| 1 | // |
| 2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
| 3 | // |
| 4 | // This software is provided 'as-is', without any express or implied |
| 5 | // warranty. In no event will the authors be held liable for any damages |
| 6 | // arising from the use of this software. |
| 7 | // Permission is granted to anyone to use this software for any purpose, |
| 8 | // including commercial applications, and to alter it and redistribute it |
| 9 | // freely, subject to the following restrictions: |
| 10 | // 1. The origin of this software must not be misrepresented; you must not |
| 11 | // claim that you wrote the original software. If you use this software |
| 12 | // in a product, an acknowledgment in the product documentation would be |
| 13 | // appreciated but is not required. |
| 14 | // 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | // misrepresented as being the original software. |
| 16 | // 3. This notice may not be removed or altered from any source distribution. |
| 17 | // |
| 18 | |
| 19 | #include <float.h> |
| 20 | #include <math.h> |
| 21 | #include <string.h> |
| 22 | #include <stdlib.h> |
| 23 | #include <stdio.h> |
| 24 | #include "Recast.h" |
| 25 | #include "RecastAlloc.h" |
| 26 | #include "RecastAssert.h" |
| 27 | |
| 28 | /// @par |
| 29 | /// |
| 30 | /// Basically, any spans that are closer to a boundary or obstruction than the specified radius |
| 31 | /// are marked as unwalkable. |
| 32 | /// |
| 33 | /// This method is usually called immediately after the heightfield has been built. |
| 34 | /// |
| 35 | /// @see rcCompactHeightfield, rcBuildCompactHeightfield, rcConfig::walkableRadius |
| 36 | bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf) |
| 37 | { |
| 38 | rcAssert(ctx); |
| 39 | |
| 40 | const int w = chf.width; |
| 41 | const int h = chf.height; |
| 42 | |
| 43 | rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA); |
| 44 | |
| 45 | unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); |
| 46 | if (!dist) |
| 47 | { |
| 48 | ctx->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d)." , chf.spanCount); |
| 49 | return false; |
| 50 | } |
| 51 | |
| 52 | // Init distance. |
| 53 | memset(dist, 0xff, sizeof(unsigned char)*chf.spanCount); |
| 54 | |
| 55 | // Mark boundary cells. |
| 56 | for (int y = 0; y < h; ++y) |
| 57 | { |
| 58 | for (int x = 0; x < w; ++x) |
| 59 | { |
| 60 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 61 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 62 | { |
| 63 | if (chf.areas[i] == RC_NULL_AREA) |
| 64 | { |
| 65 | dist[i] = 0; |
| 66 | } |
| 67 | else |
| 68 | { |
| 69 | const rcCompactSpan& s = chf.spans[i]; |
| 70 | int nc = 0; |
| 71 | for (int dir = 0; dir < 4; ++dir) |
| 72 | { |
| 73 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 74 | { |
| 75 | const int nx = x + rcGetDirOffsetX(dir); |
| 76 | const int ny = y + rcGetDirOffsetY(dir); |
| 77 | const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir); |
| 78 | if (chf.areas[nidx] != RC_NULL_AREA) |
| 79 | { |
| 80 | nc++; |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | // At least one missing neighbour. |
| 85 | if (nc != 4) |
| 86 | dist[i] = 0; |
| 87 | } |
| 88 | } |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | unsigned char nd; |
