1 | /* |
2 | Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ |
3 | |
4 | This software is provided 'as-is', without any express or implied warranty. |
5 | In no event will the authors be held liable for any damages arising from the use of this software. |
6 | Permission is granted to anyone to use this software for any purpose, |
7 | including commercial applications, and to alter it and redistribute it freely, |
8 | subject to the following restrictions: |
9 | |
10 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
11 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
12 | 3. This notice may not be removed or altered from any source distribution. |
13 | */ |
14 | |
15 | #ifndef BT_VECTOR3_H |
16 | #define BT_VECTOR3_H |
17 | |
18 | #include "btMinMax.h" |
19 | #include "btScalar.h" |
20 | |
21 | #ifdef BT_USE_DOUBLE_PRECISION |
22 | #define btVector3Data btVector3DoubleData |
23 | #define btVector3DataName "btVector3DoubleData" |
24 | #else |
25 | #define btVector3Data btVector3FloatData |
26 | #define btVector3DataName "btVector3FloatData" |
27 | #endif //BT_USE_DOUBLE_PRECISION |
28 | |
29 | // -- GODOT start -- |
30 | namespace VHACD { |
31 | // -- GODOT end -- |
32 | |
33 | /**@brief btVector3 can be used to represent 3D points and vectors. |
34 | * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user |
35 | * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers |
36 | */ |
37 | ATTRIBUTE_ALIGNED16(class) |
38 | btVector3 |
39 | { |
40 | public: |
41 | #if defined(__SPU__) && defined(__CELLOS_LV2__) |
42 | btScalar m_floats[4]; |
43 | |
44 | public: |
45 | SIMD_FORCE_INLINE const vec_float4& get128() const |
46 | { |
47 | return *((const vec_float4*)&m_floats[0]); |
48 | } |
49 | |
50 | public: |
51 | #else //__CELLOS_LV2__ __SPU__ |
52 | #ifdef BT_USE_SSE // _WIN32 |
53 | union { |
54 | __m128 mVec128; |
55 | btScalar m_floats[4]; |
56 | }; |
57 | SIMD_FORCE_INLINE __m128 get128() const |
58 | { |
59 | return mVec128; |
60 | } |
61 | SIMD_FORCE_INLINE void set128(__m128 v128) |
62 | { |
63 | mVec128 = v128; |
64 | } |
65 | #else |
66 | btScalar m_floats[4]; |
67 | #endif |
68 | #endif //__CELLOS_LV2__ __SPU__ |
69 | |
70 | public: |
71 | /**@brief No initialization constructor */ |
72 | SIMD_FORCE_INLINE btVector3() {} |
73 | |
74 | /**@brief Constructor from scalars |
75 | * @param x X value |
76 | * @param y Y value |
77 | * @param z Z value |
78 | */ |
79 | SIMD_FORCE_INLINE btVector3(const btScalar& x, const btScalar& y, const btScalar& z) |
80 | { |
81 | m_floats[0] = x; |
82 | m_floats[1] = y; |
83 | m_floats[2] = z; |
84 | m_floats[3] = btScalar(0.); |
85 | } |
86 | |
87 | /**@brief Add a vector to this one |
88 | * @param The vector to add to this one */ |
89 | SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) |
90 | { |
91 | |
92 | m_floats[0] += v.m_floats[0]; |
93 | m_floats[1] += v.m_floats[1]; |
94 | m_floats[2] += v.m_floats[2]; |
95 | return *this; |
96 | } |
97 | |
98 | /**@brief Subtract a vector from this one |
99 | * @param The vector to subtract */ |
100 | SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) |
101 | { |
102 | m_floats[0] -= v.m_floats[0]; |
103 | m_floats[1] -= v.m_floats[1]; |
104 | m_floats[2] -= v.m_floats[2]; |
105 | return *this; |
106 | } |
107 | /**@brief Scale the vector |
108 | * @param s Scale factor */ |
109 | SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) |
110 | { |
111 | m_floats[0] *= s; |
112 | m_floats[1] *= s; |
113 | m_floats[2] *= s; |
114 | return *this; |
115 | } |
116 | |
117 | /**@brief Inversely scale the vector |
118 | * @param s Scale factor to divide by */ |
119 | SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) |
120 | { |
121 | btFullAssert(s != btScalar(0.0)); |
122 | return * this *= btScalar(1.0) / s; |
123 | } |
124 | |
125 | /**@brief Return the dot product |
126 | * @param v The other vector in the dot product */ |
127 | SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const |
