| 1 | // |
| 2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
| 3 | // |
| 4 | // This software is provided 'as-is', without any express or implied |
| 5 | // warranty. In no event will the authors be held liable for any damages |
| 6 | // arising from the use of this software. |
| 7 | // Permission is granted to anyone to use this software for any purpose, |
| 8 | // including commercial applications, and to alter it and redistribute it |
| 9 | // freely, subject to the following restrictions: |
| 10 | // 1. The origin of this software must not be misrepresented; you must not |
| 11 | // claim that you wrote the original software. If you use this software |
| 12 | // in a product, an acknowledgment in the product documentation would be |
| 13 | // appreciated but is not required. |
| 14 | // 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | // misrepresented as being the original software. |
| 16 | // 3. This notice may not be removed or altered from any source distribution. |
| 17 | // |
| 18 | |
| 19 | #include <math.h> |
| 20 | #include <string.h> |
| 21 | #include <stdio.h> |
| 22 | #include <stdlib.h> |
| 23 | #include "Recast.h" |
| 24 | #include "RecastAlloc.h" |
| 25 | #include "RecastAssert.h" |
| 26 | |
| 27 | |
| 28 | static int getCornerHeight(int x, int y, int i, int dir, |
| 29 | const rcCompactHeightfield& chf, |
| 30 | bool& isBorderVertex) |
| 31 | { |
| 32 | const rcCompactSpan& s = chf.spans[i]; |
| 33 | int ch = (int)s.y; |
| 34 | int dirp = (dir+1) & 0x3; |
| 35 | |
| 36 | unsigned int regs[4] = {0,0,0,0}; |
| 37 | |
| 38 | // Combine region and area codes in order to prevent |
| 39 | // border vertices which are in between two areas to be removed. |
| 40 | regs[0] = chf.spans[i].reg | (chf.areas[i] << 16); |
| 41 | |
| 42 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 43 | { |
| 44 | const int ax = x + rcGetDirOffsetX(dir); |
| 45 | const int ay = y + rcGetDirOffsetY(dir); |
| 46 | const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); |
| 47 | const rcCompactSpan& as = chf.spans[ai]; |
| 48 | ch = rcMax(ch, (int)as.y); |
| 49 | regs[1] = chf.spans[ai].reg | (chf.areas[ai] << 16); |
| 50 | if (rcGetCon(as, dirp) != RC_NOT_CONNECTED) |
| 51 | { |
| 52 | const int ax2 = ax + rcGetDirOffsetX(dirp); |
| 53 | const int ay2 = ay + rcGetDirOffsetY(dirp); |
| 54 | const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dirp); |
| 55 | const rcCompactSpan& as2 = chf.spans[ai2]; |
| 56 | ch = rcMax(ch, (int)as2.y); |
| 57 | regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); |
| 58 | } |
| 59 | } |
| 60 | if (rcGetCon(s, dirp) != RC_NOT_CONNECTED) |
| 61 | { |
| 62 | const int ax = x + rcGetDirOffsetX(dirp); |
| 63 | const int ay = y + rcGetDirOffsetY(dirp); |
| 64 | const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dirp); |
| 65 | const rcCompactSpan& as = chf.spans[ai]; |
| 66 | ch = rcMax(ch, (int)as.y); |
| 67 | regs[3] = chf.spans[ai].reg | (chf.areas[ai] << 16); |
| 68 | if (rcGetCon(as, dir) != RC_NOT_CONNECTED) |
| 69 | { |
| 70 | const int ax2 = ax + rcGetDirOffsetX(dir); |
| 71 | const int ay2 = ay + rcGetDirOffsetY(dir); |
| 72 | const int ai2 = (int)chf.cells[ax2+ay2*chf.width].index + rcGetCon(as, dir); |
| 73 | const rcCompactSpan& as2 = chf.spans[ai2]; |
| 74 | ch = rcMax(ch, (int)as2.y); |
| 75 | regs[2] = chf.spans[ai2].reg | (chf.areas[ai2] << 16); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | // Check if the vertex is special edge vertex, these vertices will be removed later. |
| 80 | for (int j = 0; j < 4; ++j) |
| 81 | { |
| 82 | const int a = j; |
| 83 | const int b = (j+1) & 0x3; |
| 84 | const int c = (j+2) & 0x3; |
| 85 | const int d = (j+3) & 0x3; |
| 86 | |
| 87 | // The vertex is a border vertex there are two same exterior cells in a row, |
| 88 | // followed by two interior cells and none of the regions are out of bounds. |
| 89 | const bool twoSameExts = (regs[a] & regs[b] & RC_BORDER_REG) != 0 && regs[a] == regs[b]; |
| 90 | const bool twoInts = ((regs[c] | regs[d]) & RC_BORDER_REG) == 0; |
| 91 | const bool intsSameArea = (regs[c]>>16) == (regs[d]>>16); |
| 92 | const bool noZeros = regs[a] != 0 && regs[b] != 0 && regs[c] != 0 && regs[d] != 0; |
| 93 | if (twoSameExts && twoInts && intsSameArea && noZeros) |
| 94 | { |
| 95 | isBorderVertex = true; |
| 96 | break; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | return ch; |
| 101 | } |
| 102 | |
| 103 | static void walkContour(int x, int y, int i, |
| 104 | const rcCompactHeightfield& chf, |
| 105 | unsigned char* flags, rcIntArray& points) |
| 106 | { |
| 107 | // Choose the first non-connected edge |
| 108 | unsigned char dir = 0; |
| 109 | while ((flags[i] & (1 << dir)) == 0) |
| 110 | dir++; |
