1 | /* |
2 | ** FOLD: Constant Folding, Algebraic Simplifications and Reassociation. |
3 | ** ABCelim: Array Bounds Check Elimination. |
4 | ** CSE: Common-Subexpression Elimination. |
5 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
6 | */ |
7 | |
8 | #define lj_opt_fold_c |
9 | #define LUA_CORE |
10 | |
11 | #include <math.h> |
12 | |
13 | #include "lj_obj.h" |
14 | |
15 | #if LJ_HASJIT |
16 | |
17 | #include "lj_buf.h" |
18 | #include "lj_str.h" |
19 | #include "lj_tab.h" |
20 | #include "lj_ir.h" |
21 | #include "lj_jit.h" |
22 | #include "lj_ircall.h" |
23 | #include "lj_iropt.h" |
24 | #include "lj_trace.h" |
25 | #if LJ_HASFFI |
26 | #include "lj_ctype.h" |
27 | #include "lj_carith.h" |
28 | #endif |
29 | #include "lj_vm.h" |
30 | #include "lj_strscan.h" |
31 | #include "lj_strfmt.h" |
32 | |
33 | /* Here's a short description how the FOLD engine processes instructions: |
34 | ** |
35 | ** The FOLD engine receives a single instruction stored in fins (J->fold.ins). |
36 | ** The instruction and its operands are used to select matching fold rules. |
37 | ** These are applied iteratively until a fixed point is reached. |
38 | ** |
39 | ** The 8 bit opcode of the instruction itself plus the opcodes of the |
40 | ** two instructions referenced by its operands form a 24 bit key |
41 | ** 'ins left right' (unused operands -> 0, literals -> lowest 8 bits). |
42 | ** |
43 | ** This key is used for partial matching against the fold rules. The |
44 | ** left/right operand fields of the key are successively masked with |
45 | ** the 'any' wildcard, from most specific to least specific: |
46 | ** |
47 | ** ins left right |
48 | ** ins any right |
49 | ** ins left any |
50 | ** ins any any |
51 | ** |
52 | ** The masked key is used to lookup a matching fold rule in a semi-perfect |
53 | ** hash table. If a matching rule is found, the related fold function is run. |
54 | ** Multiple rules can share the same fold function. A fold rule may return |
55 | ** one of several special values: |
56 | ** |
57 | ** - NEXTFOLD means no folding was applied, because an additional test |
58 | ** inside the fold function failed. Matching continues against less |
59 | ** specific fold rules. Finally the instruction is passed on to CSE. |
60 | ** |
61 | ** - RETRYFOLD means the instruction was modified in-place. Folding is |
62 | ** retried as if this instruction had just been received. |
63 | ** |
64 | ** All other return values are terminal actions -- no further folding is |
65 | ** applied: |
66 | ** |
67 | ** - INTFOLD(i) returns a reference to the integer constant i. |
68 | ** |
69 | ** - LEFTFOLD and RIGHTFOLD return the left/right operand reference |
70 | ** without emitting an instruction. |
71 | ** |
72 | ** - CSEFOLD and EMITFOLD pass the instruction directly to CSE or emit |
73 | ** it without passing through any further optimizations. |
74 | ** |
75 | ** - FAILFOLD, DROPFOLD and CONDFOLD only apply to instructions which have |
76 | ** no result (e.g. guarded assertions): FAILFOLD means the guard would |
77 | ** always fail, i.e. the current trace is pointless. DROPFOLD means |
78 | ** the guard is always true and has been eliminated. CONDFOLD is a |
79 | ** shortcut for FAILFOLD + cond (i.e. drop if true, otherwise fail). |
80 | ** |
81 | ** - Any other return value is interpreted as an IRRef or TRef. This |
82 | ** can be a reference to an existing or a newly created instruction. |
83 | ** Only the least-significant 16 bits (IRRef1) are used to form a TRef |
84 | ** which is finally returned to the caller. |
85 | ** |
86 | ** The FOLD engine receives instructions both from the trace recorder and |
87 | ** substituted instructions from LOOP unrolling. This means all types |
88 | ** of instructions may end up here, even though the recorder bypasses |
89 | ** FOLD in some cases. Thus all loads, stores and allocations must have |
90 | ** an any/any rule to avoid being passed on to CSE. |
91 | ** |
92 | ** Carefully read the following requirements before adding or modifying |
93 | ** any fold rules: |
94 | ** |
95 | ** Requirement #1: All fold rules must preserve their destination type. |
96 | ** |
97 | ** Consistently use INTFOLD() (KINT result) or lj_ir_knum() (KNUM result). |
98 | ** Never use lj_ir_knumint() which can have either a KINT or KNUM result. |
99 | ** |
100 | ** Requirement #2: Fold rules should not create *new* instructions which |
101 | ** reference operands *across* PHIs. |
102 | ** |
103 | ** E.g. a RETRYFOLD with 'fins->op1 = fleft->op1' is invalid if the |
104 | ** left operand is a PHI. Then fleft->op1 would point across the PHI |
105 | ** frontier to an invariant instruction. Adding a PHI for this instruction |
106 | ** would be counterproductive. The solution is to add a barrier which |
107 | ** prevents folding across PHIs, i.e. 'PHIBARRIER(fleft)' in this case. |
108 | ** The only exception is for recurrences with high latencies like |
109 | ** repeated int->num->int conversions. |
110 | ** |
111 | ** One could relax this condition a bit if the referenced instruction is |
112 | ** a PHI, too. But this often leads to worse code due to excessive |
113 | ** register shuffling. |
114 | ** |
115 | ** Note: returning *existing* instructions (e.g. LEFTFOLD) is ok, though. |
116 | ** Even returning fleft->op1 would be ok, because a new PHI will added, |
117 | ** if needed. But again, this leads to excessive register shuffling and |
118 | ** should be avoided. |
119 | ** |
120 | ** Requirement #3: The set of all fold rules must be monotonic to guarantee |
121 | ** termination. |
122 | ** |
123 | ** The goal is optimization, so one primarily wants to add strength-reducing |
124 | ** rules. This means eliminating an instruction or replacing an instruction |
125 | ** with one or more simpler instructions. Don't add fold rules which point |
126 | ** into the other direction. |
127 | ** |
128 | ** Some rules (like commutativity) do not directly reduce the strength of |
129 | ** an instruction, but enable other fold rules (e.g. by moving constants |
130 | ** to the right operand). These rules must be made unidirectional to avoid |
131 | ** cycles. |
132 | ** |
133 | ** Rule of thumb: the trace recorder expands the IR and FOLD shrinks it. |
134 | */ |
135 | |
136 | /* Some local macros to save typing. Undef'd at the end. */ |
137 | #define IR(ref) (&J->cur.ir[(ref)]) |
138 | #define fins (&J->fold.ins) |
139 | #define fleft (J->fold.left) |
140 | #define fright (J->fold.right) |
141 | #define knumleft (ir_knum(fleft)->n) |
142 | #define knumright (ir_knum(fright)->n) |
143 | |
144 | /* Pass IR on to next optimization in chain (FOLD). */ |
145 | #define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J)) |
146 | |
147 | /* Fold function type. Fastcall on x86 significantly reduces their size. */ |
148 | typedef IRRef (LJ_FASTCALL *FoldFunc)(jit_State *J); |
149 | |
150 | /* Macros for the fold specs, so buildvm can recognize them. */ |
151 | #define LJFOLD(x) |
152 | #define LJFOLDX(x) |
153 | #define LJFOLDF(name) static TRef LJ_FASTCALL fold_##name(jit_State *J) |
154 | /* Note: They must be at the start of a line or buildvm ignores them! */ |
155 | |
156 | /* Barrier to prevent using operands across PHIs. */ |
157 | #define PHIBARRIER(ir) if (irt_isphi((ir)->t)) return NEXTFOLD |
158 | |
159 | /* Barrier to prevent folding across a GC step. |
160 | ** GC steps can only happen at the head of a trace and at LOOP. |
161 | ** And the GC is only driven forward if there's at least one allocation. |
162 | */ |
163 | #define gcstep_barrier(J, ref) \ |
164 | ((ref) < J->chain[IR_LOOP] && \ |
165 | (J->chain[IR_SNEW] || J->chain[IR_XSNEW] || \ |
166 | J->chain[IR_TNEW] || J->chain[IR_TDUP] || \ |
167 | J->chain[IR_CNEW] || J->chain[IR_CNEWI] || \ |
168 | J->chain[IR_BUFSTR] || J->chain[IR_TOSTR] || J->chain[IR_CALLA])) |
169 | |
170 | /* -- Constant folding for FP numbers ------------------------------------- */ |
171 | |
172 | LJFOLD(ADD KNUM KNUM) |
173 | LJFOLD(SUB KNUM KNUM) |
174 | LJFOLD(MUL KNUM KNUM) |
175 | LJFOLD(DIV KNUM KNUM) |
176 | LJFOLD(LDEXP KNUM KNUM) |
177 | LJFOLD(MIN KNUM KNUM) |
178 | LJFOLD(MAX KNUM KNUM) |
179 | LJFOLDF(kfold_numarith) |
180 | { |
181 | lua_Number a = knumleft; |
182 | lua_Number b = knumright; |
183 | lua_Number y = lj_vm_foldarith(a, b, fins->o - IR_ADD); |
184 | return lj_ir_knum(J, y); |
185 | } |
186 | |
187 | LJFOLD(NEG KNUM FLOAD) |
188 | LJFOLD(ABS KNUM FLOAD) |
189 | LJFOLDF(kfold_numabsneg) |
190 | { |
191 | lua_Number a = knumleft; |
192 | lua_Number y = lj_vm_foldarith(a, a, fins->o - IR_ADD); |
193 | return lj_ir_knum(J, y); |
194 | } |
195 | |
196 | LJFOLD(LDEXP KNUM KINT) |
197 | LJFOLDF(kfold_ldexp) |
198 | { |
199 | #if LJ_TARGET_X86ORX64 |
200 | UNUSED(J); |
201 | return NEXTFOLD; |
202 | #else |
203 | return lj_ir_knum(J, ldexp(knumleft, fright->i)); |
204 | #endif |
205 | } |
206 | |
207 | LJFOLD(FPMATH KNUM any) |
208 | LJFOLDF(kfold_fpmath) |
209 | { |
210 | lua_Number a = knumleft; |
211 | lua_Number y = lj_vm_foldfpm(a, fins->op2); |
212 | return lj_ir_knum(J, y); |
213 | } |
214 | |
215 | LJFOLD(CALLN KNUM any) |
216 | LJFOLDF(kfold_fpcall1) |
217 | { |
218 | const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; |
219 | if (CCI_TYPE(ci) == IRT_NUM) { |
220 | double y = ((double (*)(double))ci->func)(knumleft); |
221 | return lj_ir_knum(J, y); |
222 | } |
223 | return NEXTFOLD; |
224 | } |
225 | |
226 | LJFOLD(CALLN CARG IRCALL_atan2) |
227 | LJFOLDF(kfold_fpcall2) |
228 | { |
229 | if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) { |
230 | const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; |
231 | double a = ir_knum(IR(fleft->op1))->n; |
232 | double b = ir_knum(IR(fleft->op2))->n; |
233 | double y = ((double (*)(double, double))ci->func)(a, b); |
234 | return lj_ir_knum(J, y); |
235 | } |
236 | return NEXTFOLD; |
237 | } |
238 | |
239 | LJFOLD(POW KNUM KINT) |
240 | LJFOLD(POW KNUM KNUM) |
241 | LJFOLDF(kfold_numpow) |
242 | { |
243 | lua_Number a = knumleft; |
244 | lua_Number b = fright->o == IR_KINT ? (lua_Number)fright->i : knumright; |
245 | lua_Number y = lj_vm_foldarith(a, b, IR_POW - IR_ADD); |
246 | return lj_ir_knum(J, y); |
247 | } |
248 | |
249 | /* Must not use kfold_kref for numbers (could be NaN). */ |
250 | LJFOLD(EQ KNUM KNUM) |
251 | LJFOLD(NE KNUM KNUM) |
252 | LJFOLD(LT KNUM KNUM) |
253 | LJFOLD(GE KNUM KNUM) |
254 | LJFOLD(LE KNUM KNUM) |
255 | LJFOLD(GT KNUM KNUM) |
256 | LJFOLD(ULT KNUM KNUM) |
257 | LJFOLD(UGE KNUM KNUM) |
258 | LJFOLD(ULE KNUM KNUM) |
259 | LJFOLD(UGT KNUM KNUM) |
260 | LJFOLDF(kfold_numcomp) |
261 | { |
262 | return CONDFOLD(lj_ir_numcmp(knumleft, knumright, (IROp)fins->o)); |
263 | } |
264 | |
265 | /* -- Constant folding for 32 bit integers -------------------------------- */ |
266 | |
267 | static int32_t kfold_intop(int32_t k1, int32_t k2, IROp op) |
268 | { |
269 | switch (op) { |
270 | case IR_ADD: k1 += k2; break; |
271 | case IR_SUB: k1 -= k2; break; |
272 | case IR_MUL: k1 *= k2; break; |
273 | case IR_MOD: k1 = lj_vm_modi(k1, k2); break; |
274 | case IR_NEG: k1 = -k1; break; |
275 | case IR_BAND: k1 &= k2; break; |
276 | case IR_BOR: k1 |= k2; break; |
277 | case IR_BXOR: k1 ^= k2; break; |
