| 1 | // |
| 2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
| 3 | // |
| 4 | // This software is provided 'as-is', without any express or implied |
| 5 | // warranty. In no event will the authors be held liable for any damages |
| 6 | // arising from the use of this software. |
| 7 | // Permission is granted to anyone to use this software for any purpose, |
| 8 | // including commercial applications, and to alter it and redistribute it |
| 9 | // freely, subject to the following restrictions: |
| 10 | // 1. The origin of this software must not be misrepresented; you must not |
| 11 | // claim that you wrote the original software. If you use this software |
| 12 | // in a product, an acknowledgment in the product documentation would be |
| 13 | // appreciated but is not required. |
| 14 | // 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | // misrepresented as being the original software. |
| 16 | // 3. This notice may not be removed or altered from any source distribution. |
| 17 | // |
| 18 | |
| 19 | #include <float.h> |
| 20 | #include <math.h> |
| 21 | #include <string.h> |
| 22 | #include <stdlib.h> |
| 23 | #include <stdio.h> |
| 24 | #include "Recast.h" |
| 25 | #include "RecastAlloc.h" |
| 26 | #include "RecastAssert.h" |
| 27 | |
| 28 | |
| 29 | static const unsigned RC_UNSET_HEIGHT = 0xffff; |
| 30 | |
| 31 | struct rcHeightPatch |
| 32 | { |
| 33 | inline rcHeightPatch() : data(0), xmin(0), ymin(0), width(0), height(0) {} |
| 34 | inline ~rcHeightPatch() { rcFree(data); } |
| 35 | unsigned short* data; |
| 36 | int xmin, ymin, width, height; |
| 37 | }; |
| 38 | |
| 39 | |
| 40 | inline float vdot2(const float* a, const float* b) |
| 41 | { |
| 42 | return a[0]*b[0] + a[2]*b[2]; |
| 43 | } |
| 44 | |
| 45 | inline float vdistSq2(const float* p, const float* q) |
| 46 | { |
| 47 | const float dx = q[0] - p[0]; |
| 48 | const float dy = q[2] - p[2]; |
| 49 | return dx*dx + dy*dy; |
| 50 | } |
| 51 | |
| 52 | inline float vdist2(const float* p, const float* q) |
| 53 | { |
| 54 | return sqrtf(vdistSq2(p,q)); |
| 55 | } |
| 56 | |
| 57 | inline float vcross2(const float* p1, const float* p2, const float* p3) |
| 58 | { |
| 59 | const float u1 = p2[0] - p1[0]; |
| 60 | const float v1 = p2[2] - p1[2]; |
| 61 | const float u2 = p3[0] - p1[0]; |
| 62 | const float v2 = p3[2] - p1[2]; |
| 63 | return u1 * v2 - v1 * u2; |
| 64 | } |
| 65 | |
| 66 | static bool circumCircle(const float* p1, const float* p2, const float* p3, |
| 67 | float* c, float& r) |
| 68 | { |
| 69 | static const float EPS = 1e-6f; |
| 70 | // Calculate the circle relative to p1, to avoid some precision issues. |
| 71 | const float v1[3] = {0,0,0}; |
| 72 | float v2[3], v3[3]; |
| 73 | rcVsub(v2, p2,p1); |
| 74 | rcVsub(v3, p3,p1); |
| 75 | |
| 76 | const float cp = vcross2(v1, v2, v3); |
| 77 | if (fabsf(cp) > EPS) |
| 78 | { |
| 79 | const float v1Sq = vdot2(v1,v1); |
| 80 | const float v2Sq = vdot2(v2,v2); |
| 81 | const float v3Sq = vdot2(v3,v3); |
| 82 | c[0] = (v1Sq*(v2[2]-v3[2]) + v2Sq*(v3[2]-v1[2]) + v3Sq*(v1[2]-v2[2])) / (2*cp); |
| 83 | c[1] = 0; |
| 84 | c[2] = (v1Sq*(v3[0]-v2[0]) + v2Sq*(v1[0]-v3[0]) + v3Sq*(v2[0]-v1[0])) / (2*cp); |
| 85 | r = vdist2(c, v1); |
| 86 | rcVadd(c, c, p1); |
| 87 | return true; |
| 88 | } |
| 89 | |
| 90 | rcVcopy(c, p1); |
| 91 | r = 0; |
| 92 | return false; |
| 93 | } |
| 94 | |
| 95 | static float distPtTri(const float* p, const float* a, const float* b, const float* c) |
| 96 | { |
| 97 | float v0[3], v1[3], v2[3]; |
| 98 | rcVsub(v0, c,a); |
| 99 | rcVsub(v1, b,a); |
| 100 | rcVsub(v2, p,a); |
| 101 | |
| 102 | const float dot00 = vdot2(v0, v0); |
| 103 | const float dot01 = vdot2(v0, v1); |
| 104 | const float dot02 = vdot2(v0, v2); |
| 105 | const float dot11 = vdot2(v1, v1); |
| 106 | const float dot12 = vdot2(v1, v2); |
| 107 | |
| 108 | // Compute barycentric coordinates |
| 109 | const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); |
| 110 | const float u = (dot11 * dot02 - dot01 * dot12) * invDenom; |
| 111 | float v = (dot00 * dot12 - dot01 * dot02) * invDenom; |
| 112 | |
| 113 | // If point lies inside the triangle, return interpolated y-coord. |
| 114 | static const float EPS = 1e-4f; |
| 115 | if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) |
| 116 | { |
| 117 | const float y = a[1] + v0[1]*u + v1[1]*v; |
| 118 | return fabsf(y-p[1]); |
| 119 | } |
| 120 | return FLT_MAX; |
| 121 | } |
| 122 | |
| 123 | static float distancePtSeg(const float* pt, const float* p, const float* q) |
| 124 | { |
| 125 | float pqx = q[0] - p[0]; |
| 126 | float pqy = q[1] - p[1]; |
| 127 | float pqz = q[2] - p[2]; |
| 128 | float dx = pt[0] - p[0]; |
| 129 | float dy = pt[1] - p[1]; |
| 130 | float dz = pt[2] - p[2]; |
| 131 | float d = pqx*pqx + pqy*pqy + pqz*pqz; |
| 132 | float t = pqx*dx + pqy*dy + pqz*dz; |
| 133 | if (d > 0) |
| 134 | t /= d; |
| 135 | if (t < 0) |
| 136 | t = 0; |
| 137 | else if (t > 1) |
| 138 | t = 1; |
| 139 | |
| 140 | dx = p[0] + t*pqx - pt[0]; |
| 141 | dy = p[1] + t*pqy - pt[1]; |
| 142 | dz = p[2] + t*pqz - pt[2]; |
| 143 | |
| 144 | return dx*dx + dy*dy + dz*dz; |
| 145 | } |
| 146 | |
| 147 | static float distancePtSeg2d(const float* pt, const float* p, const float* q) |
| 148 | { |
| 149 | float pqx = q[0] - p[0]; |
| 150 | float pqz = q[2] - p[2]; |
| 151 | float dx = pt[0] - p[0]; |
| 152 | float dz = pt[2] - p[2]; |
| 153 | float d = pqx*pqx + pqz*pqz; |
| 154 | float t = pqx*dx + pqz*dz; |
| 155 | if (d > 0) |
| 156 | t /= d; |
| 157 | if (t < 0) |
| 158 | t = 0; |
| 159 | else if (t > 1) |
| 160 | t = 1; |
| 161 | |
| 162 | dx = p[0] + t*pqx - pt[0]; |
| 163 | dz = p[2] + t*pqz - pt[2]; |
| 164 | |
| 165 | return dx*dx + dz*dz; |
| 166 | } |
| 167 | |
| 168 | static float distToTriMesh(const float* p, const float* verts, const int /*nverts*/, const int* tris, const int ntris) |
| 169 | { |
| 170 | float dmin = FLT_MAX; |
| 171 | for (int i = 0; i < ntris; ++i) |
| 172 | { |
| 173 | const float* va = &verts[tris[i*4+0]*3]; |
| 174 | const float* vb = &verts[tris[i*4+1]*3]; |
| 175 | const float* vc = &verts[tris[i*4+2]*3]; |
| 176 | float d = distPtTri(p, va,vb,vc); |
| 177 | if (d < dmin) |
| 178 | dmin = d; |
| 179 | } |
| 180 | if (dmin == FLT_MAX) return -1; |
| 181 | return dmin; |
| 182 | } |
| 183 | |
| 184 | static float distToPoly(int nvert, const float* verts, const float* p) |
| 185 | { |
| 186 | |
