1 | // |
2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
3 | // |
4 | // This software is provided 'as-is', without any express or implied |
5 | // warranty. In no event will the authors be held liable for any damages |
6 | // arising from the use of this software. |
7 | // Permission is granted to anyone to use this software for any purpose, |
8 | // including commercial applications, and to alter it and redistribute it |
9 | // freely, subject to the following restrictions: |
10 | // 1. The origin of this software must not be misrepresented; you must not |
11 | // claim that you wrote the original software. If you use this software |
12 | // in a product, an acknowledgment in the product documentation would be |
13 | // appreciated but is not required. |
14 | // 2. Altered source versions must be plainly marked as such, and must not be |
15 | // misrepresented as being the original software. |
16 | // 3. This notice may not be removed or altered from any source distribution. |
17 | // |
18 | |
19 | #include <math.h> |
20 | #include <stdio.h> |
21 | #include "Recast.h" |
22 | #include "RecastAlloc.h" |
23 | #include "RecastAssert.h" |
24 | |
25 | /// Check whether two bounding boxes overlap |
26 | /// |
27 | /// @param[in] aMin Min axis extents of bounding box A |
28 | /// @param[in] aMax Max axis extents of bounding box A |
29 | /// @param[in] bMin Min axis extents of bounding box B |
30 | /// @param[in] bMax Max axis extents of bounding box B |
31 | /// @returns true if the two bounding boxes overlap. False otherwise. |
32 | static bool overlapBounds(const float* aMin, const float* aMax, const float* bMin, const float* bMax) |
33 | { |
34 | return |
35 | aMin[0] <= bMax[0] && aMax[0] >= bMin[0] && |
36 | aMin[1] <= bMax[1] && aMax[1] >= bMin[1] && |
37 | aMin[2] <= bMax[2] && aMax[2] >= bMin[2]; |
38 | } |
39 | |
40 | /// Allocates a new span in the heightfield. |
41 | /// Use a memory pool and free list to minimize actual allocations. |
42 | /// |
43 | /// @param[in] hf The heightfield |
44 | /// @returns A pointer to the allocated or re-used span memory. |
45 | static rcSpan* allocSpan(rcHeightfield& hf) |
46 | { |
47 | // If necessary, allocate new page and update the freelist. |
48 | if (hf.freelist == NULL || hf.freelist->next == NULL) |
49 | { |
50 | // Create new page. |
51 | // Allocate memory for the new pool. |
52 | rcSpanPool* spanPool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM); |
53 | if (spanPool == NULL) |
54 | { |
55 | return NULL; |
56 | } |
57 | |
58 | // Add the pool into the list of pools. |
59 | spanPool->next = hf.pools; |
60 | hf.pools = spanPool; |
61 | |
62 | // Add new spans to the free list. |
63 | rcSpan* freeList = hf.freelist; |
64 | rcSpan* head = &spanPool->items[0]; |
65 | rcSpan* it = &spanPool->items[RC_SPANS_PER_POOL]; |
66 | do |
67 | { |
68 | --it; |
69 | it->next = freeList; |
70 | freeList = it; |
71 | } |
72 | while (it != head); |
73 | hf.freelist = it; |
74 | } |
75 | |
76 | // Pop item from the front of the free list. |
77 | rcSpan* newSpan = hf.freelist; |
78 | hf.freelist = hf.freelist->next; |
79 | return newSpan; |
80 | } |
81 | |
82 | /// Releases the memory used by the span back to the heightfield, so it can be re-used for new spans. |
83 | /// @param[in] hf The heightfield. |
