| 1 | /* |
| 2 | ** $Id: ltable.c $ |
| 3 | ** Lua tables (hash) |
| 4 | ** See Copyright Notice in lua.h |
| 5 | */ |
| 6 | |
| 7 | #define ltable_c |
| 8 | #define LUA_CORE |
| 9 | |
| 10 | #include "lprefix.h" |
| 11 | |
| 12 | |
| 13 | /* |
| 14 | ** Implementation of tables (aka arrays, objects, or hash tables). |
| 15 | ** Tables keep its elements in two parts: an array part and a hash part. |
| 16 | ** Non-negative integer keys are all candidates to be kept in the array |
| 17 | ** part. The actual size of the array is the largest 'n' such that |
| 18 | ** more than half the slots between 1 and n are in use. |
| 19 | ** Hash uses a mix of chained scatter table with Brent's variation. |
| 20 | ** A main invariant of these tables is that, if an element is not |
| 21 | ** in its main position (i.e. the 'original' position that its hash gives |
| 22 | ** to it), then the colliding element is in its own main position. |
| 23 | ** Hence even when the load factor reaches 100%, performance remains good. |
| 24 | */ |
| 25 | |
| 26 | #include <math.h> |
| 27 | #include <limits.h> |
| 28 | |
| 29 | #include "lua.h" |
| 30 | |
| 31 | #include "ldebug.h" |
| 32 | #include "ldo.h" |
| 33 | #include "lgc.h" |
| 34 | #include "lmem.h" |
| 35 | #include "lobject.h" |
| 36 | #include "lstate.h" |
| 37 | #include "lstring.h" |
| 38 | #include "ltable.h" |
| 39 | #include "lvm.h" |
| 40 | |
| 41 | |
| 42 | /* |
| 43 | ** MAXABITS is the largest integer such that MAXASIZE fits in an |
| 44 | ** unsigned int. |
| 45 | */ |
| 46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) |
| 47 | |
| 48 | |
| 49 | /* |
| 50 | ** MAXASIZE is the maximum size of the array part. It is the minimum |
| 51 | ** between 2^MAXABITS and the maximum size that, measured in bytes, |
| 52 | ** fits in a 'size_t'. |
| 53 | */ |
| 54 | #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) |
| 55 | |
| 56 | /* |
| 57 | ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a |
| 58 | ** signed int. |
| 59 | */ |
| 60 | #define MAXHBITS (MAXABITS - 1) |
| 61 | |
| 62 | |
| 63 | /* |
| 64 | ** MAXHSIZE is the maximum size of the hash part. It is the minimum |
| 65 | ** between 2^MAXHBITS and the maximum size such that, measured in bytes, |
| 66 | ** it fits in a 'size_t'. |
| 67 | */ |
| 68 | #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) |
| 69 | |
| 70 | |
| 71 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
| 72 | |
| 73 | #define hashstr(t,str) hashpow2(t, (str)->hash) |
| 74 | #define hashboolean(t,p) hashpow2(t, p) |
| 75 | #define hashint(t,i) hashpow2(t, i) |
| 76 | |
| 77 | |
| 78 | /* |
| 79 | ** for some types, it is better to avoid modulus by power of 2, as |
| 80 | ** they tend to have many 2 factors. |
| 81 | */ |
| 82 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
| 83 | |
| 84 | |
| 85 | #define hashpointer(t,p) hashmod(t, point2uint(p)) |
| 86 | |
| 87 | |
| 88 | #define dummynode (&dummynode_) |
| 89 | |
| 90 | static const Node dummynode_ = { |
| 91 | {{NULL}, LUA_VEMPTY, /* value's value and type */ |
| 92 | LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ |
| 93 | }; |
| 94 | |
| 95 | |
| 96 | static const TValue absentkey = {ABSTKEYCONSTANT}; |
| 97 | |
| 98 | |
| 99 | |
| 100 | /* |
| 101 | ** Hash for floating-point numbers. |
| 102 | ** The main computation should be just |
| 103 | ** n = frexp(n, &i); return (n * INT_MAX) + i |
| 104 | ** but there are some numerical subtleties. |
| 105 | ** In a two-complement representation, INT_MAX does not has an exact |
| 106 | ** representation as a float, but INT_MIN does; because the absolute |
| 107 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the |
| 108 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal |
| 109 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when |
| 110 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with |
| 111 | ** INT_MIN. |
| 112 | */ |
| 113 | #if !defined(l_hashfloat) |
| 114 | static int l_hashfloat (lua_Number n) { |
| 115 | int i; |
| 116 | lua_Integer ni; |
| 117 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); |
| 118 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ |
| 119 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); |
| 120 | return 0; |
| 121 | } |
| 122 | else { /* normal case */ |
| 123 | unsigned int u = cast_uint(i) + cast_uint(ni); |
| 124 | return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); |
| 125 | } |
| 126 | } |
| 127 | #endif |
| 128 | |
| 129 | |
| 130 | /* |