| 111 | |
| 112 | unsigned char startDir = dir; |
| 113 | int starti = i; |
| 114 | |
| 115 | const unsigned char area = chf.areas[i]; |
| 116 | |
| 117 | int iter = 0; |
| 118 | while (++iter < 40000) |
| 119 | { |
| 120 | if (flags[i] & (1 << dir)) |
| 121 | { |
| 122 | // Choose the edge corner |
| 123 | bool isBorderVertex = false; |
| 124 | bool isAreaBorder = false; |
| 125 | int px = x; |
| 126 | int py = getCornerHeight(x, y, i, dir, chf, isBorderVertex); |
| 127 | int pz = y; |
| 128 | switch(dir) |
| 129 | { |
| 130 | case 0: pz++; break; |
| 131 | case 1: px++; pz++; break; |
| 132 | case 2: px++; break; |
| 133 | } |
| 134 | int r = 0; |
| 135 | const rcCompactSpan& s = chf.spans[i]; |
| 136 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 137 | { |
| 138 | const int ax = x + rcGetDirOffsetX(dir); |
| 139 | const int ay = y + rcGetDirOffsetY(dir); |
| 140 | const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir); |
| 141 | r = (int)chf.spans[ai].reg; |
| 142 | if (area != chf.areas[ai]) |
| 143 | isAreaBorder = true; |
| 144 | } |
| 145 | if (isBorderVertex) |
| 146 | r |= RC_BORDER_VERTEX; |
| 147 | if (isAreaBorder) |
| 148 | r |= RC_AREA_BORDER; |
| 149 | points.push(px); |
| 150 | points.push(py); |
| 151 | points.push(pz); |
| 152 | points.push(r); |
| 153 | |
| 154 | flags[i] &= ~(1 << dir); // Remove visited edges |
| 155 | dir = (dir+1) & 0x3; // Rotate CW |
| 156 | } |
| 157 | else |
| 158 | { |
| 159 | int ni = -1; |
| 160 | const int nx = x + rcGetDirOffsetX(dir); |
| 161 | const int ny = y + rcGetDirOffsetY(dir); |
| 162 | const rcCompactSpan& s = chf.spans[i]; |
| 163 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 164 | { |
| 165 | const rcCompactCell& nc = chf.cells[nx+ny*chf.width]; |
| 166 | ni = (int)nc.index + rcGetCon(s, dir); |
| 167 | } |
| 168 | if (ni == -1) |
| 169 | { |
| 170 | // Should not happen. |
| 171 | return; |
| 172 | } |
| 173 | x = nx; |
| 174 | y = ny; |
| 175 | i = ni; |
| 176 | dir = (dir+3) & 0x3; // Rotate CCW |
| 177 | } |
| 178 | |
| 179 | if (starti == i && startDir == dir) |
| 180 | { |
| 181 | break; |
| 182 | } |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | static float distancePtSeg(const int x, const int z, |
| 187 | const int px, const int pz, |
| 188 | const int qx, const int qz) |
| 189 | { |
| 190 | float pqx = (float)(qx - px); |
| 191 | float pqz = (float)(qz - pz); |
| 192 | float dx = (float)(x - px); |
| 193 | float dz = (float)(z - pz); |
| 194 | float d = pqx*pqx + pqz*pqz; |
| 195 | float t = pqx*dx + pqz*dz; |
| 196 | if (d > 0) |
| 197 | t /= d; |
| 198 | if (t < 0) |
| 199 | t = 0; |
| 200 | else if (t > 1) |
| 201 | t = 1; |
| 202 | |
| 203 | dx = px + t*pqx - x; |
| 204 | dz = pz + t*pqz - z; |
| 205 | |
| 206 | return dx*dx + dz*dz; |
| 207 | } |
| 208 | |
| 209 | static void simplifyContour(rcIntArray& points, rcIntArray& simplified, |
| 210 | const float maxError, const int maxEdgeLen, const int buildFlags) |
| 211 | { |
| 212 | // Add initial points. |
| 213 | bool hasConnections = false; |
| 214 | for (int i = 0; i < points.size(); i += 4) |
| 215 | { |
| 216 | if ((points[i+3] & RC_CONTOUR_REG_MASK) != 0) |
| 217 | { |
| 218 | hasConnections = true; |
| 219 | break; |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | if (hasConnections) |
| 224 | { |
| 225 | // The contour has some portals to other regions. |
| 226 | // Add a new point to every location where the region changes. |
| 227 | for (int i = 0, ni = points.size()/4; i < ni; ++i) |
| 228 | { |
| 229 | int ii = (i+1) % ni; |
| 230 | const bool differentRegs = (points[i*4+3] & RC_CONTOUR_REG_MASK) != (points[ii*4+3] & RC_CONTOUR_REG_MASK); |
| 231 | const bool areaBorders = (points[i*4+3] & RC_AREA_BORDER) != (points[ii*4+3] & RC_AREA_BORDER); |
| 232 | if (differentRegs || areaBorders) |
| 233 | { |
| 234 | simplified.push(points[i*4+0]); |
| 235 | simplified.push(points[i*4+1]); |
| 236 | simplified.push(points[i*4+2]); |
| 237 | simplified.push(i); |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | if (simplified.size() == 0) |
| 243 | { |
| 244 | // If there is no connections at all, |
| 245 | // create some initial points for the simplification process. |
| 246 | // Find lower-left and upper-right vertices of the contour. |
| 247 | int llx = points[0]; |
| 248 | int lly = points[1]; |
| 249 | int llz = points[2]; |
| 250 | int lli = 0; |
| 251 | int urx = points[0]; |
| 252 | int ury = points[1]; |
| 253 | int urz = points[2]; |
| 254 | int uri = 0; |
| 255 | for (int i = 0; i < points.size(); i += 4) |
| 256 | { |
| 257 | int x = points[i+0]; |
| 258 | int y = points[i+1]; |
| 259 | int z = points[i+2]; |
| 260 | if (x < llx || (x == llx && z < llz)) |
| 261 | { |
