| 1 | /* |
| 2 | ** $Id: lopcodes.h $ |
| 3 | ** Opcodes for Lua virtual machine |
| 4 | ** See Copyright Notice in lua.h |
| 5 | */ |
| 6 | |
| 7 | #ifndef lopcodes_h |
| 8 | #define lopcodes_h |
| 9 | |
| 10 | #include "llimits.h" |
| 11 | |
| 12 | |
| 13 | /*=========================================================================== |
| 14 | We assume that instructions are unsigned 32-bit integers. |
| 15 | All instructions have an opcode in the first 7 bits. |
| 16 | Instructions can have the following formats: |
| 17 | |
| 18 | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 |
| 19 | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| 20 | iABC C(8) | B(8) |k| A(8) | Op(7) | |
| 21 | iABx Bx(17) | A(8) | Op(7) | |
| 22 | iAsBx sBx (signed)(17) | A(8) | Op(7) | |
| 23 | iAx Ax(25) | Op(7) | |
| 24 | isJ sJ(25) | Op(7) | |
| 25 | |
| 26 | A signed argument is represented in excess K: the represented value is |
| 27 | the written unsigned value minus K, where K is half the maximum for the |
| 28 | corresponding unsigned argument. |
| 29 | ===========================================================================*/ |
| 30 | |
| 31 | |
| 32 | enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ |
| 33 | |
| 34 | |
| 35 | /* |
| 36 | ** size and position of opcode arguments. |
| 37 | */ |
| 38 | #define SIZE_C 8 |
| 39 | #define SIZE_B 8 |
| 40 | #define SIZE_Bx (SIZE_C + SIZE_B + 1) |
| 41 | #define SIZE_A 8 |
| 42 | #define SIZE_Ax (SIZE_Bx + SIZE_A) |
| 43 | #define SIZE_sJ (SIZE_Bx + SIZE_A) |
| 44 | |
| 45 | #define SIZE_OP 7 |
| 46 | |
| 47 | #define POS_OP 0 |
| 48 | |
| 49 | #define POS_A (POS_OP + SIZE_OP) |
| 50 | #define POS_k (POS_A + SIZE_A) |
| 51 | #define POS_B (POS_k + 1) |
| 52 | #define POS_C (POS_B + SIZE_B) |
| 53 | |
| 54 | #define POS_Bx POS_k |
| 55 | |
| 56 | #define POS_Ax POS_A |
| 57 | |
| 58 | #define POS_sJ POS_A |
| 59 | |
| 60 | |
| 61 | /* |
| 62 | ** limits for opcode arguments. |
| 63 | ** we use (signed) 'int' to manipulate most arguments, |
| 64 | ** so they must fit in ints. |
| 65 | */ |
| 66 | |
| 67 | /* Check whether type 'int' has at least 'b' bits ('b' < 32) */ |
| 68 | #define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1) |
| 69 | |
| 70 | |
| 71 | #if L_INTHASBITS(SIZE_Bx) |
| 72 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) |
| 73 | #else |
| 74 | #define MAXARG_Bx MAX_INT |
| 75 | #endif |
| 76 | |
| 77 | #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ |
| 78 | |
| 79 | |
| 80 | #if L_INTHASBITS(SIZE_Ax) |
| 81 | #define MAXARG_Ax ((1<<SIZE_Ax)-1) |
| 82 | #else |
| 83 | #define MAXARG_Ax MAX_INT |
| 84 | #endif |
| 85 | |
| 86 | #if L_INTHASBITS(SIZE_sJ) |
| 87 | #define MAXARG_sJ ((1 << SIZE_sJ) - 1) |
| 88 | #else |
| 89 | #define MAXARG_sJ MAX_INT |
| 90 | #endif |
| 91 | |
| 92 | #define OFFSET_sJ (MAXARG_sJ >> 1) |
| 93 | |
| 94 | |
| 95 | #define MAXARG_A ((1<<SIZE_A)-1) |
| 96 | #define MAXARG_B ((1<<SIZE_B)-1) |
| 97 | #define MAXARG_C ((1<<SIZE_C)-1) |
| 98 | #define OFFSET_sC (MAXARG_C >> 1) |
| 99 | |
| 100 | #define int2sC(i) ((i) + OFFSET_sC) |
| 101 | #define sC2int(i) ((i) - OFFSET_sC) |
| 102 | |
| 103 | |
| 104 | /* creates a mask with 'n' 1 bits at position 'p' */ |
| 105 | #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) |
| 106 | |
| 107 | /* creates a mask with 'n' 0 bits at position 'p' */ |
| 108 | #define MASK0(n,p) (~MASK1(n,p)) |
| 109 | |
| 110 | /* |
| 111 | ** the following macros help to manipulate instructions |
| 112 | */ |
| 113 | |
| 114 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) |
| 115 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ |
| 116 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) |
| 117 | |
| 118 | #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) |
| 119 | |
| 120 | |
| 121 | #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) |
