1 | /* |
2 | ** $Id: ltable.c,v 2.32.1.2 2007/12/28 15:32:23 roberto Exp $ |
3 | ** Lua tables (hash) |
4 | ** See Copyright Notice in lua.h |
5 | */ |
6 | |
7 | |
8 | /* |
9 | ** Implementation of tables (aka arrays, objects, or hash tables). |
10 | ** Tables keep its elements in two parts: an array part and a hash part. |
11 | ** Non-negative integer keys are all candidates to be kept in the array |
12 | ** part. The actual size of the array is the largest `n' such that at |
13 | ** least half the slots between 0 and n are in use. |
14 | ** Hash uses a mix of chained scatter table with Brent's variation. |
15 | ** A main invariant of these tables is that, if an element is not |
16 | ** in its main position (i.e. the `original' position that its hash gives |
17 | ** to it), then the colliding element is in its own main position. |
18 | ** Hence even when the load factor reaches 100%, performance remains good. |
19 | */ |
20 | |
21 | #include <math.h> |
22 | #include <string.h> |
23 | |
24 | #define ltable_c |
25 | #define LUA_CORE |
26 | |
27 | #include "lua.h" |
28 | |
29 | #include "ldebug.h" |
30 | #include "ldo.h" |
31 | #include "lgc.h" |
32 | #include "lmem.h" |
33 | #include "lobject.h" |
34 | #include "lstate.h" |
35 | #include "ltable.h" |
36 | |
37 | |
38 | /* |
39 | ** max size of array part is 2^MAXBITS |
40 | */ |
41 | #if LUAI_BITSINT > 26 |
42 | #define MAXBITS 26 |
43 | #else |
44 | #define MAXBITS (LUAI_BITSINT-2) |
45 | #endif |
46 | |
47 | #define MAXASIZE (1 << MAXBITS) |
48 | |
49 | |
50 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) |
51 | |
52 | #define hashstr(t,str) hashpow2(t, (str)->tsv.hash) |
53 | #define hashboolean(t,p) hashpow2(t, p) |
54 | |
55 | |
56 | /* |
57 | ** for some types, it is better to avoid modulus by power of 2, as |
58 | ** they tend to have many 2 factors. |
59 | */ |
60 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) |
61 | |
62 | |
63 | #define hashpointer(t,p) hashmod(t, IntPoint(p)) |
64 | |
65 | |
66 | /* |
67 | ** number of ints inside a lua_Number |
68 | */ |
69 | #define numints cast_int(sizeof(lua_Number)/sizeof(int)) |
70 | |
71 | |
72 | |
73 | #define dummynode (&dummynode_) |
74 | |
75 | static const Node dummynode_ = { |
76 | {{NULL}, LUA_TNIL}, /* value */ |
77 | {{{NULL}, LUA_TNIL, NULL}} /* key */ |
78 | }; |
79 | |
80 | |
81 | /* |
82 | ** hash for lua_Numbers |
83 | */ |
84 | static Node *hashnum (const Table *t, lua_Number n) { |
85 | unsigned int a[numints]; |
86 | int i; |
87 | if (luai_numeq(n, 0)) /* avoid problems with -0 */ |
88 | return gnode(t, 0); |
89 | memcpy(a, &n, sizeof(a)); |
90 | for (i = 1; i < numints; i++) a[0] += a[i]; |
91 | return hashmod(t, a[0]); |
92 | } |
93 | |
94 | |
95 | |
96 | /* |
97 | ** returns the `main' position of an element in a table (that is, the index |
98 | ** of its hash value) |
99 | */ |
100 | static Node *mainposition (const Table *t, const TValue *key) { |
101 | switch (ttype(key)) { |
102 | case LUA_TNUMBER: |
103 | return hashnum(t, nvalue(key)); |
104 | case LUA_TSTRING: |
105 | return hashstr(t, rawtsvalue(key)); |
106 | case LUA_TBOOLEAN: |
107 | return hashboolean(t, bvalue(key)); |
108 | case LUA_TLIGHTUSERDATA: |