| 187 | float dmin = FLT_MAX; |
| 188 | int i, j, c = 0; |
| 189 | for (i = 0, j = nvert-1; i < nvert; j = i++) |
| 190 | { |
| 191 | const float* vi = &verts[i*3]; |
| 192 | const float* vj = &verts[j*3]; |
| 193 | if (((vi[2] > p[2]) != (vj[2] > p[2])) && |
| 194 | (p[0] < (vj[0]-vi[0]) * (p[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) |
| 195 | c = !c; |
| 196 | dmin = rcMin(dmin, distancePtSeg2d(p, vj, vi)); |
| 197 | } |
| 198 | return c ? -dmin : dmin; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | static unsigned short getHeight(const float fx, const float fy, const float fz, |
| 203 | const float /*cs*/, const float ics, const float ch, |
| 204 | const int radius, const rcHeightPatch& hp) |
| 205 | { |
| 206 | int ix = (int)floorf(fx*ics + 0.01f); |
| 207 | int iz = (int)floorf(fz*ics + 0.01f); |
| 208 | ix = rcClamp(ix-hp.xmin, 0, hp.width - 1); |
| 209 | iz = rcClamp(iz-hp.ymin, 0, hp.height - 1); |
| 210 | unsigned short h = hp.data[ix+iz*hp.width]; |
| 211 | if (h == RC_UNSET_HEIGHT) |
| 212 | { |
| 213 | // Special case when data might be bad. |
| 214 | // Walk adjacent cells in a spiral up to 'radius', and look |
| 215 | // for a pixel which has a valid height. |
| 216 | int x = 1, z = 0, dx = 1, dz = 0; |
| 217 | int maxSize = radius * 2 + 1; |
| 218 | int maxIter = maxSize * maxSize - 1; |
| 219 | |
| 220 | int nextRingIterStart = 8; |
| 221 | int nextRingIters = 16; |
| 222 | |
| 223 | float dmin = FLT_MAX; |
| 224 | for (int i = 0; i < maxIter; i++) |
| 225 | { |
| 226 | const int nx = ix + x; |
| 227 | const int nz = iz + z; |
| 228 | |
| 229 | if (nx >= 0 && nz >= 0 && nx < hp.width && nz < hp.height) |
| 230 | { |
| 231 | const unsigned short nh = hp.data[nx + nz*hp.width]; |
| 232 | if (nh != RC_UNSET_HEIGHT) |
| 233 | { |
| 234 | const float d = fabsf(nh*ch - fy); |
| 235 | if (d < dmin) |
| 236 | { |
| 237 | h = nh; |
| 238 | dmin = d; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | // We are searching in a grid which looks approximately like this: |
| 244 | // __________ |
| 245 | // |2 ______ 2| |
| 246 | // | |1 __ 1| | |
| 247 | // | | |__| | | |
| 248 | // | |______| | |
| 249 | // |__________| |
| 250 | // We want to find the best height as close to the center cell as possible. This means that |
| 251 | // if we find a height in one of the neighbor cells to the center, we don't want to |
| 252 | // expand further out than the 8 neighbors - we want to limit our search to the closest |
| 253 | // of these "rings", but the best height in the ring. |
| 254 | // For example, the center is just 1 cell. We checked that at the entrance to the function. |
| 255 | // The next "ring" contains 8 cells (marked 1 above). Those are all the neighbors to the center cell. |
| 256 | // The next one again contains 16 cells (marked 2). In general each ring has 8 additional cells, which |
| 257 | // can be thought of as adding 2 cells around the "center" of each side when we expand the ring. |
| 258 | // Here we detect if we are about to enter the next ring, and if we are and we have found |
| 259 | // a height, we abort the search. |
| 260 | if (i + 1 == nextRingIterStart) |
| 261 | { |
| 262 | if (h != RC_UNSET_HEIGHT) |
| 263 | break; |
| 264 | |
| 265 | nextRingIterStart += nextRingIters; |
| 266 | nextRingIters += 8; |
| 267 | } |
| 268 | |
| 269 | if ((x == z) || ((x < 0) && (x == -z)) || ((x > 0) && (x == 1 - z))) |
| 270 | { |
| 271 | int tmp = dx; |
| 272 | dx = -dz; |
| 273 | dz = tmp; |
| 274 | } |
| 275 | x += dx; |
| 276 | z += dz; |
| 277 | } |
| 278 | } |
| 279 | return h; |
| 280 | } |
| 281 | |
| 282 | |
| 283 | enum EdgeValues |
| 284 | { |
| 285 | EV_UNDEF = -1, |
| 286 | EV_HULL = -2 |
| 287 | }; |
| 288 | |
| 289 | static int findEdge(const int* edges, int nedges, int s, int t) |
| 290 | { |
| 291 | for (int i = 0; i < nedges; i++) |
| 292 | { |
| 293 | const int* e = &edges[i*4]; |
| 294 | if ((e[0] == s && e[1] == t) || (e[0] == t && e[1] == s)) |
| 295 | return i; |
| 296 | } |
| 297 | return EV_UNDEF; |
| 298 | } |
| 299 | |
| 300 | static int addEdge(rcContext* ctx, int* edges, int& nedges, const int maxEdges, int s, int t, int l, int r) |
| 301 | { |
| 302 | if (nedges >= maxEdges) |
| 303 | { |
| 304 | ctx->log(RC_LOG_ERROR, "addEdge: Too many edges (%d/%d)." , nedges, maxEdges); |
| 305 | return EV_UNDEF; |
| 306 | } |
| 307 | |
| 308 | // Add edge if not already in the triangulation. |
| 309 | int e = findEdge(edges, nedges, s, t); |
| 310 | if (e == EV_UNDEF) |
| 311 | { |
| 312 | int* edge = &edges[nedges*4]; |
| 313 | edge[0] = s; |
| 314 | edge[1] = t; |
| 315 | edge[2] = l; |
| 316 | edge[3] = r; |
| 317 | return nedges++; |
| 318 | } |
| 319 | else |
| 320 | { |
| 321 | return EV_UNDEF; |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | static void updateLeftFace(int* e, int s, int t, int f) |
| 326 | { |
| 327 | if (e[0] == s && e[1] == t && e[2] == EV_UNDEF) |
| 328 | e[2] = f; |
| 329 | else if (e[1] == s && e[0] == t && e[3] == EV_UNDEF) |
| 330 | e[3] = f; |
| 331 | } |
| 332 | |
| 333 | static int overlapSegSeg2d(const float* a, const float* b, const float* c, const float* d) |
| 334 | { |
| 335 | const float a1 = vcross2(a, b, d); |
| 336 | const float a2 = vcross2(a, b, c); |
| 337 | if (a1*a2 < 0.0f) |
| 338 | { |
| 339 | float a3 = vcross2(c, d, a); |
| 340 | float a4 = a3 + a2 - a1; |
| 341 | if (a3 * a4 < 0.0f) |
| 342 | return 1; |
| 343 | } |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | static bool overlapEdges(const float* pts, const int* edges, int nedges, int s1, int t1) |
| 348 | { |
| 349 | for (int i = 0; i < nedges; ++i) |
| 350 | { |
| 351 | const int s0 = edges[i*4+0]; |
| 352 | const int t0 = edges[i*4+1]; |
| 353 | // Same or connected edges do not overlap. |
| 354 | if (s0 == s1 || s0 == t1 || t0 == s1 || t0 == t1) |
| 355 | continue; |
| 356 | if (overlapSegSeg2d(&pts[s0*3],&pts[t0*3], &pts[s1*3],&pts[t1*3])) |
| 357 | return true; |
| 358 | } |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | static void completeFacet(rcContext* ctx, const float* pts, int npts, int* edges, int& nedges, const int maxEdges, int& nfaces, int e) |
| 363 | { |
| 364 | static const float EPS = 1e-5f; |
| 365 | |
| 366 | int* edge = &edges[e*4]; |
| 367 | |
| 368 | // Cache s and t. |
| 369 | int s,t; |
| 370 | if (edge[2] == EV_UNDEF) |
| 371 | { |
| 372 | s = edge[0]; |
| 373 | t = edge[1]; |
| 374 | } |
