| 1 | // |
| 2 | // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. |
| 3 | // Copyright (C) 2012-2013 LunarG, Inc. |
| 4 | // |
| 5 | // All rights reserved. |
| 6 | // |
| 7 | // Redistribution and use in source and binary forms, with or without |
| 8 | // modification, are permitted provided that the following conditions |
| 9 | // are met: |
| 10 | // |
| 11 | // Redistributions of source code must retain the above copyright |
| 12 | // notice, this list of conditions and the following disclaimer. |
| 13 | // |
| 14 | // Redistributions in binary form must reproduce the above |
| 15 | // copyright notice, this list of conditions and the following |
| 16 | // disclaimer in the documentation and/or other materials provided |
| 17 | // with the distribution. |
| 18 | // |
| 19 | // Neither the name of 3Dlabs Inc. Ltd. nor the names of its |
| 20 | // contributors may be used to endorse or promote products derived |
| 21 | // from this software without specific prior written permission. |
| 22 | // |
| 23 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 24 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 25 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| 26 | // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| 27 | // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 28 | // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
| 29 | // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 30 | // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 31 | // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 32 | // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
| 33 | // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 34 | // POSSIBILITY OF SUCH DAMAGE. |
| 35 | // |
| 36 | |
| 37 | #ifndef _POOLALLOC_INCLUDED_ |
| 38 | #define _POOLALLOC_INCLUDED_ |
| 39 | |
| 40 | #ifdef _DEBUG |
| 41 | # define GUARD_BLOCKS // define to enable guard block sanity checking |
| 42 | #endif |
| 43 | |
| 44 | // |
| 45 | // This header defines an allocator that can be used to efficiently |
| 46 | // allocate a large number of small requests for heap memory, with the |
| 47 | // intention that they are not individually deallocated, but rather |
| 48 | // collectively deallocated at one time. |
| 49 | // |
| 50 | // This simultaneously |
| 51 | // |
| 52 | // * Makes each individual allocation much more efficient; the |
| 53 | // typical allocation is trivial. |
| 54 | // * Completely avoids the cost of doing individual deallocation. |
| 55 | // * Saves the trouble of tracking down and plugging a large class of leaks. |
| 56 | // |
| 57 | // Individual classes can use this allocator by supplying their own |
| 58 | // new and delete methods. |
| 59 | // |
| 60 | // STL containers can use this allocator by using the pool_allocator |
| 61 | // class as the allocator (second) template argument. |
| 62 | // |
| 63 | |
| 64 | #include <cstddef> |
| 65 | #include <cstring> |
| 66 | #include <vector> |
| 67 | |
| 68 | namespace glslang { |
| 69 | |
| 70 | // If we are using guard blocks, we must track each individual |
| 71 | // allocation. If we aren't using guard blocks, these |
| 72 | // never get instantiated, so won't have any impact. |
| 73 | // |
| 74 | |
| 75 | class TAllocation { |
| 76 | public: |
| 77 | TAllocation(size_t size, unsigned char* mem, TAllocation* prev = 0) : |
| 78 | size(size), mem(mem), prevAlloc(prev) { |
| 79 | // Allocations are bracketed: |
| 80 | // [allocationHeader][initialGuardBlock][userData][finalGuardBlock] |
| 81 | // This would be cleaner with if (guardBlockSize)..., but that |
| 82 | // makes the compiler print warnings about 0 length memsets, |
| 83 | // even with the if() protecting them. |
| 84 | # ifdef GUARD_BLOCKS |
| 85 | memset(preGuard(), guardBlockBeginVal, guardBlockSize); |
| 86 | memset(data(), userDataFill, size); |
| 87 | memset(postGuard(), guardBlockEndVal, guardBlockSize); |
| 88 | # endif |
| 89 | } |
| 90 | |
| 91 | void check() const { |
| 92 | checkGuardBlock(preGuard(), guardBlockBeginVal, "before" ); |
| 93 | checkGuardBlock(postGuard(), guardBlockEndVal, "after" ); |
| 94 | } |
| 95 | |
| 96 | void checkAllocList() const; |
| 97 | |
| 98 | // Return total size needed to accommodate user buffer of 'size', |
| 99 | // plus our tracking data. |
| 100 | inline static size_t allocationSize(size_t size) { |
| 101 | return size + 2 * guardBlockSize + headerSize(); |
| 102 | } |