| 131 | ** returns the 'main' position of an element in a table (that is, |
| 132 | ** the index of its hash value). The key comes broken (tag in 'ktt' |
| 133 | ** and value in 'vkl') so that we can call it on keys inserted into |
| 134 | ** nodes. |
| 135 | */ |
| 136 | static Node *mainposition (const Table *t, int ktt, const Value *kvl) { |
| 137 | switch (withvariant(ktt)) { |
| 138 | case LUA_VNUMINT: |
| 139 | return hashint(t, ivalueraw(*kvl)); |
| 140 | case LUA_VNUMFLT: |
| 141 | return hashmod(t, l_hashfloat(fltvalueraw(*kvl))); |
| 142 | case LUA_VSHRSTR: |
| 143 | return hashstr(t, tsvalueraw(*kvl)); |
| 144 | case LUA_VLNGSTR: |
| 145 | return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl))); |
| 146 | case LUA_VFALSE: |
| 147 | return hashboolean(t, 0); |
| 148 | case LUA_VTRUE: |
| 149 | return hashboolean(t, 1); |
| 150 | case LUA_VLIGHTUSERDATA: |
| 151 | return hashpointer(t, pvalueraw(*kvl)); |
| 152 | case LUA_VLCF: |
| 153 | return hashpointer(t, fvalueraw(*kvl)); |
| 154 | default: |
| 155 | return hashpointer(t, gcvalueraw(*kvl)); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | |
| 160 | /* |
| 161 | ** Returns the main position of an element given as a 'TValue' |
| 162 | */ |
| 163 | static Node *mainpositionTV (const Table *t, const TValue *key) { |
| 164 | return mainposition(t, rawtt(key), valraw(key)); |
| 165 | } |
| 166 | |
| 167 | |
| 168 | /* |
| 169 | ** Check whether key 'k1' is equal to the key in node 'n2'. |
| 170 | ** This equality is raw, so there are no metamethods. Floats |
| 171 | ** with integer values have been normalized, so integers cannot |
| 172 | ** be equal to floats. It is assumed that 'eqshrstr' is simply |
| 173 | ** pointer equality, so that short strings are handled in the |
| 174 | ** default case. |
| 175 | ** A true 'deadok' means to accept dead keys as equal to their original |
| 176 | ** values, which can only happen if the original key was collectable. |
| 177 | ** All dead values are compared in the default case, by pointer |
| 178 | ** identity. (Note that dead long strings are also compared by |
| 179 | ** identity). |
| 180 | */ |
| 181 | static int equalkey (const TValue *k1, const Node *n2, int deadok) { |
| 182 | if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ |
| 183 | !(deadok && keyisdead(n2) && iscollectable(k1))) |
| 184 | return 0; /* cannot be same key */ |
| 185 | switch (keytt(n2)) { |
| 186 | case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: |
| 187 | return 1; |
| 188 | case LUA_VNUMINT: |
| 189 | return (ivalue(k1) == keyival(n2)); |
| 190 | case LUA_VNUMFLT: |
| 191 | return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); |
| 192 | case LUA_VLIGHTUSERDATA: |
| 193 | return pvalue(k1) == pvalueraw(keyval(n2)); |
| 194 | case LUA_VLCF: |
| 195 | return fvalue(k1) == fvalueraw(keyval(n2)); |
| 196 | case ctb(LUA_VLNGSTR): |
| 197 | return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); |
| 198 | default: |
| 199 | return gcvalue(k1) == gcvalueraw(keyval(n2)); |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | |
| 204 | /* |
| 205 | ** True if value of 'alimit' is equal to the real size of the array |
| 206 | ** part of table 't'. (Otherwise, the array part must be larger than |
| 207 | ** 'alimit'.) |
| 208 | */ |
| 209 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) |
| 210 | |
| 211 | |
| 212 | /* |
| 213 | ** Returns the real size of the 'array' array |
| 214 | */ |
| 215 | LUAI_FUNC unsigned int luaH_realasize (const Table *t) { |
| 216 | if (limitequalsasize(t)) |
| 217 | return t->alimit; /* this is the size */ |
| 218 | else { |
| 219 | unsigned int size = t->alimit; |
| 220 | /* compute the smallest power of 2 not smaller than 'n' */ |
| 221 | size |= (size >> 1); |
| 222 | size |= (size >> 2); |
| 223 | size |= (size >> 4); |
| 224 | size |= (size >> 8); |
| 225 | size |= (size >> 16); |
| 226 | #if (UINT_MAX >> 30) > 3 |
| 227 | size |= (size >> 32); /* unsigned int has more than 32 bits */ |
| 228 | #endif |
| 229 | size++; |
| 230 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); |
| 231 | return size; |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | |
| 236 | /* |
| 237 | ** Check whether real size of the array is a power of 2. |
| 238 | ** (If it is not, 'alimit' cannot be changed to any other value |
| 239 | ** without changing the real size.) |
| 240 | */ |
| 241 | static int ispow2realasize (const Table *t) { |
| 242 | return (!isrealasize(t) || ispow2(t->alimit)); |
| 243 | } |
| 244 | |
| 245 | |
| 246 | static unsigned int setlimittosize (Table *t) { |
