const rcTimerLabel label) { if (m_timerEnabled) doStopTimer(label); } |
155 | |
156 | /// Returns the total accumulated time of the specified performance timer. |
157 | /// @param label The category of the timer. |
158 | /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. |
159 | inline int getAccumulatedTime(const rcTimerLabel label) const { return m_timerEnabled ? doGetAccumulatedTime(label) : -1; } |
160 | |
161 | protected: |
162 | /// Clears all log entries. |
163 | virtual void doResetLog(); |
164 | |
165 | /// Logs a message. |
166 | /// @param[in] category The category of the message. |
167 | /// @param[in] msg The formatted message. |
168 | /// @param[in] len The length of the formatted message. |
169 | virtual void doLog(const rcLogCategory category, const char* msg, const int len) { rcIgnoreUnused(category); rcIgnoreUnused(msg); rcIgnoreUnused(len); } |
170 | |
171 | /// Clears all timers. (Resets all to unused.) |
172 | virtual void doResetTimers() {} |
173 | |
174 | /// Starts the specified performance timer. |
175 | /// @param[in] label The category of timer. |
176 | virtual void doStartTimer(const rcTimerLabel label) { rcIgnoreUnused(label); } |
177 | |
178 | /// Stops the specified performance timer. |
179 | /// @param[in] label The category of the timer. |
180 | virtual void doStopTimer(const rcTimerLabel label) { rcIgnoreUnused(label); } |
181 | |
182 | /// Returns the total accumulated time of the specified performance timer. |
183 | /// @param[in] label The category of the timer. |
184 | /// @return The accumulated time of the timer, or -1 if timers are disabled or the timer has never been started. |
185 | virtual int doGetAccumulatedTime(const rcTimerLabel label) const { rcIgnoreUnused(label); return -1; } |
186 | |
187 | /// True if logging is enabled. |
188 | bool m_logEnabled; |
189 | |
190 | /// True if the performance timers are enabled. |
191 | bool m_timerEnabled; |
192 | }; |
193 | |
194 | /// A helper to first start a timer and then stop it when this helper goes out of scope. |
195 | /// @see rcContext |
196 | class rcScopedTimer |
197 | { |
198 | public: |
199 | /// Constructs an instance and starts the timer. |
200 | /// @param[in] ctx The context to use. |
201 | /// @param[in] label The category of the timer. |
202 | inline rcScopedTimer(rcContext* ctx, const rcTimerLabel label) : m_ctx(ctx), m_label(label) { m_ctx->startTimer(m_label); } |
203 | inline ~rcScopedTimer() { m_ctx->stopTimer(m_label); } |
204 | |
205 | private: |
206 | // Explicitly disabled copy constructor and copy assignment operator. |
207 | rcScopedTimer(const rcScopedTimer&); |
208 | rcScopedTimer& operator=(const rcScopedTimer&); |
209 | |
210 | rcContext* const m_ctx; |
211 | const rcTimerLabel m_label; |
212 | }; |
213 | |
214 | /// Specifies a configuration to use when performing Recast builds. |
215 | /// @ingroup recast |
216 | struct rcConfig |
217 | { |
218 | /// The width of the field along the x-axis. [Limit: >= 0] [Units: vx] |
219 | int width; |
220 | |
221 | /// The height of the field along the z-axis. [Limit: >= 0] [Units: vx] |
222 | int height; |
223 | |
224 | /// The width/height size of tile's on the xz-plane. [Limit: >= 0] [Units: vx] |
225 | int tileSize; |
226 | |
227 | /// The size of the non-navigable border around the heightfield. [Limit: >=0] [Units: vx] |
228 | int borderSize; |
229 | |
230 | /// The xz-plane cell size to use for fields. [Limit: > 0] [Units: wu] |
231 | float cs; |
232 | |
233 | /// The y-axis cell size to use for fields. [Limit: > 0] [Units: wu] |
234 | float ch; |
235 | |
236 | /// The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] |
237 | float bmin[3]; |
238 | |
239 | /// The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] |
240 | float bmax[3]; |
241 | |
242 | /// The maximum slope that is considered walkable. [Limits: 0 <= value < 90] [Units: Degrees] |
243 | float walkableSlopeAngle; |
244 | |
245 | /// Minimum floor to 'ceiling' height that will still allow the floor area to |
246 | /// be considered walkable. [Limit: >= 3] [Units: vx] |
247 | int walkableHeight; |
248 | |
249 | /// Maximum ledge height that is considered to still be traversable. [Limit: >=0] [Units: vx] |
250 | int walkableClimb; |
251 | |
252 | /// The distance to erode/shrink the walkable area of the heightfield away from |
253 | /// obstructions. [Limit: >=0] [Units: vx] |
254 | int walkableRadius; |
255 | |
256 | /// The maximum allowed length for contour edges along the border of the mesh. [Limit: >=0] [Units: vx] |
257 | int maxEdgeLen; |
258 | |
259 | /// The maximum distance a simplified contour's border edges should deviate |
260 | /// the original raw contour. [Limit: >=0] [Units: vx] |
261 | float maxSimplificationError; |
262 | |
263 | /// The minimum number of cells allowed to form isolated island areas. [Limit: >=0] [Units: vx] |
264 | int minRegionArea; |
265 | |
266 | /// Any regions with a span count smaller than this value will, if possible, |
267 | /// be merged with larger regions. [Limit: >=0] [Units: vx] |
268 | int mergeRegionArea; |
269 | |
270 | /// The maximum number of vertices allowed for polygons generated during the |
271 | /// contour to polygon conversion process. [Limit: >= 3] |
272 | int maxVertsPerPoly; |
273 | |
274 | /// Sets the sampling distance to use when generating the detail mesh. |
275 | /// (For height detail only.) [Limits: 0 or >= 0.9] [Units: wu] |
276 | float detailSampleDist; |
277 | |
278 | /// The maximum distance the detail mesh surface should deviate from heightfield |
279 | /// data. (For height detail only.) [Limit: >=0] [Units: wu] |
280 | float detailSampleMaxError; |
281 | }; |
282 | |
283 | /// Defines the number of bits allocated to rcSpan::smin and rcSpan::smax. |
284 | static const int RC_SPAN_HEIGHT_BITS = 13; |
285 | /// Defines the maximum value for rcSpan::smin and rcSpan::smax. |
286 | static const int RC_SPAN_MAX_HEIGHT = (1 << RC_SPAN_HEIGHT_BITS) - 1; |
287 | |
288 | /// The number of spans allocated per span spool. |
289 | /// @see rcSpanPool |
290 | static const int RC_SPANS_PER_POOL = 2048; |
291 | |
292 | /// Represents a span in a heightfield. |
293 | /// @see rcHeightfield |
294 | struct rcSpan |
295 | { |
296 | unsigned int smin : RC_SPAN_HEIGHT_BITS; ///< The lower limit of the span. [Limit: < #smax] |
297 | unsigned int smax : RC_SPAN_HEIGHT_BITS; ///< The upper limit of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] |
298 | unsigned int area : 6; ///< The area id assigned to the span. |
299 | rcSpan* next; ///< The next span higher up in column. |
300 | }; |
301 | |
302 | /// A memory pool used for quick allocation of spans within a heightfield. |
303 | /// @see rcHeightfield |
304 | struct rcSpanPool |
305 | { |
306 | rcSpanPool* next; ///< The next span pool. |
307 | rcSpan items[RC_SPANS_PER_POOL]; ///< Array of spans in the pool. |
308 | }; |
309 | |
310 | /// A dynamic heightfield representing obstructed space. |
311 | /// @ingroup recast |
312 | struct rcHeightfield |
313 | { |
314 | rcHeightfield(); |
315 | ~rcHeightfield(); |
316 | |
317 | int width; ///< The width of the heightfield. (Along the x-axis in cell units.) |
318 | int height; ///< The height of the heightfield. (Along the z-axis in cell units.) |
319 | float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] |
320 | float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] |
321 | float cs; ///< The size of each cell. (On the xz-plane.) |
322 | float ch; ///< The height of each cell. (The minimum increment along the y-axis.) |
323 | rcSpan** spans; ///< Heightfield of spans (width*height). |
324 | rcSpanPool* pools; ///< Linked list of span pools. |