| 103 | |
| 104 | // Offset from surrounding buffer to get to user data buffer. |
| 105 | inline static unsigned char* offsetAllocation(unsigned char* m) { |
| 106 | return m + guardBlockSize + headerSize(); |
| 107 | } |
| 108 | |
| 109 | private: |
| 110 | void checkGuardBlock(unsigned char* blockMem, unsigned char val, const char* locText) const; |
| 111 | |
| 112 | // Find offsets to pre and post guard blocks, and user data buffer |
| 113 | unsigned char* preGuard() const { return mem + headerSize(); } |
| 114 | unsigned char* data() const { return preGuard() + guardBlockSize; } |
| 115 | unsigned char* postGuard() const { return data() + size; } |
| 116 | |
| 117 | size_t size; // size of the user data area |
| 118 | unsigned char* mem; // beginning of our allocation (pts to header) |
| 119 | TAllocation* prevAlloc; // prior allocation in the chain |
| 120 | |
| 121 | const static unsigned char guardBlockBeginVal; |
| 122 | const static unsigned char guardBlockEndVal; |
| 123 | const static unsigned char userDataFill; |
| 124 | |
| 125 | const static size_t guardBlockSize; |
| 126 | # ifdef GUARD_BLOCKS |
| 127 | inline static size_t headerSize() { return sizeof(TAllocation); } |
| 128 | # else |
| 129 | inline static size_t () { return 0; } |
| 130 | # endif |
| 131 | }; |
| 132 | |
| 133 | // |
| 134 | // There are several stacks. One is to track the pushing and popping |
| 135 | // of the user, and not yet implemented. The others are simply a |
| 136 | // repositories of free pages or used pages. |
| 137 | // |
| 138 | // Page stacks are linked together with a simple header at the beginning |
| 139 | // of each allocation obtained from the underlying OS. Multi-page allocations |
| 140 | // are returned to the OS. Individual page allocations are kept for future |
| 141 | // re-use. |
| 142 | // |
| 143 | // The "page size" used is not, nor must it match, the underlying OS |
| 144 | // page size. But, having it be about that size or equal to a set of |
| 145 | // pages is likely most optimal. |
| 146 | // |
| 147 | class TPoolAllocator { |
| 148 | public: |
| 149 | TPoolAllocator(int growthIncrement = 8*1024, int allocationAlignment = 16); |
| 150 | |
| 151 | // |
| 152 | // Don't call the destructor just to free up the memory, call pop() |
| 153 | // |
| 154 | ~TPoolAllocator(); |
| 155 | |
| 156 | // |
| 157 | // Call push() to establish a new place to pop memory too. Does not |
| 158 | // have to be called to get things started. |
| 159 | // |
| 160 | void push(); |
| 161 | |
| 162 | // |
| 163 | // Call pop() to free all memory allocated since the last call to push(), |
| 164 | // or if no last call to push, frees all memory since first allocation. |
| 165 | // |
| 166 | void pop(); |
| 167 | |
| 168 | // |
| 169 | // Call popAll() to free all memory allocated. |
| 170 | // |
| 171 | void popAll(); |
| 172 | |
| 173 | // |
| 174 | // Call allocate() to actually acquire memory. Returns 0 if no memory |
| 175 | // available, otherwise a properly aligned pointer to 'numBytes' of memory. |
| 176 | // |
| 177 | void* allocate(size_t numBytes); |
| 178 | |
| 179 | // |
| 180 | // There is no deallocate. The point of this class is that |
| 181 | // deallocation can be skipped by the user of it, as the model |
| 182 | // of use is to simultaneously deallocate everything at once |
| 183 | // by calling pop(), and to not have to solve memory leak problems. |
| 184 | // |
| 185 | |
| 186 | protected: |
| 187 | friend struct tHeader; |
| 188 | |
| 189 | struct { |
| 190 | (tHeader* nextPage, size_t pageCount) : |
| 191 | #ifdef GUARD_BLOCKS |
| 192 | lastAllocation(0), |
| 193 | #endif |
| 194 | nextPage(nextPage), pageCount(pageCount) { } |
| 195 | |
| 196 | () { |
| 197 | #ifdef GUARD_BLOCKS |
| 198 | if (lastAllocation) |
| 199 | lastAllocation->checkAllocList(); |
| 200 | #endif |
| 201 | } |
| 202 | |
| 203 | #ifdef GUARD_BLOCKS |
| 204 | TAllocation* lastAllocation; |
| 205 | #endif |
| 206 | tHeader* ; |
| 207 | size_t ; |
| 208 | }; |
| 209 | |
| 210 | struct tAllocState { |
| 211 | size_t offset; |
| 212 | tHeader* page; |
| 213 | }; |
| 214 | typedef std::vector<tAllocState> tAllocStack; |
| 215 | |
| 216 | // Track allocations if and only if we're using guard blocks |
| 217 | #ifndef GUARD_BLOCKS |
| 218 | void* (tHeader*, unsigned char* memory, size_t) { |
| 219 | #else |
| 220 | void* initializeAllocation(tHeader* block, unsigned char* memory, size_t numBytes) { |