| 247 | t->alimit = luaH_realasize(t); |
| 248 | setrealasize(t); |
| 249 | return t->alimit; |
| 250 | } |
| 251 | |
| 252 | |
| 253 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) |
| 254 | |
| 255 | |
| 256 | |
| 257 | /* |
| 258 | ** "Generic" get version. (Not that generic: not valid for integers, |
| 259 | ** which may be in array part, nor for floats with integral values.) |
| 260 | ** See explanation about 'deadok' in function 'equalkey'. |
| 261 | */ |
| 262 | static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { |
| 263 | Node *n = mainpositionTV(t, key); |
| 264 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 265 | if (equalkey(key, n, deadok)) |
| 266 | return gval(n); /* that's it */ |
| 267 | else { |
| 268 | int nx = gnext(n); |
| 269 | if (nx == 0) |
| 270 | return &absentkey; /* not found */ |
| 271 | n += nx; |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | |
| 277 | /* |
| 278 | ** returns the index for 'k' if 'k' is an appropriate key to live in |
| 279 | ** the array part of a table, 0 otherwise. |
| 280 | */ |
| 281 | static unsigned int arrayindex (lua_Integer k) { |
| 282 | if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ |
| 283 | return cast_uint(k); /* 'key' is an appropriate array index */ |
| 284 | else |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | |
| 289 | /* |
| 290 | ** returns the index of a 'key' for table traversals. First goes all |
| 291 | ** elements in the array part, then elements in the hash part. The |
| 292 | ** beginning of a traversal is signaled by 0. |
| 293 | */ |
| 294 | static unsigned int findindex (lua_State *L, Table *t, TValue *key, |
| 295 | unsigned int asize) { |
| 296 | unsigned int i; |
| 297 | if (ttisnil(key)) return 0; /* first iteration */ |
| 298 | i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; |
| 299 | if (i - 1u < asize) /* is 'key' inside array part? */ |
| 300 | return i; /* yes; that's the index */ |
| 301 | else { |
| 302 | const TValue *n = getgeneric(t, key, 1); |
| 303 | if (unlikely(isabstkey(n))) |
| 304 | luaG_runerror(L, "invalid key to 'next'" ); /* key not found */ |
| 305 | i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ |
| 306 | /* hash elements are numbered after array ones */ |
| 307 | return (i + 1) + asize; |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | |
| 312 | int luaH_next (lua_State *L, Table *t, StkId key) { |
| 313 | unsigned int asize = luaH_realasize(t); |
| 314 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
| 315 | for (; i < asize; i++) { /* try first array part */ |
| 316 | if (!isempty(&t->array[i])) { /* a non-empty entry? */ |
| 317 | setivalue(s2v(key), i + 1); |
| 318 | setobj2s(L, key + 1, &t->array[i]); |
| 319 | return 1; |
| 320 | } |
| 321 | } |
| 322 | for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ |
| 323 | if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ |
| 324 | Node *n = gnode(t, i); |
| 325 | getnodekey(L, s2v(key), n); |
| 326 | setobj2s(L, key + 1, gval(n)); |
| 327 | return 1; |
| 328 | } |
| 329 | } |
| 330 | return 0; /* no more elements */ |
| 331 | } |
| 332 | |
| 333 | |
| 334 | static void freehash (lua_State *L, Table *t) { |
| 335 | if (!isdummy(t)) |
| 336 | luaM_freearray(L, t->node, cast_sizet(sizenode(t))); |
| 337 | } |
| 338 | |
| 339 | |
| 340 | /* |
| 341 | ** {============================================================= |
| 342 | ** Rehash |
| 343 | ** ============================================================== |
| 344 | */ |
| 345 | |
| 346 | /* |
| 347 | ** Compute the optimal size for the array part of table 't'. 'nums' is a |
| 348 | ** "count array" where 'nums[i]' is the number of integers in the table |
| 349 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of |
| 350 | ** integer keys in the table and leaves with the number of keys that |
| 351 | ** will go to the array part; return the optimal size. (The condition |
| 352 | ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) |
| 353 | */ |
| 354 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { |
| 355 | int i; |
| 356 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ |
| 357 | unsigned int a = 0; /* number of elements smaller than 2^i */ |
| 358 | unsigned int na = 0; /* number of elements to go to array part */ |
| 359 | unsigned int optimal = 0; /* optimal size for array part */ |
| 360 | /* loop while keys can fill more than half of total size */ |
| 361 | for (i = 0, twotoi = 1; |
| 362 | twotoi > 0 && *pna > twotoi / 2; |