128 | { |
129 | return m_floats[0] * v.m_floats[0] + m_floats[1] * v.m_floats[1] + m_floats[2] * v.m_floats[2]; |
130 | } |
131 | |
132 | /**@brief Return the length of the vector squared */ |
133 | SIMD_FORCE_INLINE btScalar length2() const |
134 | { |
135 | return dot(*this); |
136 | } |
137 | |
138 | /**@brief Return the length of the vector */ |
139 | SIMD_FORCE_INLINE btScalar length() const |
140 | { |
141 | return btSqrt(length2()); |
142 | } |
143 | |
144 | /**@brief Return the distance squared between the ends of this and another vector |
145 | * This is symantically treating the vector like a point */ |
146 | SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; |
147 | |
148 | /**@brief Return the distance between the ends of this and another vector |
149 | * This is symantically treating the vector like a point */ |
150 | SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; |
151 | |
152 | SIMD_FORCE_INLINE btVector3& safeNormalize() |
153 | { |
154 | btVector3 absVec = this->absolute(); |
155 | int32_t maxIndex = absVec.maxAxis(); |
156 | if (absVec[maxIndex] > 0) { |
157 | *this /= absVec[maxIndex]; |
158 | return * this /= length(); |
159 | } |
160 | setValue(1, 0, 0); |
161 | return *this; |
162 | } |
163 | |
164 | /**@brief Normalize this vector |
165 | * x^2 + y^2 + z^2 = 1 */ |
166 | SIMD_FORCE_INLINE btVector3& normalize() |
167 | { |
168 | return * this /= length(); |
169 | } |
170 | |
171 | /**@brief Return a normalized version of this vector */ |
172 | SIMD_FORCE_INLINE btVector3 normalized() const; |
173 | |
174 | /**@brief Return a rotated version of this vector |
175 | * @param wAxis The axis to rotate about |
176 | * @param angle The angle to rotate by */ |
177 | SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const; |
178 | |
179 | /**@brief Return the angle between this and another vector |
180 | * @param v The other vector */ |
181 | SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const |
182 | { |
183 | btScalar s = btSqrt(length2() * v.length2()); |
184 | btFullAssert(s != btScalar(0.0)); |
185 | return btAcos(dot(v) / s); |
186 | } |
187 | /**@brief Return a vector will the absolute values of each element */ |
188 | SIMD_FORCE_INLINE btVector3 absolute() const |
189 | { |
190 | return btVector3( |
191 | btFabs(m_floats[0]), |
192 | btFabs(m_floats[1]), |
193 | btFabs(m_floats[2])); |
194 | } |
195 | /**@brief Return the cross product between this and another vector |
196 | * @param v The other vector */ |
197 | SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const |
198 | { |
199 | return btVector3( |
200 | m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1], |
201 | m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2], |
202 | m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]); |
203 | } |
204 | |
205 | SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const |
206 | { |
207 | return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); |
208 | } |
209 | |
210 | /**@brief Return the axis with the smallest value |
211 | * Note return values are 0,1,2 for x, y, or z */ |
212 | SIMD_FORCE_INLINE int32_t minAxis() const |
213 | { |
214 | return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2); |
215 | } |
216 | |
217 | /**@brief Return the axis with the largest value |
218 | * Note return values are 0,1,2 for x, y, or z */ |
219 | SIMD_FORCE_INLINE int32_t maxAxis() const |
220 | { |
221 | return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0); |
222 | } |
223 | |
224 | SIMD_FORCE_INLINE int32_t furthestAxis() const |
225 | { |
226 | return absolute().minAxis(); |
227 | } |
228 | |
229 | SIMD_FORCE_INLINE int32_t closestAxis() const |
230 | { |
231 | return absolute().maxAxis(); |
232 | } |
233 | |
234 | SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) |
235 | { |
236 | btScalar s = btScalar(1.0) - rt; |
237 | m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0]; |
238 | m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1]; |
