1 | /* ****************************************************************** |
2 | * huff0 huffman decoder, |
3 | * part of Finite State Entropy library |
4 | * Copyright (c) Meta Platforms, Inc. and affiliates. |
5 | * |
6 | * You can contact the author at : |
7 | * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy |
8 | * |
9 | * This source code is licensed under both the BSD-style license (found in the |
10 | * LICENSE file in the root directory of this source tree) and the GPLv2 (found |
11 | * in the COPYING file in the root directory of this source tree). |
12 | * You may select, at your option, one of the above-listed licenses. |
13 | ****************************************************************** */ |
14 | |
15 | /* ************************************************************** |
16 | * Dependencies |
17 | ****************************************************************/ |
18 | #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */ |
19 | #include "../common/compiler.h" |
20 | #include "../common/bitstream.h" /* BIT_* */ |
21 | #include "../common/fse.h" /* to compress headers */ |
22 | #include "../common/huf.h" |
23 | #include "../common/error_private.h" |
24 | #include "../common/zstd_internal.h" |
25 | #include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */ |
26 | |
27 | /* ************************************************************** |
28 | * Constants |
29 | ****************************************************************/ |
30 | |
31 | #define HUF_DECODER_FAST_TABLELOG 11 |
32 | |
33 | /* ************************************************************** |
34 | * Macros |
35 | ****************************************************************/ |
36 | |
37 | /* These two optional macros force the use one way or another of the two |
38 | * Huffman decompression implementations. You can't force in both directions |
39 | * at the same time. |
40 | */ |
41 | #if defined(HUF_FORCE_DECOMPRESS_X1) && \ |
42 | defined(HUF_FORCE_DECOMPRESS_X2) |
43 | #error "Cannot force the use of the X1 and X2 decoders at the same time!" |
44 | #endif |
45 | |
46 | /* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is |
47 | * supported at runtime, so we can add the BMI2 target attribute. |
48 | * When it is disabled, we will still get BMI2 if it is enabled statically. |
49 | */ |
50 | #if DYNAMIC_BMI2 |
51 | # define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE |
52 | #else |
53 | # define HUF_FAST_BMI2_ATTRS |
54 | #endif |
55 | |
56 | #ifdef __cplusplus |
57 | # define HUF_EXTERN_C extern "C" |
58 | #else |
59 | # define HUF_EXTERN_C |
60 | #endif |
61 | #define HUF_ASM_DECL HUF_EXTERN_C |
62 | |
63 | #if DYNAMIC_BMI2 |
64 | # define HUF_NEED_BMI2_FUNCTION 1 |
65 | #else |
66 | # define HUF_NEED_BMI2_FUNCTION 0 |
67 | #endif |
68 | |
69 | /* ************************************************************** |
70 | * Error Management |
71 | ****************************************************************/ |
72 | #define HUF_isError ERR_isError |
73 | |
74 | |
75 | /* ************************************************************** |
76 | * Byte alignment for workSpace management |
77 | ****************************************************************/ |
78 | #define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1) |
79 | #define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask)) |
80 | |
81 | |
82 | /* ************************************************************** |
83 | * BMI2 Variant Wrappers |
84 | ****************************************************************/ |
85 | typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize, |
86 | const void *cSrc, |
87 | size_t cSrcSize, |
88 | const HUF_DTable *DTable); |
89 | |
90 | #if DYNAMIC_BMI2 |
91 | |
92 | #define HUF_DGEN(fn) \ |
93 | \ |
94 | static size_t fn##_default( \ |
95 | void* dst, size_t dstSize, \ |
96 | const void* cSrc, size_t cSrcSize, \ |
97 | const HUF_DTable* DTable) \ |
98 | { \ |
99 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
100 | } \ |
101 | \ |
102 | static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \ |
103 | void* dst, size_t dstSize, \ |
104 | const void* cSrc, size_t cSrcSize, \ |
105 | const HUF_DTable* DTable) \ |
106 | { \ |
107 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
108 | } \ |
109 | \ |
110 | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
111 | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
112 | { \ |
113 | if (flags & HUF_flags_bmi2) { \ |
114 | return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \ |
115 | } \ |
116 | return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \ |
117 | } |
118 | |
119 | #else |
120 | |
121 | #define HUF_DGEN(fn) \ |
122 | static size_t fn(void* dst, size_t dstSize, void const* cSrc, \ |
123 | size_t cSrcSize, HUF_DTable const* DTable, int flags) \ |
124 | { \ |
125 | (void)flags; \ |
126 | return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \ |
127 | } |
128 | |
129 | #endif |
130 | |
131 | |
132 | /*-***************************/ |
133 | /* generic DTableDesc */ |
134 | /*-***************************/ |
135 | typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; |
136 | |
137 | static DTableDesc HUF_getDTableDesc(const HUF_DTable* table) |
138 | { |
139 | DTableDesc dtd; |
140 | ZSTD_memcpy(&dtd, table, sizeof(dtd)); |
141 | return dtd; |
142 | } |
143 | |
144 | static size_t HUF_initFastDStream(BYTE const* ip) { |
145 | BYTE const lastByte = ip[7]; |
146 | size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; |
147 | size_t const value = MEM_readLEST(ip) | 1; |
148 | assert(bitsConsumed <= 8); |
149 | assert(sizeof(size_t) == 8); |
150 | return value << bitsConsumed; |
151 | } |
152 | |
153 | |
154 | /** |
155 | * The input/output arguments to the Huffman fast decoding loop: |
156 | * |
157 | * ip [in/out] - The input pointers, must be updated to reflect what is consumed. |
158 | * op [in/out] - The output pointers, must be updated to reflect what is written. |
159 | * bits [in/out] - The bitstream containers, must be updated to reflect the current state. |
160 | * dt [in] - The decoding table. |
161 | * ilimit [in] - The input limit, stop when any input pointer is below ilimit. |
162 | * oend [in] - The end of the output stream. op[3] must not cross oend. |
163 | * iend [in] - The end of each input stream. ip[i] may cross iend[i], |
164 | * as long as it is above ilimit, but that indicates corruption. |
165 | */ |
166 | typedef struct { |
167 | BYTE const* ip[4]; |
168 | BYTE* op[4]; |
169 | U64 bits[4]; |
170 | void const* dt; |
171 | BYTE const* ilimit; |
172 | BYTE* oend; |
173 | BYTE const* iend[4]; |
174 | } HUF_DecompressFastArgs; |
175 | |
176 | typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*); |
177 | |
178 | /** |
179 | * Initializes args for the fast decoding loop. |
180 | * @returns 1 on success |
181 | * 0 if the fallback implementation should be used. |
182 | * Or an error code on failure. |
183 | */ |
184 | static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable) |
185 | { |
186 | void const* dt = DTable + 1; |
187 | U32 const dtLog = HUF_getDTableDesc(DTable).tableLog; |
188 | |
189 | const BYTE* const ilimit = (const BYTE*)src + 6 + 8; |
190 | |
191 | BYTE* const oend = (BYTE*)dst + dstSize; |
192 | |
193 | /* The fast decoding loop assumes 64-bit little-endian. |
194 | * This condition is false on x32. |
195 | */ |
196 | if (!MEM_isLittleEndian() || MEM_32bits()) |
197 | return 0; |
198 | |
199 | /* strict minimum : jump table + 1 byte per stream */ |
200 | if (srcSize < 10) |
201 | return ERROR(corruption_detected); |
202 | |
203 | /* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers. |
204 | * If table log is not correct at this point, fallback to the old decoder. |
205 | * On small inputs we don't have enough data to trigger the fast loop, so use the old decoder. |
206 | */ |
207 | if (dtLog != HUF_DECODER_FAST_TABLELOG) |
208 | return 0; |
209 | |
210 | /* Read the jump table. */ |
211 | { |
212 | const BYTE* const istart = (const BYTE*)src; |
213 | size_t const length1 = MEM_readLE16(istart); |
214 | size_t const length2 = MEM_readLE16(istart+2); |
215 | size_t const length3 = MEM_readLE16(istart+4); |
216 | size_t const length4 = srcSize - (length1 + length2 + length3 + 6); |
217 | args->iend[0] = istart + 6; /* jumpTable */ |
218 | args->iend[1] = args->iend[0] + length1; |
219 | args->iend[2] = args->iend[1] + length2; |
220 | args->iend[3] = args->iend[2] + length3; |
221 | |
222 | /* HUF_initFastDStream() requires this, and this small of an input |
223 | * won't benefit from the ASM loop anyways. |
224 | * length1 must be >= 16 so that ip[0] >= ilimit before the loop |
225 | * starts. |
226 | */ |
227 | if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8) |
228 | return 0; |
229 | if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */ |
230 | } |
231 | /* ip[] contains the position that is currently loaded into bits[]. */ |