278 | case IR_BSHL: k1 <<= (k2 & 31); break; |
279 | case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 31)); break; |
280 | case IR_BSAR: k1 >>= (k2 & 31); break; |
281 | case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 31)); break; |
282 | case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 31)); break; |
283 | case IR_MIN: k1 = k1 < k2 ? k1 : k2; break; |
284 | case IR_MAX: k1 = k1 > k2 ? k1 : k2; break; |
285 | default: lj_assertX(0, "bad IR op %d" , op); break; |
286 | } |
287 | return k1; |
288 | } |
289 | |
290 | LJFOLD(ADD KINT KINT) |
291 | LJFOLD(SUB KINT KINT) |
292 | LJFOLD(MUL KINT KINT) |
293 | LJFOLD(MOD KINT KINT) |
294 | LJFOLD(NEG KINT KINT) |
295 | LJFOLD(BAND KINT KINT) |
296 | LJFOLD(BOR KINT KINT) |
297 | LJFOLD(BXOR KINT KINT) |
298 | LJFOLD(BSHL KINT KINT) |
299 | LJFOLD(BSHR KINT KINT) |
300 | LJFOLD(BSAR KINT KINT) |
301 | LJFOLD(BROL KINT KINT) |
302 | LJFOLD(BROR KINT KINT) |
303 | LJFOLD(MIN KINT KINT) |
304 | LJFOLD(MAX KINT KINT) |
305 | LJFOLDF(kfold_intarith) |
306 | { |
307 | return INTFOLD(kfold_intop(fleft->i, fright->i, (IROp)fins->o)); |
308 | } |
309 | |
310 | LJFOLD(ADDOV KINT KINT) |
311 | LJFOLD(SUBOV KINT KINT) |
312 | LJFOLD(MULOV KINT KINT) |
313 | LJFOLDF(kfold_intovarith) |
314 | { |
315 | lua_Number n = lj_vm_foldarith((lua_Number)fleft->i, (lua_Number)fright->i, |
316 | fins->o - IR_ADDOV); |
317 | int32_t k = lj_num2int(n); |
318 | if (n != (lua_Number)k) |
319 | return FAILFOLD; |
320 | return INTFOLD(k); |
321 | } |
322 | |
323 | LJFOLD(BNOT KINT) |
324 | LJFOLDF(kfold_bnot) |
325 | { |
326 | return INTFOLD(~fleft->i); |
327 | } |
328 | |
329 | LJFOLD(BSWAP KINT) |
330 | LJFOLDF(kfold_bswap) |
331 | { |
332 | return INTFOLD((int32_t)lj_bswap((uint32_t)fleft->i)); |
333 | } |
334 | |
335 | LJFOLD(LT KINT KINT) |
336 | LJFOLD(GE KINT KINT) |
337 | LJFOLD(LE KINT KINT) |
338 | LJFOLD(GT KINT KINT) |
339 | LJFOLD(ULT KINT KINT) |
340 | LJFOLD(UGE KINT KINT) |
341 | LJFOLD(ULE KINT KINT) |
342 | LJFOLD(UGT KINT KINT) |
343 | LJFOLD(ABC KINT KINT) |
344 | LJFOLDF(kfold_intcomp) |
345 | { |
346 | int32_t a = fleft->i, b = fright->i; |
347 | switch ((IROp)fins->o) { |
348 | case IR_LT: return CONDFOLD(a < b); |
349 | case IR_GE: return CONDFOLD(a >= b); |
350 | case IR_LE: return CONDFOLD(a <= b); |
351 | case IR_GT: return CONDFOLD(a > b); |
352 | case IR_ULT: return CONDFOLD((uint32_t)a < (uint32_t)b); |
353 | case IR_UGE: return CONDFOLD((uint32_t)a >= (uint32_t)b); |
354 | case IR_ULE: return CONDFOLD((uint32_t)a <= (uint32_t)b); |
355 | case IR_ABC: |
356 | case IR_UGT: return CONDFOLD((uint32_t)a > (uint32_t)b); |
357 | default: lj_assertJ(0, "bad IR op %d" , fins->o); return FAILFOLD; |
358 | } |
359 | } |
360 | |
361 | LJFOLD(UGE any KINT) |
362 | LJFOLDF(kfold_intcomp0) |
363 | { |
364 | if (fright->i == 0) |
365 | return DROPFOLD; |
366 | return NEXTFOLD; |
367 | } |
368 | |
369 | /* -- Constant folding for 64 bit integers -------------------------------- */ |
370 | |
371 | static uint64_t kfold_int64arith(jit_State *J, uint64_t k1, uint64_t k2, |
372 | IROp op) |
373 | { |
374 | UNUSED(J); |
375 | #if LJ_HASFFI |
376 | switch (op) { |
377 | case IR_ADD: k1 += k2; break; |
378 | case IR_SUB: k1 -= k2; break; |
379 | case IR_MUL: k1 *= k2; break; |
380 | case IR_BAND: k1 &= k2; break; |
381 | case IR_BOR: k1 |= k2; break; |
382 | case IR_BXOR: k1 ^= k2; break; |
383 | case IR_BSHL: k1 <<= (k2 & 63); break; |
384 | case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 63)); break; |
385 | case IR_BSAR: k1 >>= (k2 & 63); break; |
386 | case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 63)); break; |
387 | case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 63)); break; |
388 | default: lj_assertJ(0, "bad IR op %d" , op); break; |
389 | } |
390 | #else |
391 | UNUSED(k2); UNUSED(op); |
392 | lj_assertJ(0, "FFI IR op without FFI" ); |
393 | #endif |
394 | return k1; |
395 | } |
396 | |
397 | LJFOLD(ADD KINT64 KINT64) |
398 | LJFOLD(SUB KINT64 KINT64) |
399 | LJFOLD(MUL KINT64 KINT64) |
400 | LJFOLD(BAND KINT64 KINT64) |
401 | LJFOLD(BOR KINT64 KINT64) |
402 | LJFOLD(BXOR KINT64 KINT64) |
403 | LJFOLDF(kfold_int64arith) |
404 | { |
405 | return INT64FOLD(kfold_int64arith(J, ir_k64(fleft)->u64, |
406 | ir_k64(fright)->u64, (IROp)fins->o)); |
407 | } |
408 | |
409 | LJFOLD(DIV KINT64 KINT64) |
410 | LJFOLD(MOD KINT64 KINT64) |
411 | LJFOLD(POW KINT64 KINT64) |
412 | LJFOLDF(kfold_int64arith2) |
413 | { |
414 | #if LJ_HASFFI |
415 | uint64_t k1 = ir_k64(fleft)->u64, k2 = ir_k64(fright)->u64; |
416 | if (irt_isi64(fins->t)) { |
417 | k1 = fins->o == IR_DIV ? lj_carith_divi64((int64_t)k1, (int64_t)k2) : |
418 | fins->o == IR_MOD ? lj_carith_modi64((int64_t)k1, (int64_t)k2) : |
419 | lj_carith_powi64((int64_t)k1, (int64_t)k2); |
420 | } else { |
421 | k1 = fins->o == IR_DIV ? lj_carith_divu64(k1, k2) : |
422 | fins->o == IR_MOD ? lj_carith_modu64(k1, k2) : |
423 | lj_carith_powu64(k1, k2); |
424 | } |
425 | return INT64FOLD(k1); |
426 | #else |
427 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
428 | #endif |
429 | } |
430 | |
431 | LJFOLD(BSHL KINT64 KINT) |
432 | LJFOLD(BSHR KINT64 KINT) |
433 | LJFOLD(BSAR KINT64 KINT) |
434 | LJFOLD(BROL KINT64 KINT) |
435 | LJFOLD(BROR KINT64 KINT) |
436 | LJFOLDF(kfold_int64shift) |
437 | { |
438 | #if LJ_HASFFI |
439 | uint64_t k = ir_k64(fleft)->u64; |
440 | int32_t sh = (fright->i & 63); |
441 | return INT64FOLD(lj_carith_shift64(k, sh, fins->o - IR_BSHL)); |
442 | #else |
443 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
444 | #endif |
445 | } |
446 | |
447 | LJFOLD(BNOT KINT64) |
448 | LJFOLDF(kfold_bnot64) |
449 | { |
450 | #if LJ_HASFFI |
451 | return INT64FOLD(~ir_k64(fleft)->u64); |
452 | #else |
453 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
454 | #endif |
455 | } |
456 | |
457 | LJFOLD(BSWAP KINT64) |
458 | LJFOLDF(kfold_bswap64) |
459 | { |
460 | #if LJ_HASFFI |
461 | return INT64FOLD(lj_bswap64(ir_k64(fleft)->u64)); |
462 | #else |
463 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
464 | #endif |
465 | } |
466 | |
467 | LJFOLD(LT KINT64 KINT64) |
468 | LJFOLD(GE KINT64 KINT64) |
469 | LJFOLD(LE KINT64 KINT64) |
470 | LJFOLD(GT KINT64 KINT64) |
471 | LJFOLD(ULT KINT64 KINT64) |
472 | LJFOLD(UGE KINT64 KINT64) |
473 | LJFOLD(ULE KINT64 KINT64) |
474 | LJFOLD(UGT KINT64 KINT64) |
475 | LJFOLDF(kfold_int64comp) |
476 | { |
477 | #if LJ_HASFFI |
478 | uint64_t a = ir_k64(fleft)->u64, b = ir_k64(fright)->u64; |
479 | switch ((IROp)fins->o) { |
480 | case IR_LT: return CONDFOLD((int64_t)a < (int64_t)b); |
481 | case IR_GE: return CONDFOLD((int64_t)a >= (int64_t)b); |
482 | case IR_LE: return CONDFOLD((int64_t)a <= (int64_t)b); |
483 | case IR_GT: return CONDFOLD((int64_t)a > (int64_t)b); |
484 | case IR_ULT: return CONDFOLD(a < b); |
485 | case IR_UGE: return CONDFOLD(a >= b); |
486 | case IR_ULE: return CONDFOLD(a <= b); |
487 | case IR_UGT: return CONDFOLD(a > b); |
488 | default: lj_assertJ(0, "bad IR op %d" , fins->o); return FAILFOLD; |
489 | } |
490 | #else |
491 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
492 | #endif |
493 | } |
494 | |
495 | LJFOLD(UGE any KINT64) |
496 | LJFOLDF(kfold_int64comp0) |
497 | { |
498 | #if LJ_HASFFI |
499 | if (ir_k64(fright)->u64 == 0) |
500 | return DROPFOLD; |
501 | return NEXTFOLD; |
502 | #else |
503 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
504 | #endif |
505 | } |
506 | |
507 | /* -- Constant folding for strings ---------------------------------------- */ |
508 | |
509 | LJFOLD(SNEW KKPTR KINT) |
510 | LJFOLDF(kfold_snew_kptr) |
511 | { |
512 | GCstr *s = lj_str_new(J->L, (const char *)ir_kptr(fleft), (size_t)fright->i); |
513 | return lj_ir_kstr(J, s); |
514 | } |
515 | |
516 | LJFOLD(SNEW any KINT) |
517 | LJFOLDF(kfold_snew_empty) |
518 | { |
519 | if (fright->i == 0) |
520 | return lj_ir_kstr(J, &J2G(J)->strempty); |
521 | return NEXTFOLD; |
522 | } |
523 | |
524 | LJFOLD(STRREF KGC KINT) |
525 | LJFOLDF(kfold_strref) |
526 | { |
527 | GCstr *str = ir_kstr(fleft); |
528 | lj_assertJ((MSize)fright->i <= str->len, "bad string ref" ); |
529 | return lj_ir_kkptr(J, (char *)strdata(str) + fright->i); |
530 | } |
531 | |
532 | LJFOLD(STRREF SNEW any) |
533 | LJFOLDF(kfold_strref_snew) |
534 | { |
535 | PHIBARRIER(fleft); |
536 | if (irref_isk(fins->op2) && fright->i == 0) { |
537 | return fleft->op1; /* strref(snew(ptr, len), 0) ==> ptr */ |
538 | } else { |
539 | /* Reassociate: strref(snew(strref(str, a), len), b) ==> strref(str, a+b) */ |
540 | IRIns *ir = IR(fleft->op1); |
541 | if (ir->o == IR_STRREF) { |
542 | IRRef1 str = ir->op1; /* IRIns * is not valid across emitir. */ |
543 | PHIBARRIER(ir); |
544 | fins->op2 = emitir(IRTI(IR_ADD), ir->op2, fins->op2); /* Clobbers fins! */ |
545 | fins->op1 = str; |
546 | fins->ot = IRT(IR_STRREF, IRT_PGC); |
547 | return RETRYFOLD; |
548 | } |
549 | } |
550 | return NEXTFOLD; |
551 | } |
552 | |
553 | LJFOLD(CALLN CARG IRCALL_lj_str_cmp) |
554 | LJFOLDF(kfold_strcmp) |
555 | { |
556 | if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) { |
557 | GCstr *a = ir_kstr(IR(fleft->op1)); |
558 | GCstr *b = ir_kstr(IR(fleft->op2)); |
559 | return INTFOLD(lj_str_cmp(a, b)); |
560 | } |
561 | return NEXTFOLD; |
562 | } |
563 | |
564 | /* -- Constant folding and forwarding for buffers ------------------------- */ |
565 | |
566 | /* |
567 | ** Buffer ops perform stores, but their effect is limited to the buffer |
568 | ** itself. Also, buffer ops are chained: a use of an op implies a use of |
569 | ** all other ops up the chain. Conversely, if an op is unused, all ops |
570 | ** up the chain can go unsed. This largely eliminates the need to treat |
571 | ** them as stores. |
572 | ** |
573 | ** Alas, treating them as normal (IRM_N) ops doesn't work, because they |
574 | ** cannot be CSEd in isolation. CSE for IRM_N is implicitly done in LOOP |
575 | ** or if FOLD is disabled. |
576 | ** |
577 | ** The compromise is to declare them as loads, emit them like stores and |
578 | ** CSE whole chains manually when the BUFSTR is to be emitted. Any chain |
579 | ** fragments left over from CSE are eliminated by DCE. |
580 | */ |
581 | |
582 | /* BUFHDR is emitted like a store, see below. */ |
583 | |
584 | LJFOLD(BUFPUT BUFHDR BUFSTR) |
585 | LJFOLDF(bufput_append) |
586 | { |
587 | /* New buffer, no other buffer op inbetween and same buffer? */ |
588 | if ((J->flags & JIT_F_OPT_FWD) && |
589 | !(fleft->op2 & IRBUFHDR_APPEND) && |
590 | fleft->prev == fright->op2 && |
591 | fleft->op1 == IR(fright->op2)->op1) { |
592 | IRRef ref = fins->op1; |
593 | IR(ref)->op2 = (fleft->op2 | IRBUFHDR_APPEND); /* Modify BUFHDR. */ |
594 | IR(ref)->op1 = fright->op1; |
595 | return ref; |
596 | } |
597 | return EMITFOLD; /* Always emit, CSE later. */ |
598 | } |
599 | |
600 | LJFOLD(BUFPUT any any) |
601 | LJFOLDF(bufput_kgc) |
602 | { |
603 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fright->o == IR_KGC) { |
604 | GCstr *s2 = ir_kstr(fright); |
605 | if (s2->len == 0) { /* Empty string? */ |
606 | return LEFTFOLD; |
607 | } else { |
608 | if (fleft->o == IR_BUFPUT && irref_isk(fleft->op2) && |
609 | !irt_isphi(fleft->t)) { /* Join two constant string puts in a row. */ |