| 221 | new(memory) TAllocation(numBytes, memory, block->lastAllocation); |
| 222 | block->lastAllocation = reinterpret_cast<TAllocation*>(memory); |
| 223 | #endif |
| 224 | |
| 225 | // This is optimized entirely away if GUARD_BLOCKS is not defined. |
| 226 | return TAllocation::offsetAllocation(memory); |
| 227 | } |
| 228 | |
| 229 | size_t pageSize; // granularity of allocation from the OS |
| 230 | size_t alignment; // all returned allocations will be aligned at |
| 231 | // this granularity, which will be a power of 2 |
| 232 | size_t alignmentMask; |
| 233 | size_t ; // amount of memory to skip to make room for the |
| 234 | // header (basically, size of header, rounded |
| 235 | // up to make it aligned |
| 236 | size_t currentPageOffset; // next offset in top of inUseList to allocate from |
| 237 | tHeader* freeList; // list of popped memory |
| 238 | tHeader* inUseList; // list of all memory currently being used |
| 239 | tAllocStack stack; // stack of where to allocate from, to partition pool |
| 240 | |
| 241 | int numCalls; // just an interesting statistic |
| 242 | size_t totalBytes; // just an interesting statistic |
| 243 | private: |
| 244 | TPoolAllocator& operator=(const TPoolAllocator&); // don't allow assignment operator |
| 245 | TPoolAllocator(const TPoolAllocator&); // don't allow default copy constructor |
| 246 | }; |
| 247 | |
| 248 | // |
| 249 | // There could potentially be many pools with pops happening at |
| 250 | // different times. But a simple use is to have a global pop |
| 251 | // with everyone using the same global allocator. |
| 252 | // |
| 253 | extern TPoolAllocator& GetThreadPoolAllocator(); |
| 254 | void SetThreadPoolAllocator(TPoolAllocator* poolAllocator); |
| 255 | |
| 256 | // |
| 257 | // This STL compatible allocator is intended to be used as the allocator |
| 258 | // parameter to templatized STL containers, like vector and map. |
| 259 | // |
| 260 | // It will use the pools for allocation, and not |
| 261 | // do any deallocation, but will still do destruction. |
| 262 | // |
| 263 | template<class T> |
| 264 | class pool_allocator { |
| 265 | public: |
| 266 | typedef size_t size_type; |
| 267 | typedef ptrdiff_t difference_type; |
| 268 | typedef T *pointer; |
| 269 | typedef const T *const_pointer; |
| 270 | typedef T& reference; |
| 271 | typedef const T& const_reference; |
| 272 | typedef T value_type; |
| 273 | template<class Other> |
| 274 | struct rebind { |
| 275 | typedef pool_allocator<Other> other; |
| 276 | }; |
| 277 | pointer address(reference x) const { return &x; } |
| 278 | const_pointer address(const_reference x) const { return &x; } |
| 279 | |
| 280 | pool_allocator() : allocator(GetThreadPoolAllocator()) { } |
| 281 | pool_allocator(TPoolAllocator& a) : allocator(a) { } |
| 282 | pool_allocator(const pool_allocator<T>& p) : allocator(p.allocator) { } |
| 283 | |
| 284 | template<class Other> |
| 285 | pool_allocator(const pool_allocator<Other>& p) : allocator(p.getAllocator()) { } |
| 286 | |
| 287 | pointer allocate(size_type n) { |
| 288 | return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); } |
| 289 | pointer allocate(size_type n, const void*) { |
| 290 | return reinterpret_cast<pointer>(getAllocator().allocate(n * sizeof(T))); } |
| 291 | |
| 292 | void deallocate(void*, size_type) { } |
| 293 | void deallocate(pointer, size_type) { } |
| 294 | |
| 295 | pointer _Charalloc(size_t n) { |
| 296 | return reinterpret_cast<pointer>(getAllocator().allocate(n)); } |
| 297 | |
| 298 | void construct(pointer p, const T& val) { new ((void *)p) T(val); } |
| 299 | void destroy(pointer p) { p->T::~T(); } |
| 300 | |
| 301 | bool operator==(const pool_allocator& rhs) const { return &getAllocator() == &rhs.getAllocator(); } |
| 302 | bool operator!=(const pool_allocator& rhs) const { return &getAllocator() != &rhs.getAllocator(); } |
| 303 | |
| 304 | size_type max_size() const { return static_cast<size_type>(-1) / sizeof(T); } |
| 305 | size_type max_size(int size) const { return static_cast<size_type>(-1) / size; } |
| 306 | |
| 307 | TPoolAllocator& getAllocator() const { return allocator; } |
| 308 | |
| 309 | protected: |
| 310 | pool_allocator& operator=(const pool_allocator&) { return *this; } |
| 311 | TPoolAllocator& allocator; |
| 312 | }; |
| 313 | |
| 314 | } // end namespace glslang |
| 315 | |
| 316 | #endif // _POOLALLOC_INCLUDED_ |
| 317 | |