1 | /** |
2 | * Copyright (c) 2006-2023 LOVE Development Team |
3 | * |
4 | * This software is provided 'as-is', without any express or implied |
5 | * warranty. In no event will the authors be held liable for any damages |
6 | * arising from the use of this software. |
7 | * |
8 | * Permission is granted to anyone to use this software for any purpose, |
9 | * including commercial applications, and to alter it and redistribute it |
10 | * freely, subject to the following restrictions: |
11 | * |
12 | * 1. The origin of this software must not be misrepresented; you must not |
13 | * claim that you wrote the original software. If you use this software |
14 | * in a product, an acknowledgment in the product documentation would be |
15 | * appreciated but is not required. |
16 | * 2. Altered source versions must be plainly marked as such, and must not be |
17 | * misrepresented as being the original software. |
18 | * 3. This notice may not be removed or altered from any source distribution. |
19 | **/ |
20 | |
21 | // LOVE |
22 | #include "MathModule.h" |
23 | #include "common/Vector.h" |
24 | #include "common/int.h" |
25 | #include "common/StringMap.h" |
26 | #include "BezierCurve.h" |
27 | #include "Transform.h" |
28 | |
29 | // STL |
30 | #include <cmath> |
31 | #include <list> |
32 | #include <iostream> |
33 | |
34 | // C |
35 | #include <time.h> |
36 | |
37 | using std::list; |
38 | using love::Vector2; |
39 | |
40 | namespace |
41 | { |
42 | |
43 | // check if an angle is oriented counter clockwise |
44 | inline bool is_oriented_ccw(const Vector2 &a, const Vector2 &b, const Vector2 &c) |
45 | { |
46 | // return det(b-a, c-a) >= 0 |
47 | return ((b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x)) >= 0; |
48 | } |
49 | |
50 | // check if a and b are on the same side of the line c->d |
51 | bool on_same_side(const Vector2 &a, const Vector2 &b, const Vector2 &c, const Vector2 &d) |
52 | { |
53 | float px = d.x - c.x, py = d.y - c.y; |
54 | // return det(p, a-c) * det(p, b-c) >= 0 |
55 | float l = px * (a.y - c.y) - py * (a.x - c.x); |
56 | float m = px * (b.y - c.y) - py * (b.x - c.x); |
57 | return l * m >= 0; |
58 | } |
59 | |
60 | // checks is p is contained in the triangle abc |
61 | inline bool point_in_triangle(const Vector2 &p, const Vector2 &a, const Vector2 &b, const Vector2 &c) |
62 | { |
63 | return on_same_side(p,a, b,c) && on_same_side(p,b, a,c) && on_same_side(p,c, a,b); |
64 | } |
65 | |
66 | // checks if any vertex in `vertices' is in the triangle abc. |
67 | bool any_point_in_triangle(const std::list<const Vector2 *> &vertices, const Vector2 &a, const Vector2 &b, const Vector2 &c) |
68 | { |
69 | for (const Vector2 *p : vertices) |
70 | { |
71 | if ((p != &a) && (p != &b) && (p != &c) && point_in_triangle(*p, a,b,c)) // oh god... |
72 | return true; |
73 | } |
74 | |
75 | return false; |
76 | } |
77 | |
78 | inline bool is_ear(const Vector2 &a, const Vector2 &b, const Vector2 &c, const std::list<const Vector2 *> &vertices) |
79 | { |
80 | return is_oriented_ccw(a,b,c) && !any_point_in_triangle(vertices, a,b,c); |
81 | } |
82 | |
83 | } // anonymous namespace |
84 | |
85 | namespace love |
86 | { |
87 | namespace math |
88 | { |
89 | |
90 | std::vector<Triangle> triangulate(const std::vector<love::Vector2> &polygon) |
91 | { |
92 | if (polygon.size() < 3) |
93 | throw love::Exception("Not a polygon" ); |
94 | else if (polygon.size() == 3) |
95 | return std::vector<Triangle>(1, Triangle(polygon[0], polygon[1], polygon[2])); |
96 | |
97 | // collect list of connections and record leftmost item to check if the polygon |
98 | // has the expected winding |
99 | std::vector<size_t> next_idx(polygon.size()), prev_idx(polygon.size()); |
100 | size_t idx_lm = 0; |
101 | for (size_t i = 0; i < polygon.size(); ++i) |
102 | { |
103 | const love::Vector2 &lm = polygon[idx_lm], &p = polygon[i]; |
104 | if (p.x < lm.x || (p.x == lm.x && p.y < lm.y)) |
105 | idx_lm = i; |
