1 | /* |
2 | ** Memory access optimizations. |
3 | ** AA: Alias Analysis using high-level semantic disambiguation. |
4 | ** FWD: Load Forwarding (L2L) + Store Forwarding (S2L). |
5 | ** DSE: Dead-Store Elimination. |
6 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
7 | */ |
8 | |
9 | #define lj_opt_mem_c |
10 | #define LUA_CORE |
11 | |
12 | #include "lj_obj.h" |
13 | |
14 | #if LJ_HASJIT |
15 | |
16 | #include "lj_tab.h" |
17 | #include "lj_ir.h" |
18 | #include "lj_jit.h" |
19 | #include "lj_iropt.h" |
20 | #include "lj_ircall.h" |
21 | #include "lj_dispatch.h" |
22 | |
23 | /* Some local macros to save typing. Undef'd at the end. */ |
24 | #define IR(ref) (&J->cur.ir[(ref)]) |
25 | #define fins (&J->fold.ins) |
26 | #define fleft (J->fold.left) |
27 | #define fright (J->fold.right) |
28 | |
29 | /* |
30 | ** Caveat #1: return value is not always a TRef -- only use with tref_ref(). |
31 | ** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold(). |
32 | */ |
33 | |
34 | /* Return values from alias analysis. */ |
35 | typedef enum { |
36 | ALIAS_NO, /* The two refs CANNOT alias (exact). */ |
37 | ALIAS_MAY, /* The two refs MAY alias (inexact). */ |
38 | ALIAS_MUST /* The two refs MUST alias (exact). */ |
39 | } AliasRet; |
40 | |
41 | /* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */ |
42 | |
43 | /* Simplified escape analysis: check for intervening stores. */ |
44 | static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop) |
45 | { |
46 | IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */ |
47 | for (ir++; ir < stop; ir++) |
48 | if (ir->op2 == ref && |
49 | (ir->o == IR_ASTORE || ir->o == IR_HSTORE || |
50 | ir->o == IR_USTORE || ir->o == IR_FSTORE)) |
51 | return ALIAS_MAY; /* Reference was stored and might alias. */ |
52 | return ALIAS_NO; /* Reference was not stored. */ |
53 | } |
54 | |
55 | /* Alias analysis for two different table references. */ |
56 | static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb) |
57 | { |
58 | IRIns *taba = IR(ta), *tabb = IR(tb); |
59 | int newa, newb; |
60 | lj_assertJ(ta != tb, "bad usage" ); |
61 | lj_assertJ(irt_istab(taba->t) && irt_istab(tabb->t), "bad usage" ); |
62 | /* Disambiguate new allocations. */ |
63 | newa = (taba->o == IR_TNEW || taba->o == IR_TDUP); |
64 | newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP); |
65 | if (newa && newb) |
66 | return ALIAS_NO; /* Two different allocations never alias. */ |
67 | if (newb) { /* At least one allocation? */ |
68 | IRIns *tmp = taba; taba = tabb; tabb = tmp; |
69 | } else if (!newa) { |
70 | return ALIAS_MAY; /* Anything else: we just don't know. */ |
71 | } |
72 | return aa_escape(J, taba, tabb); |
73 | } |
74 | |
75 | /* Alias analysis for array and hash access using key-based disambiguation. */ |
76 | static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb) |
77 | { |
78 | IRRef ka = refa->op2; |
79 | IRRef kb = refb->op2; |
80 | IRIns *keya, *keyb; |
81 | IRRef ta, tb; |
82 | if (refa == refb) |
83 | return ALIAS_MUST; /* Shortcut for same refs. */ |
84 | keya = IR(ka); |
85 | if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); } |
86 | keyb = IR(kb); |
87 | if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); } |
88 | ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1; |
89 | tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1; |
90 | if (ka == kb) { |
91 | /* Same key. Check for same table with different ref (NEWREF vs. HREF). */ |
92 | if (ta == tb) |
93 | return ALIAS_MUST; /* Same key, same table. */ |
94 | else |
95 | return aa_table(J, ta, tb); /* Same key, possibly different table. */ |
96 | } |
97 | if (irref_isk(ka) && irref_isk(kb)) |
98 | return ALIAS_NO; /* Different constant keys. */ |
99 | if (refa->o == IR_AREF) { |
