1 | /* |
2 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
3 | * All rights reserved. |
4 | * |
5 | * This source code is licensed under both the BSD-style license (found in the |
6 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
7 | * in the COPYING file in the root directory of this source tree). |
8 | * You may select, at your option, one of the above-listed licenses. |
9 | */ |
10 | |
11 | /*-************************************* |
12 | * Dependencies |
13 | ***************************************/ |
14 | #include "zstd_compress_sequences.h" |
15 | |
16 | /** |
17 | * -log2(x / 256) lookup table for x in [0, 256). |
18 | * If x == 0: Return 0 |
19 | * Else: Return floor(-log2(x / 256) * 256) |
20 | */ |
21 | static unsigned const kInverseProbabilityLog256[256] = { |
22 | 0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162, |
23 | 1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889, |
24 | 874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734, |
25 | 724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626, |
26 | 618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542, |
27 | 535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473, |
28 | 468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415, |
29 | 411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366, |
30 | 362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322, |
31 | 318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282, |
32 | 279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247, |
33 | 244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215, |
34 | 212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185, |
35 | 182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157, |
36 | 155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132, |
37 | 130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108, |
38 | 106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85, |
39 | 83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64, |
40 | 62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44, |
41 | 42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25, |
42 | 23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7, |
43 | 5, 4, 2, 1, |
44 | }; |
45 | |
46 | static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) { |
47 | void const* ptr = ctable; |
48 | U16 const* u16ptr = (U16 const*)ptr; |
49 | U32 const maxSymbolValue = MEM_read16(u16ptr + 1); |
50 | return maxSymbolValue; |
51 | } |
52 | |
53 | /** |
54 | * Returns true if we should use ncount=-1 else we should |
55 | * use ncount=1 for low probability symbols instead. |
56 | */ |
57 | static unsigned ZSTD_useLowProbCount(size_t const nbSeq) |
58 | { |
59 | /* Heuristic: This should cover most blocks <= 16K and |
60 | * start to fade out after 16K to about 32K depending on |
61 | * compressibility. |
62 | */ |
63 | return nbSeq >= 2048; |
64 | } |
65 | |
66 | /** |
67 | * Returns the cost in bytes of encoding the normalized count header. |
68 | * Returns an error if any of the helper functions return an error. |
69 | */ |
70 | static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max, |
71 | size_t const nbSeq, unsigned const FSELog) |
72 | { |
73 | BYTE wksp[FSE_NCOUNTBOUND]; |
74 | S16 norm[MaxSeq + 1]; |
75 | const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); |
76 | FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "" ); |
77 | return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog); |
78 | } |
79 | |
80 | /** |
81 | * Returns the cost in bits of encoding the distribution described by count |
82 | * using the entropy bound. |
83 | */ |
84 | static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total) |
85 | { |
86 | unsigned cost = 0; |
87 | unsigned s; |
88 | |
89 | assert(total > 0); |
90 | for (s = 0; s <= max; ++s) { |
91 | unsigned norm = (unsigned)((256 * count[s]) / total); |
92 | if (count[s] != 0 && norm == 0) |
93 | norm = 1; |
94 | assert(count[s] < total); |
95 | cost += count[s] * kInverseProbabilityLog256[norm]; |
96 | } |
97 | return cost >> 8; |
98 | } |
99 | |
100 | /** |
101 | * Returns the cost in bits of encoding the distribution in count using ctable. |
102 | * Returns an error if ctable cannot represent all the symbols in count. |
103 | */ |
104 | size_t ZSTD_fseBitCost( |
105 | FSE_CTable const* ctable, |
106 | unsigned const* count, |
107 | unsigned const max) |
108 | { |
109 | unsigned const kAccuracyLog = 8; |
110 | size_t cost = 0; |
111 | unsigned s; |
112 | FSE_CState_t cstate; |
113 | FSE_initCState(&cstate, ctable); |