| 93 | |
| 94 | // Pass 1 |
| 95 | for (int y = 0; y < h; ++y) |
| 96 | { |
| 97 | for (int x = 0; x < w; ++x) |
| 98 | { |
| 99 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 100 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 101 | { |
| 102 | const rcCompactSpan& s = chf.spans[i]; |
| 103 | |
| 104 | if (rcGetCon(s, 0) != RC_NOT_CONNECTED) |
| 105 | { |
| 106 | // (-1,0) |
| 107 | const int ax = x + rcGetDirOffsetX(0); |
| 108 | const int ay = y + rcGetDirOffsetY(0); |
| 109 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0); |
| 110 | const rcCompactSpan& as = chf.spans[ai]; |
| 111 | nd = (unsigned char)rcMin((int)dist[ai]+2, 255); |
| 112 | if (nd < dist[i]) |
| 113 | dist[i] = nd; |
| 114 | |
| 115 | // (-1,-1) |
| 116 | if (rcGetCon(as, 3) != RC_NOT_CONNECTED) |
| 117 | { |
| 118 | const int aax = ax + rcGetDirOffsetX(3); |
| 119 | const int aay = ay + rcGetDirOffsetY(3); |
| 120 | const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3); |
| 121 | nd = (unsigned char)rcMin((int)dist[aai]+3, 255); |
| 122 | if (nd < dist[i]) |
| 123 | dist[i] = nd; |
| 124 | } |
| 125 | } |
| 126 | if (rcGetCon(s, 3) != RC_NOT_CONNECTED) |
| 127 | { |
| 128 | // (0,-1) |
| 129 | const int ax = x + rcGetDirOffsetX(3); |
| 130 | const int ay = y + rcGetDirOffsetY(3); |
| 131 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3); |
| 132 | const rcCompactSpan& as = chf.spans[ai]; |
| 133 | nd = (unsigned char)rcMin((int)dist[ai]+2, 255); |
| 134 | if (nd < dist[i]) |
| 135 | dist[i] = nd; |
| 136 | |
| 137 | // (1,-1) |
| 138 | if (rcGetCon(as, 2) != RC_NOT_CONNECTED) |
| 139 | { |
| 140 | const int aax = ax + rcGetDirOffsetX(2); |
| 141 | const int aay = ay + rcGetDirOffsetY(2); |
| 142 | const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2); |
| 143 | nd = (unsigned char)rcMin((int)dist[aai]+3, 255); |
| 144 | if (nd < dist[i]) |
| 145 | dist[i] = nd; |
| 146 | } |
| 147 | } |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | // Pass 2 |
| 153 | for (int y = h-1; y >= 0; --y) |
| 154 | { |
| 155 | for (int x = w-1; x >= 0; --x) |
| 156 | { |
| 157 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 158 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 159 | { |
| 160 | const rcCompactSpan& s = chf.spans[i]; |
| 161 | |
| 162 | if (rcGetCon(s, 2) != RC_NOT_CONNECTED) |
| 163 | { |
| 164 | // (1,0) |
| 165 | const int ax = x + rcGetDirOffsetX(2); |
| 166 | const int ay = y + rcGetDirOffsetY(2); |
| 167 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2); |
| 168 | const rcCompactSpan& as = chf.spans[ai]; |
| 169 | nd = (unsigned char)rcMin((int)dist[ai]+2, 255); |
| 170 | if (nd < dist[i]) |
| 171 | dist[i] = nd; |
| 172 | |
| 173 | // (1,1) |
| 174 | if (rcGetCon(as, 1) != RC_NOT_CONNECTED) |
| 175 | { |
| 176 | const int aax = ax + rcGetDirOffsetX(1); |
| 177 | const int aay = ay + rcGetDirOffsetY(1); |
| 178 | const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1); |
| 179 | nd = (unsigned char)rcMin((int)dist[aai]+3, 255); |
| 180 | if (nd < dist[i]) |
| 181 | dist[i] = nd; |
| 182 | } |
| 183 | } |
| 184 | if (rcGetCon(s, 1) != RC_NOT_CONNECTED) |
| 185 | { |
| 186 | // (0,1) |
| 187 | const int ax = x + rcGetDirOffsetX(1); |