325 | rcSpan* freelist; ///< The next free span. |
326 | |
327 | private: |
328 | // Explicitly-disabled copy constructor and copy assignment operator. |
329 | rcHeightfield(const rcHeightfield&); |
330 | rcHeightfield& operator=(const rcHeightfield&); |
331 | }; |
332 | |
333 | /// Provides information on the content of a cell column in a compact heightfield. |
334 | struct rcCompactCell |
335 | { |
336 | unsigned int index : 24; ///< Index to the first span in the column. |
337 | unsigned int count : 8; ///< Number of spans in the column. |
338 | }; |
339 | |
340 | /// Represents a span of unobstructed space within a compact heightfield. |
341 | struct rcCompactSpan |
342 | { |
343 | unsigned short y; ///< The lower extent of the span. (Measured from the heightfield's base.) |
344 | unsigned short reg; ///< The id of the region the span belongs to. (Or zero if not in a region.) |
345 | unsigned int con : 24; ///< Packed neighbor connection data. |
346 | unsigned int h : 8; ///< The height of the span. (Measured from #y.) |
347 | }; |
348 | |
349 | /// A compact, static heightfield representing unobstructed space. |
350 | /// @ingroup recast |
351 | struct rcCompactHeightfield |
352 | { |
353 | rcCompactHeightfield(); |
354 | ~rcCompactHeightfield(); |
355 | |
356 | int width; ///< The width of the heightfield. (Along the x-axis in cell units.) |
357 | int height; ///< The height of the heightfield. (Along the z-axis in cell units.) |
358 | int spanCount; ///< The number of spans in the heightfield. |
359 | int walkableHeight; ///< The walkable height used during the build of the field. (See: rcConfig::walkableHeight) |
360 | int walkableClimb; ///< The walkable climb used during the build of the field. (See: rcConfig::walkableClimb) |
361 | int borderSize; ///< The AABB border size used during the build of the field. (See: rcConfig::borderSize) |
362 | unsigned short maxDistance; ///< The maximum distance value of any span within the field. |
363 | unsigned short maxRegions; ///< The maximum region id of any span within the field. |
364 | float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] |
365 | float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] |
366 | float cs; ///< The size of each cell. (On the xz-plane.) |
367 | float ch; ///< The height of each cell. (The minimum increment along the y-axis.) |
368 | rcCompactCell* cells; ///< Array of cells. [Size: #width*#height] |
369 | rcCompactSpan* spans; ///< Array of spans. [Size: #spanCount] |
370 | unsigned short* dist; ///< Array containing border distance data. [Size: #spanCount] |
371 | unsigned char* areas; ///< Array containing area id data. [Size: #spanCount] |
372 | |
373 | private: |
374 | // Explicitly-disabled copy constructor and copy assignment operator. |
375 | rcCompactHeightfield(const rcCompactHeightfield&); |
376 | rcCompactHeightfield& operator=(const rcCompactHeightfield&); |
377 | }; |
378 | |
379 | /// Represents a heightfield layer within a layer set. |
380 | /// @see rcHeightfieldLayerSet |
381 | struct rcHeightfieldLayer |
382 | { |
383 | float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] |
384 | float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] |
385 | float cs; ///< The size of each cell. (On the xz-plane.) |
386 | float ch; ///< The height of each cell. (The minimum increment along the y-axis.) |
387 | int width; ///< The width of the heightfield. (Along the x-axis in cell units.) |
388 | int height; ///< The height of the heightfield. (Along the z-axis in cell units.) |
389 | int minx; ///< The minimum x-bounds of usable data. |
390 | int maxx; ///< The maximum x-bounds of usable data. |
391 | int miny; ///< The minimum y-bounds of usable data. (Along the z-axis.) |
392 | int maxy; ///< The maximum y-bounds of usable data. (Along the z-axis.) |
393 | int hmin; ///< The minimum height bounds of usable data. (Along the y-axis.) |
394 | int hmax; ///< The maximum height bounds of usable data. (Along the y-axis.) |
395 | unsigned char* heights; ///< The heightfield. [Size: width * height] |
396 | unsigned char* areas; ///< Area ids. [Size: Same as #heights] |
397 | unsigned char* cons; ///< Packed neighbor connection information. [Size: Same as #heights] |
398 | }; |
399 | |
400 | /// Represents a set of heightfield layers. |
401 | /// @ingroup recast |
402 | /// @see rcAllocHeightfieldLayerSet, rcFreeHeightfieldLayerSet |
403 | struct rcHeightfieldLayerSet |
404 | { |
405 | rcHeightfieldLayerSet(); |
406 | ~rcHeightfieldLayerSet(); |
407 | |
408 | rcHeightfieldLayer* layers; ///< The layers in the set. [Size: #nlayers] |
409 | int nlayers; ///< The number of layers in the set. |
410 | |
411 | private: |
412 | // Explicitly-disabled copy constructor and copy assignment operator. |
413 | rcHeightfieldLayerSet(const rcHeightfieldLayerSet&); |
414 | rcHeightfieldLayerSet& operator=(const rcHeightfieldLayerSet&); |
415 | }; |
416 | |
417 | /// Represents a simple, non-overlapping contour in field space. |
418 | struct rcContour |
419 | { |
420 | int* verts; ///< Simplified contour vertex and connection data. [Size: 4 * #nverts] |
421 | int nverts; ///< The number of vertices in the simplified contour. |
422 | int* rverts; ///< Raw contour vertex and connection data. [Size: 4 * #nrverts] |
423 | int nrverts; ///< The number of vertices in the raw contour. |
424 | unsigned short reg; ///< The region id of the contour. |
425 | unsigned char area; ///< The area id of the contour. |
426 | }; |
427 | |
428 | /// Represents a group of related contours. |
429 | /// @ingroup recast |
430 | struct rcContourSet |
431 | { |
432 | rcContourSet(); |
433 | ~rcContourSet(); |
434 | |
435 | rcContour* conts; ///< An array of the contours in the set. [Size: #nconts] |
436 | int nconts; ///< The number of contours in the set. |
437 | float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] |
438 | float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] |
439 | float cs; ///< The size of each cell. (On the xz-plane.) |
440 | float ch; ///< The height of each cell. (The minimum increment along the y-axis.) |
441 | int width; ///< The width of the set. (Along the x-axis in cell units.) |
442 | int height; ///< The height of the set. (Along the z-axis in cell units.) |
443 | int borderSize; ///< The AABB border size used to generate the source data from which the contours were derived. |
444 | float maxError; ///< The max edge error that this contour set was simplified with. |
445 | |
446 | private: |
447 | // Explicitly-disabled copy constructor and copy assignment operator. |
448 | rcContourSet(const rcContourSet&); |
449 | rcContourSet& operator=(const rcContourSet&); |
450 | }; |
451 | |
452 | /// Represents a polygon mesh suitable for use in building a navigation mesh. |
453 | /// @ingroup recast |
454 | struct rcPolyMesh |
455 | { |
456 | rcPolyMesh(); |
457 | ~rcPolyMesh(); |
458 | |
459 | unsigned short* verts; ///< The mesh vertices. [Form: (x, y, z) * #nverts] |
460 | unsigned short* polys; ///< Polygon and neighbor data. [Length: #maxpolys * 2 * #nvp] |
461 | unsigned short* regs; ///< The region id assigned to each polygon. [Length: #maxpolys] |
462 | unsigned short* flags; ///< The user defined flags for each polygon. [Length: #maxpolys] |
463 | unsigned char* areas; ///< The area id assigned to each polygon. [Length: #maxpolys] |
464 | int nverts; ///< The number of vertices. |
465 | int npolys; ///< The number of polygons. |
466 | int maxpolys; ///< The number of allocated polygons. |
467 | int nvp; ///< The maximum number of vertices per polygon. |
468 | float bmin[3]; ///< The minimum bounds in world space. [(x, y, z)] |