232 | args->ip[0] = args->iend[1] - sizeof(U64); |
233 | args->ip[1] = args->iend[2] - sizeof(U64); |
234 | args->ip[2] = args->iend[3] - sizeof(U64); |
235 | args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64); |
236 | |
237 | /* op[] contains the output pointers. */ |
238 | args->op[0] = (BYTE*)dst; |
239 | args->op[1] = args->op[0] + (dstSize+3)/4; |
240 | args->op[2] = args->op[1] + (dstSize+3)/4; |
241 | args->op[3] = args->op[2] + (dstSize+3)/4; |
242 | |
243 | /* No point to call the ASM loop for tiny outputs. */ |
244 | if (args->op[3] >= oend) |
245 | return 0; |
246 | |
247 | /* bits[] is the bit container. |
248 | * It is read from the MSB down to the LSB. |
249 | * It is shifted left as it is read, and zeros are |
250 | * shifted in. After the lowest valid bit a 1 is |
251 | * set, so that CountTrailingZeros(bits[]) can be used |
252 | * to count how many bits we've consumed. |
253 | */ |
254 | args->bits[0] = HUF_initFastDStream(args->ip[0]); |
255 | args->bits[1] = HUF_initFastDStream(args->ip[1]); |
256 | args->bits[2] = HUF_initFastDStream(args->ip[2]); |
257 | args->bits[3] = HUF_initFastDStream(args->ip[3]); |
258 | |
259 | /* If ip[] >= ilimit, it is guaranteed to be safe to |
260 | * reload bits[]. It may be beyond its section, but is |
261 | * guaranteed to be valid (>= istart). |
262 | */ |
263 | args->ilimit = ilimit; |
264 | |
265 | args->oend = oend; |
266 | args->dt = dt; |
267 | |
268 | return 1; |
269 | } |
270 | |
271 | static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd) |
272 | { |
273 | /* Validate that we haven't overwritten. */ |
274 | if (args->op[stream] > segmentEnd) |
275 | return ERROR(corruption_detected); |
276 | /* Validate that we haven't read beyond iend[]. |
277 | * Note that ip[] may be < iend[] because the MSB is |
278 | * the next bit to read, and we may have consumed 100% |
279 | * of the stream, so down to iend[i] - 8 is valid. |
280 | */ |
281 | if (args->ip[stream] < args->iend[stream] - 8) |
282 | return ERROR(corruption_detected); |
283 | |
284 | /* Construct the BIT_DStream_t. */ |
285 | assert(sizeof(size_t) == 8); |
286 | bit->bitContainer = MEM_readLEST(args->ip[stream]); |
287 | bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]); |
288 | bit->start = (const char*)args->iend[0]; |
289 | bit->limitPtr = bit->start + sizeof(size_t); |
290 | bit->ptr = (const char*)args->ip[stream]; |
291 | |
292 | return 0; |
293 | } |
294 | |
295 | |
296 | #ifndef HUF_FORCE_DECOMPRESS_X2 |
297 | |
298 | /*-***************************/ |
299 | /* single-symbol decoding */ |
300 | /*-***************************/ |
301 | typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */ |
302 | |
303 | /** |
304 | * Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at |
305 | * a time. |
306 | */ |
307 | static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) { |
308 | U64 D4; |
309 | if (MEM_isLittleEndian()) { |
310 | D4 = (U64)((symbol << 8) + nbBits); |
311 | } else { |
312 | D4 = (U64)(symbol + (nbBits << 8)); |
313 | } |
314 | assert(D4 < (1U << 16)); |
315 | D4 *= 0x0001000100010001ULL; |
316 | return D4; |
317 | } |
318 | |
319 | /** |
320 | * Increase the tableLog to targetTableLog and rescales the stats. |
321 | * If tableLog > targetTableLog this is a no-op. |
322 | * @returns New tableLog |
323 | */ |
324 | static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog) |
325 | { |
326 | if (tableLog > targetTableLog) |
327 | return tableLog; |
328 | if (tableLog < targetTableLog) { |
329 | U32 const scale = targetTableLog - tableLog; |
330 | U32 s; |
331 | /* Increase the weight for all non-zero probability symbols by scale. */ |
332 | for (s = 0; s < nbSymbols; ++s) { |
333 | huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale); |
334 | } |
335 | /* Update rankVal to reflect the new weights. |
336 | * All weights except 0 get moved to weight + scale. |
337 | * Weights [1, scale] are empty. |
338 | */ |
339 | for (s = targetTableLog; s > scale; --s) { |
340 | rankVal[s] = rankVal[s - scale]; |
341 | } |
342 | for (s = scale; s > 0; --s) { |
343 | rankVal[s] = 0; |
344 | } |
345 | } |
346 | return targetTableLog; |
347 | } |
348 | |
349 | typedef struct { |
350 | U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
351 | U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1]; |
352 | U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
353 | BYTE symbols[HUF_SYMBOLVALUE_MAX + 1]; |
354 | BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; |
355 | } HUF_ReadDTableX1_Workspace; |
356 | |
357 | size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags) |
358 | { |
359 | U32 tableLog = 0; |
360 | U32 nbSymbols = 0; |
361 | size_t iSize; |
362 | void* const dtPtr = DTable + 1; |
363 | HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr; |
364 | HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace; |
365 | |
366 | DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp)); |
367 | if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge); |
368 | |
369 | DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable)); |
370 | /* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */ |
371 | |
372 | iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags); |
373 | if (HUF_isError(iSize)) return iSize; |
374 | |
375 | |
376 | /* Table header */ |
377 | { DTableDesc dtd = HUF_getDTableDesc(DTable); |
378 | U32 const maxTableLog = dtd.maxTableLog + 1; |
379 | U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG); |
380 | tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog); |
381 | if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */ |
382 | dtd.tableType = 0; |
383 | dtd.tableLog = (BYTE)tableLog; |
384 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
385 | } |
386 | |
387 | /* Compute symbols and rankStart given rankVal: |
388 | * |
389 | * rankVal already contains the number of values of each weight. |
390 | * |
391 | * symbols contains the symbols ordered by weight. First are the rankVal[0] |
392 | * weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on. |
393 | * symbols[0] is filled (but unused) to avoid a branch. |
394 | * |
395 | * rankStart contains the offset where each rank belongs in the DTable. |
396 | * rankStart[0] is not filled because there are no entries in the table for |
397 | * weight 0. |
398 | */ |
399 | { int n; |
400 | U32 = 0; |
401 | int const unroll = 4; |
402 | int const nLimit = (int)nbSymbols - unroll + 1; |
403 | for (n=0; n<(int)tableLog+1; n++) { |
404 | U32 const curr = nextRankStart; |
405 | nextRankStart += wksp->rankVal[n]; |
406 | wksp->rankStart[n] = curr; |
407 | } |
408 | for (n=0; n < nLimit; n += unroll) { |
409 | int u; |
410 | for (u=0; u < unroll; ++u) { |
411 | size_t const w = wksp->huffWeight[n+u]; |
412 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u); |
413 | } |
414 | } |
415 | for (; n < (int)nbSymbols; ++n) { |
416 | size_t const w = wksp->huffWeight[n]; |
417 | wksp->symbols[wksp->rankStart[w]++] = (BYTE)n; |
418 | } |
419 | } |
420 | |
421 | /* fill DTable |
422 | * We fill all entries of each weight in order. |
423 | * That way length is a constant for each iteration of the outer loop. |
424 | * We can switch based on the length to a different inner loop which is |
425 | * optimized for that particular case. |
426 | */ |
427 | { U32 w; |
428 | int symbol = wksp->rankVal[0]; |
429 | int rankStart = 0; |
430 | for (w=1; w<tableLog+1; ++w) { |
431 | int const symbolCount = wksp->rankVal[w]; |
432 | int const length = (1 << w) >> 1; |
433 | int uStart = rankStart; |
434 | BYTE const nbBits = (BYTE)(tableLog + 1 - w); |
435 | int s; |
436 | int u; |
437 | switch (length) { |
438 | case 1: |
439 | for (s=0; s<symbolCount; ++s) { |
440 | HUF_DEltX1 D; |
441 | D.byte = wksp->symbols[symbol + s]; |
442 | D.nbBits = nbBits; |
443 | dt[uStart] = D; |
444 | uStart += 1; |
445 | } |
446 | break; |
447 | case 2: |
448 | for (s=0; s<symbolCount; ++s) { |
449 | HUF_DEltX1 D; |
450 | D.byte = wksp->symbols[symbol + s]; |
451 | D.nbBits = nbBits; |
452 | dt[uStart+0] = D; |
453 | dt[uStart+1] = D; |
454 | uStart += 2; |
455 | } |
456 | break; |
457 | case 4: |
458 | for (s=0; s<symbolCount; ++s) { |
459 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
460 | MEM_write64(dt + uStart, D4); |
461 | uStart += 4; |
462 | } |
463 | break; |
464 | case 8: |
465 | for (s=0; s<symbolCount; ++s) { |
466 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
467 | MEM_write64(dt + uStart, D4); |
468 | MEM_write64(dt + uStart + 4, D4); |
469 | uStart += 8; |
470 | } |
471 | break; |
472 | default: |
473 | for (s=0; s<symbolCount; ++s) { |
474 | U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits); |
475 | for (u=0; u < length; u += 16) { |
476 | MEM_write64(dt + uStart + u + 0, D4); |
477 | MEM_write64(dt + uStart + u + 4, D4); |
478 | MEM_write64(dt + uStart + u + 8, D4); |