| 188 | const int ay = y + rcGetDirOffsetY(1); |
| 189 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1); |
| 190 | const rcCompactSpan& as = chf.spans[ai]; |
| 191 | nd = (unsigned char)rcMin((int)dist[ai]+2, 255); |
| 192 | if (nd < dist[i]) |
| 193 | dist[i] = nd; |
| 194 | |
| 195 | // (-1,1) |
| 196 | if (rcGetCon(as, 0) != RC_NOT_CONNECTED) |
| 197 | { |
| 198 | const int aax = ax + rcGetDirOffsetX(0); |
| 199 | const int aay = ay + rcGetDirOffsetY(0); |
| 200 | const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0); |
| 201 | nd = (unsigned char)rcMin((int)dist[aai]+3, 255); |
| 202 | if (nd < dist[i]) |
| 203 | dist[i] = nd; |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | const unsigned char thr = (unsigned char)(radius*2); |
| 211 | for (int i = 0; i < chf.spanCount; ++i) |
| 212 | if (dist[i] < thr) |
| 213 | chf.areas[i] = RC_NULL_AREA; |
| 214 | |
| 215 | rcFree(dist); |
| 216 | |
| 217 | return true; |
| 218 | } |
| 219 | |
| 220 | static void insertSort(unsigned char* a, const int n) |
| 221 | { |
| 222 | int i, j; |
| 223 | for (i = 1; i < n; i++) |
| 224 | { |
| 225 | const unsigned char value = a[i]; |
| 226 | for (j = i - 1; j >= 0 && a[j] > value; j--) |
| 227 | a[j+1] = a[j]; |
| 228 | a[j+1] = value; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /// @par |
| 233 | /// |
| 234 | /// This filter is usually applied after applying area id's using functions |
| 235 | /// such as #rcMarkBoxArea, #rcMarkConvexPolyArea, and #rcMarkCylinderArea. |
| 236 | /// |
| 237 | /// @see rcCompactHeightfield |
| 238 | bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf) |
| 239 | { |
| 240 | rcAssert(ctx); |
| 241 | |
| 242 | const int w = chf.width; |
| 243 | const int h = chf.height; |
| 244 | |
| 245 | rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA); |
| 246 | |
| 247 | unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP); |
| 248 | if (!areas) |
| 249 | { |
| 250 | ctx->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d)." , chf.spanCount); |
| 251 | return false; |
| 252 | } |
| 253 | |
| 254 | // Init distance. |
| 255 | memset(areas, 0xff, sizeof(unsigned char)*chf.spanCount); |
| 256 | |
| 257 | for (int y = 0; y < h; ++y) |
| 258 | { |
| 259 | for (int x = 0; x < w; ++x) |
| 260 | { |
| 261 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 262 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 263 | { |
| 264 | const rcCompactSpan& s = chf.spans[i]; |
| 265 | if (chf.areas[i] == RC_NULL_AREA) |
| 266 | { |
| 267 | areas[i] = chf.areas[i]; |
| 268 | continue; |
| 269 | } |
| 270 | |
| 271 | unsigned char nei[9]; |
| 272 | for (int j = 0; j < 9; ++j) |
| 273 | nei[j] = chf.areas[i]; |
| 274 | |
| 275 | for (int dir = 0; dir < 4; ++dir) |
| 276 | { |
| 277 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 278 | { |
| 279 | const int ax = x + rcGetDirOffsetX(dir); |
| 280 | const int ay = y + rcGetDirOffsetY(dir); |
| 281 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); |
| 282 | if (chf.areas[ai] != RC_NULL_AREA) |
| 283 | nei[dir*2+0] = chf.areas[ai]; |
| 284 | |
| 285 | const rcCompactSpan& as = chf.spans[ai]; |
| 286 | const int dir2 = (dir+1) & 0x3; |
| 287 | if (rcGetCon(as, dir2) != RC_NOT_CONNECTED) |
| 288 | { |
| 289 | const int ax2 = ax + rcGetDirOffsetX(dir2); |
