| 1 | // |
| 2 | // Copyright (c) 2009-2010 Mikko Mononen memon@inside.org |
| 3 | // |
| 4 | // This software is provided 'as-is', without any express or implied |
| 5 | // warranty. In no event will the authors be held liable for any damages |
| 6 | // arising from the use of this software. |
| 7 | // Permission is granted to anyone to use this software for any purpose, |
| 8 | // including commercial applications, and to alter it and redistribute it |
| 9 | // freely, subject to the following restrictions: |
| 10 | // 1. The origin of this software must not be misrepresented; you must not |
| 11 | // claim that you wrote the original software. If you use this software |
| 12 | // in a product, an acknowledgment in the product documentation would be |
| 13 | // appreciated but is not required. |
| 14 | // 2. Altered source versions must be plainly marked as such, and must not be |
| 15 | // misrepresented as being the original software. |
| 16 | // 3. This notice may not be removed or altered from any source distribution. |
| 17 | // |
| 18 | |
| 19 | #include <math.h> |
| 20 | #include <stdio.h> |
| 21 | #include "Recast.h" |
| 22 | #include "RecastAlloc.h" |
| 23 | #include "RecastAssert.h" |
| 24 | |
| 25 | /// Check whether two bounding boxes overlap |
| 26 | /// |
| 27 | /// @param[in] aMin Min axis extents of bounding box A |
| 28 | /// @param[in] aMax Max axis extents of bounding box A |
| 29 | /// @param[in] bMin Min axis extents of bounding box B |
| 30 | /// @param[in] bMax Max axis extents of bounding box B |
| 31 | /// @returns true if the two bounding boxes overlap. False otherwise. |
| 32 | static bool overlapBounds(const float* aMin, const float* aMax, const float* bMin, const float* bMax) |
| 33 | { |
| 34 | return |
| 35 | aMin[0] <= bMax[0] && aMax[0] >= bMin[0] && |
| 36 | aMin[1] <= bMax[1] && aMax[1] >= bMin[1] && |
| 37 | aMin[2] <= bMax[2] && aMax[2] >= bMin[2]; |
| 38 | } |
| 39 | |
| 40 | /// Allocates a new span in the heightfield. |
| 41 | /// Use a memory pool and free list to minimize actual allocations. |
| 42 | /// |
| 43 | /// @param[in] hf The heightfield |
| 44 | /// @returns A pointer to the allocated or re-used span memory. |
| 45 | static rcSpan* allocSpan(rcHeightfield& hf) |
| 46 | { |
| 47 | // If necessary, allocate new page and update the freelist. |
| 48 | if (hf.freelist == NULL || hf.freelist->next == NULL) |
| 49 | { |
| 50 | // Create new page. |
| 51 | // Allocate memory for the new pool. |
| 52 | rcSpanPool* spanPool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM); |
| 53 | if (spanPool == NULL) |
| 54 | { |
| 55 | return NULL; |
| 56 | } |
| 57 | |
| 58 | // Add the pool into the list of pools. |
| 59 | spanPool->next = hf.pools; |
| 60 | hf.pools = spanPool; |
| 61 | |
| 62 | // Add new spans to the free list. |
| 63 | rcSpan* freeList = hf.freelist; |
| 64 | rcSpan* head = &spanPool->items[0]; |
| 65 | rcSpan* it = &spanPool->items[RC_SPANS_PER_POOL]; |
| 66 | do |
| 67 | { |
| 68 | --it; |
| 69 | it->next = freeList; |
| 70 | freeList = it; |
| 71 | } |
| 72 | while (it != head); |
| 73 | hf.freelist = it; |
| 74 | } |
| 75 | |
| 76 | // Pop item from the front of the free list. |
| 77 | rcSpan* newSpan = hf.freelist; |
| 78 | hf.freelist = hf.freelist->next; |
| 79 | return newSpan; |
| 80 | } |
| 81 | |
| 82 | /// Releases the memory used by the span back to the heightfield, so it can be re-used for new spans. |
| 83 | /// @param[in] hf The heightfield. |
| 84 | /// @param[in] span A pointer to the span to free |