| 363 | i++, twotoi *= 2) { |
| 364 | a += nums[i]; |
| 365 | if (a > twotoi/2) { /* more than half elements present? */ |
| 366 | optimal = twotoi; /* optimal size (till now) */ |
| 367 | na = a; /* all elements up to 'optimal' will go to array part */ |
| 368 | } |
| 369 | } |
| 370 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); |
| 371 | *pna = na; |
| 372 | return optimal; |
| 373 | } |
| 374 | |
| 375 | |
| 376 | static int countint (lua_Integer key, unsigned int *nums) { |
| 377 | unsigned int k = arrayindex(key); |
| 378 | if (k != 0) { /* is 'key' an appropriate array index? */ |
| 379 | nums[luaO_ceillog2(k)]++; /* count as such */ |
| 380 | return 1; |
| 381 | } |
| 382 | else |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | |
| 387 | /* |
| 388 | ** Count keys in array part of table 't': Fill 'nums[i]' with |
| 389 | ** number of keys that will go into corresponding slice and return |
| 390 | ** total number of non-nil keys. |
| 391 | */ |
| 392 | static unsigned int numusearray (const Table *t, unsigned int *nums) { |
| 393 | int lg; |
| 394 | unsigned int ttlg; /* 2^lg */ |
| 395 | unsigned int ause = 0; /* summation of 'nums' */ |
| 396 | unsigned int i = 1; /* count to traverse all array keys */ |
| 397 | unsigned int asize = limitasasize(t); /* real array size */ |
| 398 | /* traverse each slice */ |
| 399 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
| 400 | unsigned int lc = 0; /* counter */ |
| 401 | unsigned int lim = ttlg; |
| 402 | if (lim > asize) { |
| 403 | lim = asize; /* adjust upper limit */ |
| 404 | if (i > lim) |
| 405 | break; /* no more elements to count */ |
| 406 | } |
| 407 | /* count elements in range (2^(lg - 1), 2^lg] */ |
| 408 | for (; i <= lim; i++) { |
| 409 | if (!isempty(&t->array[i-1])) |
| 410 | lc++; |
| 411 | } |
| 412 | nums[lg] += lc; |
| 413 | ause += lc; |
| 414 | } |
| 415 | return ause; |
| 416 | } |
| 417 | |
| 418 | |
| 419 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { |
| 420 | int totaluse = 0; /* total number of elements */ |
| 421 | int ause = 0; /* elements added to 'nums' (can go to array part) */ |
| 422 | int i = sizenode(t); |
| 423 | while (i--) { |
| 424 | Node *n = &t->node[i]; |
| 425 | if (!isempty(gval(n))) { |
| 426 | if (keyisinteger(n)) |
| 427 | ause += countint(keyival(n), nums); |
| 428 | totaluse++; |
| 429 | } |
| 430 | } |
| 431 | *pna += ause; |
| 432 | return totaluse; |
| 433 | } |
| 434 | |
| 435 | |
| 436 | /* |
| 437 | ** Creates an array for the hash part of a table with the given |
| 438 | ** size, or reuses the dummy node if size is zero. |
| 439 | ** The computation for size overflow is in two steps: the first |
| 440 | ** comparison ensures that the shift in the second one does not |
| 441 | ** overflow. |
| 442 | */ |
| 443 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { |
| 444 | if (size == 0) { /* no elements to hash part? */ |
| 445 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ |
| 446 | t->lsizenode = 0; |
| 447 | t->lastfree = NULL; /* signal that it is using dummy node */ |
| 448 | } |
| 449 | else { |
| 450 | int i; |
| 451 | int lsize = luaO_ceillog2(size); |
| 452 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) |
| 453 | luaG_runerror(L, "table overflow" ); |
| 454 | size = twoto(lsize); |
| 455 | t->node = luaM_newvector(L, size, Node); |
| 456 | for (i = 0; i < (int)size; i++) { |
| 457 | Node *n = gnode(t, i); |
| 458 | gnext(n) = 0; |
| 459 | setnilkey(n); |
| 460 | setempty(gval(n)); |
| 461 | } |
| 462 | t->lsizenode = cast_byte(lsize); |
| 463 | t->lastfree = gnode(t, size); /* all positions are free */ |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | |
| 468 | /* |
| 469 | ** (Re)insert all elements from the hash part of 'ot' into table 't'. |
| 470 | */ |
| 471 | static void reinsert (lua_State *L, Table *ot, Table *t) { |
| 472 | int j; |
| 473 | int size = sizenode(ot); |
| 474 | for (j = 0; j < size; j++) { |
| 475 | Node *old = gnode(ot, j); |
| 476 | if (!isempty(gval(old))) { |
| 477 | /* doesn't need barrier/invalidate cache, as entry was |
| 478 | already present in the table */ |
| 479 | TValue k; |
| 480 | getnodekey(L, &k, old); |
| 481 | setobjt2t(L, luaH_set(L, t, &k), gval(old)); |
| 482 | } |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | |
| 487 | /* |
| 488 | ** Exchange the hash part of 't1' and 't2'. |
| 489 | */ |
| 490 | static void exchangehashpart (Table *t1, Table *t2) { |
| 491 | lu_byte lsizenode = t1->lsizenode; |
| 492 | Node *node = t1->node; |