610 | GCstr *s1 = ir_kstr(IR(fleft->op2)); |
611 | IRRef kref = lj_ir_kstr(J, lj_buf_cat2str(J->L, s1, s2)); |
612 | /* lj_ir_kstr() may realloc the IR and invalidates any IRIns *. */ |
613 | IR(fins->op1)->op2 = kref; /* Modify previous BUFPUT. */ |
614 | return fins->op1; |
615 | } |
616 | } |
617 | } |
618 | return EMITFOLD; /* Always emit, CSE later. */ |
619 | } |
620 | |
621 | LJFOLD(BUFSTR any any) |
622 | LJFOLDF(bufstr_kfold_cse) |
623 | { |
624 | lj_assertJ(fleft->o == IR_BUFHDR || fleft->o == IR_BUFPUT || |
625 | fleft->o == IR_CALLL, |
626 | "bad buffer constructor IR op %d" , fleft->o); |
627 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { |
628 | if (fleft->o == IR_BUFHDR) { /* No put operations? */ |
629 | if (!(fleft->op2 & IRBUFHDR_APPEND)) /* Empty buffer? */ |
630 | return lj_ir_kstr(J, &J2G(J)->strempty); |
631 | fins->op1 = fleft->op1; |
632 | fins->op2 = fleft->prev; /* Relies on checks in bufput_append. */ |
633 | return CSEFOLD; |
634 | } else if (fleft->o == IR_BUFPUT) { |
635 | IRIns *irb = IR(fleft->op1); |
636 | if (irb->o == IR_BUFHDR && !(irb->op2 & IRBUFHDR_APPEND)) |
637 | return fleft->op2; /* Shortcut for a single put operation. */ |
638 | } |
639 | } |
640 | /* Try to CSE the whole chain. */ |
641 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
642 | IRRef ref = J->chain[IR_BUFSTR]; |
643 | while (ref) { |
644 | IRIns *irs = IR(ref), *ira = fleft, *irb = IR(irs->op1); |
645 | while (ira->o == irb->o && ira->op2 == irb->op2) { |
646 | lj_assertJ(ira->o == IR_BUFHDR || ira->o == IR_BUFPUT || |
647 | ira->o == IR_CALLL || ira->o == IR_CARG, |
648 | "bad buffer constructor IR op %d" , ira->o); |
649 | if (ira->o == IR_BUFHDR && !(ira->op2 & IRBUFHDR_APPEND)) |
650 | return ref; /* CSE succeeded. */ |
651 | if (ira->o == IR_CALLL && ira->op2 == IRCALL_lj_buf_puttab) |
652 | break; |
653 | ira = IR(ira->op1); |
654 | irb = IR(irb->op1); |
655 | } |
656 | ref = irs->prev; |
657 | } |
658 | } |
659 | return EMITFOLD; /* No CSE possible. */ |
660 | } |
661 | |
662 | LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_reverse) |
663 | LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_upper) |
664 | LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_lower) |
665 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putquoted) |
666 | LJFOLDF(bufput_kfold_op) |
667 | { |
668 | if (irref_isk(fleft->op2)) { |
669 | const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; |
670 | SBuf *sb = lj_buf_tmp_(J->L); |
671 | sb = ((SBuf * (LJ_FASTCALL *)(SBuf *, GCstr *))ci->func)(sb, |
672 | ir_kstr(IR(fleft->op2))); |
673 | fins->o = IR_BUFPUT; |
674 | fins->op1 = fleft->op1; |
675 | fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); |
676 | return RETRYFOLD; |
677 | } |
678 | return EMITFOLD; /* Always emit, CSE later. */ |
679 | } |
680 | |
681 | LJFOLD(CALLL CARG IRCALL_lj_buf_putstr_rep) |
682 | LJFOLDF(bufput_kfold_rep) |
683 | { |
684 | if (irref_isk(fleft->op2)) { |
685 | IRIns *irc = IR(fleft->op1); |
686 | if (irref_isk(irc->op2)) { |
687 | SBuf *sb = lj_buf_tmp_(J->L); |
688 | sb = lj_buf_putstr_rep(sb, ir_kstr(IR(irc->op2)), IR(fleft->op2)->i); |
689 | fins->o = IR_BUFPUT; |
690 | fins->op1 = irc->op1; |
691 | fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); |
692 | return RETRYFOLD; |
693 | } |
694 | } |
695 | return EMITFOLD; /* Always emit, CSE later. */ |
696 | } |
697 | |
698 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfxint) |
699 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum_int) |
700 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum_uint) |
701 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfnum) |
702 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfstr) |
703 | LJFOLD(CALLL CARG IRCALL_lj_strfmt_putfchar) |
704 | LJFOLDF(bufput_kfold_fmt) |
705 | { |
706 | IRIns *irc = IR(fleft->op1); |
707 | lj_assertJ(irref_isk(irc->op2), "SFormat must be const" ); |
708 | if (irref_isk(fleft->op2)) { |
709 | SFormat sf = (SFormat)IR(irc->op2)->i; |
710 | IRIns *ira = IR(fleft->op2); |
711 | SBuf *sb = lj_buf_tmp_(J->L); |
712 | switch (fins->op2) { |
713 | case IRCALL_lj_strfmt_putfxint: |
714 | sb = lj_strfmt_putfxint(sb, sf, ir_k64(ira)->u64); |
715 | break; |
716 | case IRCALL_lj_strfmt_putfstr: |
717 | sb = lj_strfmt_putfstr(sb, sf, ir_kstr(ira)); |
718 | break; |
719 | case IRCALL_lj_strfmt_putfchar: |
720 | sb = lj_strfmt_putfchar(sb, sf, ira->i); |
721 | break; |
722 | case IRCALL_lj_strfmt_putfnum_int: |
723 | case IRCALL_lj_strfmt_putfnum_uint: |
724 | case IRCALL_lj_strfmt_putfnum: |
725 | default: { |
726 | const CCallInfo *ci = &lj_ir_callinfo[fins->op2]; |
727 | sb = ((SBuf * (*)(SBuf *, SFormat, lua_Number))ci->func)(sb, sf, |
728 | ir_knum(ira)->n); |
729 | break; |
730 | } |
731 | } |
732 | fins->o = IR_BUFPUT; |
733 | fins->op1 = irc->op1; |
734 | fins->op2 = lj_ir_kstr(J, lj_buf_tostr(sb)); |
735 | return RETRYFOLD; |
736 | } |
737 | return EMITFOLD; /* Always emit, CSE later. */ |
738 | } |
739 | |
740 | /* -- Constant folding of pointer arithmetic ------------------------------ */ |
741 | |
742 | LJFOLD(ADD KGC KINT) |
743 | LJFOLD(ADD KGC KINT64) |
744 | LJFOLDF(kfold_add_kgc) |
745 | { |
746 | GCobj *o = ir_kgc(fleft); |
747 | #if LJ_64 |
748 | ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; |
749 | #else |
750 | ptrdiff_t ofs = fright->i; |
751 | #endif |
752 | #if LJ_HASFFI |
753 | if (irt_iscdata(fleft->t)) { |
754 | CType *ct = ctype_raw(ctype_ctsG(J2G(J)), gco2cd(o)->ctypeid); |
755 | if (ctype_isnum(ct->info) || ctype_isenum(ct->info) || |
756 | ctype_isptr(ct->info) || ctype_isfunc(ct->info) || |
757 | ctype_iscomplex(ct->info) || ctype_isvector(ct->info)) |
758 | return lj_ir_kkptr(J, (char *)o + ofs); |
759 | } |
760 | #endif |
761 | return lj_ir_kptr(J, (char *)o + ofs); |
762 | } |
763 | |
764 | LJFOLD(ADD KPTR KINT) |
765 | LJFOLD(ADD KPTR KINT64) |
766 | LJFOLD(ADD KKPTR KINT) |
767 | LJFOLD(ADD KKPTR KINT64) |
768 | LJFOLDF(kfold_add_kptr) |
769 | { |
770 | void *p = ir_kptr(fleft); |
771 | #if LJ_64 |
772 | ptrdiff_t ofs = (ptrdiff_t)ir_kint64(fright)->u64; |
773 | #else |
774 | ptrdiff_t ofs = fright->i; |
775 | #endif |
776 | return lj_ir_kptr_(J, fleft->o, (char *)p + ofs); |
777 | } |
778 | |
779 | LJFOLD(ADD any KGC) |
780 | LJFOLD(ADD any KPTR) |
781 | LJFOLD(ADD any KKPTR) |
782 | LJFOLDF(kfold_add_kright) |
783 | { |
784 | if (fleft->o == IR_KINT || fleft->o == IR_KINT64) { |
785 | IRRef1 tmp = fins->op1; fins->op1 = fins->op2; fins->op2 = tmp; |
786 | return RETRYFOLD; |
787 | } |
788 | return NEXTFOLD; |
789 | } |
790 | |
791 | /* -- Constant folding of conversions ------------------------------------- */ |
792 | |
793 | LJFOLD(TOBIT KNUM KNUM) |
794 | LJFOLDF(kfold_tobit) |
795 | { |
796 | return INTFOLD(lj_num2bit(knumleft)); |
797 | } |
798 | |
799 | LJFOLD(CONV KINT IRCONV_NUM_INT) |
800 | LJFOLDF(kfold_conv_kint_num) |
801 | { |
802 | return lj_ir_knum(J, (lua_Number)fleft->i); |
803 | } |
804 | |
805 | LJFOLD(CONV KINT IRCONV_NUM_U32) |
806 | LJFOLDF(kfold_conv_kintu32_num) |
807 | { |
808 | return lj_ir_knum(J, (lua_Number)(uint32_t)fleft->i); |
809 | } |
810 | |
811 | LJFOLD(CONV KINT IRCONV_INT_I8) |
812 | LJFOLD(CONV KINT IRCONV_INT_U8) |
813 | LJFOLD(CONV KINT IRCONV_INT_I16) |
814 | LJFOLD(CONV KINT IRCONV_INT_U16) |
815 | LJFOLDF(kfold_conv_kint_ext) |
816 | { |
817 | int32_t k = fleft->i; |
818 | if ((fins->op2 & IRCONV_SRCMASK) == IRT_I8) k = (int8_t)k; |
819 | else if ((fins->op2 & IRCONV_SRCMASK) == IRT_U8) k = (uint8_t)k; |
820 | else if ((fins->op2 & IRCONV_SRCMASK) == IRT_I16) k = (int16_t)k; |
821 | else k = (uint16_t)k; |
822 | return INTFOLD(k); |
823 | } |
824 | |
825 | LJFOLD(CONV KINT IRCONV_I64_INT) |
826 | LJFOLD(CONV KINT IRCONV_U64_INT) |
827 | LJFOLD(CONV KINT IRCONV_I64_U32) |
828 | LJFOLD(CONV KINT IRCONV_U64_U32) |
829 | LJFOLDF(kfold_conv_kint_i64) |
830 | { |
831 | if ((fins->op2 & IRCONV_SEXT)) |
832 | return INT64FOLD((uint64_t)(int64_t)fleft->i); |
833 | else |
834 | return INT64FOLD((uint64_t)(int64_t)(uint32_t)fleft->i); |
835 | } |
836 | |
837 | LJFOLD(CONV KINT64 IRCONV_NUM_I64) |
838 | LJFOLDF(kfold_conv_kint64_num_i64) |
839 | { |
840 | return lj_ir_knum(J, (lua_Number)(int64_t)ir_kint64(fleft)->u64); |
841 | } |
842 | |
843 | LJFOLD(CONV KINT64 IRCONV_NUM_U64) |
844 | LJFOLDF(kfold_conv_kint64_num_u64) |
845 | { |
846 | return lj_ir_knum(J, (lua_Number)ir_kint64(fleft)->u64); |
847 | } |
848 | |
849 | LJFOLD(CONV KINT64 IRCONV_INT_I64) |
850 | LJFOLD(CONV KINT64 IRCONV_U32_I64) |
851 | LJFOLDF(kfold_conv_kint64_int_i64) |
852 | { |
853 | return INTFOLD((int32_t)ir_kint64(fleft)->u64); |
854 | } |
855 | |
856 | LJFOLD(CONV KNUM IRCONV_INT_NUM) |
857 | LJFOLDF(kfold_conv_knum_int_num) |
858 | { |
859 | lua_Number n = knumleft; |
860 | int32_t k = lj_num2int(n); |
861 | if (irt_isguard(fins->t) && n != (lua_Number)k) { |
862 | /* We're about to create a guard which always fails, like CONV +1.5. |
863 | ** Some pathological loops cause this during LICM, e.g.: |
864 | ** local x,k,t = 0,1.5,{1,[1.5]=2} |
865 | ** for i=1,200 do x = x+ t[k]; k = k == 1 and 1.5 or 1 end |
866 | ** assert(x == 300) |
867 | */ |
868 | return FAILFOLD; |
869 | } |
870 | return INTFOLD(k); |
871 | } |
872 | |
873 | LJFOLD(CONV KNUM IRCONV_U32_NUM) |
874 | LJFOLDF(kfold_conv_knum_u32_num) |
875 | { |
876 | #ifdef _MSC_VER |
877 | { /* Workaround for MSVC bug. */ |
878 | volatile uint32_t u = (uint32_t)knumleft; |
879 | return INTFOLD((int32_t)u); |
880 | } |
881 | #else |
882 | return INTFOLD((int32_t)(uint32_t)knumleft); |
883 | #endif |
884 | } |
885 | |
886 | LJFOLD(CONV KNUM IRCONV_I64_NUM) |
887 | LJFOLDF(kfold_conv_knum_i64_num) |
888 | { |
889 | return INT64FOLD((uint64_t)(int64_t)knumleft); |
890 | } |
891 | |
892 | LJFOLD(CONV KNUM IRCONV_U64_NUM) |
893 | LJFOLDF(kfold_conv_knum_u64_num) |
894 | { |
895 | return INT64FOLD(lj_num2u64(knumleft)); |
896 | } |
897 | |
898 | LJFOLD(TOSTR KNUM any) |
899 | LJFOLDF(kfold_tostr_knum) |
900 | { |
901 | return lj_ir_kstr(J, lj_strfmt_num(J->L, ir_knum(fleft))); |
902 | } |
903 | |
904 | LJFOLD(TOSTR KINT any) |
905 | LJFOLDF(kfold_tostr_kint) |
906 | { |
907 | return lj_ir_kstr(J, fins->op2 == IRTOSTR_INT ? |
908 | lj_strfmt_int(J->L, fleft->i) : |
909 | lj_strfmt_char(J->L, fleft->i)); |
910 | } |
911 | |
912 | LJFOLD(STRTO KGC) |
913 | LJFOLDF(kfold_strto) |
914 | { |
915 | TValue n; |
916 | if (lj_strscan_num(ir_kstr(fleft), &n)) |
917 | return lj_ir_knum(J, numV(&n)); |
918 | return FAILFOLD; |
919 | } |
920 | |
921 | /* -- Constant folding of equality checks --------------------------------- */ |
922 | |
923 | /* Don't constant-fold away FLOAD checks against KNULL. */ |
924 | LJFOLD(EQ FLOAD KNULL) |
925 | LJFOLD(NE FLOAD KNULL) |
926 | LJFOLDX(lj_opt_cse) |
927 | |
928 | /* But fold all other KNULL compares, since only KNULL is equal to KNULL. */ |
929 | LJFOLD(EQ any KNULL) |
930 | LJFOLD(NE any KNULL) |
931 | LJFOLD(EQ KNULL any) |
932 | LJFOLD(NE KNULL any) |
933 | LJFOLD(EQ KINT KINT) /* Constants are unique, so same refs <==> same value. */ |
934 | LJFOLD(NE KINT KINT) |
935 | LJFOLD(EQ KINT64 KINT64) |
936 | LJFOLD(NE KINT64 KINT64) |
937 | LJFOLD(EQ KGC KGC) |
938 | LJFOLD(NE KGC KGC) |
939 | LJFOLDF(kfold_kref) |