106 | next_idx[i] = i+1; |
107 | prev_idx[i] = i-1; |
108 | } |
109 | next_idx[next_idx.size()-1] = 0; |
110 | prev_idx[0] = prev_idx.size()-1; |
111 | |
112 | // check if the polygon has the expected winding and reverse polygon if needed |
113 | if (!is_oriented_ccw(polygon[prev_idx[idx_lm]], polygon[idx_lm], polygon[next_idx[idx_lm]])) |
114 | next_idx.swap(prev_idx); |
115 | |
116 | // collect list of concave polygons |
117 | std::list<const love::Vector2 *> concave_vertices; |
118 | for (size_t i = 0; i < polygon.size(); ++i) |
119 | { |
120 | if (!is_oriented_ccw(polygon[prev_idx[i]], polygon[i], polygon[next_idx[i]])) |
121 | concave_vertices.push_back(&polygon[i]); |
122 | } |
123 | |
124 | // triangulation according to kong |
125 | std::vector<Triangle> triangles; |
126 | size_t n_vertices = polygon.size(); |
127 | size_t current = 1, skipped = 0, next, prev; |
128 | while (n_vertices > 3) |
129 | { |
130 | next = next_idx[current]; |
131 | prev = prev_idx[current]; |
132 | const Vector2 &a = polygon[prev], &b = polygon[current], &c = polygon[next]; |
133 | if (is_ear(a,b,c, concave_vertices)) |
134 | { |
135 | triangles.push_back(Triangle(a,b,c)); |
136 | next_idx[prev] = next; |
137 | prev_idx[next] = prev; |
138 | concave_vertices.remove(&b); |
139 | --n_vertices; |
140 | skipped = 0; |
141 | } |
142 | else if (++skipped > n_vertices) |
143 | { |
144 | throw love::Exception("Cannot triangulate polygon." ); |
145 | } |
146 | current = next; |
147 | } |
148 | next = next_idx[current]; |
149 | prev = prev_idx[current]; |
150 | triangles.push_back(Triangle(polygon[prev], polygon[current], polygon[next])); |
151 | |
152 | return triangles; |
153 | } |
154 | |
155 | bool isConvex(const std::vector<love::Vector2> &polygon) |
156 | { |
157 | if (polygon.size() < 3) |
158 | return false; |
159 | |
160 | // a polygon is convex if all corners turn in the same direction |
161 | // turning direction can be determined using the cross-product of |
162 | // the forward difference vectors |
163 | size_t i = polygon.size() - 2, j = polygon.size() - 1, k = 0; |
164 | Vector2 p(polygon[j] - polygon[i]); |
165 | Vector2 q(polygon[k] - polygon[j]); |
166 | float winding = Vector2::cross(p, q); |
167 | |
168 | while (k+1 < polygon.size()) |
169 | { |
170 | i = j; j = k; k++; |
171 | p = polygon[j] - polygon[i]; |
172 | q = polygon[k] - polygon[j]; |
173 | |
174 | if (Vector2::cross(p, q) * winding < 0) |
175 | return false; |
176 | } |
177 | return true; |
178 | } |
179 | |
180 | /** |
181 | * http://en.wikipedia.org/wiki/SRGB#The_reverse_transformation |
182 | **/ |
183 | float gammaToLinear(float c) |
184 | { |
185 | if (c <= 0.04045f) |
186 | return c / 12.92f; |
187 | else |
188 | return powf((c + 0.055f) / 1.055f, 2.4f); |
189 | } |
190 | |
191 | /** |
192 | * http://en.wikipedia.org/wiki/SRGB#The_forward_transformation_.28CIE_xyY_or_CIE_XYZ_to_sRGB.29 |
193 | **/ |
194 | float linearToGamma(float c) |
195 | { |
196 | if (c <= 0.0031308f) |
197 | return c * 12.92f; |
198 | else |
199 | return 1.055f * powf(c, 1.0f / 2.4f) - 0.055f; |
200 | } |
201 | |
202 | Math::Math() |
203 | : rng() |
204 | { |
205 | RandomGenerator::Seed seed; |
206 | seed.b64 = (uint64) time(nullptr); |
207 | rng.setSeed(seed); |
208 | } |
209 | |
210 | Math::~Math() |
211 | { |
212 | } |
213 | |
214 | RandomGenerator *Math::newRandomGenerator() |
215 | { |
216 | return new RandomGenerator(); |
217 | } |
218 | |
219 | BezierCurve *Math::newBezierCurve(const std::vector<Vector2> &points) |
220 | { |
221 | return new BezierCurve(points); |
222 | } |
223 | |
224 | Transform *Math::newTransform() |
225 | { |
226 | return new Transform(); |
227 | } |
228 | |
229 | Transform *Math::newTransform(float x, float y, float a, float sx, float sy, float ox, float oy, float kx, float ky) |
230 | { |
231 | return new Transform(x, y, a, sx, sy, ox, oy, kx, ky); |
232 | } |
233 | |
234 | } // math |
235 | } // love |
236 | |