| 493 | Node *lastfree = t1->lastfree; |
| 494 | t1->lsizenode = t2->lsizenode; |
| 495 | t1->node = t2->node; |
| 496 | t1->lastfree = t2->lastfree; |
| 497 | t2->lsizenode = lsizenode; |
| 498 | t2->node = node; |
| 499 | t2->lastfree = lastfree; |
| 500 | } |
| 501 | |
| 502 | |
| 503 | /* |
| 504 | ** Resize table 't' for the new given sizes. Both allocations (for |
| 505 | ** the hash part and for the array part) can fail, which creates some |
| 506 | ** subtleties. If the first allocation, for the hash part, fails, an |
| 507 | ** error is raised and that is it. Otherwise, it copies the elements from |
| 508 | ** the shrinking part of the array (if it is shrinking) into the new |
| 509 | ** hash. Then it reallocates the array part. If that fails, the table |
| 510 | ** is in its original state; the function frees the new hash part and then |
| 511 | ** raises the allocation error. Otherwise, it sets the new hash part |
| 512 | ** into the table, initializes the new part of the array (if any) with |
| 513 | ** nils and reinserts the elements of the old hash back into the new |
| 514 | ** parts of the table. |
| 515 | */ |
| 516 | void luaH_resize (lua_State *L, Table *t, unsigned int newasize, |
| 517 | unsigned int nhsize) { |
| 518 | unsigned int i; |
| 519 | Table newt; /* to keep the new hash part */ |
| 520 | unsigned int oldasize = setlimittosize(t); |
| 521 | TValue *newarray; |
| 522 | /* create new hash part with appropriate size into 'newt' */ |
| 523 | setnodevector(L, &newt, nhsize); |
| 524 | if (newasize < oldasize) { /* will array shrink? */ |
| 525 | t->alimit = newasize; /* pretend array has new size... */ |
| 526 | exchangehashpart(t, &newt); /* and new hash */ |
| 527 | /* re-insert into the new hash the elements from vanishing slice */ |
| 528 | for (i = newasize; i < oldasize; i++) { |
| 529 | if (!isempty(&t->array[i])) |
| 530 | luaH_setint(L, t, i + 1, &t->array[i]); |
| 531 | } |
| 532 | t->alimit = oldasize; /* restore current size... */ |
| 533 | exchangehashpart(t, &newt); /* and hash (in case of errors) */ |
| 534 | } |
| 535 | /* allocate new array */ |
| 536 | newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); |
| 537 | if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ |
| 538 | freehash(L, &newt); /* release new hash part */ |
| 539 | luaM_error(L); /* raise error (with array unchanged) */ |
| 540 | } |
| 541 | /* allocation ok; initialize new part of the array */ |
| 542 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
| 543 | t->array = newarray; /* set new array part */ |
| 544 | t->alimit = newasize; |
| 545 | for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ |
| 546 | setempty(&t->array[i]); |
| 547 | /* re-insert elements from old hash part into new parts */ |
| 548 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ |
| 549 | freehash(L, &newt); /* free old hash part */ |
| 550 | } |
| 551 | |
| 552 | |
| 553 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { |
| 554 | int nsize = allocsizenode(t); |
| 555 | luaH_resize(L, t, nasize, nsize); |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i |
| 560 | */ |
| 561 | static void rehash (lua_State *L, Table *t, const TValue *ek) { |
| 562 | unsigned int asize; /* optimal size for array part */ |
| 563 | unsigned int na; /* number of keys in the array part */ |
| 564 | unsigned int nums[MAXABITS + 1]; |
| 565 | int i; |
| 566 | int totaluse; |
| 567 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ |
| 568 | setlimittosize(t); |
| 569 | na = numusearray(t, nums); /* count keys in array part */ |
| 570 | totaluse = na; /* all those keys are integer keys */ |
| 571 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ |
| 572 | /* count extra key */ |
| 573 | if (ttisinteger(ek)) |
| 574 | na += countint(ivalue(ek), nums); |
| 575 | totaluse++; |
| 576 | /* compute new size for array part */ |
| 577 | asize = computesizes(nums, &na); |
| 578 | /* resize the table to new computed sizes */ |
| 579 | luaH_resize(L, t, asize, totaluse - na); |
| 580 | } |
| 581 | |
| 582 | |
| 583 | |
| 584 | /* |
| 585 | ** }============================================================= |
| 586 | */ |
| 587 | |
| 588 | |
| 589 | Table *luaH_new (lua_State *L) { |
| 590 | GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); |
| 591 | Table *t = gco2t(o); |
| 592 | t->metatable = NULL; |
| 593 | t->flags = cast_byte(maskflags); /* table has no metamethod fields */ |
| 594 | t->array = NULL; |
| 595 | t->alimit = 0; |
| 596 | setnodevector(L, t, 0); |