940 | { |
941 | return CONDFOLD((fins->op1 == fins->op2) ^ (fins->o == IR_NE)); |
942 | } |
943 | |
944 | /* -- Algebraic shortcuts ------------------------------------------------- */ |
945 | |
946 | LJFOLD(FPMATH FPMATH IRFPM_FLOOR) |
947 | LJFOLD(FPMATH FPMATH IRFPM_CEIL) |
948 | LJFOLD(FPMATH FPMATH IRFPM_TRUNC) |
949 | LJFOLDF(shortcut_round) |
950 | { |
951 | IRFPMathOp op = (IRFPMathOp)fleft->op2; |
952 | if (op == IRFPM_FLOOR || op == IRFPM_CEIL || op == IRFPM_TRUNC) |
953 | return LEFTFOLD; /* round(round_left(x)) = round_left(x) */ |
954 | return NEXTFOLD; |
955 | } |
956 | |
957 | LJFOLD(ABS ABS FLOAD) |
958 | LJFOLDF(shortcut_left) |
959 | { |
960 | return LEFTFOLD; /* f(g(x)) ==> g(x) */ |
961 | } |
962 | |
963 | LJFOLD(ABS NEG FLOAD) |
964 | LJFOLDF(shortcut_dropleft) |
965 | { |
966 | PHIBARRIER(fleft); |
967 | fins->op1 = fleft->op1; /* abs(neg(x)) ==> abs(x) */ |
968 | return RETRYFOLD; |
969 | } |
970 | |
971 | /* Note: no safe shortcuts with STRTO and TOSTR ("1e2" ==> +100 ==> "100"). */ |
972 | LJFOLD(NEG NEG any) |
973 | LJFOLD(BNOT BNOT) |
974 | LJFOLD(BSWAP BSWAP) |
975 | LJFOLDF(shortcut_leftleft) |
976 | { |
977 | PHIBARRIER(fleft); /* See above. Fold would be ok, but not beneficial. */ |
978 | return fleft->op1; /* f(g(x)) ==> x */ |
979 | } |
980 | |
981 | /* -- FP algebraic simplifications ---------------------------------------- */ |
982 | |
983 | /* FP arithmetic is tricky -- there's not much to simplify. |
984 | ** Please note the following common pitfalls before sending "improvements": |
985 | ** x+0 ==> x is INVALID for x=-0 |
986 | ** 0-x ==> -x is INVALID for x=+0 |
987 | ** x*0 ==> 0 is INVALID for x=-0, x=+-Inf or x=NaN |
988 | */ |
989 | |
990 | LJFOLD(ADD NEG any) |
991 | LJFOLDF(simplify_numadd_negx) |
992 | { |
993 | PHIBARRIER(fleft); |
994 | fins->o = IR_SUB; /* (-a) + b ==> b - a */ |
995 | fins->op1 = fins->op2; |
996 | fins->op2 = fleft->op1; |
997 | return RETRYFOLD; |
998 | } |
999 | |
1000 | LJFOLD(ADD any NEG) |
1001 | LJFOLDF(simplify_numadd_xneg) |
1002 | { |
1003 | PHIBARRIER(fright); |
1004 | fins->o = IR_SUB; /* a + (-b) ==> a - b */ |
1005 | fins->op2 = fright->op1; |
1006 | return RETRYFOLD; |
1007 | } |
1008 | |
1009 | LJFOLD(SUB any KNUM) |
1010 | LJFOLDF(simplify_numsub_k) |
1011 | { |
1012 | lua_Number n = knumright; |
1013 | if (n == 0.0) /* x - (+-0) ==> x */ |
1014 | return LEFTFOLD; |
1015 | return NEXTFOLD; |
1016 | } |
1017 | |
1018 | LJFOLD(SUB NEG KNUM) |
1019 | LJFOLDF(simplify_numsub_negk) |
1020 | { |
1021 | PHIBARRIER(fleft); |
1022 | fins->op2 = fleft->op1; /* (-x) - k ==> (-k) - x */ |
1023 | fins->op1 = (IRRef1)lj_ir_knum(J, -knumright); |
1024 | return RETRYFOLD; |
1025 | } |
1026 | |
1027 | LJFOLD(SUB any NEG) |
1028 | LJFOLDF(simplify_numsub_xneg) |
1029 | { |
1030 | PHIBARRIER(fright); |
1031 | fins->o = IR_ADD; /* a - (-b) ==> a + b */ |
1032 | fins->op2 = fright->op1; |
1033 | return RETRYFOLD; |
1034 | } |
1035 | |
1036 | LJFOLD(MUL any KNUM) |
1037 | LJFOLD(DIV any KNUM) |
1038 | LJFOLDF(simplify_nummuldiv_k) |
1039 | { |
1040 | lua_Number n = knumright; |
1041 | if (n == 1.0) { /* x o 1 ==> x */ |
1042 | return LEFTFOLD; |
1043 | } else if (n == -1.0) { /* x o -1 ==> -x */ |
1044 | IRRef op1 = fins->op1; |
1045 | fins->op2 = (IRRef1)lj_ir_ksimd(J, LJ_KSIMD_NEG); /* Modifies fins. */ |
1046 | fins->op1 = op1; |
1047 | fins->o = IR_NEG; |
1048 | return RETRYFOLD; |
1049 | } else if (fins->o == IR_MUL && n == 2.0) { /* x * 2 ==> x + x */ |
1050 | fins->o = IR_ADD; |
1051 | fins->op2 = fins->op1; |
1052 | return RETRYFOLD; |
1053 | } else if (fins->o == IR_DIV) { /* x / 2^k ==> x * 2^-k */ |
1054 | uint64_t u = ir_knum(fright)->u64; |
1055 | uint32_t ex = ((uint32_t)(u >> 52) & 0x7ff); |
1056 | if ((u & U64x(000fffff,ffffffff)) == 0 && ex - 1 < 0x7fd) { |
1057 | u = (u & ((uint64_t)1 << 63)) | ((uint64_t)(0x7fe - ex) << 52); |
1058 | fins->o = IR_MUL; /* Multiply by exact reciprocal. */ |
1059 | fins->op2 = lj_ir_knum_u64(J, u); |
1060 | return RETRYFOLD; |
1061 | } |
1062 | } |
1063 | return NEXTFOLD; |
1064 | } |
1065 | |
1066 | LJFOLD(MUL NEG KNUM) |
1067 | LJFOLD(DIV NEG KNUM) |
1068 | LJFOLDF(simplify_nummuldiv_negk) |
1069 | { |
1070 | PHIBARRIER(fleft); |
1071 | fins->op1 = fleft->op1; /* (-a) o k ==> a o (-k) */ |
1072 | fins->op2 = (IRRef1)lj_ir_knum(J, -knumright); |
1073 | return RETRYFOLD; |
1074 | } |
1075 | |
1076 | LJFOLD(MUL NEG NEG) |
1077 | LJFOLD(DIV NEG NEG) |
1078 | LJFOLDF(simplify_nummuldiv_negneg) |
1079 | { |
1080 | PHIBARRIER(fleft); |
1081 | PHIBARRIER(fright); |
1082 | fins->op1 = fleft->op1; /* (-a) o (-b) ==> a o b */ |
1083 | fins->op2 = fright->op1; |
1084 | return RETRYFOLD; |
1085 | } |
1086 | |
1087 | LJFOLD(POW any KINT) |
1088 | LJFOLDF(simplify_numpow_xkint) |
1089 | { |
1090 | int32_t k = fright->i; |
1091 | TRef ref = fins->op1; |
1092 | if (k == 0) /* x ^ 0 ==> 1 */ |
1093 | return lj_ir_knum_one(J); /* Result must be a number, not an int. */ |
1094 | if (k == 1) /* x ^ 1 ==> x */ |
1095 | return LEFTFOLD; |
1096 | if ((uint32_t)(k+65536) > 2*65536u) /* Limit code explosion. */ |
1097 | return NEXTFOLD; |
1098 | if (k < 0) { /* x ^ (-k) ==> (1/x) ^ k. */ |
1099 | ref = emitir(IRTN(IR_DIV), lj_ir_knum_one(J), ref); |
1100 | k = -k; |
1101 | } |
1102 | /* Unroll x^k for 1 <= k <= 65536. */ |
1103 | for (; (k & 1) == 0; k >>= 1) /* Handle leading zeros. */ |
1104 | ref = emitir(IRTN(IR_MUL), ref, ref); |
1105 | if ((k >>= 1) != 0) { /* Handle trailing bits. */ |
1106 | TRef tmp = emitir(IRTN(IR_MUL), ref, ref); |
1107 | for (; k != 1; k >>= 1) { |
1108 | if (k & 1) |
1109 | ref = emitir(IRTN(IR_MUL), ref, tmp); |
1110 | tmp = emitir(IRTN(IR_MUL), tmp, tmp); |
1111 | } |
1112 | ref = emitir(IRTN(IR_MUL), ref, tmp); |
1113 | } |
1114 | return ref; |
1115 | } |
1116 | |
1117 | LJFOLD(POW any KNUM) |
1118 | LJFOLDF(simplify_numpow_xknum) |
1119 | { |
1120 | if (knumright == 0.5) /* x ^ 0.5 ==> sqrt(x) */ |
1121 | return emitir(IRTN(IR_FPMATH), fins->op1, IRFPM_SQRT); |
1122 | return NEXTFOLD; |
1123 | } |
1124 | |
1125 | LJFOLD(POW KNUM any) |
1126 | LJFOLDF(simplify_numpow_kx) |
1127 | { |
1128 | lua_Number n = knumleft; |
1129 | if (n == 2.0 && irt_isint(fright->t)) { /* 2.0 ^ i ==> ldexp(1.0, i) */ |
1130 | #if LJ_TARGET_X86ORX64 |
1131 | /* Different IR_LDEXP calling convention on x86/x64 requires conversion. */ |
1132 | fins->o = IR_CONV; |
1133 | fins->op1 = fins->op2; |
1134 | fins->op2 = IRCONV_NUM_INT; |
1135 | fins->op2 = (IRRef1)lj_opt_fold(J); |
1136 | #endif |
1137 | fins->op1 = (IRRef1)lj_ir_knum_one(J); |
1138 | fins->o = IR_LDEXP; |
1139 | return RETRYFOLD; |
1140 | } |
1141 | return NEXTFOLD; |
1142 | } |
1143 | |
1144 | /* -- Simplify conversions ------------------------------------------------ */ |
1145 | |
1146 | LJFOLD(CONV CONV IRCONV_NUM_INT) /* _NUM */ |
1147 | LJFOLDF(shortcut_conv_num_int) |
1148 | { |
1149 | PHIBARRIER(fleft); |
1150 | /* Only safe with a guarded conversion to int. */ |
1151 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_NUM && irt_isguard(fleft->t)) |
1152 | return fleft->op1; /* f(g(x)) ==> x */ |
1153 | return NEXTFOLD; |
1154 | } |
1155 | |
1156 | LJFOLD(CONV CONV IRCONV_INT_NUM) /* _INT */ |
1157 | LJFOLD(CONV CONV IRCONV_U32_NUM) /* _U32*/ |
1158 | LJFOLDF(simplify_conv_int_num) |
1159 | { |
1160 | /* Fold even across PHI to avoid expensive num->int conversions in loop. */ |
1161 | if ((fleft->op2 & IRCONV_SRCMASK) == |
1162 | ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) |
1163 | return fleft->op1; |
1164 | return NEXTFOLD; |
1165 | } |
1166 | |
1167 | LJFOLD(CONV CONV IRCONV_I64_NUM) /* _INT or _U32 */ |
1168 | LJFOLD(CONV CONV IRCONV_U64_NUM) /* _INT or _U32 */ |
1169 | LJFOLDF(simplify_conv_i64_num) |
1170 | { |
1171 | PHIBARRIER(fleft); |
1172 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT) { |
1173 | /* Reduce to a sign-extension. */ |
1174 | fins->op1 = fleft->op1; |
1175 | fins->op2 = ((IRT_I64<<5)|IRT_INT|IRCONV_SEXT); |
1176 | return RETRYFOLD; |
1177 | } else if ((fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { |
1178 | #if LJ_TARGET_X64 |
1179 | return fleft->op1; |
1180 | #else |
1181 | /* Reduce to a zero-extension. */ |
1182 | fins->op1 = fleft->op1; |
1183 | fins->op2 = (IRT_I64<<5)|IRT_U32; |
1184 | return RETRYFOLD; |
1185 | #endif |
1186 | } |
1187 | return NEXTFOLD; |
1188 | } |
1189 | |
1190 | LJFOLD(CONV CONV IRCONV_INT_I64) /* _INT or _U32 */ |
1191 | LJFOLD(CONV CONV IRCONV_INT_U64) /* _INT or _U32 */ |
1192 | LJFOLD(CONV CONV IRCONV_U32_I64) /* _INT or _U32 */ |
1193 | LJFOLD(CONV CONV IRCONV_U32_U64) /* _INT or _U32 */ |
1194 | LJFOLDF(simplify_conv_int_i64) |
1195 | { |
1196 | int src; |
1197 | PHIBARRIER(fleft); |
1198 | src = (fleft->op2 & IRCONV_SRCMASK); |
1199 | if (src == IRT_INT || src == IRT_U32) { |
1200 | if (src == ((fins->op2 & IRCONV_DSTMASK) >> IRCONV_DSH)) { |
1201 | return fleft->op1; |
1202 | } else { |
1203 | fins->op2 = ((fins->op2 & IRCONV_DSTMASK) | src); |
1204 | fins->op1 = fleft->op1; |
1205 | return RETRYFOLD; |
1206 | } |
1207 | } |
1208 | return NEXTFOLD; |
1209 | } |
1210 | |
1211 | LJFOLD(CONV CONV IRCONV_FLOAT_NUM) /* _FLOAT */ |
1212 | LJFOLDF(simplify_conv_flt_num) |
1213 | { |
1214 | PHIBARRIER(fleft); |
1215 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_FLOAT) |
1216 | return fleft->op1; |
1217 | return NEXTFOLD; |
1218 | } |
1219 | |
1220 | /* Shortcut TOBIT + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ |
1221 | LJFOLD(TOBIT CONV KNUM) |
1222 | LJFOLDF(simplify_tobit_conv) |
1223 | { |
1224 | /* Fold even across PHI to avoid expensive num->int conversions in loop. */ |
1225 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT) { |
1226 | lj_assertJ(irt_isnum(fleft->t), "expected TOBIT number arg" ); |
1227 | return fleft->op1; |
1228 | } else if ((fleft->op2 & IRCONV_SRCMASK) == IRT_U32) { |
1229 | lj_assertJ(irt_isnum(fleft->t), "expected TOBIT number arg" ); |
1230 | fins->o = IR_CONV; |
1231 | fins->op1 = fleft->op1; |
1232 | fins->op2 = (IRT_INT<<5)|IRT_U32; |
1233 | return RETRYFOLD; |
1234 | } |
1235 | return NEXTFOLD; |
1236 | } |
1237 | |
1238 | /* Shortcut floor/ceil/round + IRT_NUM <- IRT_INT/IRT_U32 conversion. */ |
1239 | LJFOLD(FPMATH CONV IRFPM_FLOOR) |
1240 | LJFOLD(FPMATH CONV IRFPM_CEIL) |
1241 | LJFOLD(FPMATH CONV IRFPM_TRUNC) |
1242 | LJFOLDF(simplify_floor_conv) |
1243 | { |
1244 | if ((fleft->op2 & IRCONV_SRCMASK) == IRT_INT || |
1245 | (fleft->op2 & IRCONV_SRCMASK) == IRT_U32) |
1246 | return LEFTFOLD; |
1247 | return NEXTFOLD; |
1248 | } |
1249 | |
1250 | /* Strength reduction of widening. */ |
1251 | LJFOLD(CONV any IRCONV_I64_INT) |
1252 | LJFOLD(CONV any IRCONV_U64_INT) |
1253 | LJFOLDF(simplify_conv_sext) |
1254 | { |
1255 | IRRef ref = fins->op1; |
1256 | int64_t ofs = 0; |
1257 | if (!(fins->op2 & IRCONV_SEXT)) |
1258 | return NEXTFOLD; |
1259 | PHIBARRIER(fleft); |
1260 | if (fleft->o == IR_XLOAD && (irt_isu8(fleft->t) || irt_isu16(fleft->t))) |
1261 | goto ok_reduce; |
1262 | if (fleft->o == IR_ADD && irref_isk(fleft->op2)) { |
1263 | ofs = (int64_t)IR(fleft->op2)->i; |
1264 | ref = fleft->op1; |
1265 | } |
1266 | /* Use scalar evolution analysis results to strength-reduce sign-extension. */ |
1267 | if (ref == J->scev.idx) { |