| 375 | else if (edge[3] == EV_UNDEF) |
| 376 | { |
| 377 | s = edge[1]; |
| 378 | t = edge[0]; |
| 379 | } |
| 380 | else |
| 381 | { |
| 382 | // Edge already completed. |
| 383 | return; |
| 384 | } |
| 385 | |
| 386 | // Find best point on left of edge. |
| 387 | int pt = npts; |
| 388 | float c[3] = {0,0,0}; |
| 389 | float r = -1; |
| 390 | for (int u = 0; u < npts; ++u) |
| 391 | { |
| 392 | if (u == s || u == t) continue; |
| 393 | if (vcross2(&pts[s*3], &pts[t*3], &pts[u*3]) > EPS) |
| 394 | { |
| 395 | if (r < 0) |
| 396 | { |
| 397 | // The circle is not updated yet, do it now. |
| 398 | pt = u; |
| 399 | circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); |
| 400 | continue; |
| 401 | } |
| 402 | const float d = vdist2(c, &pts[u*3]); |
| 403 | const float tol = 0.001f; |
| 404 | if (d > r*(1+tol)) |
| 405 | { |
| 406 | // Outside current circumcircle, skip. |
| 407 | continue; |
| 408 | } |
| 409 | else if (d < r*(1-tol)) |
| 410 | { |
| 411 | // Inside safe circumcircle, update circle. |
| 412 | pt = u; |
| 413 | circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); |
| 414 | } |
| 415 | else |
| 416 | { |
| 417 | // Inside epsilon circum circle, do extra tests to make sure the edge is valid. |
| 418 | // s-u and t-u cannot overlap with s-pt nor t-pt if they exists. |
| 419 | if (overlapEdges(pts, edges, nedges, s,u)) |
| 420 | continue; |
| 421 | if (overlapEdges(pts, edges, nedges, t,u)) |
| 422 | continue; |
| 423 | // Edge is valid. |
| 424 | pt = u; |
| 425 | circumCircle(&pts[s*3], &pts[t*3], &pts[u*3], c, r); |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | // Add new triangle or update edge info if s-t is on hull. |
| 431 | if (pt < npts) |
| 432 | { |
| 433 | // Update face information of edge being completed. |
| 434 | updateLeftFace(&edges[e*4], s, t, nfaces); |
| 435 | |
| 436 | // Add new edge or update face info of old edge. |
| 437 | e = findEdge(edges, nedges, pt, s); |
| 438 | if (e == EV_UNDEF) |
| 439 | addEdge(ctx, edges, nedges, maxEdges, pt, s, nfaces, EV_UNDEF); |
| 440 | else |
| 441 | updateLeftFace(&edges[e*4], pt, s, nfaces); |
| 442 | |
| 443 | // Add new edge or update face info of old edge. |
| 444 | e = findEdge(edges, nedges, t, pt); |
| 445 | if (e == EV_UNDEF) |
| 446 | addEdge(ctx, edges, nedges, maxEdges, t, pt, nfaces, EV_UNDEF); |
| 447 | else |
| 448 | updateLeftFace(&edges[e*4], t, pt, nfaces); |
| 449 | |
| 450 | nfaces++; |
| 451 | } |
| 452 | else |
| 453 | { |
| 454 | updateLeftFace(&edges[e*4], s, t, EV_HULL); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | static void delaunayHull(rcContext* ctx, const int npts, const float* pts, |
| 459 | const int nhull, const int* hull, |
| 460 | rcIntArray& tris, rcIntArray& edges) |
| 461 | { |
| 462 | int nfaces = 0; |
| 463 | int nedges = 0; |
| 464 | const int maxEdges = npts*10; |
| 465 | edges.resize(maxEdges*4); |
| 466 | |
| 467 | for (int i = 0, j = nhull-1; i < nhull; j=i++) |
| 468 | addEdge(ctx, &edges[0], nedges, maxEdges, hull[j],hull[i], EV_HULL, EV_UNDEF); |
| 469 | |
| 470 | int currentEdge = 0; |
| 471 | while (currentEdge < nedges) |
| 472 | { |
| 473 | if (edges[currentEdge*4+2] == EV_UNDEF) |
| 474 | completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); |
| 475 | if (edges[currentEdge*4+3] == EV_UNDEF) |
| 476 | completeFacet(ctx, pts, npts, &edges[0], nedges, maxEdges, nfaces, currentEdge); |
| 477 | currentEdge++; |
| 478 | } |
| 479 | |
| 480 | // Create tris |
| 481 | tris.resize(nfaces*4); |
| 482 | for (int i = 0; i < nfaces*4; ++i) |
| 483 | tris[i] = -1; |
| 484 | |
| 485 | for (int i = 0; i < nedges; ++i) |
| 486 | { |
| 487 | const int* e = &edges[i*4]; |
| 488 | if (e[3] >= 0) |
| 489 | { |
| 490 | // Left face |
| 491 | int* t = &tris[e[3]*4]; |
| 492 | if (t[0] == -1) |
| 493 | { |
| 494 | t[0] = e[0]; |
| 495 | t[1] = e[1]; |
| 496 | } |
| 497 | else if (t[0] == e[1]) |
| 498 | t[2] = e[0]; |
| 499 | else if (t[1] == e[0]) |
| 500 | t[2] = e[1]; |
| 501 | } |
| 502 | if (e[2] >= 0) |
| 503 | { |
| 504 | // Right |
| 505 | int* t = &tris[e[2]*4]; |
| 506 | if (t[0] == -1) |
| 507 | { |
| 508 | t[0] = e[1]; |
| 509 | t[1] = e[0]; |
| 510 | } |
| 511 | else if (t[0] == e[0]) |
| 512 | t[2] = e[1]; |
| 513 | else if (t[1] == e[1]) |
| 514 | t[2] = e[0]; |
| 515 | } |
| 516 | } |
| 517 | |
| 518 | for (int i = 0; i < tris.size()/4; ++i) |
| 519 | { |
| 520 | int* t = &tris[i*4]; |
| 521 | if (t[0] == -1 || t[1] == -1 || t[2] == -1) |
| 522 | { |
| 523 | ctx->log(RC_LOG_WARNING, "delaunayHull: Removing dangling face %d [%d,%d,%d]." , i, t[0],t[1],t[2]); |
| 524 | t[0] = tris[tris.size()-4]; |
| 525 | t[1] = tris[tris.size()-3]; |
| 526 | t[2] = tris[tris.size()-2]; |
| 527 | t[3] = tris[tris.size()-1]; |
| 528 | tris.resize(tris.size()-4); |
| 529 | --i; |
| 530 | } |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | // Calculate minimum extend of the polygon. |
| 535 | static float polyMinExtent(const float* verts, const int nverts) |
| 536 | { |
| 537 | float minDist = FLT_MAX; |
| 538 | for (int i = 0; i < nverts; i++) |
| 539 | { |
| 540 | const int ni = (i+1) % nverts; |
| 541 | const float* p1 = &verts[i*3]; |
| 542 | const float* p2 = &verts[ni*3]; |
| 543 | float maxEdgeDist = 0; |
| 544 | for (int j = 0; j < nverts; j++) |
| 545 | { |
| 546 | if (j == i || j == ni) continue; |
| 547 | float d = distancePtSeg2d(&verts[j*3], p1,p2); |
| 548 | maxEdgeDist = rcMax(maxEdgeDist, d); |
| 549 | } |
| 550 | minDist = rcMin(minDist, maxEdgeDist); |
| 551 | } |
| 552 | return rcSqrt(minDist); |
| 553 | } |
| 554 | |
| 555 | // Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv). |
| 556 | inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; } |
| 557 | inline int next(int i, int n) { return i+1 < n ? i+1 : 0; } |
| 558 | |
| 559 | static void triangulateHull(const int /*nverts*/, const float* verts, const int nhull, const int* hull, const int nin, rcIntArray& tris) |
| 560 | { |
| 561 | int start = 0, left = 1, right = nhull-1; |
| 562 | |
| 563 | // Start from an ear with shortest perimeter. |
| 564 | // This tends to favor well formed triangles as starting point. |
| 565 | float dmin = FLT_MAX; |
| 566 | for (int i = 0; i < nhull; i++) |
| 567 | { |
| 568 | if (hull[i] >= nin) continue; // Ears are triangles with original vertices as middle vertex while others are actually line segments on edges |
| 569 | int pi = prev(i, nhull); |