| 290 | const int ay2 = ay + rcGetDirOffsetY(dir2); |
| 291 | const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2); |
| 292 | if (chf.areas[ai2] != RC_NULL_AREA) |
| 293 | nei[dir*2+1] = chf.areas[ai2]; |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | insertSort(nei, 9); |
| 298 | areas[i] = nei[4]; |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount); |
| 304 | |
| 305 | rcFree(areas); |
| 306 | |
| 307 | return true; |
| 308 | } |
| 309 | |
| 310 | /// @par |
| 311 | /// |
| 312 | /// The value of spacial parameters are in world units. |
| 313 | /// |
| 314 | /// @see rcCompactHeightfield, rcMedianFilterWalkableArea |
| 315 | void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigned char areaId, |
| 316 | rcCompactHeightfield& chf) |
| 317 | { |
| 318 | rcAssert(ctx); |
| 319 | |
| 320 | rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA); |
| 321 | |
| 322 | int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); |
| 323 | int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); |
| 324 | int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); |
| 325 | int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); |
| 326 | int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); |
| 327 | int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); |
| 328 | |
| 329 | if (maxx < 0) return; |
| 330 | if (minx >= chf.width) return; |
| 331 | if (maxz < 0) return; |
| 332 | if (minz >= chf.height) return; |
| 333 | |
| 334 | if (minx < 0) minx = 0; |
| 335 | if (maxx >= chf.width) maxx = chf.width-1; |
| 336 | if (minz < 0) minz = 0; |
| 337 | if (maxz >= chf.height) maxz = chf.height-1; |
| 338 | |
| 339 | for (int z = minz; z <= maxz; ++z) |
| 340 | { |
| 341 | for (int x = minx; x <= maxx; ++x) |
| 342 | { |
| 343 | const rcCompactCell& c = chf.cells[x+z*chf.width]; |
| 344 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 345 | { |
| 346 | rcCompactSpan& s = chf.spans[i]; |
| 347 | if ((int)s.y >= miny && (int)s.y <= maxy) |
| 348 | { |
| 349 | if (chf.areas[i] != RC_NULL_AREA) |
| 350 | chf.areas[i] = areaId; |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | |
| 358 | static int pointInPoly(int nvert, const float* verts, const float* p) |
| 359 | { |
| 360 | int i, j, c = 0; |
| 361 | for (i = 0, j = nvert-1; i < nvert; j = i++) |
| 362 | { |
| 363 | const float* vi = &verts[i*3]; |
| 364 | const float* vj = &verts[j*3]; |
| 365 | if (((vi[2] > p[2]) != (vj[2] > p[2])) && |
| 366 | (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) |
| 367 | c = !c; |
| 368 | } |
| 369 | return c; |
| 370 | } |
| 371 | |
| 372 | /// @par |
| 373 | /// |
| 374 | /// The value of spacial parameters are in world units. |
| 375 | /// |
| 376 | /// The y-values of the polygon vertices are ignored. So the polygon is effectively |
| 377 | /// projected onto the xz-plane at @p hmin, then extruded to @p hmax. |
| 378 | /// |
| 379 | /// @see rcCompactHeightfield, rcMedianFilterWalkableArea |
| 380 | void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts, |
| 381 | const float hmin, const float hmax, unsigned char areaId, |
| 382 | rcCompactHeightfield& chf) |
| 383 | { |
| 384 | rcAssert(ctx); |
| 385 | |
| 386 | rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA); |