114 | if (ZSTD_getFSEMaxSymbolValue(ctable) < max) { |
115 | DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u" , |
116 | ZSTD_getFSEMaxSymbolValue(ctable), max); |
117 | return ERROR(GENERIC); |
118 | } |
119 | for (s = 0; s <= max; ++s) { |
120 | unsigned const tableLog = cstate.stateLog; |
121 | unsigned const badCost = (tableLog + 1) << kAccuracyLog; |
122 | unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog); |
123 | if (count[s] == 0) |
124 | continue; |
125 | if (bitCost >= badCost) { |
126 | DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0" , s); |
127 | return ERROR(GENERIC); |
128 | } |
129 | cost += (size_t)count[s] * bitCost; |
130 | } |
131 | return cost >> kAccuracyLog; |
132 | } |
133 | |
134 | /** |
135 | * Returns the cost in bits of encoding the distribution in count using the |
136 | * table described by norm. The max symbol support by norm is assumed >= max. |
137 | * norm must be valid for every symbol with non-zero probability in count. |
138 | */ |
139 | size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog, |
140 | unsigned const* count, unsigned const max) |
141 | { |
142 | unsigned const shift = 8 - accuracyLog; |
143 | size_t cost = 0; |
144 | unsigned s; |
145 | assert(accuracyLog <= 8); |
146 | for (s = 0; s <= max; ++s) { |
147 | unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1; |
148 | unsigned const norm256 = normAcc << shift; |
149 | assert(norm256 > 0); |
150 | assert(norm256 < 256); |
151 | cost += count[s] * kInverseProbabilityLog256[norm256]; |
152 | } |
153 | return cost >> 8; |
154 | } |
155 | |
156 | symbolEncodingType_e |
157 | ZSTD_selectEncodingType( |
158 | FSE_repeat* repeatMode, unsigned const* count, unsigned const max, |
159 | size_t const mostFrequent, size_t nbSeq, unsigned const FSELog, |
160 | FSE_CTable const* prevCTable, |
161 | short const* defaultNorm, U32 defaultNormLog, |
162 | ZSTD_defaultPolicy_e const isDefaultAllowed, |
163 | ZSTD_strategy const strategy) |
164 | { |
165 | ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0); |
166 | if (mostFrequent == nbSeq) { |
167 | *repeatMode = FSE_repeat_none; |
168 | if (isDefaultAllowed && nbSeq <= 2) { |
169 | /* Prefer set_basic over set_rle when there are 2 or fewer symbols, |
170 | * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol. |
171 | * If basic encoding isn't possible, always choose RLE. |
172 | */ |
173 | DEBUGLOG(5, "Selected set_basic" ); |
174 | return set_basic; |
175 | } |
176 | DEBUGLOG(5, "Selected set_rle" ); |
177 | return set_rle; |
178 | } |
179 | if (strategy < ZSTD_lazy) { |
180 | if (isDefaultAllowed) { |
181 | size_t const staticFse_nbSeq_max = 1000; |
182 | size_t const mult = 10 - strategy; |
183 | size_t const baseLog = 3; |
184 | size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */ |
185 | assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */ |
186 | assert(mult <= 9 && mult >= 7); |
187 | if ( (*repeatMode == FSE_repeat_valid) |
188 | && (nbSeq < staticFse_nbSeq_max) ) { |
189 | DEBUGLOG(5, "Selected set_repeat" ); |
190 | return set_repeat; |
191 | } |
192 | if ( (nbSeq < dynamicFse_nbSeq_min) |
193 | || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) { |
194 | DEBUGLOG(5, "Selected set_basic" ); |
195 | /* The format allows default tables to be repeated, but it isn't useful. |
196 | * When using simple heuristics to select encoding type, we don't want |
197 | * to confuse these tables with dictionaries. When running more careful |
198 | * analysis, we don't need to waste time checking both repeating tables |
199 | * and default tables. |
200 | */ |
201 | *repeatMode = FSE_repeat_none; |
202 | return set_basic; |
203 | } |
204 | } |
205 | } else { |
206 | size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC); |
207 | size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC); |
208 | size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog); |
209 | size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq); |
210 | |
211 | if (isDefaultAllowed) { |
212 | assert(!ZSTD_isError(basicCost)); |
213 | assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost))); |
214 | } |
215 | assert(!ZSTD_isError(NCountCost)); |
216 | assert(compressedCost < ERROR(maxCode)); |
217 | DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u" , |
218 | (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost); |
219 | if (basicCost <= repeatCost && basicCost <= compressedCost) { |
220 | DEBUGLOG(5, "Selected set_basic" ); |
221 | assert(isDefaultAllowed); |
222 | *repeatMode = FSE_repeat_none; |
223 | return set_basic; |
224 | } |