| 85 | static void freeSpan(rcHeightfield& hf, rcSpan* span) |
| 86 | { |
| 87 | if (span == NULL) |
| 88 | { |
| 89 | return; |
| 90 | } |
| 91 | // Add the span to the front of the free list. |
| 92 | span->next = hf.freelist; |
| 93 | hf.freelist = span; |
| 94 | } |
| 95 | |
| 96 | /// Adds a span to the heightfield. If the new span overlaps existing spans, |
| 97 | /// it will merge the new span with the existing ones. |
| 98 | /// |
| 99 | /// @param[in] hf Heightfield to add spans to |
| 100 | /// @param[in] x The new span's column cell x index |
| 101 | /// @param[in] z The new span's column cell z index |
| 102 | /// @param[in] min The new span's minimum cell index |
| 103 | /// @param[in] max The new span's maximum cell index |
| 104 | /// @param[in] areaID The new span's area type ID |
| 105 | /// @param[in] flagMergeThreshold How close two spans maximum extents need to be to merge area type IDs |
| 106 | static bool addSpan(rcHeightfield& hf, |
| 107 | const int x, const int z, |
| 108 | const unsigned short min, const unsigned short max, |
| 109 | const unsigned char areaID, const int flagMergeThreshold) |
| 110 | { |
| 111 | // Create the new span. |
| 112 | rcSpan* newSpan = allocSpan(hf); |
| 113 | if (newSpan == NULL) |
| 114 | { |
| 115 | return false; |
| 116 | } |
| 117 | newSpan->smin = min; |
| 118 | newSpan->smax = max; |
| 119 | newSpan->area = areaID; |
| 120 | newSpan->next = NULL; |
| 121 | |
| 122 | const int columnIndex = x + z * hf.width; |
| 123 | rcSpan* previousSpan = NULL; |
| 124 | rcSpan* currentSpan = hf.spans[columnIndex]; |
| 125 | |
| 126 | // Insert the new span, possibly merging it with existing spans. |
| 127 | while (currentSpan != NULL) |
| 128 | { |
| 129 | if (currentSpan->smin > newSpan->smax) |
| 130 | { |
| 131 | // Current span is completely after the new span, break. |
| 132 | break; |
| 133 | } |
| 134 | |
| 135 | if (currentSpan->smax < newSpan->smin) |
| 136 | { |
| 137 | // Current span is completely before the new span. Keep going. |
| 138 | previousSpan = currentSpan; |
| 139 | currentSpan = currentSpan->next; |
| 140 | } |
| 141 | else |
| 142 | { |
| 143 | // The new span overlaps with an existing span. Merge them. |
| 144 | if (currentSpan->smin < newSpan->smin) |
| 145 | { |
| 146 | newSpan->smin = currentSpan->smin; |
| 147 | } |
| 148 | if (currentSpan->smax > newSpan->smax) |
| 149 | { |
| 150 | newSpan->smax = currentSpan->smax; |
| 151 | } |
| 152 | |
| 153 | // Merge flags. |
| 154 | if (rcAbs((int)newSpan->smax - (int)currentSpan->smax) <= flagMergeThreshold) |
| 155 | { |
| 156 | // Higher area ID numbers indicate higher resolution priority. |
| 157 | newSpan->area = rcMax(newSpan->area, currentSpan->area); |
| 158 | } |
| 159 | |
| 160 | // Remove the current span since it's now merged with newSpan. |
| 161 | // Keep going because there might be other overlapping spans that also need to be merged. |
| 162 | rcSpan* next = currentSpan->next; |
| 163 | freeSpan(hf, currentSpan); |
| 164 | if (previousSpan) |
| 165 | { |
| 166 | previousSpan->next = next; |
| 167 | } |
| 168 | else |
| 169 | { |
| 170 | hf.spans[columnIndex] = next; |
| 171 | } |
| 172 | currentSpan = next; |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // Insert new span after prev |
| 177 | if (previousSpan != NULL) |
| 178 | { |
| 179 | newSpan->next = previousSpan->next; |
| 180 | previousSpan->next = newSpan; |
| 181 | } |
| 182 | else |
| 183 | { |
| 184 | // This span should go before the others in the list |
| 185 | newSpan->next = hf.spans[columnIndex]; |