239 | m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2]; |
240 | //don't do the unused w component |
241 | // m_co[3] = s * v0[3] + rt * v1[3]; |
242 | } |
243 | |
244 | /**@brief Return the linear interpolation between this and another vector |
245 | * @param v The other vector |
246 | * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ |
247 | SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const |
248 | { |
249 | return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, |
250 | m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, |
251 | m_floats[2] + (v.m_floats[2] - m_floats[2]) * t); |
252 | } |
253 | |
254 | /**@brief Elementwise multiply this vector by the other |
255 | * @param v The other vector */ |
256 | SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) |
257 | { |
258 | m_floats[0] *= v.m_floats[0]; |
259 | m_floats[1] *= v.m_floats[1]; |
260 | m_floats[2] *= v.m_floats[2]; |
261 | return *this; |
262 | } |
263 | |
264 | /**@brief Return the x value */ |
265 | SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } |
266 | /**@brief Return the y value */ |
267 | SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } |
268 | /**@brief Return the z value */ |
269 | SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } |
270 | /**@brief Set the x value */ |
271 | SIMD_FORCE_INLINE void setX(btScalar x) { m_floats[0] = x; }; |
272 | /**@brief Set the y value */ |
273 | SIMD_FORCE_INLINE void setY(btScalar y) { m_floats[1] = y; }; |
274 | /**@brief Set the z value */ |
275 | SIMD_FORCE_INLINE void setZ(btScalar z) { m_floats[2] = z; }; |
276 | /**@brief Set the w value */ |
277 | SIMD_FORCE_INLINE void setW(btScalar w) { m_floats[3] = w; }; |
278 | /**@brief Return the x value */ |
279 | SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } |
280 | /**@brief Return the y value */ |
281 | SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } |
282 | /**@brief Return the z value */ |
283 | SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } |
284 | /**@brief Return the w value */ |
285 | SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } |
286 | |
287 | //SIMD_FORCE_INLINE btScalar& operator[](int32_t i) { return (&m_floats[0])[i]; } |
288 | //SIMD_FORCE_INLINE const btScalar& operator[](int32_t i) const { return (&m_floats[0])[i]; } |
289 | ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. |
290 | SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; } |
291 | SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; } |
292 | |
293 | SIMD_FORCE_INLINE bool operator==(const btVector3& other) const |
294 | { |
295 | return ((m_floats[3] == other.m_floats[3]) && (m_floats[2] == other.m_floats[2]) && (m_floats[1] == other.m_floats[1]) && (m_floats[0] == other.m_floats[0])); |
296 | } |
297 | |
298 | SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const |
299 | { |
300 | return !(*this == other); |
301 | } |
302 | |
303 | /**@brief Set each element to the max of the current values and the values of another btVector3 |
304 | * @param other The other btVector3 to compare with |
305 | */ |
306 | SIMD_FORCE_INLINE void setMax(const btVector3& other) |
307 | { |
308 | btSetMax(m_floats[0], other.m_floats[0]); |
309 | btSetMax(m_floats[1], other.m_floats[1]); |
310 | btSetMax(m_floats[2], other.m_floats[2]); |
311 | btSetMax(m_floats[3], other.w()); |
312 | } |
313 | /**@brief Set each element to the min of the current values and the values of another btVector3 |
314 | * @param other The other btVector3 to compare with |
315 | */ |
316 | SIMD_FORCE_INLINE void setMin(const btVector3& other) |
317 | { |
318 | btSetMin(m_floats[0], other.m_floats[0]); |
319 | btSetMin(m_floats[1], other.m_floats[1]); |
320 | btSetMin(m_floats[2], other.m_floats[2]); |
321 | btSetMin(m_floats[3], other.w()); |
322 | } |
323 | |
324 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z) |
325 | { |
326 | m_floats[0] = x; |