100 | /* Disambiguate array references based on index arithmetic. */ |
101 | int32_t ofsa = 0, ofsb = 0; |
102 | IRRef basea = ka, baseb = kb; |
103 | lj_assertJ(refb->o == IR_AREF, "expected AREF" ); |
104 | /* Gather base and offset from t[base] or t[base+-ofs]. */ |
105 | if (keya->o == IR_ADD && irref_isk(keya->op2)) { |
106 | basea = keya->op1; |
107 | ofsa = IR(keya->op2)->i; |
108 | if (basea == kb && ofsa != 0) |
109 | return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */ |
110 | } |
111 | if (keyb->o == IR_ADD && irref_isk(keyb->op2)) { |
112 | baseb = keyb->op1; |
113 | ofsb = IR(keyb->op2)->i; |
114 | if (ka == baseb && ofsb != 0) |
115 | return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */ |
116 | } |
117 | if (basea == baseb && ofsa != ofsb) |
118 | return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */ |
119 | } else { |
120 | /* Disambiguate hash references based on the type of their keys. */ |
121 | lj_assertJ((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) && |
122 | (refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF), |
123 | "bad xREF IR op %d or %d" , refa->o, refb->o); |
124 | if (!irt_sametype(keya->t, keyb->t)) |
125 | return ALIAS_NO; /* Different key types. */ |
126 | } |
127 | if (ta == tb) |
128 | return ALIAS_MAY; /* Same table, cannot disambiguate keys. */ |
129 | else |
130 | return aa_table(J, ta, tb); /* Try to disambiguate tables. */ |
131 | } |
132 | |
133 | /* Array and hash load forwarding. */ |
134 | static TRef fwd_ahload(jit_State *J, IRRef xref) |
135 | { |
136 | IRIns *xr = IR(xref); |
137 | IRRef lim = xref; /* Search limit. */ |
138 | IRRef ref; |
139 | |
140 | /* Search for conflicting stores. */ |
141 | ref = J->chain[fins->o+IRDELTA_L2S]; |
142 | while (ref > xref) { |
143 | IRIns *store = IR(ref); |
144 | switch (aa_ahref(J, xr, IR(store->op1))) { |
145 | case ALIAS_NO: break; /* Continue searching. */ |
146 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
147 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
148 | } |
149 | ref = store->prev; |
150 | } |
151 | |
152 | /* No conflicting store (yet): const-fold loads from allocations. */ |
153 | { |
154 | IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr; |
155 | IRRef tab = ir->op1; |
156 | ir = IR(tab); |
157 | if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) { |
158 | /* A NEWREF with a number key may end up pointing to the array part. |
159 | ** But it's referenced from HSTORE and not found in the ASTORE chain. |
160 | ** For now simply consider this a conflict without forwarding anything. |
161 | */ |
162 | if (xr->o == IR_AREF) { |
163 | IRRef ref2 = J->chain[IR_NEWREF]; |
164 | while (ref2 > tab) { |
165 | IRIns *newref = IR(ref2); |
166 | if (irt_isnum(IR(newref->op2)->t)) |
167 | goto cselim; |
168 | ref2 = newref->prev; |
169 | } |
170 | } |
171 | /* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF. |
172 | ** But the above search for conflicting stores was limited by xref. |
173 | ** So continue searching, limited by the TNEW/TDUP. Store forwarding |
174 | ** is ok, too. A conflict does NOT limit the search for a matching load. |
175 | */ |
176 | while (ref > tab) { |
177 | IRIns *store = IR(ref); |
178 | switch (aa_ahref(J, xr, IR(store->op1))) { |
179 | case ALIAS_NO: break; /* Continue searching. */ |
180 | case ALIAS_MAY: goto cselim; /* Conflicting store. */ |
181 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
182 | } |
183 | ref = store->prev; |
184 | } |
185 | if (ir->o == IR_TNEW && !irt_isnil(fins->t)) |
186 | return 0; /* Type instability in loop-carried dependency. */ |
187 | if (irt_ispri(fins->t)) { |
188 | return TREF_PRI(irt_type(fins->t)); |
189 | } else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) || |