84 | /// @param[in] span A pointer to the span to free |
85 | static void freeSpan(rcHeightfield& hf, rcSpan* span) |
86 | { |
87 | if (span == NULL) |
88 | { |
89 | return; |
90 | } |
91 | // Add the span to the front of the free list. |
92 | span->next = hf.freelist; |
93 | hf.freelist = span; |
94 | } |
95 | |
96 | /// Adds a span to the heightfield. If the new span overlaps existing spans, |
97 | /// it will merge the new span with the existing ones. |
98 | /// |
99 | /// @param[in] hf Heightfield to add spans to |
100 | /// @param[in] x The new span's column cell x index |
101 | /// @param[in] z The new span's column cell z index |
102 | /// @param[in] min The new span's minimum cell index |
103 | /// @param[in] max The new span's maximum cell index |
104 | /// @param[in] areaID The new span's area type ID |
105 | /// @param[in] flagMergeThreshold How close two spans maximum extents need to be to merge area type IDs |
106 | static bool addSpan(rcHeightfield& hf, |
107 | const int x, const int z, |
108 | const unsigned short min, const unsigned short max, |
109 | const unsigned char areaID, const int flagMergeThreshold) |
110 | { |
111 | // Create the new span. |
112 | rcSpan* newSpan = allocSpan(hf); |
113 | if (newSpan == NULL) |
114 | { |
115 | return false; |
116 | } |
117 | newSpan->smin = min; |
118 | newSpan->smax = max; |
119 | newSpan->area = areaID; |
120 | newSpan->next = NULL; |
121 | |
122 | const int columnIndex = x + z * hf.width; |
123 | rcSpan* previousSpan = NULL; |
124 | rcSpan* currentSpan = hf.spans[columnIndex]; |
125 | |
126 | // Insert the new span, possibly merging it with existing spans. |
127 | while (currentSpan != NULL) |
128 | { |
129 | if (currentSpan->smin > newSpan->smax) |
130 | { |
131 | // Current span is completely after the new span, break. |
132 | break; |
133 | } |
134 | |
135 | if (currentSpan->smax < newSpan->smin) |
136 | { |
137 | // Current span is completely before the new span. Keep going. |
138 | previousSpan = currentSpan; |
139 | currentSpan = currentSpan->next; |
140 | } |
141 | else |
142 | { |
143 | // The new span overlaps with an existing span. Merge them. |
144 | if (currentSpan->smin < newSpan->smin) |
145 | { |
146 | newSpan->smin = currentSpan->smin; |
147 | } |
148 | if (currentSpan->smax > newSpan->smax) |
149 | { |
150 | newSpan->smax = currentSpan->smax; |
151 | } |
152 | |
153 | // Merge flags. |
154 | if (rcAbs((int)newSpan->smax - (int)currentSpan->smax) <= flagMergeThreshold) |
155 | { |
156 | // Higher area ID numbers indicate higher resolution priority. |
157 | newSpan->area = rcMax(newSpan->area, currentSpan->area); |
158 | } |
159 | |
160 | // Remove the current span since it's now merged with newSpan. |
161 | // Keep going because there might be other overlapping spans that also need to be merged. |
162 | rcSpan* next = currentSpan->next; |
163 | freeSpan(hf, currentSpan); |
164 | if (previousSpan) |
165 | { |
166 | previousSpan->next = next; |
167 | } |
168 | else |
169 | { |
170 | hf.spans[columnIndex] = next; |
171 | } |
172 | currentSpan = next; |
173 | } |
174 | } |
175 | |
176 | // Insert new span after prev |
177 | if (previousSpan != NULL) |
178 | { |
179 | newSpan->next = previousSpan->next; |
180 | previousSpan->next = newSpan; |
181 | } |
182 | else |
183 | { |
184 | // This span should go before the others in the list |