109 | return hashpointer(t, pvalue(key)); |
110 | default: |
111 | return hashpointer(t, gcvalue(key)); |
112 | } |
113 | } |
114 | |
115 | |
116 | /* |
117 | ** returns the index for `key' if `key' is an appropriate key to live in |
118 | ** the array part of the table, -1 otherwise. |
119 | */ |
120 | static int arrayindex (const TValue *key) { |
121 | if (ttisnumber(key)) { |
122 | lua_Number n = nvalue(key); |
123 | int k; |
124 | lua_number2int(k, n); |
125 | if (luai_numeq(cast_num(k), n)) |
126 | return k; |
127 | } |
128 | return -1; /* `key' did not match some condition */ |
129 | } |
130 | |
131 | |
132 | /* |
133 | ** returns the index of a `key' for table traversals. First goes all |
134 | ** elements in the array part, then elements in the hash part. The |
135 | ** beginning of a traversal is signalled by -1. |
136 | */ |
137 | static int findindex (lua_State *L, Table *t, StkId key) { |
138 | int i; |
139 | if (ttisnil(key)) return -1; /* first iteration */ |
140 | i = arrayindex(key); |
141 | if (0 < i && i <= t->sizearray) /* is `key' inside array part? */ |
142 | return i-1; /* yes; that's the index (corrected to C) */ |
143 | else { |
144 | Node *n = mainposition(t, key); |
145 | do { /* check whether `key' is somewhere in the chain */ |
146 | /* key may be dead already, but it is ok to use it in `next' */ |
147 | if (luaO_rawequalObj(key2tval(n), key) || |
148 | (ttype(gkey(n)) == LUA_TDEADKEY && iscollectable(key) && |
149 | gcvalue(gkey(n)) == gcvalue(key))) { |
150 | i = cast_int(n - gnode(t, 0)); /* key index in hash table */ |
151 | /* hash elements are numbered after array ones */ |
152 | return i + t->sizearray; |
153 | } |
154 | else n = gnext(n); |
155 | } while (n); |
156 | luaG_runerror(L, "invalid key to " LUA_QL("next" )); /* key not found */ |
157 | return 0; /* to avoid warnings */ |
158 | } |
159 | } |
160 | |
161 | |
162 | int luaH_next (lua_State *L, Table *t, StkId key) { |
163 | int i = findindex(L, t, key); /* find original element */ |
164 | for (i++; i < t->sizearray; i++) { /* try first array part */ |
165 | if (!ttisnil(&t->array[i])) { /* a non-nil value? */ |
166 | setnvalue(key, cast_num(i+1)); |
167 | setobj2s(L, key+1, &t->array[i]); |
168 | return 1; |
169 | } |
170 | } |
171 | for (i -= t->sizearray; i < sizenode(t); i++) { /* then hash part */ |
172 | if (!ttisnil(gval(gnode(t, i)))) { /* a non-nil value? */ |
173 | setobj2s(L, key, key2tval(gnode(t, i))); |
174 | setobj2s(L, key+1, gval(gnode(t, i))); |
175 | return 1; |
176 | } |
177 | } |
178 | return 0; /* no more elements */ |
179 | } |
180 | |
181 | |
182 | /* |
183 | ** {============================================================= |
184 | ** Rehash |
185 | ** ============================================================== |
186 | */ |
187 | |
188 | |
189 | static int computesizes (int nums[], int *narray) { |
190 | int i; |
191 | int twotoi; /* 2^i */ |
192 | int a = 0; /* number of elements smaller than 2^i */ |
193 | int na = 0; /* number of elements to go to array part */ |
194 | int n = 0; /* optimal size for array part */ |
195 | for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) { |
196 | if (nums[i] > 0) { |
197 | a += nums[i]; |
198 | if (a > twotoi/2) { /* more than half elements present? */ |