1268 | IRRef lo = J->scev.dir ? J->scev.start : J->scev.stop; |
1269 | lj_assertJ(irt_isint(J->scev.t), "only int SCEV supported" ); |
1270 | if (lo && IR(lo)->o == IR_KINT && IR(lo)->i + ofs >= 0) { |
1271 | ok_reduce: |
1272 | #if LJ_TARGET_X64 |
1273 | /* Eliminate widening. All 32 bit ops do an implicit zero-extension. */ |
1274 | return LEFTFOLD; |
1275 | #else |
1276 | /* Reduce to a (cheaper) zero-extension. */ |
1277 | fins->op2 &= ~IRCONV_SEXT; |
1278 | return RETRYFOLD; |
1279 | #endif |
1280 | } |
1281 | } |
1282 | return NEXTFOLD; |
1283 | } |
1284 | |
1285 | /* Strength reduction of narrowing. */ |
1286 | LJFOLD(CONV ADD IRCONV_INT_I64) |
1287 | LJFOLD(CONV SUB IRCONV_INT_I64) |
1288 | LJFOLD(CONV MUL IRCONV_INT_I64) |
1289 | LJFOLD(CONV ADD IRCONV_INT_U64) |
1290 | LJFOLD(CONV SUB IRCONV_INT_U64) |
1291 | LJFOLD(CONV MUL IRCONV_INT_U64) |
1292 | LJFOLD(CONV ADD IRCONV_U32_I64) |
1293 | LJFOLD(CONV SUB IRCONV_U32_I64) |
1294 | LJFOLD(CONV MUL IRCONV_U32_I64) |
1295 | LJFOLD(CONV ADD IRCONV_U32_U64) |
1296 | LJFOLD(CONV SUB IRCONV_U32_U64) |
1297 | LJFOLD(CONV MUL IRCONV_U32_U64) |
1298 | LJFOLDF(simplify_conv_narrow) |
1299 | { |
1300 | IROp op = (IROp)fleft->o; |
1301 | IRType t = irt_type(fins->t); |
1302 | IRRef op1 = fleft->op1, op2 = fleft->op2, mode = fins->op2; |
1303 | PHIBARRIER(fleft); |
1304 | op1 = emitir(IRT(IR_CONV, t), op1, mode); |
1305 | op2 = emitir(IRT(IR_CONV, t), op2, mode); |
1306 | fins->ot = IRT(op, t); |
1307 | fins->op1 = op1; |
1308 | fins->op2 = op2; |
1309 | return RETRYFOLD; |
1310 | } |
1311 | |
1312 | /* Special CSE rule for CONV. */ |
1313 | LJFOLD(CONV any any) |
1314 | LJFOLDF(cse_conv) |
1315 | { |
1316 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
1317 | IRRef op1 = fins->op1, op2 = (fins->op2 & IRCONV_MODEMASK); |
1318 | uint8_t guard = irt_isguard(fins->t); |
1319 | IRRef ref = J->chain[IR_CONV]; |
1320 | while (ref > op1) { |
1321 | IRIns *ir = IR(ref); |
1322 | /* Commoning with stronger checks is ok. */ |
1323 | if (ir->op1 == op1 && (ir->op2 & IRCONV_MODEMASK) == op2 && |
1324 | irt_isguard(ir->t) >= guard) |
1325 | return ref; |
1326 | ref = ir->prev; |
1327 | } |
1328 | } |
1329 | return EMITFOLD; /* No fallthrough to regular CSE. */ |
1330 | } |
1331 | |
1332 | /* FP conversion narrowing. */ |
1333 | LJFOLD(TOBIT ADD KNUM) |
1334 | LJFOLD(TOBIT SUB KNUM) |
1335 | LJFOLD(CONV ADD IRCONV_INT_NUM) |
1336 | LJFOLD(CONV SUB IRCONV_INT_NUM) |
1337 | LJFOLD(CONV ADD IRCONV_I64_NUM) |
1338 | LJFOLD(CONV SUB IRCONV_I64_NUM) |
1339 | LJFOLDF(narrow_convert) |
1340 | { |
1341 | PHIBARRIER(fleft); |
1342 | /* Narrowing ignores PHIs and repeating it inside the loop is not useful. */ |
1343 | if (J->chain[IR_LOOP]) |
1344 | return NEXTFOLD; |
1345 | lj_assertJ(fins->o != IR_CONV || (fins->op2&IRCONV_CONVMASK) != IRCONV_TOBIT, |
1346 | "unexpected CONV TOBIT" ); |
1347 | return lj_opt_narrow_convert(J); |
1348 | } |
1349 | |
1350 | /* -- Integer algebraic simplifications ----------------------------------- */ |
1351 | |
1352 | LJFOLD(ADD any KINT) |
1353 | LJFOLD(ADDOV any KINT) |
1354 | LJFOLD(SUBOV any KINT) |
1355 | LJFOLDF(simplify_intadd_k) |
1356 | { |
1357 | if (fright->i == 0) /* i o 0 ==> i */ |
1358 | return LEFTFOLD; |
1359 | return NEXTFOLD; |
1360 | } |
1361 | |
1362 | LJFOLD(MULOV any KINT) |
1363 | LJFOLDF(simplify_intmul_k) |
1364 | { |
1365 | if (fright->i == 0) /* i * 0 ==> 0 */ |
1366 | return RIGHTFOLD; |
1367 | if (fright->i == 1) /* i * 1 ==> i */ |
1368 | return LEFTFOLD; |
1369 | if (fright->i == 2) { /* i * 2 ==> i + i */ |
1370 | fins->o = IR_ADDOV; |
1371 | fins->op2 = fins->op1; |
1372 | return RETRYFOLD; |
1373 | } |
1374 | return NEXTFOLD; |
1375 | } |
1376 | |
1377 | LJFOLD(SUB any KINT) |
1378 | LJFOLDF(simplify_intsub_k) |
1379 | { |
1380 | if (fright->i == 0) /* i - 0 ==> i */ |
1381 | return LEFTFOLD; |
1382 | fins->o = IR_ADD; /* i - k ==> i + (-k) */ |
1383 | fins->op2 = (IRRef1)lj_ir_kint(J, -fright->i); /* Overflow for -2^31 ok. */ |
1384 | return RETRYFOLD; |
1385 | } |
1386 | |
1387 | LJFOLD(SUB KINT any) |
1388 | LJFOLD(SUB KINT64 any) |
1389 | LJFOLDF(simplify_intsub_kleft) |
1390 | { |
1391 | if (fleft->o == IR_KINT ? (fleft->i == 0) : (ir_kint64(fleft)->u64 == 0)) { |
1392 | fins->o = IR_NEG; /* 0 - i ==> -i */ |
1393 | fins->op1 = fins->op2; |
1394 | return RETRYFOLD; |
1395 | } |
1396 | return NEXTFOLD; |
1397 | } |
1398 | |
1399 | LJFOLD(ADD any KINT64) |
1400 | LJFOLDF(simplify_intadd_k64) |
1401 | { |
1402 | if (ir_kint64(fright)->u64 == 0) /* i + 0 ==> i */ |
1403 | return LEFTFOLD; |
1404 | return NEXTFOLD; |
1405 | } |
1406 | |
1407 | LJFOLD(SUB any KINT64) |
1408 | LJFOLDF(simplify_intsub_k64) |
1409 | { |
1410 | uint64_t k = ir_kint64(fright)->u64; |
1411 | if (k == 0) /* i - 0 ==> i */ |
1412 | return LEFTFOLD; |
1413 | fins->o = IR_ADD; /* i - k ==> i + (-k) */ |
1414 | fins->op2 = (IRRef1)lj_ir_kint64(J, (uint64_t)-(int64_t)k); |
1415 | return RETRYFOLD; |
1416 | } |
1417 | |
1418 | static TRef simplify_intmul_k(jit_State *J, int32_t k) |
1419 | { |
1420 | /* Note: many more simplifications are possible, e.g. 2^k1 +- 2^k2. |
1421 | ** But this is mainly intended for simple address arithmetic. |
1422 | ** Also it's easier for the backend to optimize the original multiplies. |
1423 | */ |
1424 | if (k == 0) { /* i * 0 ==> 0 */ |
1425 | return RIGHTFOLD; |
1426 | } else if (k == 1) { /* i * 1 ==> i */ |
1427 | return LEFTFOLD; |
1428 | } else if ((k & (k-1)) == 0) { /* i * 2^k ==> i << k */ |
1429 | fins->o = IR_BSHL; |
1430 | fins->op2 = lj_ir_kint(J, lj_fls((uint32_t)k)); |
1431 | return RETRYFOLD; |
1432 | } |
1433 | return NEXTFOLD; |
1434 | } |
1435 | |
1436 | LJFOLD(MUL any KINT) |
1437 | LJFOLDF(simplify_intmul_k32) |
1438 | { |
1439 | if (fright->i >= 0) |
1440 | return simplify_intmul_k(J, fright->i); |
1441 | return NEXTFOLD; |
1442 | } |
1443 | |
1444 | LJFOLD(MUL any KINT64) |
1445 | LJFOLDF(simplify_intmul_k64) |
1446 | { |
1447 | #if LJ_HASFFI |
1448 | if (ir_kint64(fright)->u64 < 0x80000000u) |
1449 | return simplify_intmul_k(J, (int32_t)ir_kint64(fright)->u64); |
1450 | return NEXTFOLD; |
1451 | #else |
1452 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
1453 | #endif |
1454 | } |
1455 | |
1456 | LJFOLD(MOD any KINT) |
1457 | LJFOLDF(simplify_intmod_k) |
1458 | { |
1459 | int32_t k = fright->i; |
1460 | lj_assertJ(k != 0, "integer mod 0" ); |
1461 | if (k > 0 && (k & (k-1)) == 0) { /* i % (2^k) ==> i & (2^k-1) */ |
1462 | fins->o = IR_BAND; |
1463 | fins->op2 = lj_ir_kint(J, k-1); |
1464 | return RETRYFOLD; |
1465 | } |
1466 | return NEXTFOLD; |
1467 | } |
1468 | |
1469 | LJFOLD(MOD KINT any) |
1470 | LJFOLDF(simplify_intmod_kleft) |
1471 | { |
1472 | if (fleft->i == 0) |
1473 | return INTFOLD(0); |
1474 | return NEXTFOLD; |
1475 | } |
1476 | |
1477 | LJFOLD(SUB any any) |
1478 | LJFOLD(SUBOV any any) |
1479 | LJFOLDF(simplify_intsub) |
1480 | { |
1481 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) /* i - i ==> 0 */ |
1482 | return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); |
1483 | return NEXTFOLD; |
1484 | } |
1485 | |
1486 | LJFOLD(SUB ADD any) |
1487 | LJFOLDF(simplify_intsubadd_leftcancel) |
1488 | { |
1489 | if (!irt_isnum(fins->t)) { |
1490 | PHIBARRIER(fleft); |
1491 | if (fins->op2 == fleft->op1) /* (i + j) - i ==> j */ |
1492 | return fleft->op2; |
1493 | if (fins->op2 == fleft->op2) /* (i + j) - j ==> i */ |
1494 | return fleft->op1; |
1495 | } |
1496 | return NEXTFOLD; |
1497 | } |
1498 | |
1499 | LJFOLD(SUB SUB any) |
1500 | LJFOLDF(simplify_intsubsub_leftcancel) |
1501 | { |
1502 | if (!irt_isnum(fins->t)) { |
1503 | PHIBARRIER(fleft); |
1504 | if (fins->op2 == fleft->op1) { /* (i - j) - i ==> 0 - j */ |
1505 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
1506 | fins->op2 = fleft->op2; |
1507 | return RETRYFOLD; |
1508 | } |
1509 | } |
1510 | return NEXTFOLD; |
1511 | } |
1512 | |
1513 | LJFOLD(SUB any SUB) |
1514 | LJFOLDF(simplify_intsubsub_rightcancel) |
1515 | { |
1516 | if (!irt_isnum(fins->t)) { |
1517 | PHIBARRIER(fright); |
1518 | if (fins->op1 == fright->op1) /* i - (i - j) ==> j */ |
1519 | return fright->op2; |
1520 | } |
1521 | return NEXTFOLD; |
1522 | } |
1523 | |
1524 | LJFOLD(SUB any ADD) |
1525 | LJFOLDF(simplify_intsubadd_rightcancel) |
1526 | { |
1527 | if (!irt_isnum(fins->t)) { |
1528 | PHIBARRIER(fright); |
1529 | if (fins->op1 == fright->op1) { /* i - (i + j) ==> 0 - j */ |
1530 | fins->op2 = fright->op2; |
1531 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
1532 | return RETRYFOLD; |
1533 | } |
1534 | if (fins->op1 == fright->op2) { /* i - (j + i) ==> 0 - j */ |
1535 | fins->op2 = fright->op1; |
1536 | fins->op1 = (IRRef1)lj_ir_kint(J, 0); |
1537 | return RETRYFOLD; |
1538 | } |
1539 | } |
1540 | return NEXTFOLD; |
1541 | } |
1542 | |
1543 | LJFOLD(SUB ADD ADD) |
1544 | LJFOLDF(simplify_intsubaddadd_cancel) |
1545 | { |
1546 | if (!irt_isnum(fins->t)) { |
1547 | PHIBARRIER(fleft); |
1548 | PHIBARRIER(fright); |
1549 | if (fleft->op1 == fright->op1) { /* (i + j1) - (i + j2) ==> j1 - j2 */ |
1550 | fins->op1 = fleft->op2; |
1551 | fins->op2 = fright->op2; |
1552 | return RETRYFOLD; |
1553 | } |
1554 | if (fleft->op1 == fright->op2) { /* (i + j1) - (j2 + i) ==> j1 - j2 */ |
1555 | fins->op1 = fleft->op2; |
1556 | fins->op2 = fright->op1; |
1557 | return RETRYFOLD; |
1558 | } |
1559 | if (fleft->op2 == fright->op1) { /* (j1 + i) - (i + j2) ==> j1 - j2 */ |
1560 | fins->op1 = fleft->op1; |
1561 | fins->op2 = fright->op2; |
1562 | return RETRYFOLD; |
1563 | } |
1564 | if (fleft->op2 == fright->op2) { /* (j1 + i) - (j2 + i) ==> j1 - j2 */ |
1565 | fins->op1 = fleft->op1; |
1566 | fins->op2 = fright->op1; |
1567 | return RETRYFOLD; |
1568 | } |
1569 | } |
1570 | return NEXTFOLD; |
1571 | } |
1572 | |
1573 | LJFOLD(BAND any KINT) |
1574 | LJFOLD(BAND any KINT64) |
1575 | LJFOLDF(simplify_band_k) |
1576 | { |
1577 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
1578 | (int64_t)ir_k64(fright)->u64; |
1579 | if (k == 0) /* i & 0 ==> 0 */ |
1580 | return RIGHTFOLD; |
1581 | if (k == -1) /* i & -1 ==> i */ |
1582 | return LEFTFOLD; |
1583 | return NEXTFOLD; |
1584 | } |
1585 | |
1586 | LJFOLD(BOR any KINT) |
1587 | LJFOLD(BOR any KINT64) |
1588 | LJFOLDF(simplify_bor_k) |
1589 | { |
1590 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
1591 | (int64_t)ir_k64(fright)->u64; |
1592 | if (k == 0) /* i | 0 ==> i */ |
1593 | return LEFTFOLD; |
1594 | if (k == -1) /* i | -1 ==> -1 */ |
1595 | return RIGHTFOLD; |
1596 | return NEXTFOLD; |
1597 | } |
1598 | |
1599 | LJFOLD(BXOR any KINT) |
1600 | LJFOLD(BXOR any KINT64) |
1601 | LJFOLDF(simplify_bxor_k) |
1602 | { |
1603 | int64_t k = fright->o == IR_KINT ? (int64_t)fright->i : |
1604 | (int64_t)ir_k64(fright)->u64; |
1605 | if (k == 0) /* i xor 0 ==> i */ |
1606 | return LEFTFOLD; |
1607 | if (k == -1) { /* i xor -1 ==> ~i */ |
1608 | fins->o = IR_BNOT; |
1609 | fins->op2 = 0; |
1610 | return RETRYFOLD; |
1611 | } |
1612 | return NEXTFOLD; |
1613 | } |
1614 | |
1615 | LJFOLD(BSHL any KINT) |
1616 | LJFOLD(BSHR any KINT) |
1617 | LJFOLD(BSAR any KINT) |
1618 | LJFOLD(BROL any KINT) |
1619 | LJFOLD(BROR any KINT) |
1620 | LJFOLDF(simplify_shift_ik) |
1621 | { |