225 | if (repeatCost <= compressedCost) { |
226 | DEBUGLOG(5, "Selected set_repeat" ); |
227 | assert(!ZSTD_isError(repeatCost)); |
228 | return set_repeat; |
229 | } |
230 | assert(compressedCost < basicCost && compressedCost < repeatCost); |
231 | } |
232 | DEBUGLOG(5, "Selected set_compressed" ); |
233 | *repeatMode = FSE_repeat_check; |
234 | return set_compressed; |
235 | } |
236 | |
237 | typedef struct { |
238 | S16 norm[MaxSeq + 1]; |
239 | U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)]; |
240 | } ZSTD_BuildCTableWksp; |
241 | |
242 | size_t |
243 | ZSTD_buildCTable(void* dst, size_t dstCapacity, |
244 | FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type, |
245 | unsigned* count, U32 max, |
246 | const BYTE* codeTable, size_t nbSeq, |
247 | const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, |
248 | const FSE_CTable* prevCTable, size_t prevCTableSize, |
249 | void* entropyWorkspace, size_t entropyWorkspaceSize) |
250 | { |
251 | BYTE* op = (BYTE*)dst; |
252 | const BYTE* const oend = op + dstCapacity; |
253 | DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)" , (unsigned)dstCapacity); |
254 | |
255 | switch (type) { |
256 | case set_rle: |
257 | FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "" ); |
258 | RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space" ); |
259 | *op = codeTable[0]; |
260 | return 1; |
261 | case set_repeat: |
262 | ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize); |
263 | return 0; |
264 | case set_basic: |
265 | FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "" ); /* note : could be pre-calculated */ |
266 | return 0; |
267 | case set_compressed: { |
268 | ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace; |
269 | size_t nbSeq_1 = nbSeq; |
270 | const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); |
271 | if (count[codeTable[nbSeq-1]] > 1) { |
272 | count[codeTable[nbSeq-1]]--; |
273 | nbSeq_1--; |
274 | } |
275 | assert(nbSeq_1 > 1); |
276 | assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp)); |
277 | (void)entropyWorkspaceSize; |
278 | FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed" ); |
279 | assert(oend >= op); |
280 | { size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */ |
281 | FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed" ); |
282 | FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed" ); |
283 | return NCountSize; |
284 | } |
285 | } |
286 | default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach" ); |
287 | } |
288 | } |
289 | |
290 | FORCE_INLINE_TEMPLATE size_t |
291 | ZSTD_encodeSequences_body( |
292 | void* dst, size_t dstCapacity, |
293 | FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, |
294 | FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, |
295 | FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, |
296 | seqDef const* sequences, size_t nbSeq, int longOffsets) |
297 | { |
298 | BIT_CStream_t blockStream; |
299 | FSE_CState_t stateMatchLength; |
300 | FSE_CState_t stateOffsetBits; |
301 | FSE_CState_t stateLitLength; |
302 | |
303 | RETURN_ERROR_IF( |
304 | ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)), |
305 | dstSize_tooSmall, "not enough space remaining" ); |
306 | DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)" , |
307 | (int)(blockStream.endPtr - blockStream.startPtr), |
308 | (unsigned)dstCapacity); |
309 | |
310 | /* first symbols */ |
311 | FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]); |
312 | FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]); |
313 | FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]); |
314 | BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]); |
315 | if (MEM_32bits()) BIT_flushBits(&blockStream); |
316 | BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]); |
317 | if (MEM_32bits()) BIT_flushBits(&blockStream); |
318 | if (longOffsets) { |
319 | U32 const ofBits = ofCodeTable[nbSeq-1]; |
320 | unsigned const = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); |
321 | if (extraBits) { |
322 | BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits); |
323 | BIT_flushBits(&blockStream); |
324 | } |
325 | BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits, |
326 | ofBits - extraBits); |
327 | } else { |
328 | BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]); |
329 | } |
330 | BIT_flushBits(&blockStream); |
331 | |
332 | { size_t n; |
333 | for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */ |
334 | BYTE const llCode = llCodeTable[n]; |
335 | BYTE const ofCode = ofCodeTable[n]; |
336 | BYTE const mlCode = mlCodeTable[n]; |