| 122 | #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ |
| 123 | ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) |
| 124 | |
| 125 | #define GETARG_A(i) getarg(i, POS_A, SIZE_A) |
| 126 | #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) |
| 127 | |
| 128 | #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) |
| 129 | #define GETARG_sB(i) sC2int(GETARG_B(i)) |
| 130 | #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) |
| 131 | |
| 132 | #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) |
| 133 | #define GETARG_sC(i) sC2int(GETARG_C(i)) |
| 134 | #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) |
| 135 | |
| 136 | #define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k))))) |
| 137 | #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) |
| 138 | #define SETARG_k(i,v) setarg(i, v, POS_k, 1) |
| 139 | |
| 140 | #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) |
| 141 | #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) |
| 142 | |
| 143 | #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) |
| 144 | #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) |
| 145 | |
| 146 | #define GETARG_sBx(i) \ |
| 147 | check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) |
| 148 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) |
| 149 | |
| 150 | #define GETARG_sJ(i) \ |
| 151 | check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) |
| 152 | #define SETARG_sJ(i,j) \ |
| 153 | setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) |
| 154 | |
| 155 | |
| 156 | #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ |
| 157 | | (cast(Instruction, a)<<POS_A) \ |
| 158 | | (cast(Instruction, b)<<POS_B) \ |
| 159 | | (cast(Instruction, c)<<POS_C) \ |
| 160 | | (cast(Instruction, k)<<POS_k)) |
| 161 | |
| 162 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ |
| 163 | | (cast(Instruction, a)<<POS_A) \ |
| 164 | | (cast(Instruction, bc)<<POS_Bx)) |
| 165 | |
| 166 | #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ |
| 167 | | (cast(Instruction, a)<<POS_Ax)) |
| 168 | |
| 169 | #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ |
| 170 | | (cast(Instruction, j) << POS_sJ) \ |
| 171 | | (cast(Instruction, k) << POS_k)) |
| 172 | |
| 173 | |
| 174 | #if !defined(MAXINDEXRK) /* (for debugging only) */ |
| 175 | #define MAXINDEXRK MAXARG_B |
| 176 | #endif |
| 177 | |
| 178 | |
| 179 | /* |
| 180 | ** invalid register that fits in 8 bits |
| 181 | */ |
| 182 | #define NO_REG MAXARG_A |
| 183 | |
| 184 | |
| 185 | /* |
| 186 | ** R[x] - register |
| 187 | ** K[x] - constant (in constant table) |
| 188 | ** RK(x) == if k(i) then K[x] else R[x] |
| 189 | */ |
| 190 | |
| 191 | |
| 192 | /* |
| 193 | ** grep "ORDER OP" if you change these enums |
| 194 | */ |
| 195 | |
| 196 | typedef enum { |
| 197 | /*---------------------------------------------------------------------- |
| 198 | name args description |
| 199 | ------------------------------------------------------------------------*/ |
| 200 | OP_MOVE,/* A B R[A] := R[B] */ |
| 201 | OP_LOADI,/* A sBx R[A] := sBx */ |
| 202 | OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */ |
| 203 | OP_LOADK,/* A Bx R[A] := K[Bx] */ |
| 204 | OP_LOADKX,/* A R[A] := K[extra arg] */ |
| 205 | OP_LOADFALSE,/* A R[A] := false */ |
| 206 | OP_LFALSESKIP,/*A R[A] := false; pc++ */ |
| 207 | OP_LOADTRUE,/* A R[A] := true */ |
| 208 | OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */ |
| 209 | OP_GETUPVAL,/* A B R[A] := UpValue[B] */ |
| 210 | OP_SETUPVAL,/* A B UpValue[B] := R[A] */ |
| 211 | |
| 212 | OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:string] */ |
| 213 | OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */ |
| 214 | OP_GETI,/* A B C R[A] := R[B][C] */ |
| 215 | OP_GETFIELD,/* A B C R[A] := R[B][K[C]:string] */ |
| 216 | |
| 217 | OP_SETTABUP,/* A B C UpValue[A][K[B]:string] := RK(C) */ |