1622 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
1623 | int32_t k = (fright->i & mask); |
1624 | if (k == 0) /* i o 0 ==> i */ |
1625 | return LEFTFOLD; |
1626 | if (k == 1 && fins->o == IR_BSHL) { /* i << 1 ==> i + i */ |
1627 | fins->o = IR_ADD; |
1628 | fins->op2 = fins->op1; |
1629 | return RETRYFOLD; |
1630 | } |
1631 | if (k != fright->i) { /* i o k ==> i o (k & mask) */ |
1632 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
1633 | return RETRYFOLD; |
1634 | } |
1635 | #ifndef LJ_TARGET_UNIFYROT |
1636 | if (fins->o == IR_BROR) { /* bror(i, k) ==> brol(i, (-k)&mask) */ |
1637 | fins->o = IR_BROL; |
1638 | fins->op2 = (IRRef1)lj_ir_kint(J, (-k)&mask); |
1639 | return RETRYFOLD; |
1640 | } |
1641 | #endif |
1642 | return NEXTFOLD; |
1643 | } |
1644 | |
1645 | LJFOLD(BSHL any BAND) |
1646 | LJFOLD(BSHR any BAND) |
1647 | LJFOLD(BSAR any BAND) |
1648 | LJFOLD(BROL any BAND) |
1649 | LJFOLD(BROR any BAND) |
1650 | LJFOLDF(simplify_shift_andk) |
1651 | { |
1652 | IRIns *irk = IR(fright->op2); |
1653 | PHIBARRIER(fright); |
1654 | if ((fins->o < IR_BROL ? LJ_TARGET_MASKSHIFT : LJ_TARGET_MASKROT) && |
1655 | irk->o == IR_KINT) { /* i o (j & mask) ==> i o j */ |
1656 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
1657 | int32_t k = irk->i & mask; |
1658 | if (k == mask) { |
1659 | fins->op2 = fright->op1; |
1660 | return RETRYFOLD; |
1661 | } |
1662 | } |
1663 | return NEXTFOLD; |
1664 | } |
1665 | |
1666 | LJFOLD(BSHL KINT any) |
1667 | LJFOLD(BSHR KINT any) |
1668 | LJFOLD(BSHL KINT64 any) |
1669 | LJFOLD(BSHR KINT64 any) |
1670 | LJFOLDF(simplify_shift1_ki) |
1671 | { |
1672 | int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : |
1673 | (int64_t)ir_k64(fleft)->u64; |
1674 | if (k == 0) /* 0 o i ==> 0 */ |
1675 | return LEFTFOLD; |
1676 | return NEXTFOLD; |
1677 | } |
1678 | |
1679 | LJFOLD(BSAR KINT any) |
1680 | LJFOLD(BROL KINT any) |
1681 | LJFOLD(BROR KINT any) |
1682 | LJFOLD(BSAR KINT64 any) |
1683 | LJFOLD(BROL KINT64 any) |
1684 | LJFOLD(BROR KINT64 any) |
1685 | LJFOLDF(simplify_shift2_ki) |
1686 | { |
1687 | int64_t k = fleft->o == IR_KINT ? (int64_t)fleft->i : |
1688 | (int64_t)ir_k64(fleft)->u64; |
1689 | if (k == 0 || k == -1) /* 0 o i ==> 0; -1 o i ==> -1 */ |
1690 | return LEFTFOLD; |
1691 | return NEXTFOLD; |
1692 | } |
1693 | |
1694 | LJFOLD(BSHL BAND KINT) |
1695 | LJFOLD(BSHR BAND KINT) |
1696 | LJFOLD(BROL BAND KINT) |
1697 | LJFOLD(BROR BAND KINT) |
1698 | LJFOLDF(simplify_shiftk_andk) |
1699 | { |
1700 | IRIns *irk = IR(fleft->op2); |
1701 | PHIBARRIER(fleft); |
1702 | if (irk->o == IR_KINT) { /* (i & k1) o k2 ==> (i o k2) & (k1 o k2) */ |
1703 | int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); |
1704 | fins->op1 = fleft->op1; |
1705 | fins->op1 = (IRRef1)lj_opt_fold(J); |
1706 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
1707 | fins->ot = IRTI(IR_BAND); |
1708 | return RETRYFOLD; |
1709 | } else if (irk->o == IR_KINT64) { |
1710 | uint64_t k = kfold_int64arith(J, ir_k64(irk)->u64, fright->i, |
1711 | (IROp)fins->o); |
1712 | IROpT ot = fleft->ot; |
1713 | fins->op1 = fleft->op1; |
1714 | fins->op1 = (IRRef1)lj_opt_fold(J); |
1715 | fins->op2 = (IRRef1)lj_ir_kint64(J, k); |
1716 | fins->ot = ot; |
1717 | return RETRYFOLD; |
1718 | } |
1719 | return NEXTFOLD; |
1720 | } |
1721 | |
1722 | LJFOLD(BAND BSHL KINT) |
1723 | LJFOLD(BAND BSHR KINT) |
1724 | LJFOLDF(simplify_andk_shiftk) |
1725 | { |
1726 | IRIns *irk = IR(fleft->op2); |
1727 | if (irk->o == IR_KINT && |
1728 | kfold_intop(-1, irk->i, (IROp)fleft->o) == fright->i) |
1729 | return LEFTFOLD; /* (i o k1) & k2 ==> i, if (-1 o k1) == k2 */ |
1730 | return NEXTFOLD; |
1731 | } |
1732 | |
1733 | LJFOLD(BAND BOR KINT) |
1734 | LJFOLD(BOR BAND KINT) |
1735 | LJFOLDF(simplify_andor_k) |
1736 | { |
1737 | IRIns *irk = IR(fleft->op2); |
1738 | PHIBARRIER(fleft); |
1739 | if (irk->o == IR_KINT) { |
1740 | int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); |
1741 | /* (i | k1) & k2 ==> i & k2, if (k1 & k2) == 0. */ |
1742 | /* (i & k1) | k2 ==> i | k2, if (k1 | k2) == -1. */ |
1743 | if (k == (fins->o == IR_BAND ? 0 : -1)) { |
1744 | fins->op1 = fleft->op1; |
1745 | return RETRYFOLD; |
1746 | } |
1747 | } |
1748 | return NEXTFOLD; |
1749 | } |
1750 | |
1751 | LJFOLD(BAND BOR KINT64) |
1752 | LJFOLD(BOR BAND KINT64) |
1753 | LJFOLDF(simplify_andor_k64) |
1754 | { |
1755 | #if LJ_HASFFI |
1756 | IRIns *irk = IR(fleft->op2); |
1757 | PHIBARRIER(fleft); |
1758 | if (irk->o == IR_KINT64) { |
1759 | uint64_t k = kfold_int64arith(J, ir_k64(irk)->u64, ir_k64(fright)->u64, |
1760 | (IROp)fins->o); |
1761 | /* (i | k1) & k2 ==> i & k2, if (k1 & k2) == 0. */ |
1762 | /* (i & k1) | k2 ==> i | k2, if (k1 | k2) == -1. */ |
1763 | if (k == (fins->o == IR_BAND ? (uint64_t)0 : ~(uint64_t)0)) { |
1764 | fins->op1 = fleft->op1; |
1765 | return RETRYFOLD; |
1766 | } |
1767 | } |
1768 | return NEXTFOLD; |
1769 | #else |
1770 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
1771 | #endif |
1772 | } |
1773 | |
1774 | /* -- Reassociation ------------------------------------------------------- */ |
1775 | |
1776 | LJFOLD(ADD ADD KINT) |
1777 | LJFOLD(MUL MUL KINT) |
1778 | LJFOLD(BAND BAND KINT) |
1779 | LJFOLD(BOR BOR KINT) |
1780 | LJFOLD(BXOR BXOR KINT) |
1781 | LJFOLDF(reassoc_intarith_k) |
1782 | { |
1783 | IRIns *irk = IR(fleft->op2); |
1784 | if (irk->o == IR_KINT) { |
1785 | int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o); |
1786 | if (k == irk->i) /* (i o k1) o k2 ==> i o k1, if (k1 o k2) == k1. */ |
1787 | return LEFTFOLD; |
1788 | PHIBARRIER(fleft); |
1789 | fins->op1 = fleft->op1; |
1790 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
1791 | return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ |
1792 | } |
1793 | return NEXTFOLD; |
1794 | } |
1795 | |
1796 | LJFOLD(ADD ADD KINT64) |
1797 | LJFOLD(MUL MUL KINT64) |
1798 | LJFOLD(BAND BAND KINT64) |
1799 | LJFOLD(BOR BOR KINT64) |
1800 | LJFOLD(BXOR BXOR KINT64) |
1801 | LJFOLDF(reassoc_intarith_k64) |
1802 | { |
1803 | #if LJ_HASFFI |
1804 | IRIns *irk = IR(fleft->op2); |
1805 | if (irk->o == IR_KINT64) { |
1806 | uint64_t k = kfold_int64arith(J, ir_k64(irk)->u64, ir_k64(fright)->u64, |
1807 | (IROp)fins->o); |
1808 | PHIBARRIER(fleft); |
1809 | fins->op1 = fleft->op1; |
1810 | fins->op2 = (IRRef1)lj_ir_kint64(J, k); |
1811 | return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */ |
1812 | } |
1813 | return NEXTFOLD; |
1814 | #else |
1815 | UNUSED(J); lj_assertJ(0, "FFI IR op without FFI" ); return FAILFOLD; |
1816 | #endif |
1817 | } |
1818 | |
1819 | LJFOLD(BAND BAND any) |
1820 | LJFOLD(BOR BOR any) |
1821 | LJFOLDF(reassoc_dup) |
1822 | { |
1823 | if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2) |
1824 | return LEFTFOLD; /* (a o b) o a ==> a o b; (a o b) o b ==> a o b */ |
1825 | return NEXTFOLD; |
1826 | } |
1827 | |
1828 | LJFOLD(MIN MIN any) |
1829 | LJFOLD(MAX MAX any) |
1830 | LJFOLDF(reassoc_dup_minmax) |
1831 | { |
1832 | if (fins->op2 == fleft->op2) |
1833 | return LEFTFOLD; /* (a o b) o b ==> a o b */ |
1834 | return NEXTFOLD; |
1835 | } |
1836 | |
1837 | LJFOLD(BXOR BXOR any) |
1838 | LJFOLDF(reassoc_bxor) |
1839 | { |
1840 | PHIBARRIER(fleft); |
1841 | if (fins->op2 == fleft->op1) /* (a xor b) xor a ==> b */ |
1842 | return fleft->op2; |
1843 | if (fins->op2 == fleft->op2) /* (a xor b) xor b ==> a */ |
1844 | return fleft->op1; |
1845 | return NEXTFOLD; |
1846 | } |
1847 | |
1848 | LJFOLD(BSHL BSHL KINT) |
1849 | LJFOLD(BSHR BSHR KINT) |
1850 | LJFOLD(BSAR BSAR KINT) |
1851 | LJFOLD(BROL BROL KINT) |
1852 | LJFOLD(BROR BROR KINT) |
1853 | LJFOLDF(reassoc_shift) |
1854 | { |
1855 | IRIns *irk = IR(fleft->op2); |
1856 | PHIBARRIER(fleft); /* The (shift any KINT) rule covers k2 == 0 and more. */ |
1857 | if (irk->o == IR_KINT) { /* (i o k1) o k2 ==> i o (k1 + k2) */ |
1858 | int32_t mask = irt_is64(fins->t) ? 63 : 31; |
1859 | int32_t k = (irk->i & mask) + (fright->i & mask); |
1860 | if (k > mask) { /* Combined shift too wide? */ |
1861 | if (fins->o == IR_BSHL || fins->o == IR_BSHR) |
1862 | return mask == 31 ? INTFOLD(0) : INT64FOLD(0); |
1863 | else if (fins->o == IR_BSAR) |
1864 | k = mask; |
1865 | else |
1866 | k &= mask; |
1867 | } |
1868 | fins->op1 = fleft->op1; |
1869 | fins->op2 = (IRRef1)lj_ir_kint(J, k); |
1870 | return RETRYFOLD; |
1871 | } |
1872 | return NEXTFOLD; |
1873 | } |
1874 | |
1875 | LJFOLD(MIN MIN KINT) |
1876 | LJFOLD(MAX MAX KINT) |
1877 | LJFOLDF(reassoc_minmax_k) |
1878 | { |
1879 | IRIns *irk = IR(fleft->op2); |
1880 | if (irk->o == IR_KINT) { |
1881 | int32_t a = irk->i; |
1882 | int32_t y = kfold_intop(a, fright->i, fins->o); |
1883 | if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */ |
1884 | return LEFTFOLD; |
1885 | PHIBARRIER(fleft); |
1886 | fins->op1 = fleft->op1; |
1887 | fins->op2 = (IRRef1)lj_ir_kint(J, y); |
1888 | return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */ |
1889 | } |
1890 | return NEXTFOLD; |
1891 | } |
1892 | |
1893 | /* -- Array bounds check elimination -------------------------------------- */ |
1894 | |
1895 | /* Eliminate ABC across PHIs to handle t[i-1] forwarding case. |
1896 | ** ABC(asize, (i+k)+(-k)) ==> ABC(asize, i), but only if it already exists. |
1897 | ** Could be generalized to (i+k1)+k2 ==> i+(k1+k2), but needs better disambig. |
1898 | */ |
1899 | LJFOLD(ABC any ADD) |
1900 | LJFOLDF(abc_fwd) |
1901 | { |
1902 | if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { |
1903 | if (irref_isk(fright->op2)) { |
1904 | IRIns *add2 = IR(fright->op1); |
1905 | if (add2->o == IR_ADD && irref_isk(add2->op2) && |
1906 | IR(fright->op2)->i == -IR(add2->op2)->i) { |
1907 | IRRef ref = J->chain[IR_ABC]; |
1908 | IRRef lim = add2->op1; |
1909 | if (fins->op1 > lim) lim = fins->op1; |
1910 | while (ref > lim) { |
1911 | IRIns *ir = IR(ref); |
1912 | if (ir->op1 == fins->op1 && ir->op2 == add2->op1) |
1913 | return DROPFOLD; |
1914 | ref = ir->prev; |
1915 | } |
1916 | } |
1917 | } |
1918 | } |
1919 | return NEXTFOLD; |
1920 | } |
1921 | |
1922 | /* Eliminate ABC for constants. |
1923 | ** ABC(asize, k1), ABC(asize k2) ==> ABC(asize, max(k1, k2)) |
1924 | ** Drop second ABC if k2 is lower. Otherwise patch first ABC with k2. |
1925 | */ |
1926 | LJFOLD(ABC any KINT) |
1927 | LJFOLDF(abc_k) |
1928 | { |
1929 | if (LJ_LIKELY(J->flags & JIT_F_OPT_ABC)) { |
1930 | IRRef ref = J->chain[IR_ABC]; |
1931 | IRRef asize = fins->op1; |
1932 | while (ref > asize) { |
1933 | IRIns *ir = IR(ref); |
1934 | if (ir->op1 == asize && irref_isk(ir->op2)) { |
1935 | int32_t k = IR(ir->op2)->i; |
1936 | if (fright->i > k) |
1937 | ir->op2 = fins->op2; |
1938 | return DROPFOLD; |
1939 | } |
1940 | ref = ir->prev; |
1941 | } |
1942 | return EMITFOLD; /* Already performed CSE. */ |
1943 | } |
1944 | return NEXTFOLD; |
1945 | } |
1946 | |
1947 | /* Eliminate invariant ABC inside loop. */ |
1948 | LJFOLD(ABC any any) |
1949 | LJFOLDF(abc_invar) |
1950 | { |
1951 | /* Invariant ABC marked as PTR. Drop if op1 is invariant, too. */ |
1952 | if (!irt_isint(fins->t) && fins->op1 < J->chain[IR_LOOP] && |
1953 | !irt_isphi(IR(fins->op1)->t)) |
1954 | return DROPFOLD; |
1955 | return NEXTFOLD; |
1956 | } |
1957 | |
1958 | /* -- Commutativity ------------------------------------------------------- */ |