190 | irt_isstr(fins->t)) { |
191 | TValue keyv; |
192 | cTValue *tv; |
193 | IRIns *key = IR(xr->op2); |
194 | if (key->o == IR_KSLOT) key = IR(key->op1); |
195 | lj_ir_kvalue(J->L, &keyv, key); |
196 | tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv); |
197 | lj_assertJ(itype2irt(tv) == irt_type(fins->t), |
198 | "mismatched type in constant table" ); |
199 | if (irt_isnum(fins->t)) |
200 | return lj_ir_knum_u64(J, tv->u64); |
201 | else if (LJ_DUALNUM && irt_isint(fins->t)) |
202 | return lj_ir_kint(J, intV(tv)); |
203 | else |
204 | return lj_ir_kstr(J, strV(tv)); |
205 | } |
206 | /* Othwerwise: don't intern as a constant. */ |
207 | } |
208 | } |
209 | |
210 | cselim: |
211 | /* Try to find a matching load. Below the conflicting store, if any. */ |
212 | ref = J->chain[fins->o]; |
213 | while (ref > lim) { |
214 | IRIns *load = IR(ref); |
215 | if (load->op1 == xref) |
216 | return ref; /* Load forwarding. */ |
217 | ref = load->prev; |
218 | } |
219 | return 0; /* Conflict or no match. */ |
220 | } |
221 | |
222 | /* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */ |
223 | static TRef fwd_aload_reassoc(jit_State *J) |
224 | { |
225 | IRIns *irx = IR(fins->op1); |
226 | IRIns *key = IR(irx->op2); |
227 | if (key->o == IR_ADD && irref_isk(key->op2)) { |
228 | IRIns *add2 = IR(key->op1); |
229 | if (add2->o == IR_ADD && irref_isk(add2->op2) && |
230 | IR(key->op2)->i == -IR(add2->op2)->i) { |
231 | IRRef ref = J->chain[IR_AREF]; |
232 | IRRef lim = add2->op1; |
233 | if (irx->op1 > lim) lim = irx->op1; |
234 | while (ref > lim) { |
235 | IRIns *ir = IR(ref); |
236 | if (ir->op1 == irx->op1 && ir->op2 == add2->op1) |
237 | return fwd_ahload(J, ref); |
238 | ref = ir->prev; |
239 | } |
240 | } |
241 | } |
242 | return 0; |
243 | } |
244 | |
245 | /* ALOAD forwarding. */ |
246 | TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J) |
247 | { |
248 | IRRef ref; |
249 | if ((ref = fwd_ahload(J, fins->op1)) || |
250 | (ref = fwd_aload_reassoc(J))) |
251 | return ref; |
252 | return EMITFOLD; |
253 | } |
254 | |
255 | /* HLOAD forwarding. */ |
256 | TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J) |
257 | { |
258 | IRRef ref = fwd_ahload(J, fins->op1); |
259 | if (ref) |
260 | return ref; |
261 | return EMITFOLD; |
262 | } |
263 | |
264 | /* HREFK forwarding. */ |
265 | TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J) |
266 | { |
267 | IRRef tab = fleft->op1; |
268 | IRRef ref = J->chain[IR_NEWREF]; |
269 | while (ref > tab) { |
270 | IRIns *newref = IR(ref); |
271 | if (tab == newref->op1) { |
272 | if (fright->op1 == newref->op2) |
273 | return ref; /* Forward from NEWREF. */ |
274 | else |
275 | goto docse; |
276 | } else if (aa_table(J, tab, newref->op1) != ALIAS_NO) { |
277 | goto docse; |
278 | } |
279 | ref = newref->prev; |
280 | } |
281 | /* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */ |
282 | if (IR(tab)->o == IR_TDUP) |
283 | fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */ |
284 | docse: |
285 | return CSEFOLD; |
286 | } |
287 | |
288 | /* Check whether HREF of TNEW/TDUP can be folded to niltv. */ |
289 | int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J) |
290 | { |
291 | IRRef lim = fins->op1; /* Search limit. */ |
292 | IRRef ref; |
293 | |
294 | /* The key for an ASTORE may end up in the hash part after a NEWREF. */ |
295 | if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) { |
296 | ref = J->chain[IR_ASTORE]; |
297 | while (ref > lim) { |
298 | if (ref < J->chain[IR_NEWREF]) |
299 | return 0; /* Conflict. */ |
300 | ref = IR(ref)->prev; |
301 | } |
302 | } |
303 | |
304 | /* Search for conflicting stores. */ |
305 | ref = J->chain[IR_HSTORE]; |
306 | while (ref > lim) { |
307 | IRIns *store = IR(ref); |