| 186 | hf.spans[columnIndex] = newSpan; |
| 187 | } |
| 188 | |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | bool rcAddSpan(rcContext* context, rcHeightfield& heightfield, |
| 193 | const int x, const int z, |
| 194 | const unsigned short spanMin, const unsigned short spanMax, |
| 195 | const unsigned char areaID, const int flagMergeThreshold) |
| 196 | { |
| 197 | rcAssert(context); |
| 198 | |
| 199 | if (!addSpan(heightfield, x, z, spanMin, spanMax, areaID, flagMergeThreshold)) |
| 200 | { |
| 201 | context->log(RC_LOG_ERROR, "rcAddSpan: Out of memory." ); |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | return true; |
| 206 | } |
| 207 | |
| 208 | enum rcAxis |
| 209 | { |
| 210 | RC_AXIS_X = 0, |
| 211 | RC_AXIS_Y = 1, |
| 212 | RC_AXIS_Z = 2 |
| 213 | }; |
| 214 | |
| 215 | /// Divides a convex polygon of max 12 vertices into two convex polygons |
| 216 | /// across a separating axis. |
| 217 | /// |
| 218 | /// @param[in] inVerts The input polygon vertices |
| 219 | /// @param[in] inVertsCount The number of input polygon vertices |
| 220 | /// @param[out] outVerts1 Resulting polygon 1's vertices |
| 221 | /// @param[out] outVerts1Count The number of resulting polygon 1 vertices |
| 222 | /// @param[out] outVerts2 Resulting polygon 2's vertices |
| 223 | /// @param[out] outVerts2Count The number of resulting polygon 2 vertices |
| 224 | /// @param[in] axisOffset THe offset along the specified axis |
| 225 | /// @param[in] axis The separating axis |
| 226 | static void dividePoly(const float* inVerts, int inVertsCount, |
| 227 | float* outVerts1, int* outVerts1Count, |
| 228 | float* outVerts2, int* outVerts2Count, |
| 229 | float axisOffset, rcAxis axis) |
| 230 | { |
| 231 | rcAssert(inVertsCount <= 12); |
| 232 | |
| 233 | // How far positive or negative away from the separating axis is each vertex. |
| 234 | float inVertAxisDelta[12]; |
| 235 | for (int inVert = 0; inVert < inVertsCount; ++inVert) |
| 236 | { |
| 237 | inVertAxisDelta[inVert] = axisOffset - inVerts[inVert * 3 + axis]; |
| 238 | } |
| 239 | |
| 240 | int poly1Vert = 0; |
| 241 | int poly2Vert = 0; |
| 242 | for (int inVertA = 0, inVertB = inVertsCount - 1; inVertA < inVertsCount; inVertB = inVertA, ++inVertA) |
| 243 | { |
| 244 | // If the two vertices are on the same side of the separating axis |
| 245 | bool sameSide = (inVertAxisDelta[inVertA] >= 0) == (inVertAxisDelta[inVertB] >= 0); |
| 246 | |
| 247 | if (!sameSide) |
| 248 | { |
| 249 | float s = inVertAxisDelta[inVertB] / (inVertAxisDelta[inVertB] - inVertAxisDelta[inVertA]); |
| 250 | outVerts1[poly1Vert * 3 + 0] = inVerts[inVertB * 3 + 0] + (inVerts[inVertA * 3 + 0] - inVerts[inVertB * 3 + 0]) * s; |
| 251 | outVerts1[poly1Vert * 3 + 1] = inVerts[inVertB * 3 + 1] + (inVerts[inVertA * 3 + 1] - inVerts[inVertB * 3 + 1]) * s; |
| 252 | outVerts1[poly1Vert * 3 + 2] = inVerts[inVertB * 3 + 2] + (inVerts[inVertA * 3 + 2] - inVerts[inVertB * 3 + 2]) * s; |
| 253 | rcVcopy(&outVerts2[poly2Vert * 3], &outVerts1[poly1Vert * 3]); |
| 254 | poly1Vert++; |
| 255 | poly2Vert++; |
| 256 | |
| 257 | // add the inVertA point to the right polygon. Do NOT add points that are on the dividing line |
| 258 | // since these were already added above |
| 259 | if (inVertAxisDelta[inVertA] > 0) |
| 260 | { |
| 261 | rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]); |
| 262 | poly1Vert++; |
| 263 | } |
| 264 | else if (inVertAxisDelta[inVertA] < 0) |
| 265 | { |
| 266 | rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]); |
| 267 | poly2Vert++; |