| 570 | int ni = next(i, nhull); |
| 571 | const float* pv = &verts[hull[pi]*3]; |
| 572 | const float* cv = &verts[hull[i]*3]; |
| 573 | const float* nv = &verts[hull[ni]*3]; |
| 574 | const float d = vdist2(pv,cv) + vdist2(cv,nv) + vdist2(nv,pv); |
| 575 | if (d < dmin) |
| 576 | { |
| 577 | start = i; |
| 578 | left = ni; |
| 579 | right = pi; |
| 580 | dmin = d; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // Add first triangle |
| 585 | tris.push(hull[start]); |
| 586 | tris.push(hull[left]); |
| 587 | tris.push(hull[right]); |
| 588 | tris.push(0); |
| 589 | |
| 590 | // Triangulate the polygon by moving left or right, |
| 591 | // depending on which triangle has shorter perimeter. |
| 592 | // This heuristic was chose emprically, since it seems |
| 593 | // handle tesselated straight edges well. |
| 594 | while (next(left, nhull) != right) |
| 595 | { |
| 596 | // Check to see if se should advance left or right. |
| 597 | int nleft = next(left, nhull); |
| 598 | int nright = prev(right, nhull); |
| 599 | |
| 600 | const float* cvleft = &verts[hull[left]*3]; |
| 601 | const float* nvleft = &verts[hull[nleft]*3]; |
| 602 | const float* cvright = &verts[hull[right]*3]; |
| 603 | const float* nvright = &verts[hull[nright]*3]; |
| 604 | const float dleft = vdist2(cvleft, nvleft) + vdist2(nvleft, cvright); |
| 605 | const float dright = vdist2(cvright, nvright) + vdist2(cvleft, nvright); |
| 606 | |
| 607 | if (dleft < dright) |
| 608 | { |
| 609 | tris.push(hull[left]); |
| 610 | tris.push(hull[nleft]); |
| 611 | tris.push(hull[right]); |
| 612 | tris.push(0); |
| 613 | left = nleft; |
| 614 | } |
| 615 | else |
| 616 | { |
| 617 | tris.push(hull[left]); |
| 618 | tris.push(hull[nright]); |
| 619 | tris.push(hull[right]); |
| 620 | tris.push(0); |
| 621 | right = nright; |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | |
| 627 | inline float getJitterX(const int i) |
| 628 | { |
| 629 | return (((i * 0x8da6b343) & 0xffff) / 65535.0f * 2.0f) - 1.0f; |
| 630 | } |
| 631 | |
| 632 | inline float getJitterY(const int i) |
| 633 | { |
| 634 | return (((i * 0xd8163841) & 0xffff) / 65535.0f * 2.0f) - 1.0f; |
| 635 | } |
| 636 | |
| 637 | static bool buildPolyDetail(rcContext* ctx, const float* in, const int nin, |
| 638 | const float sampleDist, const float sampleMaxError, |
| 639 | const int heightSearchRadius, const rcCompactHeightfield& chf, |
| 640 | const rcHeightPatch& hp, float* verts, int& nverts, |
| 641 | rcIntArray& tris, rcIntArray& edges, rcIntArray& samples) |
| 642 | { |
| 643 | static const int MAX_VERTS = 127; |
| 644 | static const int MAX_TRIS = 255; // Max tris for delaunay is 2n-2-k (n=num verts, k=num hull verts). |
| 645 | static const int MAX_VERTS_PER_EDGE = 32; |
| 646 | float edge[(MAX_VERTS_PER_EDGE+1)*3]; |
| 647 | int hull[MAX_VERTS]; |
| 648 | int nhull = 0; |
| 649 | |
| 650 | nverts = nin; |
| 651 | |
| 652 | for (int i = 0; i < nin; ++i) |
| 653 | rcVcopy(&verts[i*3], &in[i*3]); |
| 654 | |
| 655 | edges.clear(); |
| 656 | tris.clear(); |
| 657 | |
| 658 | const float cs = chf.cs; |
| 659 | const float ics = 1.0f/cs; |
| 660 | |
| 661 | // Calculate minimum extents of the polygon based on input data. |
| 662 | float minExtent = polyMinExtent(verts, nverts); |
| 663 | |
| 664 | // Tessellate outlines. |
| 665 | // This is done in separate pass in order to ensure |
| 666 | // seamless height values across the ply boundaries. |
| 667 | if (sampleDist > 0) |
| 668 | { |
| 669 | for (int i = 0, j = nin-1; i < nin; j=i++) |
| 670 | { |
| 671 | const float* vj = &in[j*3]; |
| 672 | const float* vi = &in[i*3]; |
| 673 | bool swapped = false; |
| 674 | // Make sure the segments are always handled in same order |
| 675 | // using lexological sort or else there will be seams. |
| 676 | if (fabsf(vj[0]-vi[0]) < 1e-6f) |
| 677 | { |
| 678 | if (vj[2] > vi[2]) |
| 679 | { |
| 680 | rcSwap(vj,vi); |
| 681 | swapped = true; |
| 682 | } |
| 683 | } |
| 684 | else |
| 685 | { |
| 686 | if (vj[0] > vi[0]) |
| 687 | { |
| 688 | rcSwap(vj,vi); |
| 689 | swapped = true; |
| 690 | } |
| 691 | } |
| 692 | // Create samples along the edge. |
| 693 | float dx = vi[0] - vj[0]; |
| 694 | float dy = vi[1] - vj[1]; |
| 695 | float dz = vi[2] - vj[2]; |
| 696 | float d = sqrtf(dx*dx + dz*dz); |
| 697 | int nn = 1 + (int)floorf(d/sampleDist); |
| 698 | if (nn >= MAX_VERTS_PER_EDGE) nn = MAX_VERTS_PER_EDGE-1; |
| 699 | if (nverts+nn >= MAX_VERTS) |
| 700 | nn = MAX_VERTS-1-nverts; |
| 701 | |
| 702 | for (int k = 0; k <= nn; ++k) |
| 703 | { |
| 704 | float u = (float)k/(float)nn; |
| 705 | float* pos = &edge[k*3]; |
| 706 | pos[0] = vj[0] + dx*u; |
| 707 | pos[1] = vj[1] + dy*u; |
| 708 | pos[2] = vj[2] + dz*u; |
| 709 | pos[1] = getHeight(pos[0],pos[1],pos[2], cs, ics, chf.ch, heightSearchRadius, hp)*chf.ch; |
| 710 | } |
| 711 | // Simplify samples. |
| 712 | int idx[MAX_VERTS_PER_EDGE] = {0,nn}; |
| 713 | int nidx = 2; |
| 714 | for (int k = 0; k < nidx-1; ) |
| 715 | { |
| 716 | const int a = idx[k]; |
| 717 | const int b = idx[k+1]; |
| 718 | const float* va = &edge[a*3]; |
| 719 | const float* vb = &edge[b*3]; |
| 720 | // Find maximum deviation along the segment. |
| 721 | float maxd = 0; |
| 722 | int maxi = -1; |
| 723 | for (int m = a+1; m < b; ++m) |
| 724 | { |
| 725 | float dev = distancePtSeg(&edge[m*3],va,vb); |
| 726 | if (dev > maxd) |
| 727 | { |
| 728 | maxd = dev; |
| 729 | maxi = m; |
| 730 | } |
| 731 | } |
| 732 | // If the max deviation is larger than accepted error, |
| 733 | // add new point, else continue to next segment. |
| 734 | if (maxi != -1 && maxd > rcSqr(sampleMaxError)) |
| 735 | { |
| 736 | for (int m = nidx; m > k; --m) |
| 737 | idx[m] = idx[m-1]; |
| 738 | idx[k+1] = maxi; |
| 739 | nidx++; |
| 740 | } |
| 741 | else |
| 742 | { |
| 743 | ++k; |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | hull[nhull++] = j; |
| 748 | // Add new vertices. |
| 749 | if (swapped) |
| 750 | { |
| 751 | for (int k = nidx-2; k > 0; --k) |
| 752 | { |
| 753 | rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); |
| 754 | hull[nhull++] = nverts; |
| 755 | nverts++; |
| 756 | } |
| 757 | } |
| 758 | else |
| 759 | { |
| 760 | for (int k = 1; k < nidx-1; ++k) |
| 761 | { |
| 762 | rcVcopy(&verts[nverts*3], &edge[idx[k]*3]); |
| 763 | hull[nhull++] = nverts; |
| 764 | nverts++; |
| 765 | } |