327 | m_floats[1] = y; |
328 | m_floats[2] = z; |
329 | m_floats[3] = btScalar(0.); |
330 | } |
331 | |
332 | void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const |
333 | { |
334 | v0->setValue(0., -z(), y()); |
335 | v1->setValue(z(), 0., -x()); |
336 | v2->setValue(-y(), x(), 0.); |
337 | } |
338 | |
339 | void setZero() |
340 | { |
341 | setValue(btScalar(0.), btScalar(0.), btScalar(0.)); |
342 | } |
343 | |
344 | SIMD_FORCE_INLINE bool isZero() const |
345 | { |
346 | return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0); |
347 | } |
348 | |
349 | SIMD_FORCE_INLINE bool fuzzyZero() const |
350 | { |
351 | return length2() < SIMD_EPSILON; |
352 | } |
353 | |
354 | SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const; |
355 | |
356 | SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn); |
357 | |
358 | SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const; |
359 | |
360 | SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); |
361 | |
362 | SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const; |
363 | |
364 | SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); |
365 | }; |
366 | |
367 | /**@brief Return the sum of two vectors (Point symantics)*/ |
368 | SIMD_FORCE_INLINE btVector3 |
369 | operator+(const btVector3& v1, const btVector3& v2) |
370 | { |
371 | return btVector3(v1.m_floats[0] + v2.m_floats[0], v1.m_floats[1] + v2.m_floats[1], v1.m_floats[2] + v2.m_floats[2]); |
372 | } |
373 | |
374 | /**@brief Return the elementwise product of two vectors */ |
375 | SIMD_FORCE_INLINE btVector3 |
376 | operator*(const btVector3& v1, const btVector3& v2) |
377 | { |
378 | return btVector3(v1.m_floats[0] * v2.m_floats[0], v1.m_floats[1] * v2.m_floats[1], v1.m_floats[2] * v2.m_floats[2]); |
379 | } |
380 | |
381 | /**@brief Return the difference between two vectors */ |
382 | SIMD_FORCE_INLINE btVector3 |
383 | operator-(const btVector3& v1, const btVector3& v2) |
384 | { |
385 | return btVector3(v1.m_floats[0] - v2.m_floats[0], v1.m_floats[1] - v2.m_floats[1], v1.m_floats[2] - v2.m_floats[2]); |
386 | } |
387 | /**@brief Return the negative of the vector */ |
388 | SIMD_FORCE_INLINE btVector3 |
389 | operator-(const btVector3& v) |
390 | { |
391 | return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); |
392 | } |
393 | |
394 | /**@brief Return the vector scaled by s */ |
395 | SIMD_FORCE_INLINE btVector3 |
396 | operator*(const btVector3& v, const btScalar& s) |
397 | { |
398 | return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s); |
399 | } |
400 | |
401 | /**@brief Return the vector scaled by s */ |
402 | SIMD_FORCE_INLINE btVector3 |
403 | operator*(const btScalar& s, const btVector3& v) |
404 | { |
405 | return v * s; |
406 | } |
407 | |
408 | /**@brief Return the vector inversely scaled by s */ |
409 | SIMD_FORCE_INLINE btVector3 |
410 | operator/(const btVector3& v, const btScalar& s) |
411 | { |
412 | btFullAssert(s != btScalar(0.0)); |
413 | return v * (btScalar(1.0) / s); |
414 | } |
415 | |
416 | /**@brief Return the vector inversely scaled by s */ |
417 | SIMD_FORCE_INLINE btVector3 |
418 | operator/(const btVector3& v1, const btVector3& v2) |
419 | { |
420 | return btVector3(v1.m_floats[0] / v2.m_floats[0], v1.m_floats[1] / v2.m_floats[1], v1.m_floats[2] / v2.m_floats[2]); |
421 | } |
422 | |
423 | /**@brief Return the dot product between two vectors */ |
424 | SIMD_FORCE_INLINE btScalar |
425 | btDot(const btVector3& v1, const btVector3& v2) |
426 | { |
427 | return v1.dot(v2); |
428 | } |
429 | |
430 | /**@brief Return the distance squared between two vectors */ |
431 | SIMD_FORCE_INLINE btScalar |
432 | btDistance2(const btVector3& v1, const btVector3& v2) |
433 | { |
434 | return v1.distance2(v2); |
435 | } |
436 | |
437 | /**@brief Return the distance between two vectors */ |
438 | SIMD_FORCE_INLINE btScalar |
439 | btDistance(const btVector3& v1, const btVector3& v2) |
440 | { |
441 | return v1.distance(v2); |
442 | } |
443 | |
