| 1 | /** |
| 2 | * Copyright (c) 2006-2023 LOVE Development Team |
| 3 | * |
| 4 | * This software is provided 'as-is', without any express or implied |
| 5 | * warranty. In no event will the authors be held liable for any damages |
| 6 | * arising from the use of this software. |
| 7 | * |
| 8 | * Permission is granted to anyone to use this software for any purpose, |
| 9 | * including commercial applications, and to alter it and redistribute it |
| 10 | * freely, subject to the following restrictions: |
| 11 | * |
| 12 | * 1. The origin of this software must not be misrepresented; you must not |
| 13 | * claim that you wrote the original software. If you use this software |
| 14 | * in a product, an acknowledgment in the product documentation would be |
| 15 | * appreciated but is not required. |
| 16 | * 2. Altered source versions must be plainly marked as such, and must not be |
| 17 | * misrepresented as being the original software. |
| 18 | * 3. This notice may not be removed or altered from any source distribution. |
| 19 | **/ |
| 20 | |
| 21 | // LOVE |
| 22 | #include "MathModule.h" |
| 23 | #include "common/Vector.h" |
| 24 | #include "common/int.h" |
| 25 | #include "common/StringMap.h" |
| 26 | #include "BezierCurve.h" |
| 27 | #include "Transform.h" |
| 28 | |
| 29 | // STL |
| 30 | #include <cmath> |
| 31 | #include <list> |
| 32 | #include <iostream> |
| 33 | |
| 34 | // C |
| 35 | #include <time.h> |
| 36 | |
| 37 | using std::list; |
| 38 | using love::Vector2; |
| 39 | |
| 40 | namespace |
| 41 | { |
| 42 | |
| 43 | // check if an angle is oriented counter clockwise |
| 44 | inline bool is_oriented_ccw(const Vector2 &a, const Vector2 &b, const Vector2 &c) |
| 45 | { |
| 46 | // return det(b-a, c-a) >= 0 |
| 47 | return ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x)) >= 0; |
| 48 | } |
| 49 | |
| 50 | // check if a and b are on the same side of the line c->d |
| 51 | bool on_same_side(const Vector2 &a, const Vector2 &b, const Vector2 &c, const Vector2 &d) |
| 52 | { |
| 53 | float px = d.x - c.x, py = d.y - c.y; |
| 54 | // return det(p, a-c) * det(p, b-c) >= 0 |
| 55 | float l = px * (a.y - c.y) - py * (a.x - c.x); |
| 56 | float m = px * (b.y - c.y) - py * (b.x - c.x); |
| 57 | return l * m >= 0; |
| 58 | } |
| 59 | |
| 60 | // checks is p is contained in the triangle abc |
| 61 | inline bool point_in_triangle(const Vector2 &p, const Vector2 &a, const Vector2 &b, const Vector2 &c) |
| 62 | { |
| 63 | return on_same_side(p,a, b,c) && on_same_side(p,b, a,c) && on_same_side(p,c, a,b); |
| 64 | } |
| 65 | |
| 66 | // checks if any vertex in `vertices' is in the triangle abc. |
| 67 | bool any_point_in_triangle(const std::list<const Vector2 *> &vertices, const Vector2 &a, const Vector2 &b, const Vector2 &c) |
| 68 | { |
| 69 | for (const Vector2 *p : vertices) |
| 70 | { |
| 71 | if ((p != &a) && (p != &b) && (p != &c) && point_in_triangle(*p, a,b,c)) // oh god... |
| 72 | return true; |
| 73 | } |
| 74 | |
| 75 | return false; |
| 76 | } |
| 77 | |
| 78 | inline bool is_ear(const Vector2 &a, const Vector2 &b, const Vector2 &c, const std::list<const Vector2 *> &vertices) |
| 79 | { |
| 80 | return is_oriented_ccw(a,b,c) && !any_point_in_triangle(vertices, a,b,c); |
| 81 | } |
| 82 | |
| 83 | } // anonymous namespace |
| 84 | |
| 85 | namespace love |
| 86 | { |
| 87 | namespace math |
| 88 | { |
| 89 | |
| 90 | std::vector<Triangle> triangulate(const std::vector<love::Vector2> &polygon) |
| 91 | { |
| 92 | if (polygon.size() < 3) |
| 93 | throw love::Exception("Not a polygon" ); |
| 94 | else if (polygon.size() == 3) |
| 95 | return std::vector<Triangle>(1, Triangle(polygon[0], polygon[1], polygon[2])); |
| 96 | |
| 97 | // collect list of connections and record leftmost item to check if the polygon |
| 98 | // has the expected winding |
| 99 | std::vector<size_t> next_idx(polygon.size()), prev_idx(polygon.size()); |
| 100 | size_t idx_lm = 0; |
| 101 | for (size_t i = 0; i < polygon.size(); ++i) |
| 102 | { |
| 103 | const love::Vector2 &lm = polygon[idx_lm], &p = polygon[i]; |
| 104 | if (p.x < lm.x || (p.x == lm.x && p.y < lm.y)) |
| 105 | idx_lm = i; |
| 106 | next_idx[i] = i+1; |