1959 | |
1960 | /* The refs of commutative ops are canonicalized. Lower refs go to the right. |
1961 | ** Rationale behind this: |
1962 | ** - It (also) moves constants to the right. |
1963 | ** - It reduces the number of FOLD rules (e.g. (BOR any KINT) suffices). |
1964 | ** - It helps CSE to find more matches. |
1965 | ** - The assembler generates better code with constants at the right. |
1966 | */ |
1967 | |
1968 | LJFOLD(ADD any any) |
1969 | LJFOLD(MUL any any) |
1970 | LJFOLD(ADDOV any any) |
1971 | LJFOLD(MULOV any any) |
1972 | LJFOLDF(comm_swap) |
1973 | { |
1974 | if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ |
1975 | IRRef1 tmp = fins->op1; |
1976 | fins->op1 = fins->op2; |
1977 | fins->op2 = tmp; |
1978 | return RETRYFOLD; |
1979 | } |
1980 | return NEXTFOLD; |
1981 | } |
1982 | |
1983 | LJFOLD(EQ any any) |
1984 | LJFOLD(NE any any) |
1985 | LJFOLDF(comm_equal) |
1986 | { |
1987 | /* For non-numbers only: x == x ==> drop; x ~= x ==> fail */ |
1988 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) |
1989 | return CONDFOLD(fins->o == IR_EQ); |
1990 | return fold_comm_swap(J); |
1991 | } |
1992 | |
1993 | LJFOLD(LT any any) |
1994 | LJFOLD(GE any any) |
1995 | LJFOLD(LE any any) |
1996 | LJFOLD(GT any any) |
1997 | LJFOLD(ULT any any) |
1998 | LJFOLD(UGE any any) |
1999 | LJFOLD(ULE any any) |
2000 | LJFOLD(UGT any any) |
2001 | LJFOLDF(comm_comp) |
2002 | { |
2003 | /* For non-numbers only: x <=> x ==> drop; x <> x ==> fail */ |
2004 | if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) |
2005 | return CONDFOLD((fins->o ^ (fins->o >> 1)) & 1); |
2006 | if (fins->op1 < fins->op2) { /* Move lower ref to the right. */ |
2007 | IRRef1 tmp = fins->op1; |
2008 | fins->op1 = fins->op2; |
2009 | fins->op2 = tmp; |
2010 | fins->o ^= 3; /* GT <-> LT, GE <-> LE, does not affect U */ |
2011 | return RETRYFOLD; |
2012 | } |
2013 | return NEXTFOLD; |
2014 | } |
2015 | |
2016 | LJFOLD(BAND any any) |
2017 | LJFOLD(BOR any any) |
2018 | LJFOLDF(comm_dup) |
2019 | { |
2020 | if (fins->op1 == fins->op2) /* x o x ==> x */ |
2021 | return LEFTFOLD; |
2022 | return fold_comm_swap(J); |
2023 | } |
2024 | |
2025 | LJFOLD(MIN any any) |
2026 | LJFOLD(MAX any any) |
2027 | LJFOLDF(comm_dup_minmax) |
2028 | { |
2029 | if (fins->op1 == fins->op2) /* x o x ==> x */ |
2030 | return LEFTFOLD; |
2031 | return NEXTFOLD; |
2032 | } |
2033 | |
2034 | LJFOLD(BXOR any any) |
2035 | LJFOLDF(comm_bxor) |
2036 | { |
2037 | if (fins->op1 == fins->op2) /* i xor i ==> 0 */ |
2038 | return irt_is64(fins->t) ? INT64FOLD(0) : INTFOLD(0); |
2039 | return fold_comm_swap(J); |
2040 | } |
2041 | |
2042 | /* -- Simplification of compound expressions ------------------------------ */ |
2043 | |
2044 | static TRef kfold_xload(jit_State *J, IRIns *ir, const void *p) |
2045 | { |
2046 | int32_t k; |
2047 | switch (irt_type(ir->t)) { |
2048 | case IRT_NUM: return lj_ir_knum_u64(J, *(uint64_t *)p); |
2049 | case IRT_I8: k = (int32_t)*(int8_t *)p; break; |
2050 | case IRT_U8: k = (int32_t)*(uint8_t *)p; break; |
2051 | case IRT_I16: k = (int32_t)(int16_t)lj_getu16(p); break; |
2052 | case IRT_U16: k = (int32_t)(uint16_t)lj_getu16(p); break; |
2053 | case IRT_INT: case IRT_U32: k = (int32_t)lj_getu32(p); break; |
2054 | case IRT_I64: case IRT_U64: return lj_ir_kint64(J, *(uint64_t *)p); |
2055 | default: return 0; |
2056 | } |
2057 | return lj_ir_kint(J, k); |
2058 | } |
2059 | |
2060 | /* Turn: string.sub(str, a, b) == kstr |
2061 | ** into: string.byte(str, a) == string.byte(kstr, 1) etc. |
2062 | ** Note: this creates unaligned XLOADs on x86/x64. |
2063 | */ |
2064 | LJFOLD(EQ SNEW KGC) |
2065 | LJFOLD(NE SNEW KGC) |
2066 | LJFOLDF(merge_eqne_snew_kgc) |
2067 | { |
2068 | GCstr *kstr = ir_kstr(fright); |
2069 | int32_t len = (int32_t)kstr->len; |
2070 | lj_assertJ(irt_isstr(fins->t), "bad equality IR type" ); |
2071 | |
2072 | #if LJ_TARGET_UNALIGNED |
2073 | #define FOLD_SNEW_MAX_LEN 4 /* Handle string lengths 0, 1, 2, 3, 4. */ |
2074 | #define FOLD_SNEW_TYPE8 IRT_I8 /* Creates shorter immediates. */ |
2075 | #else |
2076 | #define FOLD_SNEW_MAX_LEN 1 /* Handle string lengths 0 or 1. */ |
2077 | #define FOLD_SNEW_TYPE8 IRT_U8 /* Prefer unsigned loads. */ |
2078 | #endif |
2079 | |
2080 | PHIBARRIER(fleft); |
2081 | if (len <= FOLD_SNEW_MAX_LEN) { |
2082 | IROp op = (IROp)fins->o; |
2083 | IRRef strref = fleft->op1; |
2084 | if (IR(strref)->o != IR_STRREF) |
2085 | return NEXTFOLD; |
2086 | if (op == IR_EQ) { |
2087 | emitir(IRTGI(IR_EQ), fleft->op2, lj_ir_kint(J, len)); |
2088 | /* Caveat: fins/fleft/fright is no longer valid after emitir. */ |
2089 | } else { |
2090 | /* NE is not expanded since this would need an OR of two conds. */ |
2091 | if (!irref_isk(fleft->op2)) /* Only handle the constant length case. */ |
2092 | return NEXTFOLD; |
2093 | if (IR(fleft->op2)->i != len) |
2094 | return DROPFOLD; |
2095 | } |
2096 | if (len > 0) { |
2097 | /* A 4 byte load for length 3 is ok -- all strings have an extra NUL. */ |
2098 | uint16_t ot = (uint16_t)(len == 1 ? IRT(IR_XLOAD, FOLD_SNEW_TYPE8) : |
2099 | len == 2 ? IRT(IR_XLOAD, IRT_U16) : |
2100 | IRTI(IR_XLOAD)); |
2101 | TRef tmp = emitir(ot, strref, |
2102 | IRXLOAD_READONLY | (len > 1 ? IRXLOAD_UNALIGNED : 0)); |
2103 | TRef val = kfold_xload(J, IR(tref_ref(tmp)), strdata(kstr)); |
2104 | if (len == 3) |
2105 | tmp = emitir(IRTI(IR_BAND), tmp, |
2106 | lj_ir_kint(J, LJ_ENDIAN_SELECT(0x00ffffff, 0xffffff00))); |
2107 | fins->op1 = (IRRef1)tmp; |
2108 | fins->op2 = (IRRef1)val; |
2109 | fins->ot = (IROpT)IRTGI(op); |
2110 | return RETRYFOLD; |
2111 | } else { |
2112 | return DROPFOLD; |
2113 | } |
2114 | } |
2115 | return NEXTFOLD; |
2116 | } |
2117 | |
2118 | /* -- Loads --------------------------------------------------------------- */ |
2119 | |
2120 | /* Loads cannot be folded or passed on to CSE in general. |
2121 | ** Alias analysis is needed to check for forwarding opportunities. |
2122 | ** |
2123 | ** Caveat: *all* loads must be listed here or they end up at CSE! |
2124 | */ |
2125 | |
2126 | LJFOLD(ALOAD any) |
2127 | LJFOLDX(lj_opt_fwd_aload) |
2128 | |
2129 | /* From HREF fwd (see below). Must eliminate, not supported by fwd/backend. */ |
2130 | LJFOLD(HLOAD KKPTR) |
2131 | LJFOLDF(kfold_hload_kkptr) |
2132 | { |
2133 | UNUSED(J); |
2134 | lj_assertJ(ir_kptr(fleft) == niltvg(J2G(J)), "expected niltv" ); |
2135 | return TREF_NIL; |
2136 | } |
2137 | |
2138 | LJFOLD(HLOAD any) |
2139 | LJFOLDX(lj_opt_fwd_hload) |
2140 | |
2141 | LJFOLD(ULOAD any) |
2142 | LJFOLDX(lj_opt_fwd_uload) |
2143 | |
2144 | LJFOLD(ALEN any any) |
2145 | LJFOLDX(lj_opt_fwd_alen) |
2146 | |
2147 | /* Upvalue refs are really loads, but there are no corresponding stores. |
2148 | ** So CSE is ok for them, except for UREFO across a GC step (see below). |
2149 | ** If the referenced function is const, its upvalue addresses are const, too. |
2150 | ** This can be used to improve CSE by looking for the same address, |
2151 | ** even if the upvalues originate from a different function. |
2152 | */ |
2153 | LJFOLD(UREFO KGC any) |
2154 | LJFOLD(UREFC KGC any) |
2155 | LJFOLDF(cse_uref) |
2156 | { |
2157 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
2158 | IRRef ref = J->chain[fins->o]; |
2159 | GCfunc *fn = ir_kfunc(fleft); |
2160 | GCupval *uv = gco2uv(gcref(fn->l.uvptr[(fins->op2 >> 8)])); |
2161 | while (ref > 0) { |
2162 | IRIns *ir = IR(ref); |
2163 | if (irref_isk(ir->op1)) { |
2164 | GCfunc *fn2 = ir_kfunc(IR(ir->op1)); |
2165 | if (gco2uv(gcref(fn2->l.uvptr[(ir->op2 >> 8)])) == uv) { |
2166 | if (fins->o == IR_UREFO && gcstep_barrier(J, ref)) |
2167 | break; |
2168 | return ref; |
2169 | } |
2170 | } |
2171 | ref = ir->prev; |
2172 | } |
2173 | } |
2174 | return EMITFOLD; |
2175 | } |
2176 | |
2177 | LJFOLD(HREFK any any) |
2178 | LJFOLDX(lj_opt_fwd_hrefk) |
2179 | |
2180 | LJFOLD(HREF TNEW any) |
2181 | LJFOLDF(fwd_href_tnew) |
2182 | { |
2183 | if (lj_opt_fwd_href_nokey(J)) |
2184 | return lj_ir_kkptr(J, niltvg(J2G(J))); |
2185 | return NEXTFOLD; |
2186 | } |
2187 | |
2188 | LJFOLD(HREF TDUP KPRI) |
2189 | LJFOLD(HREF TDUP KGC) |
2190 | LJFOLD(HREF TDUP KNUM) |
2191 | LJFOLDF(fwd_href_tdup) |
2192 | { |
2193 | TValue keyv; |
2194 | lj_ir_kvalue(J->L, &keyv, fright); |
2195 | if (lj_tab_get(J->L, ir_ktab(IR(fleft->op1)), &keyv) == niltvg(J2G(J)) && |
2196 | lj_opt_fwd_href_nokey(J)) |
2197 | return lj_ir_kkptr(J, niltvg(J2G(J))); |
2198 | return NEXTFOLD; |
2199 | } |
2200 | |
2201 | /* We can safely FOLD/CSE array/hash refs and field loads, since there |
2202 | ** are no corresponding stores. But we need to check for any NEWREF with |
2203 | ** an aliased table, as it may invalidate all of the pointers and fields. |
2204 | ** Only HREF needs the NEWREF check -- AREF and HREFK already depend on |
2205 | ** FLOADs. And NEWREF itself is treated like a store (see below). |
2206 | ** LREF is constant (per trace) since coroutine switches are not inlined. |
2207 | */ |
2208 | LJFOLD(FLOAD TNEW IRFL_TAB_ASIZE) |
2209 | LJFOLDF(fload_tab_tnew_asize) |
2210 | { |
2211 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
2212 | return INTFOLD(fleft->op1); |
2213 | return NEXTFOLD; |
2214 | } |
2215 | |
2216 | LJFOLD(FLOAD TNEW IRFL_TAB_HMASK) |
2217 | LJFOLDF(fload_tab_tnew_hmask) |
2218 | { |
2219 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
2220 | return INTFOLD((1 << fleft->op2)-1); |
2221 | return NEXTFOLD; |
2222 | } |
2223 | |
2224 | LJFOLD(FLOAD TDUP IRFL_TAB_ASIZE) |
2225 | LJFOLDF(fload_tab_tdup_asize) |
2226 | { |
2227 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
2228 | return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->asize); |
2229 | return NEXTFOLD; |
2230 | } |
2231 | |
2232 | LJFOLD(FLOAD TDUP IRFL_TAB_HMASK) |
2233 | LJFOLDF(fload_tab_tdup_hmask) |
2234 | { |
2235 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && lj_opt_fwd_tptr(J, fins->op1)) |
2236 | return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->hmask); |
2237 | return NEXTFOLD; |
2238 | } |
2239 | |
2240 | LJFOLD(HREF any any) |
2241 | LJFOLD(FLOAD any IRFL_TAB_ARRAY) |
2242 | LJFOLD(FLOAD any IRFL_TAB_NODE) |
2243 | LJFOLD(FLOAD any IRFL_TAB_ASIZE) |
2244 | LJFOLD(FLOAD any IRFL_TAB_HMASK) |
2245 | LJFOLDF(fload_tab_ah) |
2246 | { |
2247 | TRef tr = lj_opt_cse(J); |
2248 | return lj_opt_fwd_tptr(J, tref_ref(tr)) ? tr : EMITFOLD; |
2249 | } |
2250 | |
2251 | /* Strings are immutable, so we can safely FOLD/CSE the related FLOAD. */ |
2252 | LJFOLD(FLOAD KGC IRFL_STR_LEN) |
2253 | LJFOLDF(fload_str_len_kgc) |
2254 | { |
2255 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
2256 | return INTFOLD((int32_t)ir_kstr(fleft)->len); |
2257 | return NEXTFOLD; |
2258 | } |
2259 | |
2260 | LJFOLD(FLOAD SNEW IRFL_STR_LEN) |
2261 | LJFOLDF(fload_str_len_snew) |
2262 | { |
2263 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { |
2264 | PHIBARRIER(fleft); |
2265 | return fleft->op2; |
2266 | } |
2267 | return NEXTFOLD; |
2268 | } |
2269 | |
2270 | LJFOLD(FLOAD TOSTR IRFL_STR_LEN) |
2271 | LJFOLDF(fload_str_len_tostr) |
2272 | { |
2273 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fleft->op2 == IRTOSTR_CHAR) |
2274 | return INTFOLD(1); |
2275 | return NEXTFOLD; |
2276 | } |
2277 | |