| 218 | OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */ |
| 219 | OP_SETI,/* A B C R[A][B] := RK(C) */ |
| 220 | OP_SETFIELD,/* A B C R[A][K[B]:string] := RK(C) */ |
| 221 | |
| 222 | OP_NEWTABLE,/* A B C k R[A] := {} */ |
| 223 | |
| 224 | OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */ |
| 225 | |
| 226 | OP_ADDI,/* A B sC R[A] := R[B] + sC */ |
| 227 | |
| 228 | OP_ADDK,/* A B C R[A] := R[B] + K[C] */ |
| 229 | OP_SUBK,/* A B C R[A] := R[B] - K[C] */ |
| 230 | OP_MULK,/* A B C R[A] := R[B] * K[C] */ |
| 231 | OP_MODK,/* A B C R[A] := R[B] % K[C] */ |
| 232 | OP_POWK,/* A B C R[A] := R[B] ^ K[C] */ |
| 233 | OP_DIVK,/* A B C R[A] := R[B] / K[C] */ |
| 234 | OP_IDIVK,/* A B C R[A] := R[B] // K[C] */ |
| 235 | |
| 236 | OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */ |
| 237 | OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */ |
| 238 | OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */ |
| 239 | |
| 240 | OP_SHRI,/* A B sC R[A] := R[B] >> sC */ |
| 241 | OP_SHLI,/* A B sC R[A] := sC << R[B] */ |
| 242 | |
| 243 | OP_ADD,/* A B C R[A] := R[B] + R[C] */ |
| 244 | OP_SUB,/* A B C R[A] := R[B] - R[C] */ |
| 245 | OP_MUL,/* A B C R[A] := R[B] * R[C] */ |
| 246 | OP_MOD,/* A B C R[A] := R[B] % R[C] */ |
| 247 | OP_POW,/* A B C R[A] := R[B] ^ R[C] */ |
| 248 | OP_DIV,/* A B C R[A] := R[B] / R[C] */ |
| 249 | OP_IDIV,/* A B C R[A] := R[B] // R[C] */ |
| 250 | |
| 251 | OP_BAND,/* A B C R[A] := R[B] & R[C] */ |
| 252 | OP_BOR,/* A B C R[A] := R[B] | R[C] */ |
| 253 | OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */ |
| 254 | OP_SHL,/* A B C R[A] := R[B] << R[C] */ |
| 255 | OP_SHR,/* A B C R[A] := R[B] >> R[C] */ |
| 256 | |
| 257 | OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] */ |
| 258 | OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */ |
| 259 | OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */ |
| 260 | |
| 261 | OP_UNM,/* A B R[A] := -R[B] */ |
| 262 | OP_BNOT,/* A B R[A] := ~R[B] */ |
| 263 | OP_NOT,/* A B R[A] := not R[B] */ |
| 264 | OP_LEN,/* A B R[A] := #R[B] (length operator) */ |
| 265 | |
| 266 | OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */ |
| 267 | |
| 268 | OP_CLOSE,/* A close all upvalues >= R[A] */ |
| 269 | OP_TBC,/* A mark variable A "to be closed" */ |
| 270 | OP_JMP,/* sJ pc += sJ */ |
| 271 | OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */ |
| 272 | OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */ |
| 273 | OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */ |
| 274 | |
| 275 | OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */ |
| 276 | OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */ |
| 277 | OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */ |
| 278 | OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */ |
| 279 | OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */ |
| 280 | OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */ |
| 281 | |
| 282 | OP_TEST,/* A k if (not R[A] == k) then pc++ */ |
| 283 | OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] */ |
| 284 | |
| 285 | OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */ |
| 286 | OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */ |
| 287 | |
| 288 | OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */ |
| 289 | OP_RETURN0,/* return */ |
| 290 | OP_RETURN1,/* A return R[A] */ |
| 291 | |
| 292 | OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */ |
| 293 | OP_FORPREP,/* A Bx <check values and prepare counters>; |
| 294 | if not to run then pc+=Bx+1; */ |
| 295 | |
| 296 | OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */ |
| 297 | OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */ |
| 298 | OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */ |
| 299 | |
| 300 | OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */ |
| 301 | |
| 302 | OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */ |
| 303 | |
| 304 | OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */ |
| 305 | |
| 306 | OP_VARARGPREP,/*A (adjust vararg parameters) */ |
| 307 | |
| 308 | /* Ax extra (larger) argument for previous opcode */ |
| 309 | } OpCode; |
| 310 | |
| 311 | |
| 312 | #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) |
| 313 | |
| 314 | |
| 315 | |
| 316 | /*=========================================================================== |
| 317 | Notes: |
| 318 | (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then |
| 319 | 'top' is set to last_result+1, so next open instruction (OP_CALL, |
| 320 | OP_RETURN*, OP_SETLIST) may use 'top'. |
| 321 | |
| 322 | (*) In OP_VARARG, if (C == 0) then use actual number of varargs and |
| 323 | set top (like in OP_CALL with C == 0). |
| 324 | |
| 325 | (*) In OP_RETURN, if (B == 0) then return up to 'top'. |
| 326 | |
| 327 | (*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always |
| 328 | OP_EXTRAARG. |
| 329 | |
| 330 | (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then |
| 331 | real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the |
| 332 | bits of C). |
| 333 | |
| 334 | (*) In OP_NEWTABLE, B is log2 of the hash size (which is always a |
| 335 | power of 2) plus 1, or zero for size zero. If not k, the array size |
| 336 | is C. Otherwise, the array size is EXTRAARG _ C. |
| 337 | |
| 338 | (*) For comparisons, k specifies what condition the test should accept |
| 339 | (true or false). |
| 340 | |
| 341 | (*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped |
| 342 | (the constant is the first operand). |
| 343 | |
| 344 | (*) All 'skips' (pc++) assume that next instruction is a jump. |
| 345 | |
| 346 | (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the |
| 347 | function builds upvalues, which may need to be closed. C > 0 means |
| 348 | the function is vararg, so that its 'func' must be corrected before |
| 349 | returning; in this case, (C - 1) is its number of fixed parameters. |
| 350 | |
| 351 | (*) In comparisons with an immediate operand, C signals whether the |
| 352 | original operand was a float. (It must be corrected in case of |
| 353 | metamethods.) |
| 354 | |
| 355 | ===========================================================================*/ |
| 356 | |
| 357 | |
| 358 | /* |
| 359 | ** masks for instruction properties. The format is: |
| 360 | ** bits 0-2: op mode |
| 361 | ** bit 3: instruction set register A |
| 362 | ** bit 4: operator is a test (next instruction must be a jump) |
| 363 | ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) |
| 364 | ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) |
| 365 | ** bit 7: instruction is an MM instruction (call a metamethod) |
| 366 | */ |
| 367 | |
| 368 | LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) |
| 369 | |
| 370 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) |
| 371 | #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) |
| 372 | #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) |
| 373 | #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) |
| 374 | #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) |
| 375 | #define testMMMode(m) (luaP_opmodes[m] & (1 << 7)) |
| 376 | |
| 377 | /* "out top" (set top for next instruction) */ |
| 378 | #define isOT(i) \ |
| 379 | ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ |
| 380 | GET_OPCODE(i) == OP_TAILCALL) |
| 381 | |
| 382 | /* "in top" (uses top from previous instruction) */ |
| 383 | #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) |
| 384 | |
| 385 | #define opmode(mm,ot,it,t,a,m) \ |
| 386 | (((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m)) |
| 387 | |
| 388 | |
| 389 | /* number of list items to accumulate before a SETLIST instruction */ |
| 390 | #define LFIELDS_PER_FLUSH 50 |
| 391 | |
| 392 | #endif |
| 393 | |