| 262 | llx = x; |
| 263 | lly = y; |
| 264 | llz = z; |
| 265 | lli = i/4; |
| 266 | } |
| 267 | if (x > urx || (x == urx && z > urz)) |
| 268 | { |
| 269 | urx = x; |
| 270 | ury = y; |
| 271 | urz = z; |
| 272 | uri = i/4; |
| 273 | } |
| 274 | } |
| 275 | simplified.push(llx); |
| 276 | simplified.push(lly); |
| 277 | simplified.push(llz); |
| 278 | simplified.push(lli); |
| 279 | |
| 280 | simplified.push(urx); |
| 281 | simplified.push(ury); |
| 282 | simplified.push(urz); |
| 283 | simplified.push(uri); |
| 284 | } |
| 285 | |
| 286 | // Add points until all raw points are within |
| 287 | // error tolerance to the simplified shape. |
| 288 | const int pn = points.size()/4; |
| 289 | for (int i = 0; i < simplified.size()/4; ) |
| 290 | { |
| 291 | int ii = (i+1) % (simplified.size()/4); |
| 292 | |
| 293 | int ax = simplified[i*4+0]; |
| 294 | int az = simplified[i*4+2]; |
| 295 | int ai = simplified[i*4+3]; |
| 296 | |
| 297 | int bx = simplified[ii*4+0]; |
| 298 | int bz = simplified[ii*4+2]; |
| 299 | int bi = simplified[ii*4+3]; |
| 300 | |
| 301 | // Find maximum deviation from the segment. |
| 302 | float maxd = 0; |
| 303 | int maxi = -1; |
| 304 | int ci, cinc, endi; |
| 305 | |
| 306 | // Traverse the segment in lexilogical order so that the |
| 307 | // max deviation is calculated similarly when traversing |
| 308 | // opposite segments. |
| 309 | if (bx > ax || (bx == ax && bz > az)) |
| 310 | { |
| 311 | cinc = 1; |
| 312 | ci = (ai+cinc) % pn; |
| 313 | endi = bi; |
| 314 | } |
| 315 | else |
| 316 | { |
| 317 | cinc = pn-1; |
| 318 | ci = (bi+cinc) % pn; |
| 319 | endi = ai; |
| 320 | rcSwap(ax, bx); |
| 321 | rcSwap(az, bz); |
| 322 | } |
| 323 | |
| 324 | // Tessellate only outer edges or edges between areas. |
| 325 | if ((points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0 || |
| 326 | (points[ci*4+3] & RC_AREA_BORDER)) |
| 327 | { |
| 328 | while (ci != endi) |
| 329 | { |
| 330 | float d = distancePtSeg(points[ci*4+0], points[ci*4+2], ax, az, bx, bz); |
| 331 | if (d > maxd) |
| 332 | { |
| 333 | maxd = d; |
| 334 | maxi = ci; |
| 335 | } |
| 336 | ci = (ci+cinc) % pn; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | |
| 341 | // If the max deviation is larger than accepted error, |
| 342 | // add new point, else continue to next segment. |
| 343 | if (maxi != -1 && maxd > (maxError*maxError)) |
| 344 | { |
| 345 | // Add space for the new point. |
| 346 | simplified.resize(simplified.size()+4); |
| 347 | const int n = simplified.size()/4; |
| 348 | for (int j = n-1; j > i; --j) |
| 349 | { |
| 350 | simplified[j*4+0] = simplified[(j-1)*4+0]; |
| 351 | simplified[j*4+1] = simplified[(j-1)*4+1]; |
| 352 | simplified[j*4+2] = simplified[(j-1)*4+2]; |
| 353 | simplified[j*4+3] = simplified[(j-1)*4+3]; |
| 354 | } |
| 355 | // Add the point. |
| 356 | simplified[(i+1)*4+0] = points[maxi*4+0]; |
| 357 | simplified[(i+1)*4+1] = points[maxi*4+1]; |
| 358 | simplified[(i+1)*4+2] = points[maxi*4+2]; |
| 359 | simplified[(i+1)*4+3] = maxi; |
| 360 | } |
| 361 | else |
| 362 | { |
| 363 | ++i; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // Split too long edges. |
| 368 | if (maxEdgeLen > 0 && (buildFlags & (RC_CONTOUR_TESS_WALL_EDGES|RC_CONTOUR_TESS_AREA_EDGES)) != 0) |
| 369 | { |
| 370 | for (int i = 0; i < simplified.size()/4; ) |
| 371 | { |
| 372 | const int ii = (i+1) % (simplified.size()/4); |
| 373 | |
| 374 | const int ax = simplified[i*4+0]; |
| 375 | const int az = simplified[i*4+2]; |
| 376 | const int ai = simplified[i*4+3]; |
| 377 | |
| 378 | const int bx = simplified[ii*4+0]; |
| 379 | const int bz = simplified[ii*4+2]; |
| 380 | const int bi = simplified[ii*4+3]; |
| 381 | |
| 382 | // Find maximum deviation from the segment. |
| 383 | int maxi = -1; |
| 384 | int ci = (ai+1) % pn; |
| 385 | |
| 386 | // Tessellate only outer edges or edges between areas. |
| 387 | bool tess = false; |
| 388 | // Wall edges. |
| 389 | if ((buildFlags & RC_CONTOUR_TESS_WALL_EDGES) && (points[ci*4+3] & RC_CONTOUR_REG_MASK) == 0) |
| 390 | tess = true; |
| 391 | // Edges between areas. |
| 392 | if ((buildFlags & RC_CONTOUR_TESS_AREA_EDGES) && (points[ci*4+3] & RC_AREA_BORDER)) |
| 393 | tess = true; |
| 394 | |
| 395 | if (tess) |
| 396 | { |
| 397 | int dx = bx - ax; |
| 398 | int dz = bz - az; |
| 399 | if (dx*dx + dz*dz > maxEdgeLen*maxEdgeLen) |
| 400 | { |
| 401 | // Round based on the segments in lexilogical order so that the |
| 402 | // max tesselation is consistent regardles in which direction |
| 403 | // segments are traversed. |
| 404 | const int n = bi < ai ? (bi+pn - ai) : (bi - ai); |
| 405 | if (n > 1) |
| 406 | { |
| 407 | if (bx > ax || (bx == ax && bz > az)) |
| 408 | maxi = (ai + n/2) % pn; |
| 409 | else |