2278 | /* The C type ID of cdata objects is immutable. */ |
2279 | LJFOLD(FLOAD KGC IRFL_CDATA_CTYPEID) |
2280 | LJFOLDF(fload_cdata_typeid_kgc) |
2281 | { |
2282 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
2283 | return INTFOLD((int32_t)ir_kcdata(fleft)->ctypeid); |
2284 | return NEXTFOLD; |
2285 | } |
2286 | |
2287 | /* Get the contents of immutable cdata objects. */ |
2288 | LJFOLD(FLOAD KGC IRFL_CDATA_PTR) |
2289 | LJFOLD(FLOAD KGC IRFL_CDATA_INT) |
2290 | LJFOLD(FLOAD KGC IRFL_CDATA_INT64) |
2291 | LJFOLDF(fload_cdata_int64_kgc) |
2292 | { |
2293 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) { |
2294 | void *p = cdataptr(ir_kcdata(fleft)); |
2295 | if (irt_is64(fins->t)) |
2296 | return INT64FOLD(*(uint64_t *)p); |
2297 | else |
2298 | return INTFOLD(*(int32_t *)p); |
2299 | } |
2300 | return NEXTFOLD; |
2301 | } |
2302 | |
2303 | LJFOLD(FLOAD CNEW IRFL_CDATA_CTYPEID) |
2304 | LJFOLD(FLOAD CNEWI IRFL_CDATA_CTYPEID) |
2305 | LJFOLDF(fload_cdata_typeid_cnew) |
2306 | { |
2307 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
2308 | return fleft->op1; /* No PHI barrier needed. CNEW/CNEWI op1 is const. */ |
2309 | return NEXTFOLD; |
2310 | } |
2311 | |
2312 | /* Pointer, int and int64 cdata objects are immutable. */ |
2313 | LJFOLD(FLOAD CNEWI IRFL_CDATA_PTR) |
2314 | LJFOLD(FLOAD CNEWI IRFL_CDATA_INT) |
2315 | LJFOLD(FLOAD CNEWI IRFL_CDATA_INT64) |
2316 | LJFOLDF(fload_cdata_ptr_int64_cnew) |
2317 | { |
2318 | if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD)) |
2319 | return fleft->op2; /* Fold even across PHI to avoid allocations. */ |
2320 | return NEXTFOLD; |
2321 | } |
2322 | |
2323 | LJFOLD(FLOAD any IRFL_STR_LEN) |
2324 | LJFOLD(FLOAD any IRFL_FUNC_ENV) |
2325 | LJFOLD(FLOAD any IRFL_THREAD_ENV) |
2326 | LJFOLD(FLOAD any IRFL_CDATA_CTYPEID) |
2327 | LJFOLD(FLOAD any IRFL_CDATA_PTR) |
2328 | LJFOLD(FLOAD any IRFL_CDATA_INT) |
2329 | LJFOLD(FLOAD any IRFL_CDATA_INT64) |
2330 | LJFOLD(VLOAD any any) /* Vararg loads have no corresponding stores. */ |
2331 | LJFOLDX(lj_opt_cse) |
2332 | |
2333 | /* All other field loads need alias analysis. */ |
2334 | LJFOLD(FLOAD any any) |
2335 | LJFOLDX(lj_opt_fwd_fload) |
2336 | |
2337 | /* This is for LOOP only. Recording handles SLOADs internally. */ |
2338 | LJFOLD(SLOAD any any) |
2339 | LJFOLDF(fwd_sload) |
2340 | { |
2341 | if ((fins->op2 & IRSLOAD_FRAME)) { |
2342 | TRef tr = lj_opt_cse(J); |
2343 | return tref_ref(tr) < J->chain[IR_RETF] ? EMITFOLD : tr; |
2344 | } else { |
2345 | lj_assertJ(J->slot[fins->op1] != 0, "uninitialized slot accessed" ); |
2346 | return J->slot[fins->op1]; |
2347 | } |
2348 | } |
2349 | |
2350 | /* Only fold for KKPTR. The pointer _and_ the contents must be const. */ |
2351 | LJFOLD(XLOAD KKPTR any) |
2352 | LJFOLDF(xload_kptr) |
2353 | { |
2354 | TRef tr = kfold_xload(J, fins, ir_kptr(fleft)); |
2355 | return tr ? tr : NEXTFOLD; |
2356 | } |
2357 | |
2358 | LJFOLD(XLOAD any any) |
2359 | LJFOLDX(lj_opt_fwd_xload) |
2360 | |
2361 | /* -- Write barriers ------------------------------------------------------ */ |
2362 | |
2363 | /* Write barriers are amenable to CSE, but not across any incremental |
2364 | ** GC steps. |
2365 | ** |
2366 | ** The same logic applies to open upvalue references, because a stack |
2367 | ** may be resized during a GC step (not the current stack, but maybe that |
2368 | ** of a coroutine). |
2369 | */ |
2370 | LJFOLD(TBAR any) |
2371 | LJFOLD(OBAR any any) |
2372 | LJFOLD(UREFO any any) |
2373 | LJFOLDF(barrier_tab) |
2374 | { |
2375 | TRef tr = lj_opt_cse(J); |
2376 | if (gcstep_barrier(J, tref_ref(tr))) /* CSE across GC step? */ |
2377 | return EMITFOLD; /* Raw emit. Assumes fins is left intact by CSE. */ |
2378 | return tr; |
2379 | } |
2380 | |
2381 | LJFOLD(TBAR TNEW) |
2382 | LJFOLD(TBAR TDUP) |
2383 | LJFOLDF(barrier_tnew_tdup) |
2384 | { |
2385 | /* New tables are always white and never need a barrier. */ |
2386 | if (fins->op1 < J->chain[IR_LOOP]) /* Except across a GC step. */ |
2387 | return NEXTFOLD; |
2388 | return DROPFOLD; |
2389 | } |
2390 | |
2391 | /* -- Profiling ----------------------------------------------------------- */ |
2392 | |
2393 | LJFOLD(PROF any any) |
2394 | LJFOLDF(prof) |
2395 | { |
2396 | IRRef ref = J->chain[IR_PROF]; |
2397 | if (ref+1 == J->cur.nins) /* Drop neighbouring IR_PROF. */ |
2398 | return ref; |
2399 | return EMITFOLD; |
2400 | } |
2401 | |
2402 | /* -- Stores and allocations ---------------------------------------------- */ |
2403 | |
2404 | /* Stores and allocations cannot be folded or passed on to CSE in general. |
2405 | ** But some stores can be eliminated with dead-store elimination (DSE). |
2406 | ** |
2407 | ** Caveat: *all* stores and allocs must be listed here or they end up at CSE! |
2408 | */ |
2409 | |
2410 | LJFOLD(ASTORE any any) |
2411 | LJFOLD(HSTORE any any) |
2412 | LJFOLDX(lj_opt_dse_ahstore) |
2413 | |
2414 | LJFOLD(USTORE any any) |
2415 | LJFOLDX(lj_opt_dse_ustore) |
2416 | |
2417 | LJFOLD(FSTORE any any) |
2418 | LJFOLDX(lj_opt_dse_fstore) |
2419 | |
2420 | LJFOLD(XSTORE any any) |
2421 | LJFOLDX(lj_opt_dse_xstore) |
2422 | |
2423 | LJFOLD(NEWREF any any) /* Treated like a store. */ |
2424 | LJFOLD(CALLA any any) |
2425 | LJFOLD(CALLL any any) /* Safeguard fallback. */ |
2426 | LJFOLD(CALLS any any) |
2427 | LJFOLD(CALLXS any any) |
2428 | LJFOLD(XBAR) |
2429 | LJFOLD(RETF any any) /* Modifies BASE. */ |
2430 | LJFOLD(TNEW any any) |
2431 | LJFOLD(TDUP any) |
2432 | LJFOLD(CNEW any any) |
2433 | LJFOLD(XSNEW any any) |
2434 | LJFOLD(BUFHDR any any) |
2435 | LJFOLDX(lj_ir_emit) |
2436 | |
2437 | /* ------------------------------------------------------------------------ */ |
2438 | |
2439 | /* Every entry in the generated hash table is a 32 bit pattern: |
2440 | ** |
2441 | ** xxxxxxxx iiiiiii lllllll rrrrrrrrrr |
2442 | ** |
2443 | ** xxxxxxxx = 8 bit index into fold function table |
2444 | ** iiiiiii = 7 bit folded instruction opcode |
2445 | ** lllllll = 7 bit left instruction opcode |
2446 | ** rrrrrrrrrr = 8 bit right instruction opcode or 10 bits from literal field |
2447 | */ |
2448 | |
2449 | #include "lj_folddef.h" |
2450 | |
2451 | /* ------------------------------------------------------------------------ */ |
2452 | |
2453 | /* Fold IR instruction. */ |
2454 | TRef LJ_FASTCALL lj_opt_fold(jit_State *J) |
2455 | { |
2456 | uint32_t key, any; |
2457 | IRRef ref; |
2458 | |
2459 | if (LJ_UNLIKELY((J->flags & JIT_F_OPT_MASK) != JIT_F_OPT_DEFAULT)) { |
2460 | lj_assertJ(((JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE|JIT_F_OPT_DSE) | |
2461 | JIT_F_OPT_DEFAULT) == JIT_F_OPT_DEFAULT, |
2462 | "bad JIT_F_OPT_DEFAULT" ); |
2463 | /* Folding disabled? Chain to CSE, but not for loads/stores/allocs. */ |
2464 | if (!(J->flags & JIT_F_OPT_FOLD) && irm_kind(lj_ir_mode[fins->o]) == IRM_N) |
2465 | return lj_opt_cse(J); |
2466 | |
2467 | /* No FOLD, forwarding or CSE? Emit raw IR for loads, except for SLOAD. */ |
2468 | if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE)) != |
2469 | (JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE) && |
2470 | irm_kind(lj_ir_mode[fins->o]) == IRM_L && fins->o != IR_SLOAD) |
2471 | return lj_ir_emit(J); |
2472 | |
2473 | /* No FOLD or DSE? Emit raw IR for stores. */ |
2474 | if ((J->flags & (JIT_F_OPT_FOLD|JIT_F_OPT_DSE)) != |
2475 | (JIT_F_OPT_FOLD|JIT_F_OPT_DSE) && |
2476 | irm_kind(lj_ir_mode[fins->o]) == IRM_S) |
2477 | return lj_ir_emit(J); |
2478 | } |
2479 | |
2480 | /* Fold engine start/retry point. */ |
2481 | retry: |
2482 | /* Construct key from opcode and operand opcodes (unless literal/none). */ |
2483 | key = ((uint32_t)fins->o << 17); |
2484 | if (fins->op1 >= J->cur.nk) { |
2485 | key += (uint32_t)IR(fins->op1)->o << 10; |
2486 | *fleft = *IR(fins->op1); |
2487 | if (fins->op1 < REF_TRUE) |
2488 | fleft[1] = IR(fins->op1)[1]; |
2489 | } |
2490 | if (fins->op2 >= J->cur.nk) { |
2491 | key += (uint32_t)IR(fins->op2)->o; |
2492 | *fright = *IR(fins->op2); |
2493 | if (fins->op2 < REF_TRUE) |
2494 | fright[1] = IR(fins->op2)[1]; |
2495 | } else { |
2496 | key += (fins->op2 & 0x3ffu); /* Literal mask. Must include IRCONV_*MASK. */ |
2497 | } |
2498 | |
2499 | /* Check for a match in order from most specific to least specific. */ |
2500 | any = 0; |
2501 | for (;;) { |
2502 | uint32_t k = key | (any & 0x1ffff); |
2503 | uint32_t h = fold_hashkey(k); |
2504 | uint32_t fh = fold_hash[h]; /* Lookup key in semi-perfect hash table. */ |
2505 | if ((fh & 0xffffff) == k || (fh = fold_hash[h+1], (fh & 0xffffff) == k)) { |
2506 | ref = (IRRef)tref_ref(fold_func[fh >> 24](J)); |
2507 | if (ref != NEXTFOLD) |
2508 | break; |
2509 | } |
2510 | if (any == 0xfffff) /* Exhausted folding. Pass on to CSE. */ |
2511 | return lj_opt_cse(J); |
2512 | any = (any | (any >> 10)) ^ 0xffc00; |
2513 | } |
2514 | |
2515 | /* Return value processing, ordered by frequency. */ |
2516 | if (LJ_LIKELY(ref >= MAX_FOLD)) |
2517 | return TREF(ref, irt_t(IR(ref)->t)); |
2518 | if (ref == RETRYFOLD) |
2519 | goto retry; |
2520 | if (ref == KINTFOLD) |
2521 | return lj_ir_kint(J, fins->i); |
2522 | if (ref == FAILFOLD) |
2523 | lj_trace_err(J, LJ_TRERR_GFAIL); |
2524 | lj_assertJ(ref == DROPFOLD, "bad fold result" ); |
2525 | return REF_DROP; |
2526 | } |
2527 | |
2528 | /* -- Common-Subexpression Elimination ------------------------------------ */ |
2529 | |
2530 | /* CSE an IR instruction. This is very fast due to the skip-list chains. */ |
2531 | TRef LJ_FASTCALL lj_opt_cse(jit_State *J) |
2532 | { |
2533 | /* Avoid narrow to wide store-to-load forwarding stall */ |
2534 | IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); |
2535 | IROp op = fins->o; |
2536 | if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) { |
2537 | /* Limited search for same operands in per-opcode chain. */ |
2538 | IRRef ref = J->chain[op]; |
2539 | IRRef lim = fins->op1; |
2540 | if (fins->op2 > lim) lim = fins->op2; /* Relies on lit < REF_BIAS. */ |
2541 | while (ref > lim) { |
2542 | if (IR(ref)->op12 == op12) |
2543 | return TREF(ref, irt_t(IR(ref)->t)); /* Common subexpression found. */ |
2544 | ref = IR(ref)->prev; |
2545 | } |
2546 | } |
2547 | /* Otherwise emit IR (inlined for speed). */ |
2548 | { |
2549 | IRRef ref = lj_ir_nextins(J); |
2550 | IRIns *ir = IR(ref); |
2551 | ir->prev = J->chain[op]; |
2552 | ir->op12 = op12; |
2553 | J->chain[op] = (IRRef1)ref; |
2554 | ir->o = fins->o; |
2555 | J->guardemit.irt |= fins->t.irt; |
2556 | return TREF(ref, irt_t((ir->t = fins->t))); |
2557 | } |
2558 | } |
2559 | |
2560 | /* CSE with explicit search limit. */ |
2561 | TRef LJ_FASTCALL lj_opt_cselim(jit_State *J, IRRef lim) |
2562 | { |
2563 | IRRef ref = J->chain[fins->o]; |
2564 | IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16); |
2565 | while (ref > lim) { |
2566 | if (IR(ref)->op12 == op12) |
2567 | return ref; |
2568 | ref = IR(ref)->prev; |
2569 | } |
2570 | return lj_ir_emit(J); |
2571 | } |
2572 | |
2573 | /* ------------------------------------------------------------------------ */ |
2574 | |
2575 | #undef IR |
2576 | #undef fins |
2577 | #undef fleft |
2578 | #undef fright |
2579 | #undef knumleft |
2580 | #undef knumright |
2581 | #undef emitir |
2582 | |
2583 | #endif |
2584 | |