469 | float bmax[3]; ///< The maximum bounds in world space. [(x, y, z)] |
470 | float cs; ///< The size of each cell. (On the xz-plane.) |
471 | float ch; ///< The height of each cell. (The minimum increment along the y-axis.) |
472 | int borderSize; ///< The AABB border size used to generate the source data from which the mesh was derived. |
473 | float maxEdgeError; ///< The max error of the polygon edges in the mesh. |
474 | |
475 | private: |
476 | // Explicitly-disabled copy constructor and copy assignment operator. |
477 | rcPolyMesh(const rcPolyMesh&); |
478 | rcPolyMesh& operator=(const rcPolyMesh&); |
479 | }; |
480 | |
481 | /// Contains triangle meshes that represent detailed height data associated |
482 | /// with the polygons in its associated polygon mesh object. |
483 | /// @ingroup recast |
484 | struct rcPolyMeshDetail |
485 | { |
486 | rcPolyMeshDetail(); |
487 | |
488 | unsigned int* meshes; ///< The sub-mesh data. [Size: 4*#nmeshes] |
489 | float* verts; ///< The mesh vertices. [Size: 3*#nverts] |
490 | unsigned char* tris; ///< The mesh triangles. [Size: 4*#ntris] |
491 | int nmeshes; ///< The number of sub-meshes defined by #meshes. |
492 | int nverts; ///< The number of vertices in #verts. |
493 | int ntris; ///< The number of triangles in #tris. |
494 | |
495 | private: |
496 | // Explicitly-disabled copy constructor and copy assignment operator. |
497 | rcPolyMeshDetail(const rcPolyMeshDetail&); |
498 | rcPolyMeshDetail& operator=(const rcPolyMeshDetail&); |
499 | }; |
500 | |
501 | /// @name Allocation Functions |
502 | /// Functions used to allocate and de-allocate Recast objects. |
503 | /// @see rcAllocSetCustom |
504 | /// @{ |
505 | |
506 | /// Allocates a heightfield object using the Recast allocator. |
507 | /// @return A heightfield that is ready for initialization, or null on failure. |
508 | /// @ingroup recast |
509 | /// @see rcCreateHeightfield, rcFreeHeightField |
510 | rcHeightfield* rcAllocHeightfield(); |
511 | |
512 | /// Frees the specified heightfield object using the Recast allocator. |
513 | /// @param[in] heightfield A heightfield allocated using #rcAllocHeightfield |
514 | /// @ingroup recast |
515 | /// @see rcAllocHeightfield |
516 | void rcFreeHeightField(rcHeightfield* heightfield); |
517 | |
518 | /// Allocates a compact heightfield object using the Recast allocator. |
519 | /// @return A compact heightfield that is ready for initialization, or null on failure. |
520 | /// @ingroup recast |
521 | /// @see rcBuildCompactHeightfield, rcFreeCompactHeightfield |
522 | rcCompactHeightfield* rcAllocCompactHeightfield(); |
523 | |
524 | /// Frees the specified compact heightfield object using the Recast allocator. |
525 | /// @param[in] compactHeightfield A compact heightfield allocated using #rcAllocCompactHeightfield |
526 | /// @ingroup recast |
527 | /// @see rcAllocCompactHeightfield |
528 | void rcFreeCompactHeightfield(rcCompactHeightfield* compactHeightfield); |
529 | |
530 | /// Allocates a heightfield layer set using the Recast allocator. |
531 | /// @return A heightfield layer set that is ready for initialization, or null on failure. |
532 | /// @ingroup recast |
533 | /// @see rcBuildHeightfieldLayers, rcFreeHeightfieldLayerSet |
534 | rcHeightfieldLayerSet* rcAllocHeightfieldLayerSet(); |
535 | |
536 | /// Frees the specified heightfield layer set using the Recast allocator. |
537 | /// @param[in] layerSet A heightfield layer set allocated using #rcAllocHeightfieldLayerSet |
538 | /// @ingroup recast |
539 | /// @see rcAllocHeightfieldLayerSet |
540 | void rcFreeHeightfieldLayerSet(rcHeightfieldLayerSet* layerSet); |
541 | |
542 | /// Allocates a contour set object using the Recast allocator. |
543 | /// @return A contour set that is ready for initialization, or null on failure. |
544 | /// @ingroup recast |
545 | /// @see rcBuildContours, rcFreeContourSet |
546 | rcContourSet* rcAllocContourSet(); |
547 | |
548 | /// Frees the specified contour set using the Recast allocator. |
549 | /// @param[in] contourSet A contour set allocated using #rcAllocContourSet |
550 | /// @ingroup recast |
551 | /// @see rcAllocContourSet |
552 | void rcFreeContourSet(rcContourSet* contourSet); |
553 | |
554 | /// Allocates a polygon mesh object using the Recast allocator. |
555 | /// @return A polygon mesh that is ready for initialization, or null on failure. |
556 | /// @ingroup recast |
557 | /// @see rcBuildPolyMesh, rcFreePolyMesh |
558 | rcPolyMesh* rcAllocPolyMesh(); |
559 | |
560 | /// Frees the specified polygon mesh using the Recast allocator. |
561 | /// @param[in] polyMesh A polygon mesh allocated using #rcAllocPolyMesh |
562 | /// @ingroup recast |
563 | /// @see rcAllocPolyMesh |
564 | void rcFreePolyMesh(rcPolyMesh* polyMesh); |
565 | |
566 | /// Allocates a detail mesh object using the Recast allocator. |
567 | /// @return A detail mesh that is ready for initialization, or null on failure. |
568 | /// @ingroup recast |
569 | /// @see rcBuildPolyMeshDetail, rcFreePolyMeshDetail |
570 | rcPolyMeshDetail* rcAllocPolyMeshDetail(); |
571 | |
572 | /// Frees the specified detail mesh using the Recast allocator. |
573 | /// @param[in] detailMesh A detail mesh allocated using #rcAllocPolyMeshDetail |
574 | /// @ingroup recast |
575 | /// @see rcAllocPolyMeshDetail |
576 | void rcFreePolyMeshDetail(rcPolyMeshDetail* detailMesh); |
577 | |
578 | /// @} |
579 | |
580 | /// Heightfield border flag. |
581 | /// If a heightfield region ID has this bit set, then the region is a border |
582 | /// region and its spans are considered un-walkable. |
583 | /// (Used during the region and contour build process.) |
584 | /// @see rcCompactSpan::reg |
585 | static const unsigned short RC_BORDER_REG = 0x8000; |
586 | |
587 | /// Polygon touches multiple regions. |
588 | /// If a polygon has this region ID it was merged with or created |
589 | /// from polygons of different regions during the polymesh |
590 | /// build step that removes redundant border vertices. |
591 | /// (Used during the polymesh and detail polymesh build processes) |
592 | /// @see rcPolyMesh::regs |
593 | static const unsigned short RC_MULTIPLE_REGS = 0; |
594 | |
595 | /// Border vertex flag. |
596 | /// If a region ID has this bit set, then the associated element lies on |
597 | /// a tile border. If a contour vertex's region ID has this bit set, the |
598 | /// vertex will later be removed in order to match the segments and vertices |
599 | /// at tile boundaries. |
600 | /// (Used during the build process.) |
601 | /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts |
602 | static const int RC_BORDER_VERTEX = 0x10000; |
603 | |
604 | /// Area border flag. |
605 | /// If a region ID has this bit set, then the associated element lies on |
606 | /// the border of an area. |
607 | /// (Used during the region and contour build process.) |
608 | /// @see rcCompactSpan::reg, #rcContour::verts, #rcContour::rverts |
609 | static const int RC_AREA_BORDER = 0x20000; |
610 | |
611 | /// Contour build flags. |
612 | /// @see rcBuildContours |
613 | enum rcBuildContoursFlags |
614 | { |
615 | RC_CONTOUR_TESS_WALL_EDGES = 0x01, ///< Tessellate solid (impassable) edges during contour simplification. |
616 | RC_CONTOUR_TESS_AREA_EDGES = 0x02 ///< Tessellate edges between areas during contour simplification. |
617 | }; |
618 | |
619 | /// Applied to the region id field of contour vertices in order to extract the region id. |
620 | /// The region id field of a vertex may have several flags applied to it. So the |
621 | /// fields value can't be used directly. |
622 | /// @see rcContour::verts, rcContour::rverts |
623 | static const int RC_CONTOUR_REG_MASK = 0xffff; |