| 107 | prev_idx[i] = i-1; |
| 108 | } |
| 109 | next_idx[next_idx.size()-1] = 0; |
| 110 | prev_idx[0] = prev_idx.size()-1; |
| 111 | |
| 112 | // check if the polygon has the expected winding and reverse polygon if needed |
| 113 | if (!is_oriented_ccw(polygon[prev_idx[idx_lm]], polygon[idx_lm], polygon[next_idx[idx_lm]])) |
| 114 | next_idx.swap(prev_idx); |
| 115 | |
| 116 | // collect list of concave polygons |
| 117 | std::list<const love::Vector2 *> concave_vertices; |
| 118 | for (size_t i = 0; i < polygon.size(); ++i) |
| 119 | { |
| 120 | if (!is_oriented_ccw(polygon[prev_idx[i]], polygon[i], polygon[next_idx[i]])) |
| 121 | concave_vertices.push_back(&polygon[i]); |
| 122 | } |
| 123 | |
| 124 | // triangulation according to kong |
| 125 | std::vector<Triangle> triangles; |
| 126 | size_t n_vertices = polygon.size(); |
| 127 | size_t current = 1, skipped = 0, next, prev; |
| 128 | while (n_vertices > 3) |
| 129 | { |
| 130 | next = next_idx[current]; |
| 131 | prev = prev_idx[current]; |
| 132 | const Vector2 &a = polygon[prev], &b = polygon[current], &c = polygon[next]; |
| 133 | if (is_ear(a,b,c, concave_vertices)) |
| 134 | { |
| 135 | triangles.push_back(Triangle(a,b,c)); |
| 136 | next_idx[prev] = next; |
| 137 | prev_idx[next] = prev; |
| 138 | concave_vertices.remove(&b); |
| 139 | --n_vertices; |
| 140 | skipped = 0; |
| 141 | } |
| 142 | else if (++skipped > n_vertices) |
| 143 | { |
| 144 | throw love::Exception("Cannot triangulate polygon." ); |
| 145 | } |
| 146 | current = next; |
| 147 | } |
| 148 | next = next_idx[current]; |
| 149 | prev = prev_idx[current]; |
| 150 | triangles.push_back(Triangle(polygon[prev], polygon[current], polygon[next])); |
| 151 | |
| 152 | return triangles; |
| 153 | } |
| 154 | |
| 155 | bool isConvex(const std::vector<love::Vector2> &polygon) |
| 156 | { |
| 157 | if (polygon.size() < 3) |
| 158 | return false; |
| 159 | |
| 160 | // a polygon is convex if all corners turn in the same direction |
| 161 | // turning direction can be determined using the cross-product of |
| 162 | // the forward difference vectors |
| 163 | size_t i = polygon.size() - 2, j = polygon.size() - 1, k = 0; |
| 164 | Vector2 p(polygon[j] - polygon[i]); |
| 165 | Vector2 q(polygon[k] - polygon[j]); |
| 166 | float winding = Vector2::cross(p, q); |
| 167 | |
| 168 | while (k+1 < polygon.size()) |
| 169 | { |
| 170 | i = j; j = k; k++; |
| 171 | p = polygon[j] - polygon[i]; |
| 172 | q = polygon[k] - polygon[j]; |
| 173 | |
| 174 | if (Vector2::cross(p, q) * winding < 0) |
| 175 | return false; |
| 176 | } |
| 177 | return true; |
| 178 | } |
| 179 | |
| 180 | /** |
| 181 | * http://en.wikipedia.org/wiki/SRGB#The_reverse_transformation |
| 182 | **/ |
| 183 | float gammaToLinear(float c) |
| 184 | { |
| 185 | if (c <= 0.04045f) |
| 186 | return c / 12.92f; |
| 187 | else |
| 188 | return powf((c + 0.055f) / 1.055f, 2.4f); |
| 189 | } |
| 190 | |
| 191 | /** |
| 192 | * http://en.wikipedia.org/wiki/SRGB#The_forward_transformation_.28CIE_xyY_or_CIE_XYZ_to_sRGB.29 |
| 193 | **/ |
| 194 | float linearToGamma(float c) |
| 195 | { |
| 196 | if (c <= 0.0031308f) |
| 197 | return c * 12.92f; |
| 198 | else |
| 199 | return 1.055f * powf(c, 1.0f / 2.4f) - 0.055f; |
| 200 | } |
| 201 | |
| 202 | Math::Math() |
| 203 | : rng() |
| 204 | { |
| 205 | RandomGenerator::Seed seed; |
| 206 | seed.b64 = (uint64) time(nullptr); |
| 207 | rng.setSeed(seed); |
| 208 | } |
| 209 | |
| 210 | Math::~Math() |
| 211 | { |
| 212 | } |
| 213 | |
| 214 | RandomGenerator *Math::newRandomGenerator() |
| 215 | { |
| 216 | return new RandomGenerator(); |
| 217 | } |
| 218 | |
| 219 | BezierCurve *Math::newBezierCurve(const std::vector<Vector2> &points) |
| 220 | { |
| 221 | return new BezierCurve(points); |
| 222 | } |
| 223 | |
| 224 | Transform *Math::newTransform() |
| 225 | { |
| 226 | return new Transform(); |
| 227 | } |
| 228 | |
| 229 | Transform *Math::newTransform(float x, float y, float a, float sx, float sy, float ox, float oy, float kx, float ky) |
| 230 | { |
| 231 | return new Transform(x, y, a, sx, sy, ox, oy, kx, ky); |
| 232 | } |
| 233 | |
| 234 | } // math |
| 235 | } // love |
| 236 | |