308 | if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO) |
309 | return 0; /* Conflict. */ |
310 | ref = store->prev; |
311 | } |
312 | |
313 | return 1; /* No conflict. Can fold to niltv. */ |
314 | } |
315 | |
316 | /* Check whether there's no aliasing table.clear. */ |
317 | static int fwd_aa_tab_clear(jit_State *J, IRRef lim, IRRef ta) |
318 | { |
319 | IRRef ref = J->chain[IR_CALLS]; |
320 | while (ref > lim) { |
321 | IRIns *calls = IR(ref); |
322 | if (calls->op2 == IRCALL_lj_tab_clear && |
323 | (ta == calls->op1 || aa_table(J, ta, calls->op1) != ALIAS_NO)) |
324 | return 0; /* Conflict. */ |
325 | ref = calls->prev; |
326 | } |
327 | return 1; /* No conflict. Can safely FOLD/CSE. */ |
328 | } |
329 | |
330 | /* Check whether there's no aliasing NEWREF/table.clear for the left operand. */ |
331 | int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim) |
332 | { |
333 | IRRef ta = fins->op1; |
334 | IRRef ref = J->chain[IR_NEWREF]; |
335 | while (ref > lim) { |
336 | IRIns *newref = IR(ref); |
337 | if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO) |
338 | return 0; /* Conflict. */ |
339 | ref = newref->prev; |
340 | } |
341 | return fwd_aa_tab_clear(J, lim, ta); |
342 | } |
343 | |
344 | /* ASTORE/HSTORE elimination. */ |
345 | TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J) |
346 | { |
347 | IRRef xref = fins->op1; /* xREF reference. */ |
348 | IRRef val = fins->op2; /* Stored value reference. */ |
349 | IRIns *xr = IR(xref); |
350 | IRRef1 *refp = &J->chain[fins->o]; |
351 | IRRef ref = *refp; |
352 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
353 | IRIns *store = IR(ref); |
354 | switch (aa_ahref(J, xr, IR(store->op1))) { |
355 | case ALIAS_NO: |
356 | break; /* Continue searching. */ |
357 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
358 | if (store->op2 != val) /* Conflict if the value is different. */ |
359 | goto doemit; |
360 | break; /* Otherwise continue searching. */ |
361 | case ALIAS_MUST: /* Store to the same location. */ |
362 | if (store->op2 == val) /* Same value: drop the new store. */ |
363 | return DROPFOLD; |
364 | /* Different value: try to eliminate the redundant store. */ |
365 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
366 | IRIns *ir; |
367 | /* Check for any intervening guards (includes conflicting loads). */ |
368 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
369 | if (irt_isguard(ir->t) || ir->o == IR_ALEN) |
370 | goto doemit; /* No elimination possible. */ |
371 | /* Remove redundant store from chain and replace with NOP. */ |
372 | *refp = store->prev; |
373 | lj_ir_nop(store); |
374 | /* Now emit the new store instead. */ |
375 | } |
376 | goto doemit; |
377 | } |
378 | ref = *(refp = &store->prev); |
379 | } |
380 | doemit: |
381 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
382 | } |
383 | |
384 | /* ALEN forwarding. */ |
385 | TRef LJ_FASTCALL lj_opt_fwd_alen(jit_State *J) |
386 | { |
387 | IRRef tab = fins->op1; /* Table reference. */ |
388 | IRRef lim = tab; /* Search limit. */ |
389 | IRRef ref; |
390 | |
391 | /* Search for conflicting HSTORE with numeric key. */ |
392 | ref = J->chain[IR_HSTORE]; |
393 | while (ref > lim) { |
394 | IRIns *store = IR(ref); |
395 | IRIns *href = IR(store->op1); |
396 | IRIns *key = IR(href->op2); |
397 | if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) { |
398 | lim = ref; /* Conflicting store found, limits search for ALEN. */ |
399 | break; |
400 | } |
401 | ref = store->prev; |
402 | } |
403 | |
404 | /* Try to find a matching ALEN. */ |
405 | ref = J->chain[IR_ALEN]; |
406 | while (ref > lim) { |
407 | /* CSE for ALEN only depends on the table, not the hint. */ |
408 | if (IR(ref)->op1 == tab) { |
409 | IRRef sref; |
410 | |
411 | /* Search for aliasing table.clear. */ |