| 410 | maxi = (ai + (n+1)/2) % pn; |
| 411 | } |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | // If the max deviation is larger than accepted error, |
| 416 | // add new point, else continue to next segment. |
| 417 | if (maxi != -1) |
| 418 | { |
| 419 | // Add space for the new point. |
| 420 | simplified.resize(simplified.size()+4); |
| 421 | const int n = simplified.size()/4; |
| 422 | for (int j = n-1; j > i; --j) |
| 423 | { |
| 424 | simplified[j*4+0] = simplified[(j-1)*4+0]; |
| 425 | simplified[j*4+1] = simplified[(j-1)*4+1]; |
| 426 | simplified[j*4+2] = simplified[(j-1)*4+2]; |
| 427 | simplified[j*4+3] = simplified[(j-1)*4+3]; |
| 428 | } |
| 429 | // Add the point. |
| 430 | simplified[(i+1)*4+0] = points[maxi*4+0]; |
| 431 | simplified[(i+1)*4+1] = points[maxi*4+1]; |
| 432 | simplified[(i+1)*4+2] = points[maxi*4+2]; |
| 433 | simplified[(i+1)*4+3] = maxi; |
| 434 | } |
| 435 | else |
| 436 | { |
| 437 | ++i; |
| 438 | } |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | for (int i = 0; i < simplified.size()/4; ++i) |
| 443 | { |
| 444 | // The edge vertex flag is take from the current raw point, |
| 445 | // and the neighbour region is take from the next raw point. |
| 446 | const int ai = (simplified[i*4+3]+1) % pn; |
| 447 | const int bi = simplified[i*4+3]; |
| 448 | simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX); |
| 449 | } |
| 450 | |
| 451 | } |
| 452 | |
| 453 | static int calcAreaOfPolygon2D(const int* verts, const int nverts) |
| 454 | { |
| 455 | int area = 0; |
| 456 | for (int i = 0, j = nverts-1; i < nverts; j=i++) |
| 457 | { |
| 458 | const int* vi = &verts[i*4]; |
| 459 | const int* vj = &verts[j*4]; |
| 460 | area += vi[0] * vj[2] - vj[0] * vi[2]; |
| 461 | } |
| 462 | return (area+1) / 2; |
| 463 | } |
| 464 | |
| 465 | // TODO: these are the same as in RecastMesh.cpp, consider using the same. |
| 466 | // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). |
| 467 | inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } |
| 468 | inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } |
| 469 | |
| 470 | inline int area2(const int* a, const int* b, const int* c) |
| 471 | { |
| 472 | return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]); |
| 473 | } |
| 474 | |
| 475 | // Exclusive or: true iff exactly one argument is true. |
| 476 | // The arguments are negated to ensure that they are 0/1 |
| 477 | // values. Then the bitwise Xor operator may apply. |
| 478 | // (This idea is due to Michael Baldwin.) |
| 479 | inline bool xorb(bool x, bool y) |
| 480 | { |
| 481 | return !x ^ !y; |
| 482 | } |
| 483 | |
| 484 | // Returns true iff c is strictly to the left of the directed |
| 485 | // line through a to b. |
| 486 | inline bool left(const int* a, const int* b, const int* c) |
| 487 | { |
| 488 | return area2(a, b, c) < 0; |
| 489 | } |
| 490 | |
| 491 | inline bool leftOn(const int* a, const int* b, const int* c) |
| 492 | { |
| 493 | return area2(a, b, c) <= 0; |
| 494 | } |
| 495 | |
| 496 | inline bool collinear(const int* a, const int* b, const int* c) |
| 497 | { |
| 498 | return area2(a, b, c) == 0; |
| 499 | } |
| 500 | |
| 501 | // Returns true iff ab properly intersects cd: they share |
| 502 | // a point interior to both segments. The properness of the |
| 503 | // intersection is ensured by using strict leftness. |
| 504 | static bool intersectProp(const int* a, const int* b, const int* c, const int* d) |
| 505 | { |
| 506 | // Eliminate improper cases. |
| 507 | if (collinear(a,b,c) || collinear(a,b,d) || |
| 508 | collinear(c,d,a) || collinear(c,d,b)) |
| 509 | return false; |
| 510 | |
| 511 | return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b)); |
| 512 | } |
| 513 | |
| 514 | // Returns T iff (a,b,c) are collinear and point c lies |
| 515 | // on the closed segement ab. |
| 516 | static bool between(const int* a, const int* b, const int* c) |
| 517 | { |
| 518 | if (!collinear(a, b, c)) |
| 519 | return false; |
| 520 | // If ab not vertical, check betweenness on x; else on y. |
| 521 | if (a[0] != b[0]) |
| 522 | return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0])); |
| 523 | else |
| 524 | return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2])); |
| 525 | } |
| 526 | |
| 527 | // Returns true iff segments ab and cd intersect, properly or improperly. |
| 528 | static bool intersect(const int* a, const int* b, const int* c, const int* d) |
| 529 | { |
| 530 | if (intersectProp(a, b, c, d)) |
| 531 | return true; |
| 532 | else if (between(a, b, c) || between(a, b, d) || |
| 533 | between(c, d, a) || between(c, d, b)) |
| 534 | return true; |
| 535 | else |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | static bool vequal(const int* a, const int* b) |