| 766 | } |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | // If the polygon minimum extent is small (sliver or small triangle), do not try to add internal points. |
| 771 | if (minExtent < sampleDist*2) |
| 772 | { |
| 773 | triangulateHull(nverts, verts, nhull, hull, nin, tris); |
| 774 | return true; |
| 775 | } |
| 776 | |
| 777 | // Tessellate the base mesh. |
| 778 | // We're using the triangulateHull instead of delaunayHull as it tends to |
| 779 | // create a bit better triangulation for long thin triangles when there |
| 780 | // are no internal points. |
| 781 | triangulateHull(nverts, verts, nhull, hull, nin, tris); |
| 782 | |
| 783 | if (tris.size() == 0) |
| 784 | { |
| 785 | // Could not triangulate the poly, make sure there is some valid data there. |
| 786 | ctx->log(RC_LOG_WARNING, "buildPolyDetail: Could not triangulate polygon (%d verts)." , nverts); |
| 787 | return true; |
| 788 | } |
| 789 | |
| 790 | if (sampleDist > 0) |
| 791 | { |
| 792 | // Create sample locations in a grid. |
| 793 | float bmin[3], bmax[3]; |
| 794 | rcVcopy(bmin, in); |
| 795 | rcVcopy(bmax, in); |
| 796 | for (int i = 1; i < nin; ++i) |
| 797 | { |
| 798 | rcVmin(bmin, &in[i*3]); |
| 799 | rcVmax(bmax, &in[i*3]); |
| 800 | } |
| 801 | int x0 = (int)floorf(bmin[0]/sampleDist); |
| 802 | int x1 = (int)ceilf(bmax[0]/sampleDist); |
| 803 | int z0 = (int)floorf(bmin[2]/sampleDist); |
| 804 | int z1 = (int)ceilf(bmax[2]/sampleDist); |
| 805 | samples.clear(); |
| 806 | for (int z = z0; z < z1; ++z) |
| 807 | { |
| 808 | for (int x = x0; x < x1; ++x) |
| 809 | { |
| 810 | float pt[3]; |
| 811 | pt[0] = x*sampleDist; |
| 812 | pt[1] = (bmax[1]+bmin[1])*0.5f; |
| 813 | pt[2] = z*sampleDist; |
| 814 | // Make sure the samples are not too close to the edges. |
| 815 | if (distToPoly(nin,in,pt) > -sampleDist/2) continue; |
| 816 | samples.push(x); |
| 817 | samples.push(getHeight(pt[0], pt[1], pt[2], cs, ics, chf.ch, heightSearchRadius, hp)); |
| 818 | samples.push(z); |
| 819 | samples.push(0); // Not added |
| 820 | } |
| 821 | } |
| 822 | |
| 823 | // Add the samples starting from the one that has the most |
| 824 | // error. The procedure stops when all samples are added |
| 825 | // or when the max error is within treshold. |
| 826 | const int nsamples = samples.size()/4; |
| 827 | for (int iter = 0; iter < nsamples; ++iter) |
| 828 | { |
| 829 | if (nverts >= MAX_VERTS) |
| 830 | break; |
| 831 | |
| 832 | // Find sample with most error. |
| 833 | float bestpt[3] = {0,0,0}; |
| 834 | float bestd = 0; |
| 835 | int besti = -1; |
| 836 | for (int i = 0; i < nsamples; ++i) |
| 837 | { |
| 838 | const int* s = &samples[i*4]; |
| 839 | if (s[3]) continue; // skip added. |
| 840 | float pt[3]; |
| 841 | // The sample location is jittered to get rid of some bad triangulations |
| 842 | // which are cause by symmetrical data from the grid structure. |
| 843 | pt[0] = s[0]*sampleDist + getJitterX(i)*cs*0.1f; |
| 844 | pt[1] = s[1]*chf.ch; |
| 845 | pt[2] = s[2]*sampleDist + getJitterY(i)*cs*0.1f; |
| 846 | float d = distToTriMesh(pt, verts, nverts, &tris[0], tris.size()/4); |
| 847 | if (d < 0) continue; // did not hit the mesh. |
| 848 | if (d > bestd) |
| 849 | { |
| 850 | bestd = d; |
| 851 | besti = i; |
| 852 | rcVcopy(bestpt,pt); |
| 853 | } |
| 854 | } |
| 855 | // If the max error is within accepted threshold, stop tesselating. |
| 856 | if (bestd <= sampleMaxError || besti == -1) |
| 857 | break; |
| 858 | // Mark sample as added. |
| 859 | samples[besti*4+3] = 1; |
| 860 | // Add the new sample point. |
| 861 | rcVcopy(&verts[nverts*3],bestpt); |
| 862 | nverts++; |
| 863 | |
| 864 | // Create new triangulation. |
| 865 | // TODO: Incremental add instead of full rebuild. |
| 866 | edges.clear(); |
| 867 | tris.clear(); |
| 868 | delaunayHull(ctx, nverts, verts, nhull, hull, tris, edges); |
| 869 | } |
| 870 | } |
| 871 | |
| 872 | const int ntris = tris.size()/4; |
| 873 | if (ntris > MAX_TRIS) |
| 874 | { |
| 875 | tris.resize(MAX_TRIS*4); |
| 876 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Shrinking triangle count from %d to max %d." , ntris, MAX_TRIS); |
| 877 | } |
| 878 | |
| 879 | return true; |
| 880 | } |
| 881 | |
| 882 | static void seedArrayWithPolyCenter(rcContext* ctx, const rcCompactHeightfield& chf, |
| 883 | const unsigned short* poly, const int npoly, |
| 884 | const unsigned short* verts, const int bs, |
| 885 | rcHeightPatch& hp, rcIntArray& array) |
| 886 | { |
| 887 | // Note: Reads to the compact heightfield are offset by border size (bs) |
| 888 | // since border size offset is already removed from the polymesh vertices. |
| 889 | |
| 890 | static const int offset[9*2] = |
| 891 | { |
| 892 | 0,0, -1,-1, 0,-1, 1,-1, 1,0, 1,1, 0,1, -1,1, -1,0, |
| 893 | }; |
| 894 | |
| 895 | // Find cell closest to a poly vertex |
| 896 | int startCellX = 0, startCellY = 0, startSpanIndex = -1; |
| 897 | int dmin = RC_UNSET_HEIGHT; |
| 898 | for (int j = 0; j < npoly && dmin > 0; ++j) |
| 899 | { |
| 900 | for (int k = 0; k < 9 && dmin > 0; ++k) |
| 901 | { |
| 902 | const int ax = (int)verts[poly[j]*3+0] + offset[k*2+0]; |
| 903 | const int ay = (int)verts[poly[j]*3+1]; |
| 904 | const int az = (int)verts[poly[j]*3+2] + offset[k*2+1]; |
| 905 | if (ax < hp.xmin || ax >= hp.xmin+hp.width || |
| 906 | az < hp.ymin || az >= hp.ymin+hp.height) |
| 907 | continue; |
| 908 | |
| 909 | const rcCompactCell& c = chf.cells[(ax+bs)+(az+bs)*chf.width]; |
| 910 | for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni && dmin > 0; ++i) |
| 911 | { |
| 912 | const rcCompactSpan& s = chf.spans[i]; |
| 913 | int d = rcAbs(ay - (int)s.y); |
| 914 | if (d < dmin) |
| 915 | { |
| 916 | startCellX = ax; |
| 917 | startCellY = az; |
| 918 | startSpanIndex = i; |
| 919 | dmin = d; |
| 920 | } |
| 921 | } |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | rcAssert(startSpanIndex != -1); |
| 926 | // Find center of the polygon |
| 927 | int pcx = 0, pcy = 0; |
| 928 | for (int j = 0; j < npoly; ++j) |
| 929 | { |
| 930 | pcx += (int)verts[poly[j]*3+0]; |
| 931 | pcy += (int)verts[poly[j]*3+2]; |
| 932 | } |
| 933 | pcx /= npoly; |
| 934 | pcy /= npoly; |
| 935 | |
| 936 | // Use seeds array as a stack for DFS |
| 937 | array.clear(); |
| 938 | array.push(startCellX); |
| 939 | array.push(startCellY); |
| 940 | array.push(startSpanIndex); |
| 941 | |
| 942 | int dirs[] = { 0, 1, 2, 3 }; |
| 943 | memset(hp.data, 0, sizeof(unsigned short)*hp.width*hp.height); |