| 387 | |
| 388 | float bmin[3], bmax[3]; |
| 389 | rcVcopy(bmin, verts); |
| 390 | rcVcopy(bmax, verts); |
| 391 | for (int i = 1; i < nverts; ++i) |
| 392 | { |
| 393 | rcVmin(bmin, &verts[i*3]); |
| 394 | rcVmax(bmax, &verts[i*3]); |
| 395 | } |
| 396 | bmin[1] = hmin; |
| 397 | bmax[1] = hmax; |
| 398 | |
| 399 | int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); |
| 400 | int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); |
| 401 | int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); |
| 402 | int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); |
| 403 | int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); |
| 404 | int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); |
| 405 | |
| 406 | if (maxx < 0) return; |
| 407 | if (minx >= chf.width) return; |
| 408 | if (maxz < 0) return; |
| 409 | if (minz >= chf.height) return; |
| 410 | |
| 411 | if (minx < 0) minx = 0; |
| 412 | if (maxx >= chf.width) maxx = chf.width-1; |
| 413 | if (minz < 0) minz = 0; |
| 414 | if (maxz >= chf.height) maxz = chf.height-1; |
| 415 | |
| 416 | |
| 417 | // TODO: Optimize. |
| 418 | for (int z = minz; z <= maxz; ++z) |
| 419 | { |
| 420 | for (int x = minx; x <= maxx; ++x) |
| 421 | { |
| 422 | const rcCompactCell& c = chf.cells[x+z*chf.width]; |
| 423 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 424 | { |
| 425 | rcCompactSpan& s = chf.spans[i]; |
| 426 | if (chf.areas[i] == RC_NULL_AREA) |
| 427 | continue; |
| 428 | if ((int)s.y >= miny && (int)s.y <= maxy) |
| 429 | { |
| 430 | float p[3]; |
| 431 | p[0] = chf.bmin[0] + (x+0.5f)*chf.cs; |
| 432 | p[1] = 0; |
| 433 | p[2] = chf.bmin[2] + (z+0.5f)*chf.cs; |
| 434 | |
| 435 | if (pointInPoly(nverts, verts, p)) |
| 436 | { |
| 437 | chf.areas[i] = areaId; |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | int rcOffsetPoly(const float* verts, const int nverts, const float offset, |
| 446 | float* outVerts, const int maxOutVerts) |
| 447 | { |
| 448 | const float MITER_LIMIT = 1.20f; |
| 449 | |
| 450 | int n = 0; |
| 451 | |
| 452 | for (int i = 0; i < nverts; i++) |
| 453 | { |
| 454 | const int a = (i+nverts-1) % nverts; |
| 455 | const int b = i; |
| 456 | const int c = (i+1) % nverts; |
| 457 | const float* va = &verts[a*3]; |
| 458 | const float* vb = &verts[b*3]; |
| 459 | const float* vc = &verts[c*3]; |
| 460 | float dx0 = vb[0] - va[0]; |
| 461 | float dy0 = vb[2] - va[2]; |
| 462 | float d0 = dx0*dx0 + dy0*dy0; |
| 463 | if (d0 > 1e-6f) |
| 464 | { |
| 465 | d0 = 1.0f/rcSqrt(d0); |
| 466 | dx0 *= d0; |
| 467 | dy0 *= d0; |
| 468 | } |
| 469 | float dx1 = vc[0] - vb[0]; |
| 470 | float dy1 = vc[2] - vb[2]; |
| 471 | float d1 = dx1*dx1 + dy1*dy1; |
| 472 | if (d1 > 1e-6f) |
| 473 | { |
| 474 | d1 = 1.0f/rcSqrt(d1); |
| 475 | dx1 *= d1; |
| 476 | dy1 *= d1; |
| 477 | } |
| 478 | const float dlx0 = -dy0; |
| 479 | const float dly0 = dx0; |
| 480 | const float dlx1 = -dy1; |
| 481 | const float dly1 = dx1; |
| 482 | float cross = dx1*dy0 - dx0*dy1; |
| 483 | float dmx = (dlx0 + dlx1) * 0.5f; |
| 484 | float dmy = (dly0 + dly1) * 0.5f; |
| 485 | float dmr2 = dmx*dmx + dmy*dmy; |
| 486 | bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f; |
| 487 | if (dmr2 > 1e-6f) |
| 488 | { |
| 489 | const float scale = 1.0f / dmr2; |