199 | n = twotoi; /* optimal size (till now) */ |
200 | na = a; /* all elements smaller than n will go to array part */ |
201 | } |
202 | } |
203 | if (a == *narray) break; /* all elements already counted */ |
204 | } |
205 | *narray = n; |
206 | lua_assert(*narray/2 <= na && na <= *narray); |
207 | return na; |
208 | } |
209 | |
210 | |
211 | static int countint (const TValue *key, int *nums) { |
212 | int k = arrayindex(key); |
213 | if (0 < k && k <= MAXASIZE) { /* is `key' an appropriate array index? */ |
214 | nums[ceillog2(k)]++; /* count as such */ |
215 | return 1; |
216 | } |
217 | else |
218 | return 0; |
219 | } |
220 | |
221 | |
222 | static int numusearray (const Table *t, int *nums) { |
223 | int lg; |
224 | int ttlg; /* 2^lg */ |
225 | int ause = 0; /* summation of `nums' */ |
226 | int i = 1; /* count to traverse all array keys */ |
227 | for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) { /* for each slice */ |
228 | int lc = 0; /* counter */ |
229 | int lim = ttlg; |
230 | if (lim > t->sizearray) { |
231 | lim = t->sizearray; /* adjust upper limit */ |
232 | if (i > lim) |
233 | break; /* no more elements to count */ |
234 | } |
235 | /* count elements in range (2^(lg-1), 2^lg] */ |
236 | for (; i <= lim; i++) { |
237 | if (!ttisnil(&t->array[i-1])) |
238 | lc++; |
239 | } |
240 | nums[lg] += lc; |
241 | ause += lc; |
242 | } |
243 | return ause; |
244 | } |
245 | |
246 | |
247 | static int numusehash (const Table *t, int *nums, int *pnasize) { |
248 | int totaluse = 0; /* total number of elements */ |
249 | int ause = 0; /* summation of `nums' */ |
250 | int i = sizenode(t); |
251 | while (i--) { |
252 | Node *n = &t->node[i]; |
253 | if (!ttisnil(gval(n))) { |
254 | ause += countint(key2tval(n), nums); |
255 | totaluse++; |
256 | } |
257 | } |
258 | *pnasize += ause; |
259 | return totaluse; |
260 | } |
261 | |
262 | |
263 | static void setarrayvector (lua_State *L, Table *t, int size) { |
264 | int i; |
265 | luaM_reallocvector(L, t->array, t->sizearray, size, TValue); |
266 | for (i=t->sizearray; i<size; i++) |
267 | setnilvalue(&t->array[i]); |
268 | t->sizearray = size; |
269 | } |
270 | |
271 | |
272 | static void setnodevector (lua_State *L, Table *t, int size) { |
273 | int lsize; |
274 | if (size == 0) { /* no elements to hash part? */ |
275 | t->node = cast(Node *, dummynode); /* use common `dummynode' */ |
276 | lsize = 0; |
277 | } |
278 | else { |
279 | int i; |
280 | lsize = ceillog2(size); |
281 | if (lsize > MAXBITS) |
282 | luaG_runerror(L, "table overflow" ); |
283 | size = twoto(lsize); |
284 | t->node = luaM_newvector(L, size, Node); |
285 | for (i=0; i<size; i++) { |
286 | Node *n = gnode(t, i); |
287 | gnext(n) = NULL; |
288 | setnilvalue(gkey(n)); |
289 | setnilvalue(gval(n)); |
290 | } |
291 | } |
292 | t->lsizenode = cast_byte(lsize); |
293 | t->lastfree = gnode(t, size); /* all positions are free */ |
294 | } |
295 | |
296 | |
297 | static void resize (lua_State *L, Table *t, int nasize, int nhsize) { |
298 | int i; |
299 | int oldasize = t->sizearray; |
300 | int oldhsize = t->lsizenode; |
301 | Node *nold = t->node; /* save old hash ... */ |
302 | if (nasize > oldasize) /* array part must grow? */ |