| 540 | { |
| 541 | return a[0] == b[0] && a[2] == b[2]; |
| 542 | } |
| 543 | |
| 544 | static bool intersectSegContour(const int* d0, const int* d1, int i, int n, const int* verts) |
| 545 | { |
| 546 | // For each edge (k,k+1) of P |
| 547 | for (int k = 0; k < n; k++) |
| 548 | { |
| 549 | int k1 = next(k, n); |
| 550 | // Skip edges incident to i. |
| 551 | if (i == k || i == k1) |
| 552 | continue; |
| 553 | const int* p0 = &verts[k * 4]; |
| 554 | const int* p1 = &verts[k1 * 4]; |
| 555 | if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1)) |
| 556 | continue; |
| 557 | |
| 558 | if (intersect(d0, d1, p0, p1)) |
| 559 | return true; |
| 560 | } |
| 561 | return false; |
| 562 | } |
| 563 | |
| 564 | static bool inCone(int i, int n, const int* verts, const int* pj) |
| 565 | { |
| 566 | const int* pi = &verts[i * 4]; |
| 567 | const int* pi1 = &verts[next(i, n) * 4]; |
| 568 | const int* pin1 = &verts[prev(i, n) * 4]; |
| 569 | |
| 570 | // If P[i] is a convex vertex [ i+1 left or on (i-1,i) ]. |
| 571 | if (leftOn(pin1, pi, pi1)) |
| 572 | return left(pi, pj, pin1) && left(pj, pi, pi1); |
| 573 | // Assume (i-1,i,i+1) not collinear. |
| 574 | // else P[i] is reflex. |
| 575 | return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1)); |
| 576 | } |
| 577 | |
| 578 | |
| 579 | static void removeDegenerateSegments(rcIntArray& simplified) |
| 580 | { |
| 581 | // Remove adjacent vertices which are equal on xz-plane, |
| 582 | // or else the triangulator will get confused. |
| 583 | int npts = simplified.size()/4; |
| 584 | for (int i = 0; i < npts; ++i) |
| 585 | { |
| 586 | int ni = next(i, npts); |
| 587 | |
| 588 | if (vequal(&simplified[i*4], &simplified[ni*4])) |
| 589 | { |
| 590 | // Degenerate segment, remove. |
| 591 | for (int j = i; j < simplified.size()/4-1; ++j) |
| 592 | { |
| 593 | simplified[j*4+0] = simplified[(j+1)*4+0]; |
| 594 | simplified[j*4+1] = simplified[(j+1)*4+1]; |
| 595 | simplified[j*4+2] = simplified[(j+1)*4+2]; |
| 596 | simplified[j*4+3] = simplified[(j+1)*4+3]; |
| 597 | } |
| 598 | simplified.resize(simplified.size()-4); |
| 599 | npts--; |
| 600 | } |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | |
| 605 | static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib) |
| 606 | { |
| 607 | const int maxVerts = ca.nverts + cb.nverts + 2; |
| 608 | int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM); |
| 609 | if (!verts) |
| 610 | return false; |
| 611 | |
| 612 | int nv = 0; |
| 613 | |
| 614 | // Copy contour A. |
| 615 | for (int i = 0; i <= ca.nverts; ++i) |
| 616 | { |
| 617 | int* dst = &verts[nv*4]; |
| 618 | const int* src = &ca.verts[((ia+i)%ca.nverts)*4]; |
| 619 | dst[0] = src[0]; |
| 620 | dst[1] = src[1]; |
| 621 | dst[2] = src[2]; |
| 622 | dst[3] = src[3]; |
| 623 | nv++; |
| 624 | } |
| 625 | |
| 626 | // Copy contour B |
| 627 | for (int i = 0; i <= cb.nverts; ++i) |
| 628 | { |
| 629 | int* dst = &verts[nv*4]; |
| 630 | const int* src = &cb.verts[((ib+i)%cb.nverts)*4]; |
| 631 | dst[0] = src[0]; |
| 632 | dst[1] = src[1]; |
| 633 | dst[2] = src[2]; |
| 634 | dst[3] = src[3]; |
| 635 | nv++; |
| 636 | } |
| 637 | |
| 638 | rcFree(ca.verts); |
| 639 | ca.verts = verts; |
| 640 | ca.nverts = nv; |
| 641 | |
| 642 | rcFree(cb.verts); |
| 643 | cb.verts = 0; |
| 644 | cb.nverts = 0; |
| 645 | |
| 646 | return true; |
| 647 | } |
| 648 | |
| 649 | struct rcContourHole |
| 650 | { |
| 651 | rcContour* contour; |
| 652 | int minx, minz, leftmost; |
| 653 | }; |
| 654 | |
| 655 | struct rcContourRegion |
| 656 | { |
| 657 | rcContour* outline; |
| 658 | rcContourHole* holes; |
| 659 | int nholes; |
| 660 | }; |
| 661 | |
| 662 | struct rcPotentialDiagonal |
| 663 | { |
| 664 | int vert; |
| 665 | int dist; |
| 666 | }; |
| 667 | |
| 668 | // Finds the lowest leftmost vertex of a contour. |
| 669 | static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost) |
| 670 | { |
| 671 | *minx = contour->verts[0]; |
| 672 | *minz = contour->verts[2]; |
| 673 | *leftmost = 0; |
| 674 | for (int i = 1; i < contour->nverts; i++) |
| 675 | { |
| 676 | const int x = contour->verts[i*4+0]; |
| 677 | const int z = contour->verts[i*4+2]; |
| 678 | if (x < *minx || (x == *minx && z < *minz)) |
| 679 | { |
| 680 | *minx = x; |
| 681 | *minz = z; |
| 682 | *leftmost = i; |
| 683 | } |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | static int compareHoles(const void* va, const void* vb) |
| 688 | { |
| 689 | const rcContourHole* a = (const rcContourHole*)va; |
| 690 | const rcContourHole* b = (const rcContourHole*)vb; |
| 691 | if (a->minx == b->minx) |
| 692 | { |
| 693 | if (a->minz < b->minz) |
| 694 | return -1; |
| 695 | if (a->minz > b->minz) |