| 268 | } |
| 269 | } |
| 270 | else |
| 271 | { |
| 272 | // add the inVertA point to the right polygon. Addition is done even for points on the dividing line |
| 273 | if (inVertAxisDelta[inVertA] >= 0) |
| 274 | { |
| 275 | rcVcopy(&outVerts1[poly1Vert * 3], &inVerts[inVertA * 3]); |
| 276 | poly1Vert++; |
| 277 | if (inVertAxisDelta[inVertA] != 0) |
| 278 | { |
| 279 | continue; |
| 280 | } |
| 281 | } |
| 282 | rcVcopy(&outVerts2[poly2Vert * 3], &inVerts[inVertA * 3]); |
| 283 | poly2Vert++; |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | *outVerts1Count = poly1Vert; |
| 288 | *outVerts2Count = poly2Vert; |
| 289 | } |
| 290 | |
| 291 | /// Rasterize a single triangle to the heightfield. |
| 292 | /// |
| 293 | /// This code is extremely hot, so much care should be given to maintaining maximum perf here. |
| 294 | /// |
| 295 | /// @param[in] v0 Triangle vertex 0 |
| 296 | /// @param[in] v1 Triangle vertex 1 |
| 297 | /// @param[in] v2 Triangle vertex 2 |
| 298 | /// @param[in] areaID The area ID to assign to the rasterized spans |
| 299 | /// @param[in] hf Heightfield to rasterize into |
| 300 | /// @param[in] hfBBMin The min extents of the heightfield bounding box |
| 301 | /// @param[in] hfBBMax The max extents of the heightfield bounding box |
| 302 | /// @param[in] cellSize The x and z axis size of a voxel in the heightfield |
| 303 | /// @param[in] inverseCellSize 1 / cellSize |
| 304 | /// @param[in] inverseCellHeight 1 / cellHeight |
| 305 | /// @param[in] flagMergeThreshold The threshold in which area flags will be merged |
| 306 | /// @returns true if the operation completes successfully. false if there was an error adding spans to the heightfield. |
| 307 | static bool rasterizeTri(const float* v0, const float* v1, const float* v2, |
| 308 | const unsigned char areaID, rcHeightfield& hf, |
| 309 | const float* hfBBMin, const float* hfBBMax, |
| 310 | const float cellSize, const float inverseCellSize, const float inverseCellHeight, |
| 311 | const int flagMergeThreshold) |
| 312 | { |
| 313 | // Calculate the bounding box of the triangle. |
| 314 | float triBBMin[3]; |
| 315 | rcVcopy(triBBMin, v0); |
| 316 | rcVmin(triBBMin, v1); |
| 317 | rcVmin(triBBMin, v2); |
| 318 | |
| 319 | float triBBMax[3]; |
| 320 | rcVcopy(triBBMax, v0); |
| 321 | rcVmax(triBBMax, v1); |
| 322 | rcVmax(triBBMax, v2); |
| 323 | |
| 324 | // If the triangle does not touch the bounding box of the heightfield, skip the triangle. |
| 325 | if (!overlapBounds(triBBMin, triBBMax, hfBBMin, hfBBMax)) |
| 326 | { |
| 327 | return true; |
| 328 | } |
| 329 | |
| 330 | const int w = hf.width; |
| 331 | const int h = hf.height; |
| 332 | const float by = hfBBMax[1] - hfBBMin[1]; |
| 333 | |
| 334 | // Calculate the footprint of the triangle on the grid's z-axis |
| 335 | int z0 = (int)((triBBMin[2] - hfBBMin[2]) * inverseCellSize); |
| 336 | int z1 = (int)((triBBMax[2] - hfBBMin[2]) * inverseCellSize); |
| 337 | |
| 338 | // use -1 rather than 0 to cut the polygon properly at the start of the tile |
| 339 | z0 = rcClamp(z0, -1, h - 1); |
| 340 | z1 = rcClamp(z1, 0, h - 1); |
| 341 | |
| 342 | // Clip the triangle into all grid cells it touches. |
| 343 | float buf[7 * 3 * 4]; |
| 344 | float* in = buf; |
| 345 | float* inRow = buf + 7 * 3; |
| 346 | float* p1 = inRow + 7 * 3; |
| 347 | float* p2 = p1 + 7 * 3; |
| 348 | |
| 349 | rcVcopy(&in[0], v0); |
| 350 | rcVcopy(&in[1 * 3], v1); |
| 351 | rcVcopy(&in[2 * 3], v2); |
| 352 | int nvRow; |
| 353 | int nvIn = 3; |
| 354 | |
| 355 | for (int z = z0; z <= z1; ++z) |