624 | |
625 | /// An value which indicates an invalid index within a mesh. |
626 | /// @note This does not necessarily indicate an error. |
627 | /// @see rcPolyMesh::polys |
628 | static const unsigned short RC_MESH_NULL_IDX = 0xffff; |
629 | |
630 | /// Represents the null area. |
631 | /// When a data element is given this value it is considered to no longer be |
632 | /// assigned to a usable area. (E.g. It is un-walkable.) |
633 | static const unsigned char RC_NULL_AREA = 0; |
634 | |
635 | /// The default area id used to indicate a walkable polygon. |
636 | /// This is also the maximum allowed area id, and the only non-null area id |
637 | /// recognized by some steps in the build process. |
638 | static const unsigned char RC_WALKABLE_AREA = 63; |
639 | |
640 | /// The value returned by #rcGetCon if the specified direction is not connected |
641 | /// to another span. (Has no neighbor.) |
642 | static const int RC_NOT_CONNECTED = 0x3f; |
643 | |
644 | /// @name General helper functions |
645 | /// @{ |
646 | |
647 | /// Swaps the values of the two parameters. |
648 | /// @param[in,out] a Value A |
649 | /// @param[in,out] b Value B |
650 | template<class T> inline void rcSwap(T& a, T& b) { T t = a; a = b; b = t; } |
651 | |
652 | /// Returns the minimum of two values. |
653 | /// @param[in] a Value A |
654 | /// @param[in] b Value B |
655 | /// @return The minimum of the two values. |
656 | template<class T> inline T rcMin(T a, T b) { return a < b ? a : b; } |
657 | |
658 | /// Returns the maximum of two values. |
659 | /// @param[in] a Value A |
660 | /// @param[in] b Value B |
661 | /// @return The maximum of the two values. |
662 | template<class T> inline T rcMax(T a, T b) { return a > b ? a : b; } |
663 | |
664 | /// Returns the absolute value. |
665 | /// @param[in] a The value. |
666 | /// @return The absolute value of the specified value. |
667 | template<class T> inline T rcAbs(T a) { return a < 0 ? -a : a; } |
668 | |
669 | /// Returns the square of the value. |
670 | /// @param[in] a The value. |
671 | /// @return The square of the value. |
672 | template<class T> inline T rcSqr(T a) { return a*a; } |
673 | |
674 | /// Clamps the value to the specified range. |
675 | /// @param[in] value The value to clamp. |
676 | /// @param[in] minInclusive The minimum permitted return value. |
677 | /// @param[in] maxInclusive The maximum permitted return value. |
678 | /// @return The value, clamped to the specified range. |
679 | template<class T> inline T rcClamp(T value, T minInclusive, T maxInclusive) |
680 | { |
681 | return value < minInclusive ? minInclusive: (value > maxInclusive ? maxInclusive : value); |
682 | } |
683 | |
684 | /// Returns the square root of the value. |
685 | /// @param[in] x The value. |
686 | /// @return The square root of the vlaue. |
687 | float rcSqrt(float x); |
688 | |
689 | /// @} |
690 | /// @name Vector helper functions. |
691 | /// @{ |
692 | |
693 | /// Derives the cross product of two vectors. (@p v1 x @p v2) |
694 | /// @param[out] dest The cross product. [(x, y, z)] |
695 | /// @param[in] v1 A Vector [(x, y, z)] |
696 | /// @param[in] v2 A vector [(x, y, z)] |
697 | inline void rcVcross(float* dest, const float* v1, const float* v2) |
698 | { |
699 | dest[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
700 | dest[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
701 | dest[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
702 | } |
703 | |
704 | /// Derives the dot product of two vectors. (@p v1 . @p v2) |
705 | /// @param[in] v1 A Vector [(x, y, z)] |
706 | /// @param[in] v2 A vector [(x, y, z)] |
707 | /// @return The dot product. |
708 | inline float rcVdot(const float* v1, const float* v2) |
709 | { |
710 | return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; |
711 | } |
712 | |
713 | /// Performs a scaled vector addition. (@p v1 + (@p v2 * @p s)) |
714 | /// @param[out] dest The result vector. [(x, y, z)] |
715 | /// @param[in] v1 The base vector. [(x, y, z)] |
716 | /// @param[in] v2 The vector to scale and add to @p v1. [(x, y, z)] |
717 | /// @param[in] s The amount to scale @p v2 by before adding to @p v1. |
718 | inline void rcVmad(float* dest, const float* v1, const float* v2, const float s) |
719 | { |
720 | dest[0] = v1[0]+v2[0]*s; |
721 | dest[1] = v1[1]+v2[1]*s; |
722 | dest[2] = v1[2]+v2[2]*s; |
723 | } |
724 | |
725 | /// Performs a vector addition. (@p v1 + @p v2) |
726 | /// @param[out] dest The result vector. [(x, y, z)] |
727 | /// @param[in] v1 The base vector. [(x, y, z)] |
728 | /// @param[in] v2 The vector to add to @p v1. [(x, y, z)] |
729 | inline void rcVadd(float* dest, const float* v1, const float* v2) |
730 | { |
731 | dest[0] = v1[0]+v2[0]; |
732 | dest[1] = v1[1]+v2[1]; |
733 | dest[2] = v1[2]+v2[2]; |
734 | } |
735 | |
736 | /// Performs a vector subtraction. (@p v1 - @p v2) |
737 | /// @param[out] dest The result vector. [(x, y, z)] |
738 | /// @param[in] v1 The base vector. [(x, y, z)] |
739 | /// @param[in] v2 The vector to subtract from @p v1. [(x, y, z)] |
740 | inline void rcVsub(float* dest, const float* v1, const float* v2) |
741 | { |
742 | dest[0] = v1[0]-v2[0]; |
743 | dest[1] = v1[1]-v2[1]; |
744 | dest[2] = v1[2]-v2[2]; |
745 | } |
746 | |
747 | /// Selects the minimum value of each element from the specified vectors. |
748 | /// @param[in,out] mn A vector. (Will be updated with the result.) [(x, y, z)] |
749 | /// @param[in] v A vector. [(x, y, z)] |
750 | inline void rcVmin(float* mn, const float* v) |
751 | { |
752 | mn[0] = rcMin(mn[0], v[0]); |
753 | mn[1] = rcMin(mn[1], v[1]); |
754 | mn[2] = rcMin(mn[2], v[2]); |
755 | } |
756 | |
757 | /// Selects the maximum value of each element from the specified vectors. |
758 | /// @param[in,out] mx A vector. (Will be updated with the result.) [(x, y, z)] |
759 | /// @param[in] v A vector. [(x, y, z)] |
760 | inline void rcVmax(float* mx, const float* v) |
761 | { |
762 | mx[0] = rcMax(mx[0], v[0]); |
763 | mx[1] = rcMax(mx[1], v[1]); |
764 | mx[2] = rcMax(mx[2], v[2]); |
765 | } |
766 | |
767 | /// Performs a vector copy. |
768 | /// @param[out] dest The result. [(x, y, z)] |
769 | /// @param[in] v The vector to copy. [(x, y, z)] |
770 | inline void rcVcopy(float* dest, const float* v) |
771 | { |
772 | dest[0] = v[0]; |
773 | dest[1] = v[1]; |
774 | dest[2] = v[2]; |
775 | } |
776 | |
777 | /// Returns the distance between two points. |
778 | /// @param[in] v1 A point. [(x, y, z)] |
779 | /// @param[in] v2 A point. [(x, y, z)] |
780 | /// @return The distance between the two points. |
781 | inline float rcVdist(const float* v1, const float* v2) |
782 | { |
783 | float dx = v2[0] - v1[0]; |
784 | float dy = v2[1] - v1[1]; |
785 | float dz = v2[2] - v1[2]; |
786 | return rcSqrt(dx*dx + dy*dy + dz*dz); |
787 | } |
788 | |
789 | /// Returns the square of the distance between two points. |
790 | /// @param[in] v1 A point. [(x, y, z)] |
791 | /// @param[in] v2 A point. [(x, y, z)] |
792 | /// @return The square of the distance between the two points. |
793 | inline float rcVdistSqr(const float* v1, const float* v2) |
794 | { |
795 | float dx = v2[0] - v1[0]; |
796 | float dy = v2[1] - v1[1]; |
797 | float dz = v2[2] - v1[2]; |
798 | return dx*dx + dy*dy + dz*dz; |
799 | } |
800 | |
801 | /// Normalizes the vector. |
802 | /// @param[in,out] v The vector to normalize. [(x, y, z)] |
803 | inline void rcVnormalize(float* v) |
804 | { |
805 | float d = 1.0f / rcSqrt(rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2])); |
806 | v[0] *= d; |
807 | v[1] *= d; |
808 | v[2] *= d; |
809 | } |
810 | |
811 | /// @} |
812 | /// @name Heightfield Functions |
813 | /// @see rcHeightfield |
814 | /// @{ |