479 | MEM_write64(dt + uStart + u + 12, D4); |
480 | } |
481 | assert(u == length); |
482 | uStart += length; |
483 | } |
484 | break; |
485 | } |
486 | symbol += symbolCount; |
487 | rankStart += symbolCount * length; |
488 | } |
489 | } |
490 | return iSize; |
491 | } |
492 | |
493 | FORCE_INLINE_TEMPLATE BYTE |
494 | HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog) |
495 | { |
496 | size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ |
497 | BYTE const c = dt[val].byte; |
498 | BIT_skipBits(Dstream, dt[val].nbBits); |
499 | return c; |
500 | } |
501 | |
502 | #define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \ |
503 | *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog) |
504 | |
505 | #define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \ |
506 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
507 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
508 | |
509 | #define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \ |
510 | if (MEM_64bits()) \ |
511 | HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) |
512 | |
513 | HINT_INLINE size_t |
514 | HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog) |
515 | { |
516 | BYTE* const pStart = p; |
517 | |
518 | /* up to 4 symbols at a time */ |
519 | if ((pEnd - p) > 3) { |
520 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) { |
521 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
522 | HUF_DECODE_SYMBOLX1_1(p, bitDPtr); |
523 | HUF_DECODE_SYMBOLX1_2(p, bitDPtr); |
524 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
525 | } |
526 | } else { |
527 | BIT_reloadDStream(bitDPtr); |
528 | } |
529 | |
530 | /* [0-3] symbols remaining */ |
531 | if (MEM_32bits()) |
532 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd)) |
533 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
534 | |
535 | /* no more data to retrieve from bitstream, no need to reload */ |
536 | while (p < pEnd) |
537 | HUF_DECODE_SYMBOLX1_0(p, bitDPtr); |
538 | |
539 | return (size_t)(pEnd-pStart); |
540 | } |
541 | |
542 | FORCE_INLINE_TEMPLATE size_t |
543 | HUF_decompress1X1_usingDTable_internal_body( |
544 | void* dst, size_t dstSize, |
545 | const void* cSrc, size_t cSrcSize, |
546 | const HUF_DTable* DTable) |
547 | { |
548 | BYTE* op = (BYTE*)dst; |
549 | BYTE* const oend = op + dstSize; |
550 | const void* dtPtr = DTable + 1; |
551 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
552 | BIT_DStream_t bitD; |
553 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
554 | U32 const dtLog = dtd.tableLog; |
555 | |
556 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
557 | |
558 | HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog); |
559 | |
560 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
561 | |
562 | return dstSize; |
563 | } |
564 | |
565 | /* HUF_decompress4X1_usingDTable_internal_body(): |
566 | * Conditions : |
567 | * @dstSize >= 6 |
568 | */ |
569 | FORCE_INLINE_TEMPLATE size_t |
570 | HUF_decompress4X1_usingDTable_internal_body( |
571 | void* dst, size_t dstSize, |
572 | const void* cSrc, size_t cSrcSize, |
573 | const HUF_DTable* DTable) |
574 | { |
575 | /* Check */ |
576 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
577 | |
578 | { const BYTE* const istart = (const BYTE*) cSrc; |
579 | BYTE* const ostart = (BYTE*) dst; |
580 | BYTE* const oend = ostart + dstSize; |
581 | BYTE* const olimit = oend - 3; |
582 | const void* const dtPtr = DTable + 1; |
583 | const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr; |
584 | |
585 | /* Init */ |
586 | BIT_DStream_t bitD1; |
587 | BIT_DStream_t bitD2; |
588 | BIT_DStream_t bitD3; |
589 | BIT_DStream_t bitD4; |
590 | size_t const length1 = MEM_readLE16(istart); |
591 | size_t const length2 = MEM_readLE16(istart+2); |
592 | size_t const length3 = MEM_readLE16(istart+4); |
593 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
594 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
595 | const BYTE* const istart2 = istart1 + length1; |
596 | const BYTE* const istart3 = istart2 + length2; |
597 | const BYTE* const istart4 = istart3 + length3; |
598 | const size_t segmentSize = (dstSize+3) / 4; |
599 | BYTE* const opStart2 = ostart + segmentSize; |
600 | BYTE* const opStart3 = opStart2 + segmentSize; |
601 | BYTE* const opStart4 = opStart3 + segmentSize; |
602 | BYTE* op1 = ostart; |
603 | BYTE* op2 = opStart2; |
604 | BYTE* op3 = opStart3; |
605 | BYTE* op4 = opStart4; |
606 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
607 | U32 const dtLog = dtd.tableLog; |
608 | U32 endSignal = 1; |
609 | |
610 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
611 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
612 | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
613 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
614 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
615 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
616 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
617 | |
618 | /* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */ |
619 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
620 | for ( ; (endSignal) & (op4 < olimit) ; ) { |
621 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
622 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
623 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
624 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
625 | HUF_DECODE_SYMBOLX1_1(op1, &bitD1); |
626 | HUF_DECODE_SYMBOLX1_1(op2, &bitD2); |
627 | HUF_DECODE_SYMBOLX1_1(op3, &bitD3); |
628 | HUF_DECODE_SYMBOLX1_1(op4, &bitD4); |
629 | HUF_DECODE_SYMBOLX1_2(op1, &bitD1); |
630 | HUF_DECODE_SYMBOLX1_2(op2, &bitD2); |
631 | HUF_DECODE_SYMBOLX1_2(op3, &bitD3); |
632 | HUF_DECODE_SYMBOLX1_2(op4, &bitD4); |
633 | HUF_DECODE_SYMBOLX1_0(op1, &bitD1); |
634 | HUF_DECODE_SYMBOLX1_0(op2, &bitD2); |
635 | HUF_DECODE_SYMBOLX1_0(op3, &bitD3); |
636 | HUF_DECODE_SYMBOLX1_0(op4, &bitD4); |
637 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
638 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
639 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
640 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
641 | } |
642 | } |
643 | |
644 | /* check corruption */ |
645 | /* note : should not be necessary : op# advance in lock step, and we control op4. |
646 | * but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */ |
647 | if (op1 > opStart2) return ERROR(corruption_detected); |
648 | if (op2 > opStart3) return ERROR(corruption_detected); |
649 | if (op3 > opStart4) return ERROR(corruption_detected); |
650 | /* note : op4 supposed already verified within main loop */ |
651 | |
652 | /* finish bitStreams one by one */ |
653 | HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog); |
654 | HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog); |
655 | HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog); |
656 | HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog); |
657 | |
658 | /* check */ |
659 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
660 | if (!endCheck) return ERROR(corruption_detected); } |
661 | |
662 | /* decoded size */ |
663 | return dstSize; |
664 | } |
665 | } |
666 | |
667 | #if HUF_NEED_BMI2_FUNCTION |
668 | static BMI2_TARGET_ATTRIBUTE |
669 | size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
670 | size_t cSrcSize, HUF_DTable const* DTable) { |
671 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
672 | } |
673 | #endif |
674 | |
675 | static |
676 | size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
677 | size_t cSrcSize, HUF_DTable const* DTable) { |
678 | return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
679 | } |
680 | |
681 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
682 | |
683 | HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
684 | |
685 | #endif |
686 | |
687 | static HUF_FAST_BMI2_ATTRS |
688 | void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
689 | { |
690 | U64 bits[4]; |
691 | BYTE const* ip[4]; |
692 | BYTE* op[4]; |
693 | U16 const* const dtable = (U16 const*)args->dt; |
694 | BYTE* const oend = args->oend; |
695 | BYTE const* const ilimit = args->ilimit; |
696 | |
697 | /* Copy the arguments to local variables */ |
698 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
699 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
700 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
701 | |
702 | assert(MEM_isLittleEndian()); |
703 | assert(!MEM_32bits()); |
704 | |
705 | for (;;) { |
706 | BYTE* olimit; |
707 | int stream; |
708 | int symbol; |
709 | |
710 | /* Assert loop preconditions */ |
711 | #ifndef NDEBUG |
712 | for (stream = 0; stream < 4; ++stream) { |
713 | assert(op[stream] <= (stream == 3 ? oend : op[stream + 1])); |
714 | assert(ip[stream] >= ilimit); |
715 | } |
716 | #endif |
717 | /* Compute olimit */ |
718 | { |
719 | /* Each iteration produces 5 output symbols per stream */ |