| 944 | // DFS to move to the center. Note that we need a DFS here and can not just move |
| 945 | // directly towards the center without recording intermediate nodes, even though the polygons |
| 946 | // are convex. In very rare we can get stuck due to contour simplification if we do not |
| 947 | // record nodes. |
| 948 | int cx = -1, cy = -1, ci = -1; |
| 949 | while (true) |
| 950 | { |
| 951 | if (array.size() < 3) |
| 952 | { |
| 953 | ctx->log(RC_LOG_WARNING, "Walk towards polygon center failed to reach center" ); |
| 954 | break; |
| 955 | } |
| 956 | |
| 957 | ci = array.pop(); |
| 958 | cy = array.pop(); |
| 959 | cx = array.pop(); |
| 960 | |
| 961 | if (cx == pcx && cy == pcy) |
| 962 | break; |
| 963 | |
| 964 | // If we are already at the correct X-position, prefer direction |
| 965 | // directly towards the center in the Y-axis; otherwise prefer |
| 966 | // direction in the X-axis |
| 967 | int directDir; |
| 968 | if (cx == pcx) |
| 969 | directDir = rcGetDirForOffset(0, pcy > cy ? 1 : -1); |
| 970 | else |
| 971 | directDir = rcGetDirForOffset(pcx > cx ? 1 : -1, 0); |
| 972 | |
| 973 | // Push the direct dir last so we start with this on next iteration |
| 974 | rcSwap(dirs[directDir], dirs[3]); |
| 975 | |
| 976 | const rcCompactSpan& cs = chf.spans[ci]; |
| 977 | for (int i = 0; i < 4; i++) |
| 978 | { |
| 979 | int dir = dirs[i]; |
| 980 | if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) |
| 981 | continue; |
| 982 | |
| 983 | int newX = cx + rcGetDirOffsetX(dir); |
| 984 | int newY = cy + rcGetDirOffsetY(dir); |
| 985 | |
| 986 | int hpx = newX - hp.xmin; |
| 987 | int hpy = newY - hp.ymin; |
| 988 | if (hpx < 0 || hpx >= hp.width || hpy < 0 || hpy >= hp.height) |
| 989 | continue; |
| 990 | |
| 991 | if (hp.data[hpx+hpy*hp.width] != 0) |
| 992 | continue; |
| 993 | |
| 994 | hp.data[hpx+hpy*hp.width] = 1; |
| 995 | array.push(newX); |
| 996 | array.push(newY); |
| 997 | array.push((int)chf.cells[(newX+bs)+(newY+bs)*chf.width].index + rcGetCon(cs, dir)); |
| 998 | } |
| 999 | |
| 1000 | rcSwap(dirs[directDir], dirs[3]); |
| 1001 | } |
| 1002 | |
| 1003 | array.clear(); |
| 1004 | // getHeightData seeds are given in coordinates with borders |
| 1005 | array.push(cx+bs); |
| 1006 | array.push(cy+bs); |
| 1007 | array.push(ci); |
| 1008 | |
| 1009 | memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); |
| 1010 | const rcCompactSpan& cs = chf.spans[ci]; |
| 1011 | hp.data[cx-hp.xmin+(cy-hp.ymin)*hp.width] = cs.y; |
| 1012 | } |
| 1013 | |
| 1014 | |
| 1015 | static void push3(rcIntArray& queue, int v1, int v2, int v3) |
| 1016 | { |
| 1017 | queue.resize(queue.size() + 3); |
| 1018 | queue[queue.size() - 3] = v1; |
| 1019 | queue[queue.size() - 2] = v2; |
| 1020 | queue[queue.size() - 1] = v3; |
| 1021 | } |
| 1022 | |
| 1023 | static void getHeightData(rcContext* ctx, const rcCompactHeightfield& chf, |
| 1024 | const unsigned short* poly, const int npoly, |
| 1025 | const unsigned short* verts, const int bs, |
| 1026 | rcHeightPatch& hp, rcIntArray& queue, |
| 1027 | int region) |
| 1028 | { |
| 1029 | // Note: Reads to the compact heightfield are offset by border size (bs) |
| 1030 | // since border size offset is already removed from the polymesh vertices. |
| 1031 | |
| 1032 | queue.clear(); |
| 1033 | // Set all heights to RC_UNSET_HEIGHT. |
| 1034 | memset(hp.data, 0xff, sizeof(unsigned short)*hp.width*hp.height); |
| 1035 | |
| 1036 | bool empty = true; |
| 1037 | |
| 1038 | // We cannot sample from this poly if it was created from polys |
| 1039 | // of different regions. If it was then it could potentially be overlapping |
| 1040 | // with polys of that region and the heights sampled here could be wrong. |
| 1041 | if (region != RC_MULTIPLE_REGS) |
| 1042 | { |
| 1043 | // Copy the height from the same region, and mark region borders |
| 1044 | // as seed points to fill the rest. |
| 1045 | for (int hy = 0; hy < hp.height; hy++) |
| 1046 | { |
| 1047 | int y = hp.ymin + hy + bs; |
| 1048 | for (int hx = 0; hx < hp.width; hx++) |
| 1049 | { |
| 1050 | int x = hp.xmin + hx + bs; |
| 1051 | const rcCompactCell& c = chf.cells[x + y*chf.width]; |
| 1052 | for (int i = (int)c.index, ni = (int)(c.index + c.count); i < ni; ++i) |
| 1053 | { |
| 1054 | const rcCompactSpan& s = chf.spans[i]; |
| 1055 | if (s.reg == region) |
| 1056 | { |
| 1057 | // Store height |
| 1058 | hp.data[hx + hy*hp.width] = s.y; |
| 1059 | empty = false; |
| 1060 | |
| 1061 | // If any of the neighbours is not in same region, |
| 1062 | // add the current location as flood fill start |
| 1063 | bool border = false; |
| 1064 | for (int dir = 0; dir < 4; ++dir) |
| 1065 | { |
| 1066 | if (rcGetCon(s, dir) != RC_NOT_CONNECTED) |
| 1067 | { |
| 1068 | const int ax = x + rcGetDirOffsetX(dir); |
| 1069 | const int ay = y + rcGetDirOffsetY(dir); |
| 1070 | const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(s, dir); |
| 1071 | const rcCompactSpan& as = chf.spans[ai]; |
| 1072 | if (as.reg != region) |
| 1073 | { |
| 1074 | border = true; |
| 1075 | break; |
| 1076 | } |
| 1077 | } |
| 1078 | } |
| 1079 | if (border) |
| 1080 | push3(queue, x, y, i); |
| 1081 | break; |
| 1082 | } |
| 1083 | } |
| 1084 | } |
| 1085 | } |
| 1086 | } |
| 1087 | |
| 1088 | // if the polygon does not contain any points from the current region (rare, but happens) |
| 1089 | // or if it could potentially be overlapping polygons of the same region, |
| 1090 | // then use the center as the seed point. |
| 1091 | if (empty) |
| 1092 | seedArrayWithPolyCenter(ctx, chf, poly, npoly, verts, bs, hp, queue); |
| 1093 | |
| 1094 | static const int RETRACT_SIZE = 256; |
| 1095 | int head = 0; |
| 1096 | |
| 1097 | // We assume the seed is centered in the polygon, so a BFS to collect |
| 1098 | // height data will ensure we do not move onto overlapping polygons and |
| 1099 | // sample wrong heights. |
| 1100 | while (head*3 < queue.size()) |
| 1101 | { |
| 1102 | int cx = queue[head*3+0]; |
| 1103 | int cy = queue[head*3+1]; |
| 1104 | int ci = queue[head*3+2]; |
| 1105 | head++; |
| 1106 | if (head >= RETRACT_SIZE) |
| 1107 | { |
| 1108 | head = 0; |
| 1109 | if (queue.size() > RETRACT_SIZE*3) |
| 1110 | memmove(&queue[0], &queue[RETRACT_SIZE*3], sizeof(int)*(queue.size()-RETRACT_SIZE*3)); |
| 1111 | queue.resize(queue.size()-RETRACT_SIZE*3); |
| 1112 | } |
| 1113 | |
| 1114 | const rcCompactSpan& cs = chf.spans[ci]; |