815 | |
816 | /// Calculates the bounding box of an array of vertices. |
817 | /// @ingroup recast |
818 | /// @param[in] verts An array of vertices. [(x, y, z) * @p nv] |
819 | /// @param[in] numVerts The number of vertices in the @p verts array. |
820 | /// @param[out] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu] |
821 | /// @param[out] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu] |
822 | void rcCalcBounds(const float* verts, int numVerts, float* minBounds, float* maxBounds); |
823 | |
824 | /// Calculates the grid size based on the bounding box and grid cell size. |
825 | /// @ingroup recast |
826 | /// @param[in] minBounds The minimum bounds of the AABB. [(x, y, z)] [Units: wu] |
827 | /// @param[in] maxBounds The maximum bounds of the AABB. [(x, y, z)] [Units: wu] |
828 | /// @param[in] cellSize The xz-plane cell size. [Limit: > 0] [Units: wu] |
829 | /// @param[out] sizeX The width along the x-axis. [Limit: >= 0] [Units: vx] |
830 | /// @param[out] sizeZ The height along the z-axis. [Limit: >= 0] [Units: vx] |
831 | void rcCalcGridSize(const float* minBounds, const float* maxBounds, float cellSize, int* sizeX, int* sizeZ); |
832 | |
833 | /// Initializes a new heightfield. |
834 | /// See the #rcConfig documentation for more information on the configuration parameters. |
835 | /// |
836 | /// @see rcAllocHeightfield, rcHeightfield |
837 | /// @ingroup recast |
838 | /// |
839 | /// @param[in,out] context The build context to use during the operation. |
840 | /// @param[in,out] heightfield The allocated heightfield to initialize. |
841 | /// @param[in] sizeX The width of the field along the x-axis. [Limit: >= 0] [Units: vx] |
842 | /// @param[in] sizeZ The height of the field along the z-axis. [Limit: >= 0] [Units: vx] |
843 | /// @param[in] minBounds The minimum bounds of the field's AABB. [(x, y, z)] [Units: wu] |
844 | /// @param[in] maxBounds The maximum bounds of the field's AABB. [(x, y, z)] [Units: wu] |
845 | /// @param[in] cellSize The xz-plane cell size to use for the field. [Limit: > 0] [Units: wu] |
846 | /// @param[in] cellHeight The y-axis cell size to use for field. [Limit: > 0] [Units: wu] |
847 | /// @returns True if the operation completed successfully. |
848 | bool rcCreateHeightfield(rcContext* context, rcHeightfield& heightfield, int sizeX, int sizeZ, |
849 | const float* minBounds, const float* maxBounds, |
850 | float cellSize, float cellHeight); |
851 | |
852 | /// Sets the area id of all triangles with a slope below the specified value |
853 | /// to #RC_WALKABLE_AREA. |
854 | /// |
855 | /// Only sets the area id's for the walkable triangles. Does not alter the |
856 | /// area id's for un-walkable triangles. |
857 | /// |
858 | /// See the #rcConfig documentation for more information on the configuration parameters. |
859 | /// |
860 | /// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles |
861 | /// |
862 | /// @ingroup recast |
863 | /// @param[in,out] context The build context to use during the operation. |
864 | /// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. |
865 | /// [Limits: 0 <= value < 90] [Units: Degrees] |
866 | /// @param[in] verts The vertices. [(x, y, z) * @p nv] |
867 | /// @param[in] numVerts The number of vertices. |
868 | /// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] |
869 | /// @param[in] numTris The number of triangles. |
870 | /// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt] |
871 | void rcMarkWalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts, |
872 | const int* tris, int numTris, unsigned char* triAreaIDs); |
873 | |
874 | /// Sets the area id of all triangles with a slope greater than or equal to the specified value to #RC_NULL_AREA. |
875 | /// |
876 | /// Only sets the area id's for the un-walkable triangles. Does not alter the |
877 | /// area id's for walkable triangles. |
878 | /// |
879 | /// See the #rcConfig documentation for more information on the configuration parameters. |
880 | /// |
881 | /// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles |
882 | /// |
883 | /// @ingroup recast |
884 | /// @param[in,out] context The build context to use during the operation. |
885 | /// @param[in] walkableSlopeAngle The maximum slope that is considered walkable. |
886 | /// [Limits: 0 <= value < 90] [Units: Degrees] |
887 | /// @param[in] verts The vertices. [(x, y, z) * @p nv] |
888 | /// @param[in] numVerts The number of vertices. |
889 | /// @param[in] tris The triangle vertex indices. [(vertA, vertB, vertC) * @p nt] |
890 | /// @param[in] numTris The number of triangles. |
891 | /// @param[out] triAreaIDs The triangle area ids. [Length: >= @p nt] |
892 | void rcClearUnwalkableTriangles(rcContext* context, float walkableSlopeAngle, const float* verts, int numVerts, |
893 | const int* tris, int numTris, unsigned char* triAreaIDs); |
894 | |
895 | /// Adds a span to the specified heightfield. |
896 | /// |
897 | /// The span addition can be set to favor flags. If the span is merged to |
898 | /// another span and the new @p spanMax is within @p flagMergeThreshold units |
899 | /// from the existing span, the span flags are merged. |
900 | /// |
901 | /// @ingroup recast |
902 | /// @param[in,out] context The build context to use during the operation. |
903 | /// @param[in,out] heightfield An initialized heightfield. |
904 | /// @param[in] x The column x index where the span is to be added. |
905 | /// [Limits: 0 <= value < rcHeightfield::width] |
906 | /// @param[in] z The column z index where the span is to be added. |
907 | /// [Limits: 0 <= value < rcHeightfield::height] |
908 | /// @param[in] spanMin The minimum height of the span. [Limit: < @p spanMax] [Units: vx] |
909 | /// @param[in] spanMax The maximum height of the span. [Limit: <= #RC_SPAN_MAX_HEIGHT] [Units: vx] |
910 | /// @param[in] areaID The area id of the span. [Limit: <= #RC_WALKABLE_AREA) |
911 | /// @param[in] flagMergeThreshold The merge threshold. [Limit: >= 0] [Units: vx] |
912 | /// @returns True if the operation completed successfully. |
913 | bool rcAddSpan(rcContext* context, rcHeightfield& heightfield, |
914 | int x, int z, |
915 | unsigned short spanMin, unsigned short spanMax, |
916 | unsigned char areaID, int flagMergeThreshold); |
917 | |
918 | /// Rasterizes a single triangle into the specified heightfield. |
919 | /// |
920 | /// Calling this for each triangle in a mesh is less efficient than calling rcRasterizeTriangles |
921 | /// |
922 | /// No spans will be added if the triangle does not overlap the heightfield grid. |
923 | /// |
924 | /// @see rcHeightfield |
925 | /// @ingroup recast |
926 | /// @param[in,out] context The build context to use during the operation. |
927 | /// @param[in] v0 Triangle vertex 0 [(x, y, z)] |
928 | /// @param[in] v1 Triangle vertex 1 [(x, y, z)] |
929 | /// @param[in] v2 Triangle vertex 2 [(x, y, z)] |
930 | /// @param[in] areaID The area id of the triangle. [Limit: <= #RC_WALKABLE_AREA] |
931 | /// @param[in,out] heightfield An initialized heightfield. |
932 | /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. |
933 | /// [Limit: >= 0] [Units: vx] |
934 | /// @returns True if the operation completed successfully. |
935 | bool rcRasterizeTriangle(rcContext* context, |
936 | const float* v0, const float* v1, const float* v2, |
937 | unsigned char areaID, rcHeightfield& heightfield, int flagMergeThreshold = 1); |
938 | |
939 | /// Rasterizes an indexed triangle mesh into the specified heightfield. |
940 | /// |
941 | /// Spans will only be added for triangles that overlap the heightfield grid. |
942 | /// |
943 | /// @see rcHeightfield |
944 | /// @ingroup recast |