444 | /**@brief Return the angle between two vectors */ |
445 | SIMD_FORCE_INLINE btScalar |
446 | btAngle(const btVector3& v1, const btVector3& v2) |
447 | { |
448 | return v1.angle(v2); |
449 | } |
450 | |
451 | /**@brief Return the cross product of two vectors */ |
452 | SIMD_FORCE_INLINE btVector3 |
453 | btCross(const btVector3& v1, const btVector3& v2) |
454 | { |
455 | return v1.cross(v2); |
456 | } |
457 | |
458 | SIMD_FORCE_INLINE btScalar |
459 | btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3) |
460 | { |
461 | return v1.triple(v2, v3); |
462 | } |
463 | |
464 | /**@brief Return the linear interpolation between two vectors |
465 | * @param v1 One vector |
466 | * @param v2 The other vector |
467 | * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ |
468 | SIMD_FORCE_INLINE btVector3 |
469 | lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) |
470 | { |
471 | return v1.lerp(v2, t); |
472 | } |
473 | |
474 | SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const |
475 | { |
476 | return (v - *this).length2(); |
477 | } |
478 | |
479 | SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const |
480 | { |
481 | return (v - *this).length(); |
482 | } |
483 | |
484 | SIMD_FORCE_INLINE btVector3 btVector3::normalized() const |
485 | { |
486 | return *this / length(); |
487 | } |
488 | |
489 | SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar angle) const |
490 | { |
491 | // wAxis must be a unit lenght vector |
492 | |
493 | btVector3 o = wAxis * wAxis.dot(*this); |
494 | btVector3 x = *this - o; |
495 | btVector3 y; |
496 | |
497 | y = wAxis.cross(*this); |
498 | |
499 | return (o + x * btCos(angle) + y * btSin(angle)); |
500 | } |
501 | |
502 | class btVector4 : public btVector3 { |
503 | public: |
504 | SIMD_FORCE_INLINE btVector4() {} |
505 | |
506 | SIMD_FORCE_INLINE btVector4(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) |
507 | : btVector3(x, y, z) |
508 | { |
509 | m_floats[3] = w; |
510 | } |
511 | |
512 | SIMD_FORCE_INLINE btVector4 absolute4() const |
513 | { |
514 | return btVector4( |
515 | btFabs(m_floats[0]), |
516 | btFabs(m_floats[1]), |
517 | btFabs(m_floats[2]), |
518 | btFabs(m_floats[3])); |
519 | } |
520 | |
521 | btScalar getW() const { return m_floats[3]; } |
522 | |
523 | SIMD_FORCE_INLINE int32_t maxAxis4() const |
524 | { |
525 | int32_t maxIndex = -1; |
526 | btScalar maxVal = btScalar(-BT_LARGE_FLOAT); |
527 | if (m_floats[0] > maxVal) { |
528 | maxIndex = 0; |
529 | maxVal = m_floats[0]; |
530 | } |
531 | if (m_floats[1] > maxVal) { |
532 | maxIndex = 1; |
533 | maxVal = m_floats[1]; |
534 | } |
535 | if (m_floats[2] > maxVal) { |
536 | maxIndex = 2; |
537 | maxVal = m_floats[2]; |
538 | } |
539 | if (m_floats[3] > maxVal) { |
540 | maxIndex = 3; |
541 | } |
542 | return maxIndex; |
543 | } |
544 | |
545 | SIMD_FORCE_INLINE int32_t minAxis4() const |
546 | { |
547 | int32_t minIndex = -1; |
548 | btScalar minVal = btScalar(BT_LARGE_FLOAT); |
549 | if (m_floats[0] < minVal) { |
550 | minIndex = 0; |
551 | minVal = m_floats[0]; |
552 | } |
553 | if (m_floats[1] < minVal) { |
554 | minIndex = 1; |
555 | minVal = m_floats[1]; |
556 | } |
557 | if (m_floats[2] < minVal) { |
558 | minIndex = 2; |
559 | minVal = m_floats[2]; |
560 | } |
561 | if (m_floats[3] < minVal) { |
562 | minIndex = 3; |
563 | } |
564 | |
565 | return minIndex; |
566 | } |
567 | |
568 | SIMD_FORCE_INLINE int32_t closestAxis4() const |
569 | { |
570 | return absolute4().maxAxis4(); |
571 | } |
572 | |
573 | /**@brief Set x,y,z and zero w |
574 | * @param x Value of x |
575 | * @param y Value of y |
576 | * @param z Value of z |
577 | */ |
578 | |
579 | /* void getValue(btScalar *m) const |
580 | { |
581 | m[0] = m_floats[0]; |
582 | m[1] = m_floats[1]; |
583 | m[2] =m_floats[2]; |
584 | } |
585 | */ |
586 | /**@brief Set the values |
587 | * @param x Value of x |
588 | * @param y Value of y |
589 | * @param z Value of z |
590 | * @param w Value of w |
591 | */ |