| 490 | dmx *= scale; |
| 491 | dmy *= scale; |
| 492 | } |
| 493 | |
| 494 | if (bevel && cross < 0.0f) |
| 495 | { |
| 496 | if (n+2 >= maxOutVerts) |
| 497 | return 0; |
| 498 | float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f; |
| 499 | outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset; |
| 500 | outVerts[n*3+1] = vb[1]; |
| 501 | outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset; |
| 502 | n++; |
| 503 | outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset; |
| 504 | outVerts[n*3+1] = vb[1]; |
| 505 | outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset; |
| 506 | n++; |
| 507 | } |
| 508 | else |
| 509 | { |
| 510 | if (n+1 >= maxOutVerts) |
| 511 | return 0; |
| 512 | outVerts[n*3+0] = vb[0] - dmx*offset; |
| 513 | outVerts[n*3+1] = vb[1]; |
| 514 | outVerts[n*3+2] = vb[2] - dmy*offset; |
| 515 | n++; |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | return n; |
| 520 | } |
| 521 | |
| 522 | |
| 523 | /// @par |
| 524 | /// |
| 525 | /// The value of spacial parameters are in world units. |
| 526 | /// |
| 527 | /// @see rcCompactHeightfield, rcMedianFilterWalkableArea |
| 528 | void rcMarkCylinderArea(rcContext* ctx, const float* pos, |
| 529 | const float r, const float h, unsigned char areaId, |
| 530 | rcCompactHeightfield& chf) |
| 531 | { |
| 532 | rcAssert(ctx); |
| 533 | |
| 534 | rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA); |
| 535 | |
| 536 | float bmin[3], bmax[3]; |
| 537 | bmin[0] = pos[0] - r; |
| 538 | bmin[1] = pos[1]; |
| 539 | bmin[2] = pos[2] - r; |
| 540 | bmax[0] = pos[0] + r; |
| 541 | bmax[1] = pos[1] + h; |
| 542 | bmax[2] = pos[2] + r; |
| 543 | const float r2 = r*r; |
| 544 | |
| 545 | int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs); |
| 546 | int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch); |
| 547 | int minz = (int)((bmin[2]-chf.bmin[2])/chf.cs); |
| 548 | int maxx = (int)((bmax[0]-chf.bmin[0])/chf.cs); |
| 549 | int maxy = (int)((bmax[1]-chf.bmin[1])/chf.ch); |
| 550 | int maxz = (int)((bmax[2]-chf.bmin[2])/chf.cs); |
| 551 | |
| 552 | if (maxx < 0) return; |
| 553 | if (minx >= chf.width) return; |
| 554 | if (maxz < 0) return; |
| 555 | if (minz >= chf.height) return; |
| 556 | |
| 557 | if (minx < 0) minx = 0; |
| 558 | if (maxx >= chf.width) maxx = chf.width-1; |
| 559 | if (minz < 0) minz = 0; |
| 560 | if (maxz >= chf.height) maxz = chf.height-1; |
| 561 | |
| 562 | |
| 563 | for (int z = minz; z <= maxz; ++z) |
| 564 | { |
| 565 | for (int x = minx; x <= maxx; ++x) |
| 566 | { |
| 567 | const rcCompactCell& c = chf.cells[x+z*chf.width]; |
| 568 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 569 | { |
| 570 | rcCompactSpan& s = chf.spans[i]; |
| 571 | |
| 572 | if (chf.areas[i] == RC_NULL_AREA) |
| 573 | continue; |
| 574 | |
| 575 | if ((int)s.y >= miny && (int)s.y <= maxy) |
| 576 | { |
| 577 | const float sx = chf.bmin[0] + (x+0.5f)*chf.cs; |
| 578 | const float sz = chf.bmin[2] + (z+0.5f)*chf.cs; |
| 579 | const float dx = sx - pos[0]; |
| 580 | const float dz = sz - pos[2]; |
| 581 | |
| 582 | if (dx*dx + dz*dz < r2) |
| 583 | { |
| 584 | chf.areas[i] = areaId; |
| 585 | } |
| 586 | } |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | } |
| 591 | |