| 696 | return 1; |
| 697 | } |
| 698 | else |
| 699 | { |
| 700 | if (a->minx < b->minx) |
| 701 | return -1; |
| 702 | if (a->minx > b->minx) |
| 703 | return 1; |
| 704 | } |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | |
| 709 | static int compareDiagDist(const void* va, const void* vb) |
| 710 | { |
| 711 | const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va; |
| 712 | const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb; |
| 713 | if (a->dist < b->dist) |
| 714 | return -1; |
| 715 | if (a->dist > b->dist) |
| 716 | return 1; |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | |
| 721 | static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region) |
| 722 | { |
| 723 | // Sort holes from left to right. |
| 724 | for (int i = 0; i < region.nholes; i++) |
| 725 | findLeftMostVertex(region.holes[i].contour, ®ion.holes[i].minx, ®ion.holes[i].minz, ®ion.holes[i].leftmost); |
| 726 | |
| 727 | qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles); |
| 728 | |
| 729 | int maxVerts = region.outline->nverts; |
| 730 | for (int i = 0; i < region.nholes; i++) |
| 731 | maxVerts += region.holes[i].contour->nverts; |
| 732 | |
| 733 | rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP)); |
| 734 | if (!diags) |
| 735 | { |
| 736 | ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d." , maxVerts); |
| 737 | return; |
| 738 | } |
| 739 | |
| 740 | rcContour* outline = region.outline; |
| 741 | |
| 742 | // Merge holes into the outline one by one. |
| 743 | for (int i = 0; i < region.nholes; i++) |
| 744 | { |
| 745 | rcContour* hole = region.holes[i].contour; |
| 746 | |
| 747 | int index = -1; |
| 748 | int bestVertex = region.holes[i].leftmost; |
| 749 | for (int iter = 0; iter < hole->nverts; iter++) |
| 750 | { |
| 751 | // Find potential diagonals. |
| 752 | // The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline. |
| 753 | // ..o j-1 |
| 754 | // | |
| 755 | // | * best |
| 756 | // | |
| 757 | // j o-----o j+1 |
| 758 | // : |
| 759 | int ndiags = 0; |
| 760 | const int* corner = &hole->verts[bestVertex*4]; |
| 761 | for (int j = 0; j < outline->nverts; j++) |
| 762 | { |
| 763 | if (inCone(j, outline->nverts, outline->verts, corner)) |
| 764 | { |
| 765 | int dx = outline->verts[j*4+0] - corner[0]; |
| 766 | int dz = outline->verts[j*4+2] - corner[2]; |
| 767 | diags[ndiags].vert = j; |
| 768 | diags[ndiags].dist = dx*dx + dz*dz; |
| 769 | ndiags++; |
| 770 | } |
| 771 | } |
| 772 | // Sort potential diagonals by distance, we want to make the connection as short as possible. |
| 773 | qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist); |
| 774 | |
| 775 | // Find a diagonal that is not intersecting the outline not the remaining holes. |
| 776 | index = -1; |
| 777 | for (int j = 0; j < ndiags; j++) |
| 778 | { |
| 779 | const int* pt = &outline->verts[diags[j].vert*4]; |
| 780 | bool intersect = intersectSegContour(pt, corner, diags[i].vert, outline->nverts, outline->verts); |
| 781 | for (int k = i; k < region.nholes && !intersect; k++) |
| 782 | intersect |= intersectSegContour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts); |
| 783 | if (!intersect) |
| 784 | { |
| 785 | index = diags[j].vert; |
| 786 | break; |
| 787 | } |
| 788 | } |
| 789 | // If found non-intersecting diagonal, stop looking. |
| 790 | if (index != -1) |
| 791 | break; |
| 792 | // All the potential diagonals for the current vertex were intersecting, try next vertex. |
| 793 | bestVertex = (bestVertex + 1) % hole->nverts; |
| 794 | } |
| 795 | |
| 796 | if (index == -1) |
| 797 | { |
| 798 | ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p." , region.outline, hole); |
| 799 | continue; |
| 800 | } |
| 801 | if (!mergeContours(*region.outline, *hole, index, bestVertex)) |
| 802 | { |
| 803 | ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p." , region.outline, hole); |
| 804 | continue; |
| 805 | } |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | |
| 810 | /// @par |
| 811 | /// |
| 812 | /// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen |
| 813 | /// parameters control how closely the simplified contours will match the raw contours. |
| 814 | /// |
| 815 | /// Simplified contours are generated such that the vertices for portals between areas match up. |
| 816 | /// (They are considered mandatory vertices.) |
| 817 | /// |
| 818 | /// Setting @p maxEdgeLength to zero will disabled the edge length feature. |
| 819 | /// |
| 820 | /// See the #rcConfig documentation for more information on the configuration parameters. |
| 821 | /// |
| 822 | /// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig |
| 823 | bool rcBuildContours(rcContext* ctx, const rcCompactHeightfield& chf, |