| 1115 | for (int dir = 0; dir < 4; ++dir) |
| 1116 | { |
| 1117 | if (rcGetCon(cs, dir) == RC_NOT_CONNECTED) continue; |
| 1118 | |
| 1119 | const int ax = cx + rcGetDirOffsetX(dir); |
| 1120 | const int ay = cy + rcGetDirOffsetY(dir); |
| 1121 | const int hx = ax - hp.xmin - bs; |
| 1122 | const int hy = ay - hp.ymin - bs; |
| 1123 | |
| 1124 | if ((unsigned int)hx >= (unsigned int)hp.width || (unsigned int)hy >= (unsigned int)hp.height) |
| 1125 | continue; |
| 1126 | |
| 1127 | if (hp.data[hx + hy*hp.width] != RC_UNSET_HEIGHT) |
| 1128 | continue; |
| 1129 | |
| 1130 | const int ai = (int)chf.cells[ax + ay*chf.width].index + rcGetCon(cs, dir); |
| 1131 | const rcCompactSpan& as = chf.spans[ai]; |
| 1132 | |
| 1133 | hp.data[hx + hy*hp.width] = as.y; |
| 1134 | |
| 1135 | push3(queue, ax, ay, ai); |
| 1136 | } |
| 1137 | } |
| 1138 | } |
| 1139 | |
| 1140 | static unsigned char getEdgeFlags(const float* va, const float* vb, |
| 1141 | const float* vpoly, const int npoly) |
| 1142 | { |
| 1143 | // The flag returned by this function matches dtDetailTriEdgeFlags in Detour. |
| 1144 | // Figure out if edge (va,vb) is part of the polygon boundary. |
| 1145 | static const float thrSqr = rcSqr(0.001f); |
| 1146 | for (int i = 0, j = npoly-1; i < npoly; j=i++) |
| 1147 | { |
| 1148 | if (distancePtSeg2d(va, &vpoly[j*3], &vpoly[i*3]) < thrSqr && |
| 1149 | distancePtSeg2d(vb, &vpoly[j*3], &vpoly[i*3]) < thrSqr) |
| 1150 | return 1; |
| 1151 | } |
| 1152 | return 0; |
| 1153 | } |
| 1154 | |
| 1155 | static unsigned char getTriFlags(const float* va, const float* vb, const float* vc, |
| 1156 | const float* vpoly, const int npoly) |
| 1157 | { |
| 1158 | unsigned char flags = 0; |
| 1159 | flags |= getEdgeFlags(va,vb,vpoly,npoly) << 0; |
| 1160 | flags |= getEdgeFlags(vb,vc,vpoly,npoly) << 2; |
| 1161 | flags |= getEdgeFlags(vc,va,vpoly,npoly) << 4; |
| 1162 | return flags; |
| 1163 | } |
| 1164 | |
| 1165 | /// @par |
| 1166 | /// |
| 1167 | /// See the #rcConfig documentation for more information on the configuration parameters. |
| 1168 | /// |
| 1169 | /// @see rcAllocPolyMeshDetail, rcPolyMesh, rcCompactHeightfield, rcPolyMeshDetail, rcConfig |
| 1170 | bool rcBuildPolyMeshDetail(rcContext* ctx, const rcPolyMesh& mesh, const rcCompactHeightfield& chf, |
| 1171 | const float sampleDist, const float sampleMaxError, |
| 1172 | rcPolyMeshDetail& dmesh) |
| 1173 | { |
| 1174 | rcAssert(ctx); |
| 1175 | |
| 1176 | rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESHDETAIL); |
| 1177 | |
| 1178 | if (mesh.nverts == 0 || mesh.npolys == 0) |
| 1179 | return true; |
| 1180 | |
| 1181 | const int nvp = mesh.nvp; |
| 1182 | const float cs = mesh.cs; |
| 1183 | const float ch = mesh.ch; |
| 1184 | const float* orig = mesh.bmin; |
| 1185 | const int borderSize = mesh.borderSize; |
| 1186 | const int heightSearchRadius = rcMax(1, (int)ceilf(mesh.maxEdgeError)); |
| 1187 | |
| 1188 | rcIntArray edges(64); |
| 1189 | rcIntArray tris(512); |
| 1190 | rcIntArray arr(512); |
| 1191 | rcIntArray samples(512); |
| 1192 | float verts[256*3]; |
| 1193 | rcHeightPatch hp; |
| 1194 | int nPolyVerts = 0; |
| 1195 | int maxhw = 0, maxhh = 0; |
| 1196 | |
| 1197 | rcScopedDelete<int> bounds((int*)rcAlloc(sizeof(int)*mesh.npolys*4, RC_ALLOC_TEMP)); |
| 1198 | if (!bounds) |
| 1199 | { |
| 1200 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'bounds' (%d)." , mesh.npolys*4); |
| 1201 | return false; |
| 1202 | } |
| 1203 | rcScopedDelete<float> poly((float*)rcAlloc(sizeof(float)*nvp*3, RC_ALLOC_TEMP)); |
| 1204 | if (!poly) |
| 1205 | { |
| 1206 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'poly' (%d)." , nvp*3); |
| 1207 | return false; |
| 1208 | } |
| 1209 | |
| 1210 | // Find max size for a polygon area. |
| 1211 | for (int i = 0; i < mesh.npolys; ++i) |
| 1212 | { |
| 1213 | const unsigned short* p = &mesh.polys[i*nvp*2]; |
| 1214 | int& xmin = bounds[i*4+0]; |
| 1215 | int& xmax = bounds[i*4+1]; |
| 1216 | int& ymin = bounds[i*4+2]; |
| 1217 | int& ymax = bounds[i*4+3]; |
| 1218 | xmin = chf.width; |
| 1219 | xmax = 0; |
| 1220 | ymin = chf.height; |
| 1221 | ymax = 0; |
| 1222 | for (int j = 0; j < nvp; ++j) |
| 1223 | { |
| 1224 | if(p[j] == RC_MESH_NULL_IDX) break; |
| 1225 | const unsigned short* v = &mesh.verts[p[j]*3]; |
| 1226 | xmin = rcMin(xmin, (int)v[0]); |
| 1227 | xmax = rcMax(xmax, (int)v[0]); |
| 1228 | ymin = rcMin(ymin, (int)v[2]); |
| 1229 | ymax = rcMax(ymax, (int)v[2]); |
| 1230 | nPolyVerts++; |
| 1231 | } |
| 1232 | xmin = rcMax(0,xmin-1); |
| 1233 | xmax = rcMin(chf.width,xmax+1); |
| 1234 | ymin = rcMax(0,ymin-1); |
| 1235 | ymax = rcMin(chf.height,ymax+1); |
| 1236 | if (xmin >= xmax || ymin >= ymax) continue; |
| 1237 | maxhw = rcMax(maxhw, xmax-xmin); |
| 1238 | maxhh = rcMax(maxhh, ymax-ymin); |
| 1239 | } |
| 1240 | |
| 1241 | hp.data = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxhw*maxhh, RC_ALLOC_TEMP); |
| 1242 | if (!hp.data) |
| 1243 | { |
| 1244 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'hp.data' (%d)." , maxhw*maxhh); |
| 1245 | return false; |
| 1246 | } |
| 1247 | |
| 1248 | dmesh.nmeshes = mesh.npolys; |
| 1249 | dmesh.nverts = 0; |
| 1250 | dmesh.ntris = 0; |
| 1251 | dmesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*dmesh.nmeshes*4, RC_ALLOC_PERM); |
| 1252 | if (!dmesh.meshes) |
| 1253 | { |
| 1254 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.meshes' (%d)." , dmesh.nmeshes*4); |
| 1255 | return false; |
| 1256 | } |
| 1257 | |
| 1258 | int vcap = nPolyVerts+nPolyVerts/2; |
| 1259 | int tcap = vcap*2; |
| 1260 | |
| 1261 | dmesh.nverts = 0; |
| 1262 | dmesh.verts = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); |
| 1263 | if (!dmesh.verts) |
| 1264 | { |
| 1265 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d)." , vcap*3); |
| 1266 | return false; |
| 1267 | } |
| 1268 | dmesh.ntris = 0; |
| 1269 | dmesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); |
| 1270 | if (!dmesh.tris) |
| 1271 | { |
| 1272 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d)." , tcap*4); |
| 1273 | return false; |
| 1274 | } |
| 1275 | |
| 1276 | for (int i = 0; i < mesh.npolys; ++i) |
| 1277 | { |
| 1278 | const unsigned short* p = &mesh.polys[i*nvp*2]; |
| 1279 | |
| 1280 | // Store polygon vertices for processing. |
| 1281 | int npoly = 0; |
| 1282 | for (int j = 0; j < nvp; ++j) |
| 1283 | { |
| 1284 | if(p[j] == RC_MESH_NULL_IDX) break; |