| 356 | { |
| 357 | // Clip polygon to row. Store the remaining polygon as well |
| 358 | const float cellZ = hfBBMin[2] + (float)z * cellSize; |
| 359 | dividePoly(in, nvIn, inRow, &nvRow, p1, &nvIn, cellZ + cellSize, RC_AXIS_Z); |
| 360 | rcSwap(in, p1); |
| 361 | |
| 362 | if (nvRow < 3) |
| 363 | { |
| 364 | continue; |
| 365 | } |
| 366 | if (z < 0) |
| 367 | { |
| 368 | continue; |
| 369 | } |
| 370 | |
| 371 | // find X-axis bounds of the row |
| 372 | float minX = inRow[0]; |
| 373 | float maxX = inRow[0]; |
| 374 | for (int vert = 1; vert < nvRow; ++vert) |
| 375 | { |
| 376 | if (minX > inRow[vert * 3]) |
| 377 | { |
| 378 | minX = inRow[vert * 3]; |
| 379 | } |
| 380 | if (maxX < inRow[vert * 3]) |
| 381 | { |
| 382 | maxX = inRow[vert * 3]; |
| 383 | } |
| 384 | } |
| 385 | int x0 = (int)((minX - hfBBMin[0]) * inverseCellSize); |
| 386 | int x1 = (int)((maxX - hfBBMin[0]) * inverseCellSize); |
| 387 | if (x1 < 0 || x0 >= w) |
| 388 | { |
| 389 | continue; |
| 390 | } |
| 391 | x0 = rcClamp(x0, -1, w - 1); |
| 392 | x1 = rcClamp(x1, 0, w - 1); |
| 393 | |
| 394 | int nv; |
| 395 | int nv2 = nvRow; |
| 396 | |
| 397 | for (int x = x0; x <= x1; ++x) |
| 398 | { |
| 399 | // Clip polygon to column. store the remaining polygon as well |
| 400 | const float cx = hfBBMin[0] + (float)x * cellSize; |
| 401 | dividePoly(inRow, nv2, p1, &nv, p2, &nv2, cx + cellSize, RC_AXIS_X); |
| 402 | rcSwap(inRow, p2); |
| 403 | |
| 404 | if (nv < 3) |
| 405 | { |
| 406 | continue; |
| 407 | } |
| 408 | if (x < 0) |
| 409 | { |
| 410 | continue; |
| 411 | } |
| 412 | |
| 413 | // Calculate min and max of the span. |
| 414 | float spanMin = p1[1]; |
| 415 | float spanMax = p1[1]; |
| 416 | for (int vert = 1; vert < nv; ++vert) |
| 417 | { |
| 418 | spanMin = rcMin(spanMin, p1[vert * 3 + 1]); |
| 419 | spanMax = rcMax(spanMax, p1[vert * 3 + 1]); |
| 420 | } |
| 421 | spanMin -= hfBBMin[1]; |
| 422 | spanMax -= hfBBMin[1]; |
| 423 | |
| 424 | // Skip the span if it's completely outside the heightfield bounding box |
| 425 | if (spanMax < 0.0f) |
| 426 | { |
| 427 | continue; |
| 428 | } |
| 429 | if (spanMin > by) |
| 430 | { |
| 431 | continue; |
| 432 | } |
| 433 | |
| 434 | // Clamp the span to the heightfield bounding box. |
| 435 | if (spanMin < 0.0f) |
| 436 | { |
| 437 | spanMin = 0; |
| 438 | } |
| 439 | if (spanMax > by) |
| 440 | { |
| 441 | spanMax = by; |
| 442 | } |
| 443 | |
| 444 | // Snap the span to the heightfield height grid. |
| 445 | unsigned short spanMinCellIndex = (unsigned short)rcClamp((int)floorf(spanMin * inverseCellHeight), 0, RC_SPAN_MAX_HEIGHT); |
| 446 | unsigned short spanMaxCellIndex = (unsigned short)rcClamp((int)ceilf(spanMax * inverseCellHeight), (int)spanMinCellIndex + 1, RC_SPAN_MAX_HEIGHT); |
| 447 | |
| 448 | if (!addSpan(hf, x, z, spanMinCellIndex, spanMaxCellIndex, areaID, flagMergeThreshold)) |
| 449 | { |
| 450 | return false; |
| 451 | } |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | return true; |
| 456 | } |
| 457 | |
| 458 | bool rcRasterizeTriangle(rcContext* context, |
| 459 | const float* v0, const float* v1, const float* v2, |
| 460 | const unsigned char areaID, rcHeightfield& heightfield, const int flagMergeThreshold) |
| 461 | { |
| 462 | rcAssert(context != NULL); |
| 463 | |
| 464 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
| 465 | |
| 466 | // Rasterize the single triangle. |
| 467 | const float inverseCellSize = 1.0f / heightfield.cs; |
| 468 | const float inverseCellHeight = 1.0f / heightfield.ch; |