592 | SIMD_FORCE_INLINE void setValue(const btScalar& x, const btScalar& y, const btScalar& z, const btScalar& w) |
593 | { |
594 | m_floats[0] = x; |
595 | m_floats[1] = y; |
596 | m_floats[2] = z; |
597 | m_floats[3] = w; |
598 | } |
599 | }; |
600 | |
601 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
602 | SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) |
603 | { |
604 | #ifdef BT_USE_DOUBLE_PRECISION |
605 | unsigned char* dest = (unsigned char*)&destVal; |
606 | unsigned char* src = (unsigned char*)&sourceVal; |
607 | dest[0] = src[7]; |
608 | dest[1] = src[6]; |
609 | dest[2] = src[5]; |
610 | dest[3] = src[4]; |
611 | dest[4] = src[3]; |
612 | dest[5] = src[2]; |
613 | dest[6] = src[1]; |
614 | dest[7] = src[0]; |
615 | #else |
616 | unsigned char* dest = (unsigned char*)&destVal; |
617 | unsigned char* src = (unsigned char*)&sourceVal; |
618 | dest[0] = src[3]; |
619 | dest[1] = src[2]; |
620 | dest[2] = src[1]; |
621 | dest[3] = src[0]; |
622 | #endif //BT_USE_DOUBLE_PRECISION |
623 | } |
624 | ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
625 | SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) |
626 | { |
627 | for (int32_t i = 0; i < 4; i++) { |
628 | btSwapScalarEndian(sourceVec[i], destVec[i]); |
629 | } |
630 | } |
631 | |
632 | ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization |
633 | SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) |
634 | { |
635 | |
636 | btVector3 swappedVec; |
637 | for (int32_t i = 0; i < 4; i++) { |
638 | btSwapScalarEndian(vector[i], swappedVec[i]); |
639 | } |
640 | vector = swappedVec; |
641 | } |
642 | |
643 | template <class T> |
644 | SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q) |
645 | { |
646 | if (btFabs(n[2]) > SIMDSQRT12) { |
647 | // choose p in y-z plane |
648 | btScalar a = n[1] * n[1] + n[2] * n[2]; |
649 | btScalar k = btRecipSqrt(a); |
650 | p[0] = 0; |
651 | p[1] = -n[2] * k; |
652 | p[2] = n[1] * k; |
653 | // set q = n x p |
654 | q[0] = a * k; |
655 | q[1] = -n[0] * p[2]; |
656 | q[2] = n[0] * p[1]; |
657 | } |
658 | else { |
659 | // choose p in x-y plane |
660 | btScalar a = n[0] * n[0] + n[1] * n[1]; |
661 | btScalar k = btRecipSqrt(a); |
662 | p[0] = -n[1] * k; |
663 | p[1] = n[0] * k; |
664 | p[2] = 0; |
665 | // set q = n x p |
666 | q[0] = -n[2] * p[1]; |
667 | q[1] = n[2] * p[0]; |
668 | q[2] = a * k; |
669 | } |
670 | } |
671 | |
672 | struct btVector3FloatData { |
673 | float m_floats[4]; |
674 | }; |
675 | |
676 | struct btVector3DoubleData { |
677 | double m_floats[4]; |
678 | }; |
679 | |
680 | SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const |
681 | { |
682 | ///could also do a memcpy, check if it is worth it |
683 | for (int32_t i = 0; i < 4; i++) |
684 | dataOut.m_floats[i] = float(m_floats[i]); |
685 | } |
686 | |
687 | SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) |
688 | { |
689 | for (int32_t i = 0; i < 4; i++) |
690 | m_floats[i] = btScalar(dataIn.m_floats[i]); |
691 | } |
692 | |
693 | SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const |
694 | { |
695 | ///could also do a memcpy, check if it is worth it |
696 | for (int32_t i = 0; i < 4; i++) |
697 | dataOut.m_floats[i] = double(m_floats[i]); |
698 | } |
699 | |
700 | SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) |
701 | { |
702 | for (int32_t i = 0; i < 4; i++) |
703 | m_floats[i] = btScalar(dataIn.m_floats[i]); |
704 | } |
705 | |
706 | SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const |
707 | { |
708 | ///could also do a memcpy, check if it is worth it |
709 | for (int32_t i = 0; i < 4; i++) |
710 | dataOut.m_floats[i] = m_floats[i]; |
711 | } |
712 | |
713 | SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn) |
714 | { |
715 | for (int32_t i = 0; i < 4; i++) |
716 | m_floats[i] = dataIn.m_floats[i]; |
717 | } |
718 | |
719 | // -- GODOT start -- |
720 | }; // namespace VHACD |
721 | // -- GODOT end -- |
722 | |
723 | #endif //BT_VECTOR3_H |
724 | |