303 | setarrayvector(L, t, nasize); |
304 | /* create new hash part with appropriate size */ |
305 | setnodevector(L, t, nhsize); |
306 | if (nasize < oldasize) { /* array part must shrink? */ |
307 | t->sizearray = nasize; |
308 | /* re-insert elements from vanishing slice */ |
309 | for (i=nasize; i<oldasize; i++) { |
310 | if (!ttisnil(&t->array[i])) |
311 | setobjt2t(L, luaH_setnum(L, t, i+1), &t->array[i]); |
312 | } |
313 | /* shrink array */ |
314 | luaM_reallocvector(L, t->array, oldasize, nasize, TValue); |
315 | } |
316 | /* re-insert elements from hash part */ |
317 | for (i = twoto(oldhsize) - 1; i >= 0; i--) { |
318 | Node *old = nold+i; |
319 | if (!ttisnil(gval(old))) |
320 | setobjt2t(L, luaH_set(L, t, key2tval(old)), gval(old)); |
321 | } |
322 | if (nold != dummynode) |
323 | luaM_freearray(L, nold, twoto(oldhsize), Node); /* free old array */ |
324 | } |
325 | |
326 | |
327 | void luaH_resizearray (lua_State *L, Table *t, int nasize) { |
328 | int nsize = (t->node == dummynode) ? 0 : sizenode(t); |
329 | resize(L, t, nasize, nsize); |
330 | } |
331 | |
332 | |
333 | static void rehash (lua_State *L, Table *t, const TValue *ek) { |
334 | int nasize, na; |
335 | int nums[MAXBITS+1]; /* nums[i] = number of keys between 2^(i-1) and 2^i */ |
336 | int i; |
337 | int totaluse; |
338 | for (i=0; i<=MAXBITS; i++) nums[i] = 0; /* reset counts */ |
339 | nasize = numusearray(t, nums); /* count keys in array part */ |
340 | totaluse = nasize; /* all those keys are integer keys */ |
341 | totaluse += numusehash(t, nums, &nasize); /* count keys in hash part */ |
342 | /* count extra key */ |
343 | nasize += countint(ek, nums); |
344 | totaluse++; |
345 | /* compute new size for array part */ |
346 | na = computesizes(nums, &nasize); |
347 | /* resize the table to new computed sizes */ |
348 | resize(L, t, nasize, totaluse - na); |
349 | } |
350 | |
351 | |
352 | |
353 | /* |
354 | ** }============================================================= |
355 | */ |
356 | |
357 | |
358 | Table *luaH_new (lua_State *L, int narray, int nhash) { |
359 | Table *t = luaM_new(L, Table); |
360 | luaC_link(L, obj2gco(t), LUA_TTABLE); |
361 | t->metatable = NULL; |
362 | t->flags = cast_byte(~0); |
363 | /* temporary values (kept only if some malloc fails) */ |
364 | t->array = NULL; |
365 | t->sizearray = 0; |
366 | t->lsizenode = 0; |
367 | t->node = cast(Node *, dummynode); |
368 | setarrayvector(L, t, narray); |
369 | setnodevector(L, t, nhash); |
370 | return t; |
371 | } |
372 | |
373 | |
374 | void luaH_free (lua_State *L, Table *t) { |
375 | if (t->node != dummynode) |
376 | luaM_freearray(L, t->node, sizenode(t), Node); |
377 | luaM_freearray(L, t->array, t->sizearray, TValue); |
378 | luaM_free(L, t); |
379 | } |
380 | |
381 | |
382 | static Node *getfreepos (Table *t) { |
383 | while (t->lastfree-- > t->node) { |
384 | if (ttisnil(gkey(t->lastfree))) |
385 | return t->lastfree; |
386 | } |
387 | return NULL; /* could not find a free place */ |
388 | } |
389 | |
390 | |
391 | |
392 | /* |
393 | ** inserts a new key into a hash table; first, check whether key's main |
394 | ** position is free. If not, check whether colliding node is in its main |