| 1285 | const unsigned short* v = &mesh.verts[p[j]*3]; |
| 1286 | poly[j*3+0] = v[0]*cs; |
| 1287 | poly[j*3+1] = v[1]*ch; |
| 1288 | poly[j*3+2] = v[2]*cs; |
| 1289 | npoly++; |
| 1290 | } |
| 1291 | |
| 1292 | // Get the height data from the area of the polygon. |
| 1293 | hp.xmin = bounds[i*4+0]; |
| 1294 | hp.ymin = bounds[i*4+2]; |
| 1295 | hp.width = bounds[i*4+1]-bounds[i*4+0]; |
| 1296 | hp.height = bounds[i*4+3]-bounds[i*4+2]; |
| 1297 | getHeightData(ctx, chf, p, npoly, mesh.verts, borderSize, hp, arr, mesh.regs[i]); |
| 1298 | |
| 1299 | // Build detail mesh. |
| 1300 | int nverts = 0; |
| 1301 | if (!buildPolyDetail(ctx, poly, npoly, |
| 1302 | sampleDist, sampleMaxError, |
| 1303 | heightSearchRadius, chf, hp, |
| 1304 | verts, nverts, tris, |
| 1305 | edges, samples)) |
| 1306 | { |
| 1307 | return false; |
| 1308 | } |
| 1309 | |
| 1310 | // Move detail verts to world space. |
| 1311 | for (int j = 0; j < nverts; ++j) |
| 1312 | { |
| 1313 | verts[j*3+0] += orig[0]; |
| 1314 | verts[j*3+1] += orig[1] + chf.ch; // Is this offset necessary? |
| 1315 | verts[j*3+2] += orig[2]; |
| 1316 | } |
| 1317 | // Offset poly too, will be used to flag checking. |
| 1318 | for (int j = 0; j < npoly; ++j) |
| 1319 | { |
| 1320 | poly[j*3+0] += orig[0]; |
| 1321 | poly[j*3+1] += orig[1]; |
| 1322 | poly[j*3+2] += orig[2]; |
| 1323 | } |
| 1324 | |
| 1325 | // Store detail submesh. |
| 1326 | const int ntris = tris.size()/4; |
| 1327 | |
| 1328 | dmesh.meshes[i*4+0] = (unsigned int)dmesh.nverts; |
| 1329 | dmesh.meshes[i*4+1] = (unsigned int)nverts; |
| 1330 | dmesh.meshes[i*4+2] = (unsigned int)dmesh.ntris; |
| 1331 | dmesh.meshes[i*4+3] = (unsigned int)ntris; |
| 1332 | |
| 1333 | // Store vertices, allocate more memory if necessary. |
| 1334 | if (dmesh.nverts+nverts > vcap) |
| 1335 | { |
| 1336 | while (dmesh.nverts+nverts > vcap) |
| 1337 | vcap += 256; |
| 1338 | |
| 1339 | float* newv = (float*)rcAlloc(sizeof(float)*vcap*3, RC_ALLOC_PERM); |
| 1340 | if (!newv) |
| 1341 | { |
| 1342 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newv' (%d)." , vcap*3); |
| 1343 | return false; |
| 1344 | } |
| 1345 | if (dmesh.nverts) |
| 1346 | memcpy(newv, dmesh.verts, sizeof(float)*3*dmesh.nverts); |
| 1347 | rcFree(dmesh.verts); |
| 1348 | dmesh.verts = newv; |
| 1349 | } |
| 1350 | for (int j = 0; j < nverts; ++j) |
| 1351 | { |
| 1352 | dmesh.verts[dmesh.nverts*3+0] = verts[j*3+0]; |
| 1353 | dmesh.verts[dmesh.nverts*3+1] = verts[j*3+1]; |
| 1354 | dmesh.verts[dmesh.nverts*3+2] = verts[j*3+2]; |
| 1355 | dmesh.nverts++; |
| 1356 | } |
| 1357 | |
| 1358 | // Store triangles, allocate more memory if necessary. |
| 1359 | if (dmesh.ntris+ntris > tcap) |
| 1360 | { |
| 1361 | while (dmesh.ntris+ntris > tcap) |
| 1362 | tcap += 256; |
| 1363 | unsigned char* newt = (unsigned char*)rcAlloc(sizeof(unsigned char)*tcap*4, RC_ALLOC_PERM); |
| 1364 | if (!newt) |
| 1365 | { |
| 1366 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'newt' (%d)." , tcap*4); |
| 1367 | return false; |
| 1368 | } |
| 1369 | if (dmesh.ntris) |
| 1370 | memcpy(newt, dmesh.tris, sizeof(unsigned char)*4*dmesh.ntris); |
| 1371 | rcFree(dmesh.tris); |
| 1372 | dmesh.tris = newt; |
| 1373 | } |
| 1374 | for (int j = 0; j < ntris; ++j) |
| 1375 | { |
| 1376 | const int* t = &tris[j*4]; |
| 1377 | dmesh.tris[dmesh.ntris*4+0] = (unsigned char)t[0]; |
| 1378 | dmesh.tris[dmesh.ntris*4+1] = (unsigned char)t[1]; |
| 1379 | dmesh.tris[dmesh.ntris*4+2] = (unsigned char)t[2]; |
| 1380 | dmesh.tris[dmesh.ntris*4+3] = getTriFlags(&verts[t[0]*3], &verts[t[1]*3], &verts[t[2]*3], poly, npoly); |
| 1381 | dmesh.ntris++; |
| 1382 | } |
| 1383 | } |
| 1384 | |
| 1385 | return true; |
| 1386 | } |
| 1387 | |
| 1388 | /// @see rcAllocPolyMeshDetail, rcPolyMeshDetail |
| 1389 | bool rcMergePolyMeshDetails(rcContext* ctx, rcPolyMeshDetail** meshes, const int nmeshes, rcPolyMeshDetail& mesh) |
| 1390 | { |
| 1391 | rcAssert(ctx); |
| 1392 | |
| 1393 | rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESHDETAIL); |
| 1394 | |
| 1395 | int maxVerts = 0; |
| 1396 | int maxTris = 0; |
| 1397 | int maxMeshes = 0; |
| 1398 | |
| 1399 | for (int i = 0; i < nmeshes; ++i) |
| 1400 | { |
| 1401 | if (!meshes[i]) continue; |
| 1402 | maxVerts += meshes[i]->nverts; |
| 1403 | maxTris += meshes[i]->ntris; |
| 1404 | maxMeshes += meshes[i]->nmeshes; |
| 1405 | } |
| 1406 | |
| 1407 | mesh.nmeshes = 0; |
| 1408 | mesh.meshes = (unsigned int*)rcAlloc(sizeof(unsigned int)*maxMeshes*4, RC_ALLOC_PERM); |
| 1409 | if (!mesh.meshes) |
| 1410 | { |
| 1411 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'pmdtl.meshes' (%d)." , maxMeshes*4); |
| 1412 | return false; |
| 1413 | } |
| 1414 | |
| 1415 | mesh.ntris = 0; |
| 1416 | mesh.tris = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxTris*4, RC_ALLOC_PERM); |
| 1417 | if (!mesh.tris) |
| 1418 | { |
| 1419 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.tris' (%d)." , maxTris*4); |
| 1420 | return false; |
| 1421 | } |
| 1422 | |
| 1423 | mesh.nverts = 0; |
| 1424 | mesh.verts = (float*)rcAlloc(sizeof(float)*maxVerts*3, RC_ALLOC_PERM); |
| 1425 | if (!mesh.verts) |
| 1426 | { |
| 1427 | ctx->log(RC_LOG_ERROR, "rcBuildPolyMeshDetail: Out of memory 'dmesh.verts' (%d)." , maxVerts*3); |
| 1428 | return false; |
| 1429 | } |
| 1430 | |
| 1431 | // Merge datas. |
| 1432 | for (int i = 0; i < nmeshes; ++i) |
| 1433 | { |
| 1434 | rcPolyMeshDetail* dm = meshes[i]; |
| 1435 | if (!dm) continue; |
| 1436 | for (int j = 0; j < dm->nmeshes; ++j) |
| 1437 | { |
| 1438 | unsigned int* dst = &mesh.meshes[mesh.nmeshes*4]; |
| 1439 | unsigned int* src = &dm->meshes[j*4]; |
| 1440 | dst[0] = (unsigned int)mesh.nverts+src[0]; |
| 1441 | dst[1] = src[1]; |
| 1442 | dst[2] = (unsigned int)mesh.ntris+src[2]; |
| 1443 | dst[3] = src[3]; |
| 1444 | mesh.nmeshes++; |
| 1445 | } |
| 1446 | |
| 1447 | for (int k = 0; k < dm->nverts; ++k) |
| 1448 | { |
| 1449 | rcVcopy(&mesh.verts[mesh.nverts*3], &dm->verts[k*3]); |
| 1450 | mesh.nverts++; |
| 1451 | } |
| 1452 | for (int k = 0; k < dm->ntris; ++k) |
| 1453 | { |
| 1454 | mesh.tris[mesh.ntris*4+0] = dm->tris[k*4+0]; |
| 1455 | mesh.tris[mesh.ntris*4+1] = dm->tris[k*4+1]; |
| 1456 | mesh.tris[mesh.ntris*4+2] = dm->tris[k*4+2]; |
| 1457 | mesh.tris[mesh.ntris*4+3] = dm->tris[k*4+3]; |
| 1458 | mesh.ntris++; |
| 1459 | } |
| 1460 | } |
| 1461 | |
| 1462 | return true; |
| 1463 | } |
| 1464 | |