720 | size_t const oiters = (size_t)(oend - op[3]) / 5; |
721 | /* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes |
722 | * per stream. |
723 | */ |
724 | size_t const iiters = (size_t)(ip[0] - ilimit) / 7; |
725 | /* We can safely run iters iterations before running bounds checks */ |
726 | size_t const iters = MIN(oiters, iiters); |
727 | size_t const symbols = iters * 5; |
728 | |
729 | /* We can simply check that op[3] < olimit, instead of checking all |
730 | * of our bounds, since we can't hit the other bounds until we've run |
731 | * iters iterations, which only happens when op[3] == olimit. |
732 | */ |
733 | olimit = op[3] + symbols; |
734 | |
735 | /* Exit fast decoding loop once we get close to the end. */ |
736 | if (op[3] + 20 > olimit) |
737 | break; |
738 | |
739 | /* Exit the decoding loop if any input pointer has crossed the |
740 | * previous one. This indicates corruption, and a precondition |
741 | * to our loop is that ip[i] >= ip[0]. |
742 | */ |
743 | for (stream = 1; stream < 4; ++stream) { |
744 | if (ip[stream] < ip[stream - 1]) |
745 | goto _out; |
746 | } |
747 | } |
748 | |
749 | #ifndef NDEBUG |
750 | for (stream = 1; stream < 4; ++stream) { |
751 | assert(ip[stream] >= ip[stream - 1]); |
752 | } |
753 | #endif |
754 | |
755 | do { |
756 | /* Decode 5 symbols in each of the 4 streams */ |
757 | for (symbol = 0; symbol < 5; ++symbol) { |
758 | for (stream = 0; stream < 4; ++stream) { |
759 | int const index = (int)(bits[stream] >> 53); |
760 | int const entry = (int)dtable[index]; |
761 | bits[stream] <<= (entry & 63); |
762 | op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF); |
763 | } |
764 | } |
765 | /* Reload the bitstreams */ |
766 | for (stream = 0; stream < 4; ++stream) { |
767 | int const ctz = ZSTD_countTrailingZeros64(bits[stream]); |
768 | int const nbBits = ctz & 7; |
769 | int const nbBytes = ctz >> 3; |
770 | op[stream] += 5; |
771 | ip[stream] -= nbBytes; |
772 | bits[stream] = MEM_read64(ip[stream]) | 1; |
773 | bits[stream] <<= nbBits; |
774 | } |
775 | } while (op[3] < olimit); |
776 | } |
777 | |
778 | _out: |
779 | |
780 | /* Save the final values of each of the state variables back to args. */ |
781 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
782 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
783 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
784 | } |
785 | |
786 | /** |
787 | * @returns @p dstSize on success (>= 6) |
788 | * 0 if the fallback implementation should be used |
789 | * An error if an error occurred |
790 | */ |
791 | static HUF_FAST_BMI2_ATTRS |
792 | size_t |
793 | HUF_decompress4X1_usingDTable_internal_fast( |
794 | void* dst, size_t dstSize, |
795 | const void* cSrc, size_t cSrcSize, |
796 | const HUF_DTable* DTable, |
797 | HUF_DecompressFastLoopFn loopFn) |
798 | { |
799 | void const* dt = DTable + 1; |
800 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
801 | BYTE* const oend = (BYTE*)dst + dstSize; |
802 | HUF_DecompressFastArgs args; |
803 | { size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
804 | FORWARD_IF_ERROR(ret, "Failed to init fast loop args" ); |
805 | if (ret == 0) |
806 | return 0; |
807 | } |
808 | |
809 | assert(args.ip[0] >= args.ilimit); |
810 | loopFn(&args); |
811 | |
812 | /* Our loop guarantees that ip[] >= ilimit and that we haven't |
813 | * overwritten any op[]. |
814 | */ |
815 | assert(args.ip[0] >= iend); |
816 | assert(args.ip[1] >= iend); |
817 | assert(args.ip[2] >= iend); |
818 | assert(args.ip[3] >= iend); |
819 | assert(args.op[3] <= oend); |
820 | (void)iend; |
821 | |
822 | /* finish bit streams one by one. */ |
823 | { size_t const segmentSize = (dstSize+3) / 4; |
824 | BYTE* segmentEnd = (BYTE*)dst; |
825 | int i; |
826 | for (i = 0; i < 4; ++i) { |
827 | BIT_DStream_t bit; |
828 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
829 | segmentEnd += segmentSize; |
830 | else |
831 | segmentEnd = oend; |
832 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption" ); |
833 | /* Decompress and validate that we've produced exactly the expected length. */ |
834 | args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG); |
835 | if (args.op[i] != segmentEnd) return ERROR(corruption_detected); |
836 | } |
837 | } |
838 | |
839 | /* decoded size */ |
840 | assert(dstSize != 0); |
841 | return dstSize; |
842 | } |
843 | |
844 | HUF_DGEN(HUF_decompress1X1_usingDTable_internal) |
845 | |
846 | static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
847 | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
848 | { |
849 | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default; |
850 | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop; |
851 | |
852 | #if DYNAMIC_BMI2 |
853 | if (flags & HUF_flags_bmi2) { |
854 | fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2; |
855 | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
856 | if (!(flags & HUF_flags_disableAsm)) { |
857 | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
858 | } |
859 | # endif |
860 | } else { |
861 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
862 | } |
863 | #endif |
864 | |
865 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
866 | if (!(flags & HUF_flags_disableAsm)) { |
867 | loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop; |
868 | } |
869 | #endif |
870 | |
871 | if (!(flags & HUF_flags_disableFast)) { |
872 | size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
873 | if (ret != 0) |
874 | return ret; |
875 | } |
876 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
877 | } |
878 | |
879 | static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
880 | const void* cSrc, size_t cSrcSize, |
881 | void* workSpace, size_t wkspSize, int flags) |
882 | { |
883 | const BYTE* ip = (const BYTE*) cSrc; |
884 | |
885 | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
886 | if (HUF_isError(hSize)) return hSize; |
887 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
888 | ip += hSize; cSrcSize -= hSize; |
889 | |
890 | return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
891 | } |
892 | |
893 | #endif /* HUF_FORCE_DECOMPRESS_X2 */ |
894 | |
895 | |
896 | #ifndef HUF_FORCE_DECOMPRESS_X1 |
897 | |
898 | /* *************************/ |
899 | /* double-symbols decoding */ |
900 | /* *************************/ |
901 | |
902 | typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */ |
903 | typedef struct { BYTE symbol; } sortedSymbol_t; |
904 | typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1]; |
905 | typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX]; |
906 | |
907 | /** |
908 | * Constructs a HUF_DEltX2 in a U32. |
909 | */ |
910 | static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
911 | { |
912 | U32 seq; |
913 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0); |
914 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2); |
915 | DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3); |
916 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32)); |
917 | if (MEM_isLittleEndian()) { |
918 | seq = level == 1 ? symbol : (baseSeq + (symbol << 8)); |
919 | return seq + (nbBits << 16) + ((U32)level << 24); |
920 | } else { |
921 | seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol); |
922 | return (seq << 16) + (nbBits << 8) + (U32)level; |
923 | } |
924 | } |
925 | |
926 | /** |
927 | * Constructs a HUF_DEltX2. |
928 | */ |
929 | static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level) |
930 | { |
931 | HUF_DEltX2 DElt; |
932 | U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
933 | DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val)); |
934 | ZSTD_memcpy(&DElt, &val, sizeof(val)); |
935 | return DElt; |
936 | } |
937 | |
938 | /** |
939 | * Constructs 2 HUF_DEltX2s and packs them into a U64. |
940 | */ |
941 | static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level) |
942 | { |
943 | U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level); |
944 | return (U64)DElt + ((U64)DElt << 32); |
945 | } |
946 | |
947 | /** |
948 | * Fills the DTable rank with all the symbols from [begin, end) that are each |
949 | * nbBits long. |
950 | * |
951 | * @param DTableRank The start of the rank in the DTable. |
952 | * @param begin The first symbol to fill (inclusive). |
953 | * @param end The last symbol to fill (exclusive). |
954 | * @param nbBits Each symbol is nbBits long. |
955 | * @param tableLog The table log. |
956 | * @param baseSeq If level == 1 { 0 } else { the first level symbol } |
957 | * @param level The level in the table. Must be 1 or 2. |
958 | */ |
959 | static void HUF_fillDTableX2ForWeight( |
960 | HUF_DEltX2* DTableRank, |
961 | sortedSymbol_t const* begin, sortedSymbol_t const* end, |
962 | U32 nbBits, U32 tableLog, |
963 | U16 baseSeq, int const level) |
964 | { |
965 | U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */); |
966 | const sortedSymbol_t* ptr; |