395 | ** position or not: if it is not, move colliding node to an empty place and |
396 | ** put new key in its main position; otherwise (colliding node is in its main |
397 | ** position), new key goes to an empty position. |
398 | */ |
399 | static TValue *newkey (lua_State *L, Table *t, const TValue *key) { |
400 | Node *mp = mainposition(t, key); |
401 | if (!ttisnil(gval(mp)) || mp == dummynode) { |
402 | Node *othern; |
403 | Node *n = getfreepos(t); /* get a free place */ |
404 | if (n == NULL) { /* cannot find a free place? */ |
405 | rehash(L, t, key); /* grow table */ |
406 | return luaH_set(L, t, key); /* re-insert key into grown table */ |
407 | } |
408 | lua_assert(n != dummynode); |
409 | othern = mainposition(t, key2tval(mp)); |
410 | if (othern != mp) { /* is colliding node out of its main position? */ |
411 | /* yes; move colliding node into free position */ |
412 | while (gnext(othern) != mp) othern = gnext(othern); /* find previous */ |
413 | gnext(othern) = n; /* redo the chain with `n' in place of `mp' */ |
414 | *n = *mp; /* copy colliding node into free pos. (mp->next also goes) */ |
415 | gnext(mp) = NULL; /* now `mp' is free */ |
416 | setnilvalue(gval(mp)); |
417 | } |
418 | else { /* colliding node is in its own main position */ |
419 | /* new node will go into free position */ |
420 | gnext(n) = gnext(mp); /* chain new position */ |
421 | gnext(mp) = n; |
422 | mp = n; |
423 | } |
424 | } |
425 | gkey(mp)->value = key->value; gkey(mp)->tt = key->tt; |
426 | luaC_barriert(L, t, key); |
427 | lua_assert(ttisnil(gval(mp))); |
428 | return gval(mp); |
429 | } |
430 | |
431 | |
432 | /* |
433 | ** search function for integers |
434 | */ |
435 | const TValue *luaH_getnum (Table *t, int key) { |
436 | /* (1 <= key && key <= t->sizearray) */ |
437 | if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray)) |
438 | return &t->array[key-1]; |
439 | else { |
440 | lua_Number nk = cast_num(key); |
441 | Node *n = hashnum(t, nk); |
442 | do { /* check whether `key' is somewhere in the chain */ |
443 | if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk)) |
444 | return gval(n); /* that's it */ |
445 | else n = gnext(n); |
446 | } while (n); |
447 | return luaO_nilobject; |
448 | } |
449 | } |
450 | |
451 | |
452 | /* |
453 | ** search function for strings |
454 | */ |
455 | const TValue *luaH_getstr (Table *t, TString *key) { |
456 | Node *n = hashstr(t, key); |
457 | do { /* check whether `key' is somewhere in the chain */ |
458 | if (ttisstring(gkey(n)) && rawtsvalue(gkey(n)) == key) |
459 | return gval(n); /* that's it */ |
460 | else n = gnext(n); |
461 | } while (n); |
462 | return luaO_nilobject; |
463 | } |
464 | |
465 | |
466 | /* |
467 | ** main search function |
468 | */ |
469 | const TValue *luaH_get (Table *t, const TValue *key) { |
470 | switch (ttype(key)) { |
471 | case LUA_TNIL: return luaO_nilobject; |
472 | case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key)); |
473 | case LUA_TNUMBER: { |
474 | int k; |
475 | lua_Number n = nvalue(key); |
476 | lua_number2int(k, n); |
477 | if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */ |
478 | return luaH_getnum(t, k); /* use specialized version */ |
479 | /* else go through */ |
480 | } |