412 | if (!fwd_aa_tab_clear(J, ref, tab)) |
413 | break; |
414 | |
415 | /* Search for hint-forwarding or conflicting store. */ |
416 | sref = J->chain[IR_ASTORE]; |
417 | while (sref > ref) { |
418 | IRIns *store = IR(sref); |
419 | IRIns *aref = IR(store->op1); |
420 | IRIns *fref = IR(aref->op1); |
421 | if (tab == fref->op1) { /* ASTORE to the same table. */ |
422 | /* Detect t[#t+1] = x idiom for push. */ |
423 | IRIns *idx = IR(aref->op2); |
424 | if (!irt_isnil(store->t) && |
425 | idx->o == IR_ADD && idx->op1 == ref && |
426 | IR(idx->op2)->o == IR_KINT && IR(idx->op2)->i == 1) { |
427 | /* Note: this requires an extra PHI check in loop unroll. */ |
428 | fins->op2 = aref->op2; /* Set ALEN hint. */ |
429 | } |
430 | goto doemit; /* Conflicting store, possibly giving a hint. */ |
431 | } else if (aa_table(J, tab, fref->op1) == ALIAS_NO) { |
432 | goto doemit; /* Conflicting store. */ |
433 | } |
434 | sref = store->prev; |
435 | } |
436 | |
437 | return ref; /* Plain ALEN forwarding. */ |
438 | } |
439 | ref = IR(ref)->prev; |
440 | } |
441 | doemit: |
442 | return EMITFOLD; |
443 | } |
444 | |
445 | /* -- ULOAD forwarding ---------------------------------------------------- */ |
446 | |
447 | /* The current alias analysis for upvalues is very simplistic. It only |
448 | ** disambiguates between the unique upvalues of the same function. |
449 | ** This is good enough for now, since most upvalues are read-only. |
450 | ** |
451 | ** A more precise analysis would be feasible with the help of the parser: |
452 | ** generate a unique key for every upvalue, even across all prototypes. |
453 | ** Lacking a realistic use-case, it's unclear whether this is beneficial. |
454 | */ |
455 | static AliasRet aa_uref(IRIns *refa, IRIns *refb) |
456 | { |
457 | if (refa->o != refb->o) |
458 | return ALIAS_NO; /* Different UREFx type. */ |
459 | if (refa->op1 == refb->op1) { /* Same function. */ |
460 | if (refa->op2 == refb->op2) |
461 | return ALIAS_MUST; /* Same function, same upvalue idx. */ |
462 | else |
463 | return ALIAS_NO; /* Same function, different upvalue idx. */ |
464 | } else { /* Different functions, check disambiguation hash values. */ |
465 | if (((refa->op2 ^ refb->op2) & 0xff)) |
466 | return ALIAS_NO; /* Upvalues with different hash values cannot alias. */ |
467 | else |
468 | return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */ |
469 | } |
470 | } |
471 | |
472 | /* ULOAD forwarding. */ |
473 | TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J) |
474 | { |
475 | IRRef uref = fins->op1; |
476 | IRRef lim = REF_BASE; /* Search limit. */ |
477 | IRIns *xr = IR(uref); |
478 | IRRef ref; |
479 | |
480 | /* Search for conflicting stores. */ |
481 | ref = J->chain[IR_USTORE]; |
482 | while (ref > lim) { |
483 | IRIns *store = IR(ref); |
484 | switch (aa_uref(xr, IR(store->op1))) { |
485 | case ALIAS_NO: break; /* Continue searching. */ |
486 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
487 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
488 | } |
489 | ref = store->prev; |
490 | } |
491 | |
492 | cselim: |
493 | /* Try to find a matching load. Below the conflicting store, if any. */ |
494 | ref = J->chain[IR_ULOAD]; |
495 | while (ref > lim) { |
496 | IRIns *ir = IR(ref); |
497 | if (ir->op1 == uref || |
498 | (IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o)) |
499 | return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */ |
500 | ref = ir->prev; |
501 | } |
502 | return lj_ir_emit(J); |
503 | } |
504 | |
505 | /* USTORE elimination. */ |
506 | TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J) |
507 | { |
508 | IRRef xref = fins->op1; /* xREF reference. */ |
509 | IRRef val = fins->op2; /* Stored value reference. */ |