| 824 | const float maxError, const int maxEdgeLen, |
| 825 | rcContourSet& cset, const int buildFlags) |
| 826 | { |
| 827 | rcAssert(ctx); |
| 828 | |
| 829 | const int w = chf.width; |
| 830 | const int h = chf.height; |
| 831 | const int borderSize = chf.borderSize; |
| 832 | |
| 833 | rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS); |
| 834 | |
| 835 | rcVcopy(cset.bmin, chf.bmin); |
| 836 | rcVcopy(cset.bmax, chf.bmax); |
| 837 | if (borderSize > 0) |
| 838 | { |
| 839 | // If the heightfield was build with bordersize, remove the offset. |
| 840 | const float pad = borderSize*chf.cs; |
| 841 | cset.bmin[0] += pad; |
| 842 | cset.bmin[2] += pad; |
| 843 | cset.bmax[0] -= pad; |
| 844 | cset.bmax[2] -= pad; |
| 845 | } |
| 846 | cset.cs = chf.cs; |
| 847 | cset.ch = chf.ch; |
| 848 | cset.width = chf.width - chf.borderSize*2; |
| 849 | cset.height = chf.height - chf.borderSize*2; |
| 850 | cset.borderSize = chf.borderSize; |
| 851 | cset.maxError = maxError; |
| 852 | |
| 853 | int maxContours = rcMax((int)chf.maxRegions, 8); |
| 854 | cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); |
| 855 | if (!cset.conts) |
| 856 | return false; |
| 857 | cset.nconts = 0; |
| 858 | |
| 859 | rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP)); |
| 860 | if (!flags) |
| 861 | { |
| 862 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d)." , chf.spanCount); |
| 863 | return false; |
| 864 | } |
| 865 | |
| 866 | ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); |
| 867 | |
| 868 | // Mark boundaries. |
| 869 | for (int y = 0; y < h; ++y) |
| 870 | { |
| 871 | for (int x = 0; x < w; ++x) |
| 872 | { |
| 873 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 874 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 875 | { |
| 876 | unsigned char res = 0; |
| 877 | const rcCompactSpan& s = chf.spans[i]; |
| 878 | if (!chf.spans[i].reg || (chf.spans[i].reg & RC_BORDER_REG)) |
| 879 | { |
| 880 | flags[i] = 0; |
| 881 | continue; |
| 882 | } |
| 883 | for (int dir = 0; dir < 4; ++dir) |
| 884 | { |
| 885 | unsigned short r = 0; |
| 886 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 887 | { |
| 888 | const int ax = x + rcGetDirOffsetX(dir); |
| 889 | const int ay = y + rcGetDirOffsetY(dir); |
| 890 | const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir); |
| 891 | r = chf.spans[ai].reg; |
| 892 | } |
| 893 | if (r == chf.spans[i].reg) |
| 894 | res |= (1 << dir); |
| 895 | } |
| 896 | flags[i] = res ^ 0xf; // Inverse, mark non connected edges. |
| 897 | } |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); |
| 902 | |
| 903 | rcIntArray verts(256); |
| 904 | rcIntArray simplified(64); |
| 905 | |
| 906 | for (int y = 0; y < h; ++y) |
| 907 | { |
| 908 | for (int x = 0; x < w; ++x) |
| 909 | { |
| 910 | const rcCompactCell& c = chf.cells[x+y*w]; |
| 911 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i) |
| 912 | { |
| 913 | if (flags[i] == 0 || flags[i] == 0xf) |
| 914 | { |
| 915 | flags[i] = 0; |
| 916 | continue; |
| 917 | } |
| 918 | const unsigned short reg = chf.spans[i].reg; |
| 919 | if (!reg || (reg & RC_BORDER_REG)) |
| 920 | continue; |
| 921 | const unsigned char area = chf.areas[i]; |
| 922 | |
| 923 | verts.clear(); |
| 924 | simplified.clear(); |
| 925 | |
| 926 | ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE); |
| 927 | walkContour(x, y, i, chf, flags, verts); |
| 928 | ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE); |
| 929 | |
| 930 | ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); |
| 931 | simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags); |
| 932 | removeDegenerateSegments(simplified); |
| 933 | ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY); |
| 934 | |
| 935 | |
| 936 | // Store region->contour remap info. |
| 937 | // Create contour. |
| 938 | if (simplified.size()/4 >= 3) |
| 939 | { |
| 940 | if (cset.nconts >= maxContours) |
| 941 | { |
| 942 | // Allocate more contours. |
| 943 | // This happens when a region has holes. |
| 944 | const int oldMax = maxContours; |
| 945 | maxContours *= 2; |
| 946 | rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM); |
| 947 | for (int j = 0; j < cset.nconts; ++j) |
| 948 | { |
| 949 | newConts[j] = cset.conts[j]; |
| 950 | // Reset source pointers to prevent data deletion. |
| 951 | cset.conts[j].verts = 0; |
| 952 | cset.conts[j].rverts = 0; |
| 953 | } |
| 954 | rcFree(cset.conts); |
| 955 | cset.conts = newConts; |
| 956 | |
| 957 | ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d." , oldMax, maxContours); |
| 958 | } |
| 959 | |
| 960 | rcContour* cont = &cset.conts[cset.nconts++]; |
| 961 | |
| 962 | cont->nverts = simplified.size()/4; |
| 963 | cont->verts = (int*)rcAlloc(sizeof(int)*cont->nverts*4, RC_ALLOC_PERM); |