| 469 | if (!rasterizeTri(v0, v1, v2, areaID, heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
| 470 | { |
| 471 | context->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory." ); |
| 472 | return false; |
| 473 | } |
| 474 | |
| 475 | return true; |
| 476 | } |
| 477 | |
| 478 | bool rcRasterizeTriangles(rcContext* context, |
| 479 | const float* verts, const int /*nv*/, |
| 480 | const int* tris, const unsigned char* triAreaIDs, const int numTris, |
| 481 | rcHeightfield& heightfield, const int flagMergeThreshold) |
| 482 | { |
| 483 | rcAssert(context != NULL); |
| 484 | |
| 485 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
| 486 | |
| 487 | // Rasterize the triangles. |
| 488 | const float inverseCellSize = 1.0f / heightfield.cs; |
| 489 | const float inverseCellHeight = 1.0f / heightfield.ch; |
| 490 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
| 491 | { |
| 492 | const float* v0 = &verts[tris[triIndex * 3 + 0] * 3]; |
| 493 | const float* v1 = &verts[tris[triIndex * 3 + 1] * 3]; |
| 494 | const float* v2 = &verts[tris[triIndex * 3 + 2] * 3]; |
| 495 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
| 496 | { |
| 497 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
| 498 | return false; |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | return true; |
| 503 | } |
| 504 | |
| 505 | bool rcRasterizeTriangles(rcContext* context, |
| 506 | const float* verts, const int /*nv*/, |
| 507 | const unsigned short* tris, const unsigned char* triAreaIDs, const int numTris, |
| 508 | rcHeightfield& heightfield, const int flagMergeThreshold) |
| 509 | { |
| 510 | rcAssert(context != NULL); |
| 511 | |
| 512 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
| 513 | |
| 514 | // Rasterize the triangles. |
| 515 | const float inverseCellSize = 1.0f / heightfield.cs; |
| 516 | const float inverseCellHeight = 1.0f / heightfield.ch; |
| 517 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
| 518 | { |
| 519 | const float* v0 = &verts[tris[triIndex * 3 + 0] * 3]; |
| 520 | const float* v1 = &verts[tris[triIndex * 3 + 1] * 3]; |
| 521 | const float* v2 = &verts[tris[triIndex * 3 + 2] * 3]; |
| 522 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
| 523 | { |
| 524 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
| 525 | return false; |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | return true; |
| 530 | } |
| 531 | |
| 532 | bool rcRasterizeTriangles(rcContext* context, |
| 533 | const float* verts, const unsigned char* triAreaIDs, const int numTris, |
| 534 | rcHeightfield& heightfield, const int flagMergeThreshold) |
| 535 | { |
| 536 | rcAssert(context != NULL); |
| 537 | |
| 538 | rcScopedTimer timer(context, RC_TIMER_RASTERIZE_TRIANGLES); |
| 539 | |
| 540 | // Rasterize the triangles. |
| 541 | const float inverseCellSize = 1.0f / heightfield.cs; |
| 542 | const float inverseCellHeight = 1.0f / heightfield.ch; |
| 543 | for (int triIndex = 0; triIndex < numTris; ++triIndex) |
| 544 | { |
| 545 | const float* v0 = &verts[(triIndex * 3 + 0) * 3]; |
| 546 | const float* v1 = &verts[(triIndex * 3 + 1) * 3]; |
| 547 | const float* v2 = &verts[(triIndex * 3 + 2) * 3]; |
| 548 | if (!rasterizeTri(v0, v1, v2, triAreaIDs[triIndex], heightfield, heightfield.bmin, heightfield.bmax, heightfield.cs, inverseCellSize, inverseCellHeight, flagMergeThreshold)) |
| 549 | { |
| 550 | context->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory." ); |
| 551 | return false; |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | return true; |
| 556 | } |
| 557 | |