185 | newSpan->next = hf.spans[columnIndex]; |
186 | hf.spans[columnIndex] = newSpan; |
187 | } |
188 | |
189 | return true; |
190 | } |
191 | |
192 | bool rcAddSpan(rcContext* context, rcHeightfield& heightfield, |
193 | const int x, const int z, |
194 | const unsigned short spanMin, const unsigned short spanMax, |
195 | const unsigned char areaID, const int flagMergeThreshold) |
196 | { |
197 | rcAssert(context); |
198 | |
199 | if (!addSpan(heightfield, x, z, spanMin, spanMax, areaID, flagMergeThreshold)) |
200 | { |
201 | context->log(RC_LOG_ERROR, "rcAddSpan: Out of memory." ); |
202 | return false; |
203 | } |
204 | |
205 | return true; |
206 | } |
207 | |
208 | enum rcAxis |
209 | { |
210 | RC_AXIS_X = 0, |
211 | RC_AXIS_Y = 1, |
212 | RC_AXIS_Z = 2 |
213 | }; |
214 | |
215 | /// Divides a convex polygon of max 12 vertices into two convex polygons |
216 | /// across a separating axis. |
217 | /// |
218 | /// @param[in] inVerts The input polygon vertices |
219 | /// @param[in] inVertsCount The number of input polygon vertices |
220 | /// @param[out] outVerts1 Resulting polygon 1's vertices |
221 | /// @param[out] outVerts1Count The number of resulting polygon 1 vertices |
222 | /// @param[out] outVerts2 Resulting polygon 2's vertices |
223 | /// @param[out] outVerts2Count The number of resulting polygon 2 vertices |
224 | /// @param[in] axisOffset THe offset along the specified axis |
225 | /// @param[in] axis The separating axis |
226 | static void dividePoly(const float* inVerts, int inVertsCount, |
227 | float* outVerts1, int* outVerts1Count, |
228 | float* outVerts2, int* outVerts2Count, |
229 | float axisOffset, rcAxis axis) |
230 | { |
231 | rcAssert(inVertsCount <= 12); |
232 | |
233 | // How far positive or negative away from the separating axis is each vertex. |
234 | float inVertAxisDelta[12]; |
235 | for (int inVert = 0; inVert < inVertsCount; ++inVert) |
236 | { |
237 | inVertAxisDelta[inVert] = axisOffset - inVerts[inVert * 3 + axis]; |
238 | } |
239 | |
240 | int poly1Vert = 0; |
241 | int poly2Vert = 0; |
242 | for (int inVertA = 0, inVertB = inVertsCount - 1; inVertA < inVertsCount; inVertB = inVertA, ++inVertA) |
243 | { |
244 | // If the two vertices are on the same side of the separating axis |
245 | bool sameSide = (inVertAxisDelta[inVertA] >= 0) == (inVertAxisDelta[inVertB] >= 0); |
246 | |
247 | if (!sameSide) |
248 | { |
249 | float s = inVertAxisDelta[inVertB] / (inVertAxisDelta[inVertB] - inVertAxisDelta[inVertA]); |
250 | outVerts1[poly1Vert * 3 + 0] = inVerts[inVertB * 3 + 0] + (inVerts[inVertA * 3 + 0] - inVerts[inVertB * 3 + 0]) * s; |
251 | outVerts1[poly1Vert * 3 + 1] = inVerts[inVertB * 3 + 1] + (inVerts[inVertA * 3 + 1] - inVerts[inVertB * 3 + 1]) * s; |
252 | outVerts1[poly1Vert * 3 + 2] = inVerts[inVertB * 3 + 2] + (inVerts[inVertA * 3 + 2] - inVerts[inVertB * 3 + 2]) * s; |
253 | rcVcopy(&outVerts2[poly2Vert * 3], &outVerts1[poly1Vert * 3]); |
254 | poly1Vert++; |
255 | poly2Vert++; |
256 | |
257 | // add the inVertA point to the right polygon. Do NOT add points that are on the dividing line |
258 | // since these were already added above |
259 | if (inVertAxisDelta[inVertA] > 0) |
260 | { |
261 | rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]); |
262 | poly1Vert++; |
263 | } |