| 964 | if (!cont->verts) |
| 965 | { |
| 966 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'verts' (%d)." , cont->nverts); |
| 967 | return false; |
| 968 | } |
| 969 | memcpy(cont->verts, &simplified[0], sizeof(int)*cont->nverts*4); |
| 970 | if (borderSize > 0) |
| 971 | { |
| 972 | // If the heightfield was build with bordersize, remove the offset. |
| 973 | for (int j = 0; j < cont->nverts; ++j) |
| 974 | { |
| 975 | int* v = &cont->verts[j*4]; |
| 976 | v[0] -= borderSize; |
| 977 | v[2] -= borderSize; |
| 978 | } |
| 979 | } |
| 980 | |
| 981 | cont->nrverts = verts.size()/4; |
| 982 | cont->rverts = (int*)rcAlloc(sizeof(int)*cont->nrverts*4, RC_ALLOC_PERM); |
| 983 | if (!cont->rverts) |
| 984 | { |
| 985 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'rverts' (%d)." , cont->nrverts); |
| 986 | return false; |
| 987 | } |
| 988 | memcpy(cont->rverts, &verts[0], sizeof(int)*cont->nrverts*4); |
| 989 | if (borderSize > 0) |
| 990 | { |
| 991 | // If the heightfield was build with bordersize, remove the offset. |
| 992 | for (int j = 0; j < cont->nrverts; ++j) |
| 993 | { |
| 994 | int* v = &cont->rverts[j*4]; |
| 995 | v[0] -= borderSize; |
| 996 | v[2] -= borderSize; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | cont->reg = reg; |
| 1001 | cont->area = area; |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | // Merge holes if needed. |
| 1008 | if (cset.nconts > 0) |
| 1009 | { |
| 1010 | // Calculate winding of all polygons. |
| 1011 | rcScopedDelete<signed char> winding((signed char*)rcAlloc(sizeof(signed char)*cset.nconts, RC_ALLOC_TEMP)); |
| 1012 | if (!winding) |
| 1013 | { |
| 1014 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d)." , cset.nconts); |
| 1015 | return false; |
| 1016 | } |
| 1017 | int nholes = 0; |
| 1018 | for (int i = 0; i < cset.nconts; ++i) |
| 1019 | { |
| 1020 | rcContour& cont = cset.conts[i]; |
| 1021 | // If the contour is wound backwards, it is a hole. |
| 1022 | winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1; |
| 1023 | if (winding[i] < 0) |
| 1024 | nholes++; |
| 1025 | } |
| 1026 | |
| 1027 | if (nholes > 0) |
| 1028 | { |
| 1029 | // Collect outline contour and holes contours per region. |
| 1030 | // We assume that there is one outline and multiple holes. |
| 1031 | const int nregions = chf.maxRegions+1; |
| 1032 | rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP)); |
| 1033 | if (!regions) |
| 1034 | { |
| 1035 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d)." , nregions); |
| 1036 | return false; |
| 1037 | } |
| 1038 | memset(regions, 0, sizeof(rcContourRegion)*nregions); |
| 1039 | |
| 1040 | rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP)); |
| 1041 | if (!holes) |
| 1042 | { |
| 1043 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d)." , cset.nconts); |
| 1044 | return false; |
| 1045 | } |
| 1046 | memset(holes, 0, sizeof(rcContourHole)*cset.nconts); |
| 1047 | |
| 1048 | for (int i = 0; i < cset.nconts; ++i) |
| 1049 | { |
| 1050 | rcContour& cont = cset.conts[i]; |
| 1051 | // Positively would contours are outlines, negative holes. |
| 1052 | if (winding[i] > 0) |
| 1053 | { |
| 1054 | if (regions[cont.reg].outline) |
| 1055 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d." , cont.reg); |
| 1056 | regions[cont.reg].outline = &cont; |
| 1057 | } |
| 1058 | else |
| 1059 | { |
| 1060 | regions[cont.reg].nholes++; |
| 1061 | } |
| 1062 | } |
| 1063 | int index = 0; |
| 1064 | for (int i = 0; i < nregions; i++) |
| 1065 | { |
| 1066 | if (regions[i].nholes > 0) |
| 1067 | { |
| 1068 | regions[i].holes = &holes[index]; |
| 1069 | index += regions[i].nholes; |
| 1070 | regions[i].nholes = 0; |
| 1071 | } |
| 1072 | } |
| 1073 | for (int i = 0; i < cset.nconts; ++i) |
| 1074 | { |
| 1075 | rcContour& cont = cset.conts[i]; |
| 1076 | rcContourRegion& reg = regions[cont.reg]; |
| 1077 | if (winding[i] < 0) |
| 1078 | reg.holes[reg.nholes++].contour = &cont; |
| 1079 | } |
| 1080 | |
| 1081 | // Finally merge each regions holes into the outline. |
| 1082 | for (int i = 0; i < nregions; i++) |
| 1083 | { |
| 1084 | rcContourRegion& reg = regions[i]; |
| 1085 | if (!reg.nholes) continue; |
| 1086 | |
| 1087 | if (reg.outline) |
| 1088 | { |
| 1089 | mergeRegionHoles(ctx, reg); |
| 1090 | } |
| 1091 | else |
| 1092 | { |
| 1093 | // The region does not have an outline. |
| 1094 | // This can happen if the contour becaomes selfoverlapping because of |
| 1095 | // too aggressive simplification settings. |
| 1096 | ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive." , i); |
| 1097 | } |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | } |
| 1102 | |
| 1103 | return true; |
| 1104 | } |
| 1105 | |