945 | /// @param[in,out] context The build context to use during the operation. |
946 | /// @param[in] verts The vertices. [(x, y, z) * @p nv] |
947 | /// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release |
948 | /// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] |
949 | /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] |
950 | /// @param[in] numTris The number of triangles. |
951 | /// @param[in,out] heightfield An initialized heightfield. |
952 | /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. |
953 | /// [Limit: >= 0] [Units: vx] |
954 | /// @returns True if the operation completed successfully. |
955 | bool rcRasterizeTriangles(rcContext* context, |
956 | const float* verts, int numVerts, |
957 | const int* tris, const unsigned char* triAreaIDs, int numTris, |
958 | rcHeightfield& heightfield, int flagMergeThreshold = 1); |
959 | |
960 | /// Rasterizes an indexed triangle mesh into the specified heightfield. |
961 | /// |
962 | /// Spans will only be added for triangles that overlap the heightfield grid. |
963 | /// |
964 | /// @see rcHeightfield |
965 | /// @ingroup recast |
966 | /// @param[in,out] context The build context to use during the operation. |
967 | /// @param[in] verts The vertices. [(x, y, z) * @p nv] |
968 | /// @param[in] numVerts The number of vertices. (unused) TODO (graham): Remove in next major release |
969 | /// @param[in] tris The triangle indices. [(vertA, vertB, vertC) * @p nt] |
970 | /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] |
971 | /// @param[in] numTris The number of triangles. |
972 | /// @param[in,out] heightfield An initialized heightfield. |
973 | /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. |
974 | /// [Limit: >= 0] [Units: vx] |
975 | /// @returns True if the operation completed successfully. |
976 | bool rcRasterizeTriangles(rcContext* context, |
977 | const float* verts, int numVerts, |
978 | const unsigned short* tris, const unsigned char* triAreaIDs, int numTris, |
979 | rcHeightfield& heightfield, int flagMergeThreshold = 1); |
980 | |
981 | /// Rasterizes a triangle list into the specified heightfield. |
982 | /// |
983 | /// Expects each triangle to be specified as three sequential vertices of 3 floats. |
984 | /// |
985 | /// Spans will only be added for triangles that overlap the heightfield grid. |
986 | /// |
987 | /// @see rcHeightfield |
988 | /// @ingroup recast |
989 | /// @param[in,out] context The build context to use during the operation. |
990 | /// @param[in] verts The triangle vertices. [(ax, ay, az, bx, by, bz, cx, by, cx) * @p nt] |
991 | /// @param[in] triAreaIDs The area id's of the triangles. [Limit: <= #RC_WALKABLE_AREA] [Size: @p nt] |
992 | /// @param[in] numTris The number of triangles. |
993 | /// @param[in,out] heightfield An initialized heightfield. |
994 | /// @param[in] flagMergeThreshold The distance where the walkable flag is favored over the non-walkable flag. |
995 | /// [Limit: >= 0] [Units: vx] |
996 | /// @returns True if the operation completed successfully. |
997 | bool rcRasterizeTriangles(rcContext* context, |
998 | const float* verts, const unsigned char* triAreaIDs, int numTris, |
999 | rcHeightfield& heightfield, int flagMergeThreshold = 1); |
1000 | |
1001 | /// Marks non-walkable spans as walkable if their maximum is within @p walkableClimb of a walkable neighbor. |
1002 | /// |
1003 | /// Allows the formation of walkable regions that will flow over low lying |
1004 | /// objects such as curbs, and up structures such as stairways. |
1005 | /// |
1006 | /// Two neighboring spans are walkable if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) < waklableClimb</tt> |
1007 | /// |
1008 | /// @warning Will override the effect of #rcFilterLedgeSpans. So if both filters are used, call |
1009 | /// #rcFilterLedgeSpans after calling this filter. |
1010 | /// |
1011 | /// @see rcHeightfield, rcConfig |
1012 | /// |
1013 | /// @ingroup recast |
1014 | /// @param[in,out] context The build context to use during the operation. |
1015 | /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. |
1016 | /// [Limit: >=0] [Units: vx] |
1017 | /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) |
1018 | void rcFilterLowHangingWalkableObstacles(rcContext* context, int walkableClimb, rcHeightfield& heightfield); |
1019 | |
1020 | /// Marks spans that are ledges as not-walkable. |
1021 | /// |
1022 | /// A ledge is a span with one or more neighbors whose maximum is further away than @p walkableClimb |
1023 | /// from the current span's maximum. |
1024 | /// This method removes the impact of the overestimation of conservative voxelization |
1025 | /// so the resulting mesh will not have regions hanging in the air over ledges. |
1026 | /// |
1027 | /// A span is a ledge if: <tt>rcAbs(currentSpan.smax - neighborSpan.smax) > walkableClimb</tt> |
1028 | /// |
1029 | /// @see rcHeightfield, rcConfig |
1030 | /// |
1031 | /// @ingroup recast |
1032 | /// @param[in,out] context The build context to use during the operation. |
1033 | /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to |
1034 | /// be considered walkable. [Limit: >= 3] [Units: vx] |
1035 | /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. |
1036 | /// [Limit: >=0] [Units: vx] |
1037 | /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) |
1038 | void rcFilterLedgeSpans(rcContext* context, int walkableHeight, int walkableClimb, rcHeightfield& heightfield); |
1039 | |
1040 | /// Marks walkable spans as not walkable if the clearance above the span is less than the specified height. |
1041 | /// |
1042 | /// For this filter, the clearance above the span is the distance from the span's |
1043 | /// maximum to the next higher span's minimum. (Same grid column.) |
1044 | /// |
1045 | /// @see rcHeightfield, rcConfig |
1046 | /// @ingroup recast |
1047 | /// |
1048 | /// @param[in,out] context The build context to use during the operation. |
1049 | /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area to |
1050 | /// be considered walkable. [Limit: >= 3] [Units: vx] |
1051 | /// @param[in,out] heightfield A fully built heightfield. (All spans have been added.) |
1052 | void rcFilterWalkableLowHeightSpans(rcContext* context, int walkableHeight, rcHeightfield& heightfield); |
1053 | |
1054 | /// Returns the number of spans contained in the specified heightfield. |
1055 | /// @ingroup recast |
1056 | /// @param[in,out] context The build context to use during the operation. |
1057 | /// @param[in] heightfield An initialized heightfield. |
1058 | /// @returns The number of spans in the heightfield. |
1059 | int rcGetHeightFieldSpanCount(rcContext* context, const rcHeightfield& heightfield); |
1060 | |
1061 | /// @} |
1062 | /// @name Compact Heightfield Functions |
1063 | /// @see rcCompactHeightfield |
1064 | /// @{ |
1065 | |
1066 | /// Builds a compact heightfield representing open space, from a heightfield representing solid space. |
1067 | /// |
1068 | /// This is just the beginning of the process of fully building a compact heightfield. |
1069 | /// Various filters may be applied, then the distance field and regions built. |
1070 | /// E.g: #rcBuildDistanceField and #rcBuildRegions |
1071 | /// |
1072 | /// See the #rcConfig documentation for more information on the configuration parameters. |
1073 | /// |
1074 | /// @see rcAllocCompactHeightfield, rcHeightfield, rcCompactHeightfield, rcConfig |
1075 | /// @ingroup recast |
1076 | /// |
1077 | /// @param[in,out] context The build context to use during the operation. |
1078 | /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area |
1079 | /// to be considered walkable. [Limit: >= 3] [Units: vx] |