967 | assert(level >= 1 && level <= 2); |
968 | switch (length) { |
969 | case 1: |
970 | for (ptr = begin; ptr != end; ++ptr) { |
971 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
972 | *DTableRank++ = DElt; |
973 | } |
974 | break; |
975 | case 2: |
976 | for (ptr = begin; ptr != end; ++ptr) { |
977 | HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level); |
978 | DTableRank[0] = DElt; |
979 | DTableRank[1] = DElt; |
980 | DTableRank += 2; |
981 | } |
982 | break; |
983 | case 4: |
984 | for (ptr = begin; ptr != end; ++ptr) { |
985 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
986 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
987 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
988 | DTableRank += 4; |
989 | } |
990 | break; |
991 | case 8: |
992 | for (ptr = begin; ptr != end; ++ptr) { |
993 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
994 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
995 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
996 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
997 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
998 | DTableRank += 8; |
999 | } |
1000 | break; |
1001 | default: |
1002 | for (ptr = begin; ptr != end; ++ptr) { |
1003 | U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level); |
1004 | HUF_DEltX2* const DTableRankEnd = DTableRank + length; |
1005 | for (; DTableRank != DTableRankEnd; DTableRank += 8) { |
1006 | ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2)); |
1007 | ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2)); |
1008 | ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2)); |
1009 | ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2)); |
1010 | } |
1011 | } |
1012 | break; |
1013 | } |
1014 | } |
1015 | |
1016 | /* HUF_fillDTableX2Level2() : |
1017 | * `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */ |
1018 | static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits, |
1019 | const U32* rankVal, const int minWeight, const int maxWeight1, |
1020 | const sortedSymbol_t* sortedSymbols, U32 const* rankStart, |
1021 | U32 nbBitsBaseline, U16 baseSeq) |
1022 | { |
1023 | /* Fill skipped values (all positions up to rankVal[minWeight]). |
1024 | * These are positions only get a single symbol because the combined weight |
1025 | * is too large. |
1026 | */ |
1027 | if (minWeight>1) { |
1028 | U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */); |
1029 | U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1); |
1030 | int const skipSize = rankVal[minWeight]; |
1031 | assert(length > 1); |
1032 | assert((U32)skipSize < length); |
1033 | switch (length) { |
1034 | case 2: |
1035 | assert(skipSize == 1); |
1036 | ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2)); |
1037 | break; |
1038 | case 4: |
1039 | assert(skipSize <= 4); |
1040 | ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2)); |
1041 | ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2)); |
1042 | break; |
1043 | default: |
1044 | { |
1045 | int i; |
1046 | for (i = 0; i < skipSize; i += 8) { |
1047 | ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2)); |
1048 | ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2)); |
1049 | ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2)); |
1050 | ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2)); |
1051 | } |
1052 | } |
1053 | } |
1054 | } |
1055 | |
1056 | /* Fill each of the second level symbols by weight. */ |
1057 | { |
1058 | int w; |
1059 | for (w = minWeight; w < maxWeight1; ++w) { |
1060 | int const begin = rankStart[w]; |
1061 | int const end = rankStart[w+1]; |
1062 | U32 const nbBits = nbBitsBaseline - w; |
1063 | U32 const totalBits = nbBits + consumedBits; |
1064 | HUF_fillDTableX2ForWeight( |
1065 | DTable + rankVal[w], |
1066 | sortedSymbols + begin, sortedSymbols + end, |
1067 | totalBits, targetLog, |
1068 | baseSeq, /* level */ 2); |
1069 | } |
1070 | } |
1071 | } |
1072 | |
1073 | static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog, |
1074 | const sortedSymbol_t* sortedList, |
1075 | const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight, |
1076 | const U32 nbBitsBaseline) |
1077 | { |
1078 | U32* const rankVal = rankValOrigin[0]; |
1079 | const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ |
1080 | const U32 minBits = nbBitsBaseline - maxWeight; |
1081 | int w; |
1082 | int const wEnd = (int)maxWeight + 1; |
1083 | |
1084 | /* Fill DTable in order of weight. */ |
1085 | for (w = 1; w < wEnd; ++w) { |
1086 | int const begin = (int)rankStart[w]; |
1087 | int const end = (int)rankStart[w+1]; |
1088 | U32 const nbBits = nbBitsBaseline - w; |
1089 | |
1090 | if (targetLog-nbBits >= minBits) { |
1091 | /* Enough room for a second symbol. */ |
1092 | int start = rankVal[w]; |
1093 | U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */); |
1094 | int minWeight = nbBits + scaleLog; |
1095 | int s; |
1096 | if (minWeight < 1) minWeight = 1; |
1097 | /* Fill the DTable for every symbol of weight w. |
1098 | * These symbols get at least 1 second symbol. |
1099 | */ |
1100 | for (s = begin; s != end; ++s) { |
1101 | HUF_fillDTableX2Level2( |
1102 | DTable + start, targetLog, nbBits, |
1103 | rankValOrigin[nbBits], minWeight, wEnd, |
1104 | sortedList, rankStart, |
1105 | nbBitsBaseline, sortedList[s].symbol); |
1106 | start += length; |
1107 | } |
1108 | } else { |
1109 | /* Only a single symbol. */ |
1110 | HUF_fillDTableX2ForWeight( |
1111 | DTable + rankVal[w], |
1112 | sortedList + begin, sortedList + end, |
1113 | nbBits, targetLog, |
1114 | /* baseSeq */ 0, /* level */ 1); |
1115 | } |
1116 | } |
1117 | } |
1118 | |
1119 | typedef struct { |
1120 | rankValCol_t rankVal[HUF_TABLELOG_MAX]; |
1121 | U32 rankStats[HUF_TABLELOG_MAX + 1]; |
1122 | U32 rankStart0[HUF_TABLELOG_MAX + 3]; |
1123 | sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1]; |
1124 | BYTE weightList[HUF_SYMBOLVALUE_MAX + 1]; |
1125 | U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32]; |
1126 | } HUF_ReadDTableX2_Workspace; |
1127 | |
1128 | size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, |
1129 | const void* src, size_t srcSize, |
1130 | void* workSpace, size_t wkspSize, int flags) |
1131 | { |
1132 | U32 tableLog, maxW, nbSymbols; |
1133 | DTableDesc dtd = HUF_getDTableDesc(DTable); |
1134 | U32 maxTableLog = dtd.maxTableLog; |
1135 | size_t iSize; |
1136 | void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ |
1137 | HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr; |
1138 | U32 *rankStart; |
1139 | |
1140 | HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace; |
1141 | |
1142 | if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC); |
1143 | |
1144 | rankStart = wksp->rankStart0 + 1; |
1145 | ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats)); |
1146 | ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0)); |
1147 | |
1148 | DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */ |
1149 | if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge); |
1150 | /* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */ |
1151 | |
1152 | iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags); |
1153 | if (HUF_isError(iSize)) return iSize; |
1154 | |
1155 | /* check result */ |
1156 | if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ |
1157 | if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG; |
1158 | |
1159 | /* find maxWeight */ |
1160 | for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ |
1161 | |
1162 | /* Get start index of each weight */ |
1163 | { U32 w, = 0; |
1164 | for (w=1; w<maxW+1; w++) { |
1165 | U32 curr = nextRankStart; |
1166 | nextRankStart += wksp->rankStats[w]; |
1167 | rankStart[w] = curr; |
1168 | } |
1169 | rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ |
1170 | rankStart[maxW+1] = nextRankStart; |
1171 | } |
1172 | |
1173 | /* sort symbols by weight */ |
1174 | { U32 s; |
1175 | for (s=0; s<nbSymbols; s++) { |
1176 | U32 const w = wksp->weightList[s]; |
1177 | U32 const r = rankStart[w]++; |
1178 | wksp->sortedSymbol[r].symbol = (BYTE)s; |
1179 | } |
1180 | rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ |
1181 | } |
1182 | |
1183 | /* Build rankVal */ |
1184 | { U32* const rankVal0 = wksp->rankVal[0]; |
1185 | { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ |
1186 | U32 = 0; |
1187 | U32 w; |
1188 | for (w=1; w<maxW+1; w++) { |
1189 | U32 curr = nextRankVal; |
1190 | nextRankVal += wksp->rankStats[w] << (w+rescale); |
1191 | rankVal0[w] = curr; |
1192 | } } |
1193 | { U32 const minBits = tableLog+1 - maxW; |
1194 | U32 consumed; |
1195 | for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { |
1196 | U32* const rankValPtr = wksp->rankVal[consumed]; |
1197 | U32 w; |
1198 | for (w = 1; w < maxW+1; w++) { |
1199 | rankValPtr[w] = rankVal0[w] >> consumed; |
1200 | } } } } |
1201 | |
1202 | HUF_fillDTableX2(dt, maxTableLog, |
1203 | wksp->sortedSymbol, |