264 | else if (inVertAxisDelta[inVertA] < 0) |
265 | { |
266 | rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]); |
267 | poly2Vert++; |
268 | } |
269 | } |
270 | else |
271 | { |
272 | // add the inVertA point to the right polygon. Addition is done even for points on the dividing line |
273 | if (inVertAxisDelta[inVertA] >= 0) |
274 | { |
275 | rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]); |
276 | poly1Vert++; |
277 | if (inVertAxisDelta[inVertA] != 0) |
278 | { |
279 | continue; |
280 | } |
281 | } |
282 | rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]); |
283 | poly2Vert++; |
284 | } |
285 | } |
286 | |
287 | *outVerts1Count = poly1Vert; |
288 | *outVerts2Count = poly2Vert; |
289 | } |
290 | |
291 | /// Rasterize a single triangle to the heightfield. |
292 | /// |
293 | /// This code is extremely hot, so much care should be given to maintaining maximum perf here. |
294 | /// |
295 | /// @param[in] v0 Triangle vertex 0 |
296 | /// @param[in] v1 Triangle vertex 1 |
297 | /// @param[in] v2 Triangle vertex 2 |
298 | /// @param[in] areaID The area ID to assign to the rasterized spans |
299 | /// @param[in] hf Heightfield to rasterize into |
300 | /// @param[in] hfBBMin The min extents of the heightfield bounding box |
301 | /// @param[in] hfBBMax The max extents of the heightfield bounding box |
302 | /// @param[in] cellSize The x and z axis size of a voxel in the heightfield |
303 | /// @param[in] inverseCellSize 1 / cellSize |
304 | /// @param[in] inverseCellHeight 1 / cellHeight |
305 | /// @param[in] flagMergeThreshold The threshold in which area flags will be merged |
306 | /// @returns true if the operation completes successfully. false if there was an error adding spans to the heightfield. |
307 | static bool rasterizeTri(const float* v0, const float* v1, const float* v2, |
308 | const unsigned char areaID, rcHeightfield& hf, |
309 | const float* hfBBMin, const float* hfBBMax, |
310 | const float cellSize, const float inverseCellSize, const float inverseCellHeight, |
311 | const int flagMergeThreshold) |
312 | { |
313 | // Calculate the bounding box of the triangle. |
314 | float triBBMin[3]; |
315 | rcVcopy(triBBMin, v0); |
316 | rcVmin(triBBMin, v1); |
317 | rcVmin(triBBMin, v2); |
318 | |
319 | float triBBMax[3]; |
320 | rcVcopy(triBBMax, v0); |
321 | rcVmax(triBBMax, v1); |
322 | rcVmax(triBBMax, v2); |
323 | |
324 | // If the triangle does not touch the bounding box of the heightfield, skip the triangle. |
325 | if (!overlapBounds(triBBMin, triBBMax, hfBBMin, hfBBMax)) |
326 | { |
327 | return true; |
328 | } |
329 | |
330 | const int w = hf.width; |
331 | const int h = hf.height; |
332 | const float by = hfBBMax[1] - hfBBMin[1]; |
333 | |
334 | // Calculate the footprint of the triangle on the grid's z-axis |
335 | int z0 = (int)((triBBMin[2] - hfBBMin[2]) * inverseCellSize); |
336 | int z1 = (int)((triBBMax[2] - hfBBMin[2]) * inverseCellSize); |
337 | |
338 | // use -1 rather than 0 to cut the polygon properly at the start of the tile |
339 | z0 = rcClamp(z0, -1, h - 1); |
340 | z1 = rcClamp(z1, 0, h - 1); |
341 | |
342 | // Clip the triangle into all grid cells it touches. |
343 | float buf[7 * 3 * 4]; |
344 | float* in = buf; |
345 | float* inRow = buf + 7 * 3; |
346 | float* p1 = inRow + 7 * 3; |
347 | float* p2 = p1 + 7 * 3; |
348 | |