481 | default: { |
482 | Node *n = mainposition(t, key); |
483 | do { /* check whether `key' is somewhere in the chain */ |
484 | if (luaO_rawequalObj(key2tval(n), key)) |
485 | return gval(n); /* that's it */ |
486 | else n = gnext(n); |
487 | } while (n); |
488 | return luaO_nilobject; |
489 | } |
490 | } |
491 | } |
492 | |
493 | |
494 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { |
495 | const TValue *p = luaH_get(t, key); |
496 | t->flags = 0; |
497 | if (p != luaO_nilobject) |
498 | return cast(TValue *, p); |
499 | else { |
500 | if (ttisnil(key)) luaG_runerror(L, "table index is nil" ); |
501 | else if (ttisnumber(key) && luai_numisnan(nvalue(key))) |
502 | luaG_runerror(L, "table index is NaN" ); |
503 | return newkey(L, t, key); |
504 | } |
505 | } |
506 | |
507 | |
508 | TValue *luaH_setnum (lua_State *L, Table *t, int key) { |
509 | const TValue *p = luaH_getnum(t, key); |
510 | if (p != luaO_nilobject) |
511 | return cast(TValue *, p); |
512 | else { |
513 | TValue k; |
514 | setnvalue(&k, cast_num(key)); |
515 | return newkey(L, t, &k); |
516 | } |
517 | } |
518 | |
519 | |
520 | TValue *luaH_setstr (lua_State *L, Table *t, TString *key) { |
521 | const TValue *p = luaH_getstr(t, key); |
522 | if (p != luaO_nilobject) |
523 | return cast(TValue *, p); |
524 | else { |
525 | TValue k; |
526 | setsvalue(L, &k, key); |
527 | return newkey(L, t, &k); |
528 | } |
529 | } |
530 | |
531 | |
532 | static int unbound_search (Table *t, unsigned int j) { |
533 | unsigned int i = j; /* i is zero or a present index */ |
534 | j++; |
535 | /* find `i' and `j' such that i is present and j is not */ |
536 | while (!ttisnil(luaH_getnum(t, j))) { |
537 | i = j; |
538 | j *= 2; |
539 | if (j > cast(unsigned int, MAX_INT)) { /* overflow? */ |
540 | /* table was built with bad purposes: resort to linear search */ |
541 | i = 1; |
542 | while (!ttisnil(luaH_getnum(t, i))) i++; |
543 | return i - 1; |
544 | } |
545 | } |
546 | /* now do a binary search between them */ |
547 | while (j - i > 1) { |
548 | unsigned int m = (i+j)/2; |
549 | if (ttisnil(luaH_getnum(t, m))) j = m; |
550 | else i = m; |
551 | } |
552 | return i; |
553 | } |
554 | |
555 | |
556 | /* |
557 | ** Try to find a boundary in table `t'. A `boundary' is an integer index |
558 | ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil). |
559 | */ |
560 | int luaH_getn (Table *t) { |
561 | unsigned int j = t->sizearray; |
562 | if (j > 0 && ttisnil(&t->array[j - 1])) { |
563 | /* there is a boundary in the array part: (binary) search for it */ |
564 | unsigned int i = 0; |
565 | while (j - i > 1) { |
566 | unsigned int m = (i+j)/2; |
567 | if (ttisnil(&t->array[m - 1])) j = m; |
568 | else i = m; |
569 | } |
570 | return i; |
571 | } |
572 | /* else must find a boundary in hash part */ |
573 | else if (t->node == dummynode) /* hash part is empty? */ |
574 | return j; /* that is easy... */ |
575 | else return unbound_search(t, j); |
576 | } |
577 | |
578 | |
579 | |
580 | #if defined(LUA_DEBUG) |
581 | |
582 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
583 | return mainposition(t, key); |
584 | } |
585 | |
586 | int luaH_isdummy (Node *n) { return n == dummynode; } |
587 | |
588 | #endif |
589 | |