1204 | wksp->rankStart0, wksp->rankVal, maxW, |
1205 | tableLog+1); |
1206 | |
1207 | dtd.tableLog = (BYTE)maxTableLog; |
1208 | dtd.tableType = 1; |
1209 | ZSTD_memcpy(DTable, &dtd, sizeof(dtd)); |
1210 | return iSize; |
1211 | } |
1212 | |
1213 | |
1214 | FORCE_INLINE_TEMPLATE U32 |
1215 | HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1216 | { |
1217 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1218 | ZSTD_memcpy(op, &dt[val].sequence, 2); |
1219 | BIT_skipBits(DStream, dt[val].nbBits); |
1220 | return dt[val].length; |
1221 | } |
1222 | |
1223 | FORCE_INLINE_TEMPLATE U32 |
1224 | HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog) |
1225 | { |
1226 | size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ |
1227 | ZSTD_memcpy(op, &dt[val].sequence, 1); |
1228 | if (dt[val].length==1) { |
1229 | BIT_skipBits(DStream, dt[val].nbBits); |
1230 | } else { |
1231 | if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { |
1232 | BIT_skipBits(DStream, dt[val].nbBits); |
1233 | if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) |
1234 | /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ |
1235 | DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); |
1236 | } |
1237 | } |
1238 | return 1; |
1239 | } |
1240 | |
1241 | #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ |
1242 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1243 | |
1244 | #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ |
1245 | if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \ |
1246 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1247 | |
1248 | #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ |
1249 | if (MEM_64bits()) \ |
1250 | ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog) |
1251 | |
1252 | HINT_INLINE size_t |
1253 | HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, |
1254 | const HUF_DEltX2* const dt, const U32 dtLog) |
1255 | { |
1256 | BYTE* const pStart = p; |
1257 | |
1258 | /* up to 8 symbols at a time */ |
1259 | if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) { |
1260 | if (dtLog <= 11 && MEM_64bits()) { |
1261 | /* up to 10 symbols at a time */ |
1262 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) { |
1263 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1264 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1265 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1266 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1267 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1268 | } |
1269 | } else { |
1270 | /* up to 8 symbols at a time */ |
1271 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) { |
1272 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1273 | HUF_DECODE_SYMBOLX2_1(p, bitDPtr); |
1274 | HUF_DECODE_SYMBOLX2_2(p, bitDPtr); |
1275 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1276 | } |
1277 | } |
1278 | } else { |
1279 | BIT_reloadDStream(bitDPtr); |
1280 | } |
1281 | |
1282 | /* closer to end : up to 2 symbols at a time */ |
1283 | if ((size_t)(pEnd - p) >= 2) { |
1284 | while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2)) |
1285 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); |
1286 | |
1287 | while (p <= pEnd-2) |
1288 | HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ |
1289 | } |
1290 | |
1291 | if (p < pEnd) |
1292 | p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog); |
1293 | |
1294 | return p-pStart; |
1295 | } |
1296 | |
1297 | FORCE_INLINE_TEMPLATE size_t |
1298 | HUF_decompress1X2_usingDTable_internal_body( |
1299 | void* dst, size_t dstSize, |
1300 | const void* cSrc, size_t cSrcSize, |
1301 | const HUF_DTable* DTable) |
1302 | { |
1303 | BIT_DStream_t bitD; |
1304 | |
1305 | /* Init */ |
1306 | CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) ); |
1307 | |
1308 | /* decode */ |
1309 | { BYTE* const ostart = (BYTE*) dst; |
1310 | BYTE* const oend = ostart + dstSize; |
1311 | const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ |
1312 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1313 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1314 | HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog); |
1315 | } |
1316 | |
1317 | /* check */ |
1318 | if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected); |
1319 | |
1320 | /* decoded size */ |
1321 | return dstSize; |
1322 | } |
1323 | |
1324 | /* HUF_decompress4X2_usingDTable_internal_body(): |
1325 | * Conditions: |
1326 | * @dstSize >= 6 |
1327 | */ |
1328 | FORCE_INLINE_TEMPLATE size_t |
1329 | HUF_decompress4X2_usingDTable_internal_body( |
1330 | void* dst, size_t dstSize, |
1331 | const void* cSrc, size_t cSrcSize, |
1332 | const HUF_DTable* DTable) |
1333 | { |
1334 | if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ |
1335 | |
1336 | { const BYTE* const istart = (const BYTE*) cSrc; |
1337 | BYTE* const ostart = (BYTE*) dst; |
1338 | BYTE* const oend = ostart + dstSize; |
1339 | BYTE* const olimit = oend - (sizeof(size_t)-1); |
1340 | const void* const dtPtr = DTable+1; |
1341 | const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr; |
1342 | |
1343 | /* Init */ |
1344 | BIT_DStream_t bitD1; |
1345 | BIT_DStream_t bitD2; |
1346 | BIT_DStream_t bitD3; |
1347 | BIT_DStream_t bitD4; |
1348 | size_t const length1 = MEM_readLE16(istart); |
1349 | size_t const length2 = MEM_readLE16(istart+2); |
1350 | size_t const length3 = MEM_readLE16(istart+4); |
1351 | size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); |
1352 | const BYTE* const istart1 = istart + 6; /* jumpTable */ |
1353 | const BYTE* const istart2 = istart1 + length1; |
1354 | const BYTE* const istart3 = istart2 + length2; |
1355 | const BYTE* const istart4 = istart3 + length3; |
1356 | size_t const segmentSize = (dstSize+3) / 4; |
1357 | BYTE* const opStart2 = ostart + segmentSize; |
1358 | BYTE* const opStart3 = opStart2 + segmentSize; |
1359 | BYTE* const opStart4 = opStart3 + segmentSize; |
1360 | BYTE* op1 = ostart; |
1361 | BYTE* op2 = opStart2; |
1362 | BYTE* op3 = opStart3; |
1363 | BYTE* op4 = opStart4; |
1364 | U32 endSignal = 1; |
1365 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1366 | U32 const dtLog = dtd.tableLog; |
1367 | |
1368 | if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ |
1369 | if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */ |
1370 | if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */ |
1371 | CHECK_F( BIT_initDStream(&bitD1, istart1, length1) ); |
1372 | CHECK_F( BIT_initDStream(&bitD2, istart2, length2) ); |
1373 | CHECK_F( BIT_initDStream(&bitD3, istart3, length3) ); |
1374 | CHECK_F( BIT_initDStream(&bitD4, istart4, length4) ); |
1375 | |
1376 | /* 16-32 symbols per loop (4-8 symbols per stream) */ |
1377 | if ((size_t)(oend - op4) >= sizeof(size_t)) { |
1378 | for ( ; (endSignal) & (op4 < olimit); ) { |
1379 | #if defined(__clang__) && (defined(__x86_64__) || defined(__i386__)) |
1380 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1381 | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1382 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1383 | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1384 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1385 | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1386 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1387 | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1388 | endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished; |
1389 | endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished; |
1390 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1391 | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1392 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1393 | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1394 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1395 | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1396 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1397 | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1398 | endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished; |
1399 | endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished; |
1400 | #else |
1401 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1402 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1403 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1404 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1405 | HUF_DECODE_SYMBOLX2_1(op1, &bitD1); |
1406 | HUF_DECODE_SYMBOLX2_1(op2, &bitD2); |
1407 | HUF_DECODE_SYMBOLX2_1(op3, &bitD3); |
1408 | HUF_DECODE_SYMBOLX2_1(op4, &bitD4); |
1409 | HUF_DECODE_SYMBOLX2_2(op1, &bitD1); |
1410 | HUF_DECODE_SYMBOLX2_2(op2, &bitD2); |
1411 | HUF_DECODE_SYMBOLX2_2(op3, &bitD3); |
1412 | HUF_DECODE_SYMBOLX2_2(op4, &bitD4); |
1413 | HUF_DECODE_SYMBOLX2_0(op1, &bitD1); |
1414 | HUF_DECODE_SYMBOLX2_0(op2, &bitD2); |
1415 | HUF_DECODE_SYMBOLX2_0(op3, &bitD3); |
1416 | HUF_DECODE_SYMBOLX2_0(op4, &bitD4); |
1417 | endSignal = (U32)LIKELY((U32) |