349 | rcVcopy(&in[0], v0); |
350 | rcVcopy(&in[1 * 3], v1); |
351 | rcVcopy(&in[2 * 3], v2); |
352 | int nvRow; |
353 | int nvIn = 3; |
354 | |
355 | for (int z = z0; z <= z1; ++z) |
356 | { |
357 | // Clip polygon to row. Store the remaining polygon as well |
358 | const float cellZ = hfBBMin[2] + (float)z * cellSize; |
359 | dividePoly(in, nvIn, inRow, &nvRow, p1, &nvIn, cellZ + cellSize, RC_AXIS_Z); |
360 | rcSwap(in, p1); |
361 | |
362 | if (nvRow < 3) |
363 | { |
364 | continue; |
365 | } |
366 | if (z < 0) |
367 | { |
368 | continue; |
369 | } |
370 | |
371 | // find X-axis bounds of the row |
372 | float minX = inRow[0]; |
373 | float maxX = inRow[0]; |
374 | for (int vert = 1; vert < nvRow; ++vert) |
375 | { |
376 | if (minX > inRow[vert * 3]) |
377 | { |
378 | minX = inRow[vert * 3]; |
379 | } |
380 | if (maxX < inRow[vert * 3]) |
381 | { |
382 | maxX = inRow[vert * 3]; |
383 | } |
384 | } |
385 | int x0 = (int)((minX - hfBBMin[0]) * inverseCellSize); |
386 | int x1 = (int)((maxX - hfBBMin[0]) * inverseCellSize); |
387 | if (x1 < 0 || x0 >= w) |
388 | { |
389 | continue; |
390 | } |
391 | x0 = rcClamp(x0, -1, w - 1); |
392 | x1 = rcClamp(x1, 0, w - 1); |
393 | |
394 | int nv; |
395 | int nv2 = nvRow; |
396 | |
397 | for (int x = x0; x <= x1; ++x) |
398 | { |
399 | // Clip polygon to column. store the remaining polygon as well |
400 | const float cx = hfBBMin[0] + (float)x * cellSize; |
401 | dividePoly(inRow, nv2, p1, &nv, p2, &nv2, cx + cellSize, RC_AXIS_X); |
402 | rcSwap(inRow, p2); |
403 | |
404 | if (nv < 3) |
405 | { |
406 | continue; |
407 | } |
408 | if (x < 0) |
409 | { |
410 | continue; |
411 | } |
412 | |
413 | // Calculate min and max of the span. |
414 | float spanMin = p1[1]; |
415 | float spanMax = p1[1]; |
416 | for (int vert = 1; vert < nv; ++vert) |
417 | { |
418 | spanMin = rcMin(spanMin, p1[vert * 3 + 1]); |
419 | spanMax = rcMax(spanMax, p1[vert * 3 + 1]); |
420 | } |
421 | spanMin -= hfBBMin[1]; |
422 | spanMax -= hfBBMin[1]; |
423 | |
424 | // Skip the span if it's completely outside the heightfield bounding box |
425 | if (spanMax < 0.0f) |
426 | { |
427 | continue; |
428 | } |
429 | if (spanMin > by) |
430 | { |
431 | continue; |
432 | } |
433 | |
434 | // Clamp the span to the heightfield bounding box. |
435 | if (spanMin < 0.0f) |
436 | { |
437 | spanMin = 0; |
438 | } |
439 | if (spanMax > by) |
440 | { |
441 | spanMax = by; |
442 | } |
443 | |
444 | // Snap the span to the heightfield height grid. |
445 | unsigned short spanMinCellIndex = (unsigned short)rcClamp((int)floorf(spanMin * inverseCellHeight), 0, RC_SPAN_MAX_HEIGHT); |
446 | unsigned short spanMaxCellIndex = (unsigned short)rcClamp((int)ceilf(spanMax * inverseCellHeight), (int)spanMinCellIndex + 1, RC_SPAN_MAX_HEIGHT); |
447 | |
448 | if (!addSpan(hf, x, z, spanMinCellIndex, spanMaxCellIndex, areaID, flagMergeThreshold)) |
449 | { |
450 | return false; |
451 | } |
452 | } |
453 | } |
454 | |
455 | return true; |
456 | } |
457 | |
458 | bool rcRasterizeTriangle(rcContext* context, |
459 | const float* v0, const float* v1, const float* v2, |
460 | const unsigned char areaID, rcHeightfield& heightfield, const int flagMergeThreshold) |
461 | { |
462 | rcAssert(context != NULL); |
463 | |
464 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
465 | |
466 | // Rasterize the single triangle. |