| 597 | return t; |
| 598 | } |
| 599 | |
| 600 | |
| 601 | void luaH_free (lua_State *L, Table *t) { |
| 602 | freehash(L, t); |
| 603 | luaM_freearray(L, t->array, luaH_realasize(t)); |
| 604 | luaM_free(L, t); |
| 605 | } |
| 606 | |
| 607 | |
| 608 | static Node *getfreepos (Table *t) { |
| 609 | if (!isdummy(t)) { |
| 610 | while (t->lastfree > t->node) { |
| 611 | t->lastfree--; |
| 612 | if (keyisnil(t->lastfree)) |
| 613 | return t->lastfree; |
| 614 | } |
| 615 | } |
| 616 | return NULL; /* could not find a free place */ |
| 617 | } |
| 618 | |
| 619 | |
| 620 | |
| 621 | /* |
| 622 | ** inserts a new key into a hash table; first, check whether key's main |
| 623 | ** position is free. If not, check whether colliding node is in its main |
| 624 | ** position or not: if it is not, move colliding node to an empty place and |
| 625 | ** put new key in its main position; otherwise (colliding node is in its main |
| 626 | ** position), new key goes to an empty position. |
| 627 | */ |
| 628 | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { |
| 629 | Node *mp; |
| 630 | TValue aux; |
| 631 | if (unlikely(ttisnil(key))) |
| 632 | luaG_runerror(L, "table index is nil" ); |
| 633 | else if (ttisfloat(key)) { |
| 634 | lua_Number f = fltvalue(key); |
| 635 | lua_Integer k; |
| 636 | if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ |
| 637 | setivalue(&aux, k); |
| 638 | key = &aux; /* insert it as an integer */ |
| 639 | } |
| 640 | else if (unlikely(luai_numisnan(f))) |
| 641 | luaG_runerror(L, "table index is NaN" ); |
| 642 | } |
| 643 | mp = mainpositionTV(t, key); |
| 644 | if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ |
| 645 | Node *othern; |
| 646 | Node *f = getfreepos(t); /* get a free place */ |
| 647 | if (f == NULL) { /* cannot find a free place? */ |
| 648 | rehash(L, t, key); /* grow table */ |
| 649 | /* whatever called 'newkey' takes care of TM cache */ |
| 650 | return luaH_set(L, t, key); /* insert key into grown table */ |
| 651 | } |
| 652 | lua_assert(!isdummy(t)); |
| 653 | othern = mainposition(t, keytt(mp), &keyval(mp)); |
| 654 | if (othern != mp) { /* is colliding node out of its main position? */ |
| 655 | /* yes; move colliding node into free position */ |
| 656 | while (othern + gnext(othern) != mp) /* find previous */ |
| 657 | othern += gnext(othern); |
| 658 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ |
| 659 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
| 660 | if (gnext(mp) != 0) { |
| 661 | gnext(f) += cast_int(mp - f); /* correct 'next' */ |
| 662 | gnext(mp) = 0; /* now 'mp' is free */ |
| 663 | } |
| 664 | setempty(gval(mp)); |
| 665 | } |
| 666 | else { /* colliding node is in its own main position */ |
| 667 | /* new node will go into free position */ |
| 668 | if (gnext(mp) != 0) |
| 669 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ |
| 670 | else lua_assert(gnext(f) == 0); |
| 671 | gnext(mp) = cast_int(f - mp); |
| 672 | mp = f; |
| 673 | } |
| 674 | } |
| 675 | setnodekey(L, mp, key); |
| 676 | luaC_barrierback(L, obj2gco(t), key); |
| 677 | lua_assert(isempty(gval(mp))); |
| 678 | return gval(mp); |
| 679 | } |
| 680 | |
| 681 | |
| 682 | /* |
| 683 | ** Search function for integers. If integer is inside 'alimit', get it |
| 684 | ** directly from the array part. Otherwise, if 'alimit' is not equal to |
| 685 | ** the real size of the array, key still can be in the array part. In |
| 686 | ** this case, try to avoid a call to 'luaH_realasize' when key is just |
| 687 | ** one more than the limit (so that it can be incremented without |
| 688 | ** changing the real size of the array). |
| 689 | */ |
| 690 | const TValue *luaH_getint (Table *t, lua_Integer key) { |
| 691 | if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ |
| 692 | return &t->array[key - 1]; |
| 693 | else if (!limitequalsasize(t) && /* key still may be in the array part? */ |
| 694 | (l_castS2U(key) == t->alimit + 1 || |
| 695 | l_castS2U(key) - 1u < luaH_realasize(t))) { |
| 696 | t->alimit = cast_uint(key); /* probably '#t' is here now */ |
| 697 | return &t->array[key - 1]; |
| 698 | } |
| 699 | else { |
| 700 | Node *n = hashint(t, key); |
| 701 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 702 | if (keyisinteger(n) && keyival(n) == key) |
| 703 | return gval(n); /* that's it */ |
| 704 | else { |
| 705 | int nx = gnext(n); |
| 706 | if (nx == 0) break; |
| 707 | n += nx; |
| 708 | } |
| 709 | } |
| 710 | return &absentkey; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | |
| 715 | /* |
| 716 | ** search function for short strings |
| 717 | */ |
| 718 | const TValue *luaH_getshortstr (Table *t, TString *key) { |
| 719 | Node *n = hashstr(t, key); |
| 720 | lua_assert(key->tt == LUA_VSHRSTR); |
| 721 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
| 722 | if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) |
| 723 | return gval(n); /* that's it */ |
| 724 | else { |
| 725 | int nx = gnext(n); |
| 726 | if (nx == 0) |
| 727 | return &absentkey; /* not found */ |
| 728 | n += nx; |
| 729 | } |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | |
| 734 | const TValue *luaH_getstr (Table *t, TString *key) { |
| 735 | if (key->tt == LUA_VSHRSTR) |
| 736 | return luaH_getshortstr(t, key); |
| 737 | else { /* for long strings, use generic case */ |
| 738 | TValue ko; |
| 739 | setsvalue(cast(lua_State *, NULL), &ko, key); |
| 740 | return getgeneric(t, &ko, 0); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | |
| 745 | /* |
| 746 | ** main search function |
| 747 | */ |
| 748 | const TValue *luaH_get (Table *t, const TValue *key) { |
| 749 | switch (ttypetag(key)) { |
| 750 | case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); |
| 751 | case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); |
| 752 | case LUA_VNIL: return &absentkey; |
| 753 | case LUA_VNUMFLT: { |
| 754 | lua_Integer k; |
| 755 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
| 756 | return luaH_getint(t, k); /* use specialized version */ |
| 757 | /* else... */ |
| 758 | } /* FALLTHROUGH */ |
| 759 | default: |
| 760 | return getgeneric(t, key, 0); |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | |
| 765 | /* |
| 766 | ** beware: when using this function you probably need to check a GC |
| 767 | ** barrier and invalidate the TM cache. |
| 768 | */ |
| 769 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
| 770 | const TValue *p = luaH_get(t, key); |
| 771 | if (!isabstkey(p)) |
| 772 | return cast(TValue *, p); |
| 773 | else return luaH_newkey(L, t, key); |
| 774 | } |
| 775 | |
| 776 | |
| 777 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { |
| 778 | const TValue *p = luaH_getint(t, key); |
| 779 | TValue *cell; |
| 780 | if (!isabstkey(p)) |
| 781 | cell = cast(TValue *, p); |
| 782 | else { |
| 783 | TValue k; |
| 784 | setivalue(&k, key); |
| 785 | cell = luaH_newkey(L, t, &k); |
| 786 | } |
| 787 | setobj2t(L, cell, value); |
| 788 | } |
| 789 | |
| 790 | |
| 791 | /* |
| 792 | ** Try to find a boundary in the hash part of table 't'. From the |
| 793 | ** caller, we know that 'j' is zero or present and that 'j + 1' is |
| 794 | ** present. We want to find a larger key that is absent from the |
| 795 | ** table, so that we can do a binary search between the two keys to |
| 796 | ** find a boundary. We keep doubling 'j' until we get an absent index. |
| 797 | ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is |
| 798 | ** absent, we are ready for the binary search. ('j', being max integer, |
| 799 | ** is larger or equal to 'i', but it cannot be equal because it is |
| 800 | ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a |
| 801 | ** boundary. ('j + 1' cannot be a present integer key because it is |
| 802 | ** not a valid integer in Lua.) |
| 803 | */ |
| 804 | static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { |
| 805 | lua_Unsigned i; |
| 806 | if (j == 0) j++; /* the caller ensures 'j + 1' is present */ |
| 807 | do { |
| 808 | i = j; /* 'i' is a present index */ |
| 809 | if (j <= l_castS2U(LUA_MAXINTEGER) / 2) |
| 810 | j *= 2; |
| 811 | else { |
| 812 | j = LUA_MAXINTEGER; |
| 813 | if (isempty(luaH_getint(t, j))) /* t[j] not present? */ |
| 814 | break; /* 'j' now is an absent index */ |
| 815 | else /* weird case */ |
| 816 | return j; /* well, max integer is a boundary... */ |
| 817 | } |
| 818 | } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ |
| 819 | /* i < j && t[i] present && t[j] absent */ |
| 820 | while (j - i > 1u) { /* do a binary search between them */ |
| 821 | lua_Unsigned m = (i + j) / 2; |
| 822 | if (isempty(luaH_getint(t, m))) j = m; |
| 823 | else i = m; |
| 824 | } |
| 825 | return i; |
| 826 | } |
| 827 | |
| 828 | |
| 829 | static unsigned int binsearch (const TValue *array, unsigned int i, |
| 830 | unsigned int j) { |
| 831 | while (j - i > 1u) { /* binary search */ |
| 832 | unsigned int m = (i + j) / 2; |
| 833 | if (isempty(&array[m - 1])) j = m; |
| 834 | else i = m; |
| 835 | } |
| 836 | return i; |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* |