1418 | (BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished) |
1419 | & (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished) |
1420 | & (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished) |
1421 | & (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished)); |
1422 | #endif |
1423 | } |
1424 | } |
1425 | |
1426 | /* check corruption */ |
1427 | if (op1 > opStart2) return ERROR(corruption_detected); |
1428 | if (op2 > opStart3) return ERROR(corruption_detected); |
1429 | if (op3 > opStart4) return ERROR(corruption_detected); |
1430 | /* note : op4 already verified within main loop */ |
1431 | |
1432 | /* finish bitStreams one by one */ |
1433 | HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); |
1434 | HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); |
1435 | HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); |
1436 | HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); |
1437 | |
1438 | /* check */ |
1439 | { U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4); |
1440 | if (!endCheck) return ERROR(corruption_detected); } |
1441 | |
1442 | /* decoded size */ |
1443 | return dstSize; |
1444 | } |
1445 | } |
1446 | |
1447 | #if HUF_NEED_BMI2_FUNCTION |
1448 | static BMI2_TARGET_ATTRIBUTE |
1449 | size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc, |
1450 | size_t cSrcSize, HUF_DTable const* DTable) { |
1451 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1452 | } |
1453 | #endif |
1454 | |
1455 | static |
1456 | size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc, |
1457 | size_t cSrcSize, HUF_DTable const* DTable) { |
1458 | return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable); |
1459 | } |
1460 | |
1461 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1462 | |
1463 | HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN; |
1464 | |
1465 | #endif |
1466 | |
1467 | static HUF_FAST_BMI2_ATTRS |
1468 | void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args) |
1469 | { |
1470 | U64 bits[4]; |
1471 | BYTE const* ip[4]; |
1472 | BYTE* op[4]; |
1473 | BYTE* oend[4]; |
1474 | HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt; |
1475 | BYTE const* const ilimit = args->ilimit; |
1476 | |
1477 | /* Copy the arguments to local registers. */ |
1478 | ZSTD_memcpy(&bits, &args->bits, sizeof(bits)); |
1479 | ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip)); |
1480 | ZSTD_memcpy(&op, &args->op, sizeof(op)); |
1481 | |
1482 | oend[0] = op[1]; |
1483 | oend[1] = op[2]; |
1484 | oend[2] = op[3]; |
1485 | oend[3] = args->oend; |
1486 | |
1487 | assert(MEM_isLittleEndian()); |
1488 | assert(!MEM_32bits()); |
1489 | |
1490 | for (;;) { |
1491 | BYTE* olimit; |
1492 | int stream; |
1493 | int symbol; |
1494 | |
1495 | /* Assert loop preconditions */ |
1496 | #ifndef NDEBUG |
1497 | for (stream = 0; stream < 4; ++stream) { |
1498 | assert(op[stream] <= oend[stream]); |
1499 | assert(ip[stream] >= ilimit); |
1500 | } |
1501 | #endif |
1502 | /* Compute olimit */ |
1503 | { |
1504 | /* Each loop does 5 table lookups for each of the 4 streams. |
1505 | * Each table lookup consumes up to 11 bits of input, and produces |
1506 | * up to 2 bytes of output. |
1507 | */ |
1508 | /* We can consume up to 7 bytes of input per iteration per stream. |
1509 | * We also know that each input pointer is >= ip[0]. So we can run |
1510 | * iters loops before running out of input. |
1511 | */ |
1512 | size_t iters = (size_t)(ip[0] - ilimit) / 7; |
1513 | /* Each iteration can produce up to 10 bytes of output per stream. |
1514 | * Each output stream my advance at different rates. So take the |
1515 | * minimum number of safe iterations among all the output streams. |
1516 | */ |
1517 | for (stream = 0; stream < 4; ++stream) { |
1518 | size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10; |
1519 | iters = MIN(iters, oiters); |
1520 | } |
1521 | |
1522 | /* Each iteration produces at least 5 output symbols. So until |
1523 | * op[3] crosses olimit, we know we haven't executed iters |
1524 | * iterations yet. This saves us maintaining an iters counter, |
1525 | * at the expense of computing the remaining # of iterations |
1526 | * more frequently. |
1527 | */ |
1528 | olimit = op[3] + (iters * 5); |
1529 | |
1530 | /* Exit the fast decoding loop if we are too close to the end. */ |
1531 | if (op[3] + 10 > olimit) |
1532 | break; |
1533 | |
1534 | /* Exit the decoding loop if any input pointer has crossed the |
1535 | * previous one. This indicates corruption, and a precondition |
1536 | * to our loop is that ip[i] >= ip[0]. |
1537 | */ |
1538 | for (stream = 1; stream < 4; ++stream) { |
1539 | if (ip[stream] < ip[stream - 1]) |
1540 | goto _out; |
1541 | } |
1542 | } |
1543 | |
1544 | #ifndef NDEBUG |
1545 | for (stream = 1; stream < 4; ++stream) { |
1546 | assert(ip[stream] >= ip[stream - 1]); |
1547 | } |
1548 | #endif |
1549 | |
1550 | do { |
1551 | /* Do 5 table lookups for each of the first 3 streams */ |
1552 | for (symbol = 0; symbol < 5; ++symbol) { |
1553 | for (stream = 0; stream < 3; ++stream) { |
1554 | int const index = (int)(bits[stream] >> 53); |
1555 | HUF_DEltX2 const entry = dtable[index]; |
1556 | MEM_write16(op[stream], entry.sequence); |
1557 | bits[stream] <<= (entry.nbBits); |
1558 | op[stream] += (entry.length); |
1559 | } |
1560 | } |
1561 | /* Do 1 table lookup from the final stream */ |
1562 | { |
1563 | int const index = (int)(bits[3] >> 53); |
1564 | HUF_DEltX2 const entry = dtable[index]; |
1565 | MEM_write16(op[3], entry.sequence); |
1566 | bits[3] <<= (entry.nbBits); |
1567 | op[3] += (entry.length); |
1568 | } |
1569 | /* Do 4 table lookups from the final stream & reload bitstreams */ |
1570 | for (stream = 0; stream < 4; ++stream) { |
1571 | /* Do a table lookup from the final stream. |
1572 | * This is interleaved with the reloading to reduce register |
1573 | * pressure. This shouldn't be necessary, but compilers can |
1574 | * struggle with codegen with high register pressure. |
1575 | */ |
1576 | { |
1577 | int const index = (int)(bits[3] >> 53); |
1578 | HUF_DEltX2 const entry = dtable[index]; |
1579 | MEM_write16(op[3], entry.sequence); |
1580 | bits[3] <<= (entry.nbBits); |
1581 | op[3] += (entry.length); |
1582 | } |
1583 | /* Reload the bistreams. The final bitstream must be reloaded |
1584 | * after the 5th symbol was decoded. |
1585 | */ |
1586 | { |
1587 | int const ctz = ZSTD_countTrailingZeros64(bits[stream]); |
1588 | int const nbBits = ctz & 7; |
1589 | int const nbBytes = ctz >> 3; |
1590 | ip[stream] -= nbBytes; |
1591 | bits[stream] = MEM_read64(ip[stream]) | 1; |
1592 | bits[stream] <<= nbBits; |
1593 | } |
1594 | } |
1595 | } while (op[3] < olimit); |
1596 | } |
1597 | |
1598 | _out: |
1599 | |
1600 | /* Save the final values of each of the state variables back to args. */ |
1601 | ZSTD_memcpy(&args->bits, &bits, sizeof(bits)); |
1602 | ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip)); |
1603 | ZSTD_memcpy(&args->op, &op, sizeof(op)); |
1604 | } |
1605 | |
1606 | |
1607 | static HUF_FAST_BMI2_ATTRS size_t |
1608 | HUF_decompress4X2_usingDTable_internal_fast( |
1609 | void* dst, size_t dstSize, |
1610 | const void* cSrc, size_t cSrcSize, |
1611 | const HUF_DTable* DTable, |
1612 | HUF_DecompressFastLoopFn loopFn) { |
1613 | void const* dt = DTable + 1; |
1614 | const BYTE* const iend = (const BYTE*)cSrc + 6; |
1615 | BYTE* const oend = (BYTE*)dst + dstSize; |
1616 | HUF_DecompressFastArgs args; |
1617 | { |
1618 | size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable); |
1619 | FORWARD_IF_ERROR(ret, "Failed to init asm args" ); |
1620 | if (ret == 0) |
1621 | return 0; |
1622 | } |
1623 | |
1624 | assert(args.ip[0] >= args.ilimit); |
1625 | loopFn(&args); |
1626 | |
1627 | /* note : op4 already verified within main loop */ |
1628 | assert(args.ip[0] >= iend); |
1629 | assert(args.ip[1] >= iend); |
1630 | assert(args.ip[2] >= iend); |
1631 | assert(args.ip[3] >= iend); |
1632 | assert(args.op[3] <= oend); |
1633 | (void)iend; |
1634 | |
1635 | /* finish bitStreams one by one */ |
1636 | { |
1637 | size_t const segmentSize = (dstSize+3) / 4; |
1638 | BYTE* segmentEnd = (BYTE*)dst; |
1639 | int i; |
1640 | for (i = 0; i < 4; ++i) { |
1641 | BIT_DStream_t bit; |
1642 | if (segmentSize <= (size_t)(oend - segmentEnd)) |
1643 | segmentEnd += segmentSize; |
1644 | else |
1645 | segmentEnd = oend; |
1646 | FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption" ); |
1647 | args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG); |
1648 | if (args.op[i] != segmentEnd) |
1649 | return ERROR(corruption_detected); |
1650 | } |
1651 | } |
1652 | |
1653 | /* decoded size */ |
1654 | return dstSize; |
1655 | } |
1656 | |
1657 | static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc, |
1658 | size_t cSrcSize, HUF_DTable const* DTable, int flags) |
1659 | { |
1660 | HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default; |