467 | const float inverseCellSize = 1.0f / heightfield.cs; |
468 | const float inverseCellHeight = 1.0f / heightfield.ch; |
469 | if (!rasterizeTri(v0, v1, v2, areaID, heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
470 | { |
471 | context->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory." ); |
472 | return false; |
473 | } |
474 | |
475 | return true; |
476 | } |
477 | |
478 | bool rcRasterizeTriangles(rcContext* context, |
479 | const float* verts, const int /*nv*/, |
480 | const int* tris, const unsigned char* triAreaIDs, const int numTris, |
481 | rcHeightfield& heightfield, const int flagMergeThreshold) |
482 | { |
483 | rcAssert(context != NULL); |
484 | |
485 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
486 | |
487 | // Rasterize the triangles. |
488 | const float inverseCellSize = 1.0f / heightfield.cs; |
489 | const float inverseCellHeight = 1.0f / heightfield.ch; |
490 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
491 | { |
492 | const float* v0 = &verts[tris[triIndex * 3 + 0] * 3]; |
493 | const float* v1 = &verts[tris[triIndex * 3 + 1] * 3]; |
494 | const float* v2 = &verts[tris[triIndex * 3 + 2] * 3]; |
495 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
496 | { |
497 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
498 | return false; |
499 | } |
500 | } |
501 | |
502 | return true; |
503 | } |
504 | |
505 | bool rcRasterizeTriangles(rcContext* context, |
506 | const float* verts, const int /*nv*/, |
507 | const unsigned short* tris, const unsigned char* triAreaIDs, const int numTris, |
508 | rcHeightfield& heightfield, const int flagMergeThreshold) |
509 | { |
510 | rcAssert(context != NULL); |
511 | |
512 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
513 | |
514 | // Rasterize the triangles. |
515 | const float inverseCellSize = 1.0f / heightfield.cs; |
516 | const float inverseCellHeight = 1.0f / heightfield.ch; |
517 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
518 | { |
519 | const float* v0 = &verts[tris[triIndex * 3 + 0] * 3]; |
520 | const float* v1 = &verts[tris[triIndex * 3 + 1] * 3]; |
521 | const float* v2 = &verts[tris[triIndex * 3 + 2] * 3]; |
522 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
523 | { |
524 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
525 | return false; |
526 | } |
527 | } |
528 | |
529 | return true; |
530 | } |
531 | |
532 | bool rcRasterizeTriangles(rcContext* context, |
533 | const float* verts, const unsigned char* triAreaIDs, const int numTris, |
534 | rcHeightfield& heightfield, const int flagMergeThreshold) |
535 | { |
536 | rcAssert(context != NULL); |
537 | |
538 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
539 | |
540 | // Rasterize the triangles. |
541 | const float inverseCellSize = 1.0f / heightfield.cs; |
542 | const float inverseCellHeight = 1.0f / heightfield.ch; |
543 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
544 | { |
545 | const float* v0 = &verts[(triIndex * 3 + 0) * 3]; |
546 | const float* v1 = &verts[(triIndex * 3 + 1) * 3]; |
547 | const float* v2 = &verts[(triIndex * 3 + 2) * 3]; |
548 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
549 | { |
550 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
551 | return false; |
552 | } |
553 | } |
554 | |
555 | return true; |
556 | } |
557 | |