1080 | /// @param[in] walkableClimb Maximum ledge height that is considered to still be traversable. |
1081 | /// [Limit: >=0] [Units: vx] |
1082 | /// @param[in] heightfield The heightfield to be compacted. |
1083 | /// @param[out] compactHeightfield The resulting compact heightfield. (Must be pre-allocated.) |
1084 | /// @returns True if the operation completed successfully. |
1085 | bool rcBuildCompactHeightfield(rcContext* context, int walkableHeight, int walkableClimb, |
1086 | const rcHeightfield& heightfield, rcCompactHeightfield& compactHeightfield); |
1087 | |
1088 | /// Erodes the walkable area within the heightfield by the specified radius. |
1089 | /// @ingroup recast |
1090 | /// @param[in,out] ctx The build context to use during the operation. |
1091 | /// @param[in] radius The radius of erosion. [Limits: 0 < value < 255] [Units: vx] |
1092 | /// @param[in,out] chf The populated compact heightfield to erode. |
1093 | /// @returns True if the operation completed successfully. |
1094 | bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf); |
1095 | |
1096 | /// Applies a median filter to walkable area types (based on area id), removing noise. |
1097 | /// @ingroup recast |
1098 | /// @param[in,out] ctx The build context to use during the operation. |
1099 | /// @param[in,out] chf A populated compact heightfield. |
1100 | /// @returns True if the operation completed successfully. |
1101 | bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf); |
1102 | |
1103 | /// Applies an area id to all spans within the specified bounding box. (AABB) |
1104 | /// @ingroup recast |
1105 | /// @param[in,out] ctx The build context to use during the operation. |
1106 | /// @param[in] bmin The minimum of the bounding box. [(x, y, z)] |
1107 | /// @param[in] bmax The maximum of the bounding box. [(x, y, z)] |
1108 | /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] |
1109 | /// @param[in,out] chf A populated compact heightfield. |
1110 | void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, |
1111 | rcCompactHeightfield& chf); |
1112 | |
1113 | /// Applies the area id to the all spans within the specified convex polygon. |
1114 | /// @ingroup recast |
1115 | /// @param[in,out] ctx The build context to use during the operation. |
1116 | /// @param[in] verts The vertices of the polygon [Fomr: (x, y, z) * @p nverts] |
1117 | /// @param[in] nverts The number of vertices in the polygon. |
1118 | /// @param[in] hmin The height of the base of the polygon. |
1119 | /// @param[in] hmax The height of the top of the polygon. |
1120 | /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] |
1121 | /// @param[in,out] chf A populated compact heightfield. |
1122 | void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, |
1123 | const float hmin, const float hmax, unsigned char areaId, |
1124 | rcCompactHeightfield& chf); |
1125 | |
1126 | /// Helper function to offset voncex polygons for rcMarkConvexPolyArea. |
1127 | /// @ingroup recast |
1128 | /// @param[in] verts The vertices of the polygon [Form: (x, y, z) * @p nverts] |
1129 | /// @param[in] nverts The number of vertices in the polygon. |
1130 | /// @param[in] offset How much to offset the polygon by. [Units: wu] |
1131 | /// @param[out] outVerts The offset vertices (should hold up to 2 * @p nverts) [Form: (x, y, z) * return value] |
1132 | /// @param[in] maxOutVerts The max number of vertices that can be stored to @p outVerts. |
1133 | /// @returns Number of vertices in the offset polygon or 0 if too few vertices in @p outVerts. |
1134 | int rcOffsetPoly(const float* verts, const int nverts, const float offset, |
1135 | float* outVerts, const int maxOutVerts); |
1136 | |
1137 | /// Applies the area id to all spans within the specified cylinder. |
1138 | /// @ingroup recast |
1139 | /// @param[in,out] ctx The build context to use during the operation. |
1140 | /// @param[in] pos The center of the base of the cylinder. [Form: (x, y, z)] |
1141 | /// @param[in] r The radius of the cylinder. |
1142 | /// @param[in] h The height of the cylinder. |
1143 | /// @param[in] areaId The area id to apply. [Limit: <= #RC_WALKABLE_AREA] |
1144 | /// @param[in,out] chf A populated compact heightfield. |
1145 | void rcMarkCylinderArea(rcContext* ctx, const float* pos, |
1146 | const float r, const float h, unsigned char areaId, |
1147 | rcCompactHeightfield& chf); |
1148 | |
1149 | /// Builds the distance field for the specified compact heightfield. |
1150 | /// @ingroup recast |
1151 | /// @param[in,out] ctx The build context to use during the operation. |
1152 | /// @param[in,out] chf A populated compact heightfield. |
1153 | /// @returns True if the operation completed successfully. |
1154 | bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf); |
1155 | |
1156 | /// Builds region data for the heightfield using watershed partitioning. |
1157 | /// @ingroup recast |
1158 | /// @param[in,out] ctx The build context to use during the operation. |
1159 | /// @param[in,out] chf A populated compact heightfield. |
1160 | /// @param[in] borderSize The size of the non-navigable border around the heightfield. |
1161 | /// [Limit: >=0] [Units: vx] |
1162 | /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. |
1163 | /// [Limit: >=0] [Units: vx]. |
1164 | /// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, |
1165 | /// be merged with larger regions. [Limit: >=0] [Units: vx] |
1166 | /// @returns True if the operation completed successfully. |
1167 | bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea, int mergeRegionArea); |
1168 | |
1169 | /// Builds region data for the heightfield by partitioning the heightfield in non-overlapping layers. |
1170 | /// @ingroup recast |
1171 | /// @param[in,out] ctx The build context to use during the operation. |
1172 | /// @param[in,out] chf A populated compact heightfield. |
1173 | /// @param[in] borderSize The size of the non-navigable border around the heightfield. |
1174 | /// [Limit: >=0] [Units: vx] |
1175 | /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. |
1176 | /// [Limit: >=0] [Units: vx]. |
1177 | /// @returns True if the operation completed successfully. |
1178 | bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf, int borderSize, int minRegionArea); |
1179 | |
1180 | /// Builds region data for the heightfield using simple monotone partitioning. |
1181 | /// @ingroup recast |
1182 | /// @param[in,out] ctx The build context to use during the operation. |
1183 | /// @param[in,out] chf A populated compact heightfield. |
1184 | /// @param[in] borderSize The size of the non-navigable border around the heightfield. |
1185 | /// [Limit: >=0] [Units: vx] |
1186 | /// @param[in] minRegionArea The minimum number of cells allowed to form isolated island areas. |
1187 | /// [Limit: >=0] [Units: vx]. |
1188 | /// @param[in] mergeRegionArea Any regions with a span count smaller than this value will, if possible, |
1189 | /// be merged with larger regions. [Limit: >=0] [Units: vx] |
1190 | /// @returns True if the operation completed successfully. |
1191 | bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf, |
1192 | int borderSize, int minRegionArea, int mergeRegionArea); |
1193 | |
1194 | /// Sets the neighbor connection data for the specified direction. |
1195 | /// @param[in] span The span to update. |
1196 | /// @param[in] direction The direction to set. [Limits: 0 <= value < 4] |
1197 | /// @param[in] neighborIndex The index of the neighbor span. |
1198 | inline void rcSetCon(rcCompactSpan& span, int direction, int neighborIndex) |
1199 | { |
1200 | const unsigned int shift = (unsigned int)direction * 6; |
1201 | const unsigned int con = span.con; |