1661 | HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop; |
1662 | |
1663 | #if DYNAMIC_BMI2 |
1664 | if (flags & HUF_flags_bmi2) { |
1665 | fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2; |
1666 | # if ZSTD_ENABLE_ASM_X86_64_BMI2 |
1667 | if (!(flags & HUF_flags_disableAsm)) { |
1668 | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1669 | } |
1670 | # endif |
1671 | } else { |
1672 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1673 | } |
1674 | #endif |
1675 | |
1676 | #if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__) |
1677 | if (!(flags & HUF_flags_disableAsm)) { |
1678 | loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop; |
1679 | } |
1680 | #endif |
1681 | |
1682 | if (!(flags & HUF_flags_disableFast)) { |
1683 | size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn); |
1684 | if (ret != 0) |
1685 | return ret; |
1686 | } |
1687 | return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable); |
1688 | } |
1689 | |
1690 | HUF_DGEN(HUF_decompress1X2_usingDTable_internal) |
1691 | |
1692 | size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize, |
1693 | const void* cSrc, size_t cSrcSize, |
1694 | void* workSpace, size_t wkspSize, int flags) |
1695 | { |
1696 | const BYTE* ip = (const BYTE*) cSrc; |
1697 | |
1698 | size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize, |
1699 | workSpace, wkspSize, flags); |
1700 | if (HUF_isError(hSize)) return hSize; |
1701 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1702 | ip += hSize; cSrcSize -= hSize; |
1703 | |
1704 | return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags); |
1705 | } |
1706 | |
1707 | static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1708 | const void* cSrc, size_t cSrcSize, |
1709 | void* workSpace, size_t wkspSize, int flags) |
1710 | { |
1711 | const BYTE* ip = (const BYTE*) cSrc; |
1712 | |
1713 | size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize, |
1714 | workSpace, wkspSize, flags); |
1715 | if (HUF_isError(hSize)) return hSize; |
1716 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1717 | ip += hSize; cSrcSize -= hSize; |
1718 | |
1719 | return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1720 | } |
1721 | |
1722 | #endif /* HUF_FORCE_DECOMPRESS_X1 */ |
1723 | |
1724 | |
1725 | /* ***********************************/ |
1726 | /* Universal decompression selectors */ |
1727 | /* ***********************************/ |
1728 | |
1729 | |
1730 | #if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2) |
1731 | typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; |
1732 | static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] = |
1733 | { |
1734 | /* single, double, quad */ |
1735 | {{0,0}, {1,1}}, /* Q==0 : impossible */ |
1736 | {{0,0}, {1,1}}, /* Q==1 : impossible */ |
1737 | {{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */ |
1738 | {{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */ |
1739 | {{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */ |
1740 | {{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */ |
1741 | {{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */ |
1742 | {{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */ |
1743 | {{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */ |
1744 | {{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */ |
1745 | {{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */ |
1746 | {{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */ |
1747 | {{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */ |
1748 | {{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */ |
1749 | {{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */ |
1750 | {{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */ |
1751 | }; |
1752 | #endif |
1753 | |
1754 | /** HUF_selectDecoder() : |
1755 | * Tells which decoder is likely to decode faster, |
1756 | * based on a set of pre-computed metrics. |
1757 | * @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 . |
1758 | * Assumption : 0 < dstSize <= 128 KB */ |
1759 | U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize) |
1760 | { |
1761 | assert(dstSize > 0); |
1762 | assert(dstSize <= 128*1024); |
1763 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1764 | (void)dstSize; |
1765 | (void)cSrcSize; |
1766 | return 0; |
1767 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1768 | (void)dstSize; |
1769 | (void)cSrcSize; |
1770 | return 1; |
1771 | #else |
1772 | /* decoder timing evaluation */ |
1773 | { U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */ |
1774 | U32 const D256 = (U32)(dstSize >> 8); |
1775 | U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); |
1776 | U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); |
1777 | DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */ |
1778 | return DTime1 < DTime0; |
1779 | } |
1780 | #endif |
1781 | } |
1782 | |
1783 | size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, |
1784 | const void* cSrc, size_t cSrcSize, |
1785 | void* workSpace, size_t wkspSize, int flags) |
1786 | { |
1787 | /* validation checks */ |
1788 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1789 | if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ |
1790 | if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ |
1791 | if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ |
1792 | |
1793 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1794 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1795 | (void)algoNb; |
1796 | assert(algoNb == 0); |
1797 | return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1798 | cSrcSize, workSpace, wkspSize, flags); |
1799 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1800 | (void)algoNb; |
1801 | assert(algoNb == 1); |
1802 | return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1803 | cSrcSize, workSpace, wkspSize, flags); |
1804 | #else |
1805 | return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1806 | cSrcSize, workSpace, wkspSize, flags): |
1807 | HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc, |
1808 | cSrcSize, workSpace, wkspSize, flags); |
1809 | #endif |
1810 | } |
1811 | } |
1812 | |
1813 | |
1814 | size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1815 | { |
1816 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1817 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1818 | (void)dtd; |
1819 | assert(dtd.tableType == 0); |
1820 | return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1821 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1822 | (void)dtd; |
1823 | assert(dtd.tableType == 1); |
1824 | return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1825 | #else |
1826 | return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1827 | HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1828 | #endif |
1829 | } |
1830 | |
1831 | #ifndef HUF_FORCE_DECOMPRESS_X2 |
1832 | size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1833 | { |
1834 | const BYTE* ip = (const BYTE*) cSrc; |
1835 | |
1836 | size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1837 | if (HUF_isError(hSize)) return hSize; |
1838 | if (hSize >= cSrcSize) return ERROR(srcSize_wrong); |
1839 | ip += hSize; cSrcSize -= hSize; |
1840 | |
1841 | return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags); |
1842 | } |
1843 | #endif |
1844 | |
1845 | size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags) |
1846 | { |
1847 | DTableDesc const dtd = HUF_getDTableDesc(DTable); |
1848 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1849 | (void)dtd; |
1850 | assert(dtd.tableType == 0); |
1851 | return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1852 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1853 | (void)dtd; |
1854 | assert(dtd.tableType == 1); |
1855 | return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1856 | #else |
1857 | return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) : |
1858 | HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags); |
1859 | #endif |
1860 | } |
1861 | |
1862 | size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags) |
1863 | { |
1864 | /* validation checks */ |
1865 | if (dstSize == 0) return ERROR(dstSize_tooSmall); |
1866 | if (cSrcSize == 0) return ERROR(corruption_detected); |
1867 | |
1868 | { U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize); |
1869 | #if defined(HUF_FORCE_DECOMPRESS_X1) |
1870 | (void)algoNb; |
1871 | assert(algoNb == 0); |
1872 | return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1873 | #elif defined(HUF_FORCE_DECOMPRESS_X2) |
1874 | (void)algoNb; |
1875 | assert(algoNb == 1); |
1876 | return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1877 | #else |
1878 | return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) : |
1879 | HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags); |
1880 | #endif |
1881 | } |
1882 | } |
1883 | |