337 | U32 const llBits = LL_bits[llCode]; |
338 | U32 const ofBits = ofCode; |
339 | U32 const mlBits = ML_bits[mlCode]; |
340 | DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u" , |
341 | (unsigned)sequences[n].litLength, |
342 | (unsigned)sequences[n].mlBase + MINMATCH, |
343 | (unsigned)sequences[n].offBase); |
344 | /* 32b*/ /* 64b*/ |
345 | /* (7)*/ /* (7)*/ |
346 | FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */ |
347 | FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */ |
348 | if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/ |
349 | FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */ |
350 | if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog))) |
351 | BIT_flushBits(&blockStream); /* (7)*/ |
352 | BIT_addBits(&blockStream, sequences[n].litLength, llBits); |
353 | if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream); |
354 | BIT_addBits(&blockStream, sequences[n].mlBase, mlBits); |
355 | if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream); |
356 | if (longOffsets) { |
357 | unsigned const = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1); |
358 | if (extraBits) { |
359 | BIT_addBits(&blockStream, sequences[n].offBase, extraBits); |
360 | BIT_flushBits(&blockStream); /* (7)*/ |
361 | } |
362 | BIT_addBits(&blockStream, sequences[n].offBase >> extraBits, |
363 | ofBits - extraBits); /* 31 */ |
364 | } else { |
365 | BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */ |
366 | } |
367 | BIT_flushBits(&blockStream); /* (7)*/ |
368 | DEBUGLOG(7, "remaining space : %i" , (int)(blockStream.endPtr - blockStream.ptr)); |
369 | } } |
370 | |
371 | DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits" , stateMatchLength.stateLog); |
372 | FSE_flushCState(&blockStream, &stateMatchLength); |
373 | DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits" , stateOffsetBits.stateLog); |
374 | FSE_flushCState(&blockStream, &stateOffsetBits); |
375 | DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits" , stateLitLength.stateLog); |
376 | FSE_flushCState(&blockStream, &stateLitLength); |
377 | |
378 | { size_t const streamSize = BIT_closeCStream(&blockStream); |
379 | RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space" ); |
380 | return streamSize; |
381 | } |
382 | } |
383 | |
384 | static size_t |
385 | ZSTD_encodeSequences_default( |
386 | void* dst, size_t dstCapacity, |
387 | FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, |
388 | FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, |
389 | FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, |
390 | seqDef const* sequences, size_t nbSeq, int longOffsets) |
391 | { |
392 | return ZSTD_encodeSequences_body(dst, dstCapacity, |
393 | CTable_MatchLength, mlCodeTable, |
394 | CTable_OffsetBits, ofCodeTable, |
395 | CTable_LitLength, llCodeTable, |
396 | sequences, nbSeq, longOffsets); |
397 | } |
398 | |
399 | |
400 | #if DYNAMIC_BMI2 |
401 | |
402 | static BMI2_TARGET_ATTRIBUTE size_t |
403 | ZSTD_encodeSequences_bmi2( |
404 | void* dst, size_t dstCapacity, |
405 | FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, |
406 | FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, |
407 | FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, |
408 | seqDef const* sequences, size_t nbSeq, int longOffsets) |
409 | { |
410 | return ZSTD_encodeSequences_body(dst, dstCapacity, |
411 | CTable_MatchLength, mlCodeTable, |
412 | CTable_OffsetBits, ofCodeTable, |
413 | CTable_LitLength, llCodeTable, |
414 | sequences, nbSeq, longOffsets); |
415 | } |
416 | |
417 | #endif |
418 | |
419 | size_t ZSTD_encodeSequences( |
420 | void* dst, size_t dstCapacity, |
421 | FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable, |
422 | FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable, |
423 | FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable, |
424 | seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2) |
425 | { |
426 | DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u" , (unsigned)dstCapacity); |
427 | #if DYNAMIC_BMI2 |
428 | if (bmi2) { |
429 | return ZSTD_encodeSequences_bmi2(dst, dstCapacity, |
430 | CTable_MatchLength, mlCodeTable, |
431 | CTable_OffsetBits, ofCodeTable, |
432 | CTable_LitLength, llCodeTable, |
433 | sequences, nbSeq, longOffsets); |
434 | } |
435 | #endif |
436 | (void)bmi2; |
437 | return ZSTD_encodeSequences_default(dst, dstCapacity, |
438 | CTable_MatchLength, mlCodeTable, |
439 | CTable_OffsetBits, ofCodeTable, |
440 | CTable_LitLength, llCodeTable, |
441 | sequences, nbSeq, longOffsets); |
442 | } |
443 | |