1202 | span.con = (con & ~(0x3f << shift)) | (((unsigned int)neighborIndex & 0x3f) << shift); |
1203 | } |
1204 | |
1205 | /// Gets neighbor connection data for the specified direction. |
1206 | /// @param[in] span The span to check. |
1207 | /// @param[in] direction The direction to check. [Limits: 0 <= value < 4] |
1208 | /// @return The neighbor connection data for the specified direction, or #RC_NOT_CONNECTED if there is no connection. |
1209 | inline int rcGetCon(const rcCompactSpan& span, int direction) |
1210 | { |
1211 | const unsigned int shift = (unsigned int)direction * 6; |
1212 | return (span.con >> shift) & 0x3f; |
1213 | } |
1214 | |
1215 | /// Gets the standard width (x-axis) offset for the specified direction. |
1216 | /// @param[in] direction The direction. [Limits: 0 <= value < 4] |
1217 | /// @return The width offset to apply to the current cell position to move in the direction. |
1218 | inline int rcGetDirOffsetX(int direction) |
1219 | { |
1220 | static const int offset[4] = { -1, 0, 1, 0, }; |
1221 | return offset[direction & 0x03]; |
1222 | } |
1223 | |
1224 | // TODO (graham): Rename this to rcGetDirOffsetZ |
1225 | /// Gets the standard height (z-axis) offset for the specified direction. |
1226 | /// @param[in] direction The direction. [Limits: 0 <= value < 4] |
1227 | /// @return The height offset to apply to the current cell position to move in the direction. |
1228 | inline int rcGetDirOffsetY(int direction) |
1229 | { |
1230 | static const int offset[4] = { 0, 1, 0, -1 }; |
1231 | return offset[direction & 0x03]; |
1232 | } |
1233 | |
1234 | /// Gets the direction for the specified offset. One of x and y should be 0. |
1235 | /// @param[in] offsetX The x offset. [Limits: -1 <= value <= 1] |
1236 | /// @param[in] offsetZ The z offset. [Limits: -1 <= value <= 1] |
1237 | /// @return The direction that represents the offset. |
1238 | inline int rcGetDirForOffset(int offsetX, int offsetZ) |
1239 | { |
1240 | static const int dirs[5] = { 3, 0, -1, 2, 1 }; |
1241 | return dirs[((offsetZ + 1) << 1) + offsetX]; |
1242 | } |
1243 | |
1244 | /// @} |
1245 | /// @name Layer, Contour, Polymesh, and Detail Mesh Functions |
1246 | /// @see rcHeightfieldLayer, rcContourSet, rcPolyMesh, rcPolyMeshDetail |
1247 | /// @{ |
1248 | |
1249 | /// Builds a layer set from the specified compact heightfield. |
1250 | /// @ingroup recast |
1251 | /// @param[in,out] ctx The build context to use during the operation. |
1252 | /// @param[in] chf A fully built compact heightfield. |
1253 | /// @param[in] borderSize The size of the non-navigable border around the heightfield. [Limit: >=0] |
1254 | /// [Units: vx] |
1255 | /// @param[in] walkableHeight Minimum floor to 'ceiling' height that will still allow the floor area |
1256 | /// to be considered walkable. [Limit: >= 3] [Units: vx] |
1257 | /// @param[out] lset The resulting layer set. (Must be pre-allocated.) |
1258 | /// @returns True if the operation completed successfully. |
1259 | bool rcBuildHeightfieldLayers(rcContext* ctx, const rcCompactHeightfield& chf, |
1260 | int borderSize, int walkableHeight, |
1261 | rcHeightfieldLayerSet& lset); |
1262 | |
1263 | /// Builds a contour set from the region outlines in the provided compact heightfield. |
1264 | /// @ingroup recast |
1265 | /// @param[in,out] ctx The build context to use during the operation. |
1266 | /// @param[in] chf A fully built compact heightfield. |
1267 | /// @param[in] maxError The maximum distance a simplified contour's border edges should deviate |
1268 | /// the original raw contour. [Limit: >=0] [Units: wu] |
1269 | /// @param[in] maxEdgeLen The maximum allowed length for contour edges along the border of the mesh. |
1270 | /// [Limit: >=0] [Units: vx] |
1271 | /// @param[out] cset The resulting contour set. (Must be pre-allocated.) |
1272 | /// @param[in] buildFlags The build flags. (See: #rcBuildContoursFlags) |
1273 | /// @returns True if the operation completed successfully. |
1274 | bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf, |
1275 | float maxError, int maxEdgeLen, |
1276 | rcContourSet& cset, int buildFlags = RC_CONTOUR_TESS_WALL_EDGES); |
1277 | |
1278 | /// Builds a polygon mesh from the provided contours. |
1279 | /// @ingroup recast |
1280 | /// @param[in,out] ctx The build context to use during the operation. |
1281 | /// @param[in] cset A fully built contour set. |
1282 | /// @param[in] nvp The maximum number of vertices allowed for polygons generated during the |
1283 | /// contour to polygon conversion process. [Limit: >= 3] |
1284 | /// @param[out] mesh The resulting polygon mesh. (Must be re-allocated.) |
1285 | /// @returns True if the operation completed successfully. |
1286 | bool rcBuildPolyMesh(rcContext* ctx, const rcContourSet& cset, const int nvp, rcPolyMesh& mesh); |
1287 | |
1288 | /// Merges multiple polygon meshes into a single mesh. |
1289 | /// @ingroup recast |
1290 | /// @param[in,out] ctx The build context to use during the operation. |
1291 | /// @param[in] meshes An array of polygon meshes to merge. [Size: @p nmeshes] |
1292 | /// @param[in] nmeshes The number of polygon meshes in the meshes array. |
1293 | /// @param[in] mesh The resulting polygon mesh. (Must be pre-allocated.) |
1294 | /// @returns True if the operation completed successfully. |
1295 | bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, rcPolyMesh& mesh); |
1296 | |
1297 | /// Builds a detail mesh from the provided polygon mesh. |
1298 | /// @ingroup recast |
1299 | /// @param[in,out] ctx The build context to use during the operation. |
1300 | /// @param[in] mesh A fully built polygon mesh. |
1301 | /// @param[in] chf The compact heightfield used to build the polygon mesh. |
1302 | /// @param[in] sampleDist Sets the distance to use when sampling the heightfield. [Limit: >=0] [Units: wu] |
1303 | /// @param[in] sampleMaxError The maximum distance the detail mesh surface should deviate from |
1304 | /// heightfield data. [Limit: >=0] [Units: wu] |
1305 | /// @param[out] dmesh The resulting detail mesh. (Must be pre-allocated.) |
1306 | /// @returns True if the operation completed successfully. |
1307 | bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, |
1308 | float sampleDist, float sampleMaxError, |
1309 | rcPolyMeshDetail& dmesh); |
1310 | |
1311 | /// Copies the poly mesh data from src to dst. |
1312 | /// @ingroup recast |
1313 | /// @param[in,out] ctx The build context to use during the operation. |
1314 | /// @param[in] src The source mesh to copy from. |
1315 | /// @param[out] dst The resulting detail mesh. (Must be pre-allocated, must be empty mesh.) |
1316 | /// @returns True if the operation completed successfully. |
1317 | bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst); |
1318 | |
1319 | /// Merges multiple detail meshes into a single detail mesh. |
1320 | /// @ingroup recast |
1321 | /// @param[in,out] ctx The build context to use during the operation. |
1322 | /// @param[in] meshes An array of detail meshes to merge. [Size: @p nmeshes] |
1323 | /// @param[in] nmeshes The number of detail meshes in the meshes array. |
1324 | /// @param[out] mesh The resulting detail mesh. (Must be pre-allocated.) |
1325 | /// @returns True if the operation completed successfully. |
1326 | bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh); |
1327 | |
1328 | /// @} |
1329 | |
1330 | #endif // RECAST_H |
1331 | |
1332 | /////////////////////////////////////////////////////////////////////////// |
1333 | |
1334 | // Due to the large amount of detail documentation for this file, |
1335 | // the content normally located at the end of the header file has been separated |
1336 | // out to a file in /Docs/Extern. |
1337 | |