| 841 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index |
| 842 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent |
| 843 | ** and 'maxinteger' if t[maxinteger] is present.) |
| 844 | ** (In the next explanation, we use Lua indices, that is, with base 1. |
| 845 | ** The code itself uses base 0 when indexing the array part of the table.) |
| 846 | ** The code starts with 'limit = t->alimit', a position in the array |
| 847 | ** part that may be a boundary. |
| 848 | ** |
| 849 | ** (1) If 't[limit]' is empty, there must be a boundary before it. |
| 850 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' |
| 851 | ** is present. If so, it is a boundary. Otherwise, do a binary search |
| 852 | ** between 0 and limit to find a boundary. In both cases, try to |
| 853 | ** use this boundary as the new 'alimit', as a hint for the next call. |
| 854 | ** |
| 855 | ** (2) If 't[limit]' is not empty and the array has more elements |
| 856 | ** after 'limit', try to find a boundary there. Again, try first |
| 857 | ** the special case (which should be quite frequent) where 'limit+1' |
| 858 | ** is empty, so that 'limit' is a boundary. Otherwise, check the |
| 859 | ** last element of the array part. If it is empty, there must be a |
| 860 | ** boundary between the old limit (present) and the last element |
| 861 | ** (absent), which is found with a binary search. (This boundary always |
| 862 | ** can be a new limit.) |
| 863 | ** |
| 864 | ** (3) The last case is when there are no elements in the array part |
| 865 | ** (limit == 0) or its last element (the new limit) is present. |
| 866 | ** In this case, must check the hash part. If there is no hash part |
| 867 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call |
| 868 | ** 'hash_search' to find a boundary in the hash part of the table. |
| 869 | ** (In those cases, the boundary is not inside the array part, and |
| 870 | ** therefore cannot be used as a new limit.) |
| 871 | */ |
| 872 | lua_Unsigned luaH_getn (Table *t) { |
| 873 | unsigned int limit = t->alimit; |
| 874 | if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ |
| 875 | /* there must be a boundary before 'limit' */ |
| 876 | if (limit >= 2 && !isempty(&t->array[limit - 2])) { |
| 877 | /* 'limit - 1' is a boundary; can it be a new limit? */ |
| 878 | if (ispow2realasize(t) && !ispow2(limit - 1)) { |
| 879 | t->alimit = limit - 1; |
| 880 | setnorealasize(t); /* now 'alimit' is not the real size */ |
| 881 | } |
| 882 | return limit - 1; |
| 883 | } |
| 884 | else { /* must search for a boundary in [0, limit] */ |
| 885 | unsigned int boundary = binsearch(t->array, 0, limit); |
| 886 | /* can this boundary represent the real size of the array? */ |
| 887 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { |
| 888 | t->alimit = boundary; /* use it as the new limit */ |
| 889 | setnorealasize(t); |
| 890 | } |
| 891 | return boundary; |
| 892 | } |
| 893 | } |
| 894 | /* 'limit' is zero or present in table */ |
| 895 | if (!limitequalsasize(t)) { /* (2)? */ |
| 896 | /* 'limit' > 0 and array has more elements after 'limit' */ |
| 897 | if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ |
| 898 | return limit; /* this is the boundary */ |
| 899 | /* else, try last element in the array */ |
| 900 | limit = luaH_realasize(t); |
| 901 | if (isempty(&t->array[limit - 1])) { /* empty? */ |
| 902 | /* there must be a boundary in the array after old limit, |
| 903 | and it must be a valid new limit */ |
| 904 | unsigned int boundary = binsearch(t->array, t->alimit, limit); |
| 905 | t->alimit = boundary; |
| 906 | return boundary; |
| 907 | } |
| 908 | /* else, new limit is present in the table; check the hash part */ |
| 909 | } |
| 910 | /* (3) 'limit' is the last element and either is zero or present in table */ |
| 911 | lua_assert(limit == luaH_realasize(t) && |
| 912 | (limit == 0 || !isempty(&t->array[limit - 1]))); |
| 913 | if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) |
| 914 | return limit; /* 'limit + 1' is absent */ |
| 915 | else /* 'limit + 1' is also present */ |
| 916 | return hash_search(t, limit); |
| 917 | } |
| 918 | |
| 919 | |
| 920 | |
| 921 | #if defined(LUA_DEBUG) |
| 922 | |
| 923 | /* export these functions for the test library */ |
| 924 | |
| 925 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
| 926 | return mainpositionTV(t, key); |
| 927 | } |
| 928 | |
| 929 | int luaH_isdummy (const Table *t) { return isdummy(t); } |
| 930 | |
| 931 | #endif |
| 932 | |