510 | IRIns *xr = IR(xref); |
511 | IRRef1 *refp = &J->chain[IR_USTORE]; |
512 | IRRef ref = *refp; |
513 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
514 | IRIns *store = IR(ref); |
515 | switch (aa_uref(xr, IR(store->op1))) { |
516 | case ALIAS_NO: |
517 | break; /* Continue searching. */ |
518 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
519 | if (store->op2 != val) /* Conflict if the value is different. */ |
520 | goto doemit; |
521 | break; /* Otherwise continue searching. */ |
522 | case ALIAS_MUST: /* Store to the same location. */ |
523 | if (store->op2 == val) /* Same value: drop the new store. */ |
524 | return DROPFOLD; |
525 | /* Different value: try to eliminate the redundant store. */ |
526 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
527 | IRIns *ir; |
528 | /* Check for any intervening guards (includes conflicting loads). */ |
529 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
530 | if (irt_isguard(ir->t)) |
531 | goto doemit; /* No elimination possible. */ |
532 | /* Remove redundant store from chain and replace with NOP. */ |
533 | *refp = store->prev; |
534 | lj_ir_nop(store); |
535 | if (ref+1 < J->cur.nins && |
536 | store[1].o == IR_OBAR && store[1].op1 == xref) { |
537 | IRRef1 *bp = &J->chain[IR_OBAR]; |
538 | IRIns *obar; |
539 | for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp)) |
540 | bp = &obar->prev; |
541 | /* Remove OBAR, too. */ |
542 | *bp = obar->prev; |
543 | lj_ir_nop(obar); |
544 | } |
545 | /* Now emit the new store instead. */ |
546 | } |
547 | goto doemit; |
548 | } |
549 | ref = *(refp = &store->prev); |
550 | } |
551 | doemit: |
552 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
553 | } |
554 | |
555 | /* -- FLOAD forwarding and FSTORE elimination ----------------------------- */ |
556 | |
557 | /* Alias analysis for field access. |
558 | ** Field loads are cheap and field stores are rare. |
559 | ** Simple disambiguation based on field types is good enough. |
560 | */ |
561 | static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb) |
562 | { |
563 | if (refa->op2 != refb->op2) |
564 | return ALIAS_NO; /* Different fields. */ |
565 | if (refa->op1 == refb->op1) |
566 | return ALIAS_MUST; /* Same field, same object. */ |
567 | else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM) |
568 | return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */ |
569 | else |
570 | return ALIAS_MAY; /* Same field, possibly different object. */ |
571 | } |
572 | |
573 | /* Only the loads for mutable fields end up here (see FOLD). */ |
574 | TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J) |
575 | { |
576 | IRRef oref = fins->op1; /* Object reference. */ |
577 | IRRef fid = fins->op2; /* Field ID. */ |
578 | IRRef lim = oref; /* Search limit. */ |
579 | IRRef ref; |
580 | |
581 | /* Search for conflicting stores. */ |
582 | ref = J->chain[IR_FSTORE]; |
583 | while (ref > oref) { |
584 | IRIns *store = IR(ref); |
585 | switch (aa_fref(J, fins, IR(store->op1))) { |
586 | case ALIAS_NO: break; /* Continue searching. */ |
587 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
588 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
589 | } |
590 | ref = store->prev; |
591 | } |
592 | |
593 | /* No conflicting store: const-fold field loads from allocations. */ |
594 | if (fid == IRFL_TAB_META) { |
595 | IRIns *ir = IR(oref); |
596 | if (ir->o == IR_TNEW || ir->o == IR_TDUP) |
597 | return lj_ir_knull(J, IRT_TAB); |
598 | } |
599 | |
600 | cselim: |
601 | /* Try to find a matching load. Below the conflicting store, if any. */ |
602 | return lj_opt_cselim(J, lim); |
603 | } |
604 | |
605 | /* FSTORE elimination. */ |
606 | TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J) |
607 | { |
608 | IRRef fref = fins->op1; /* FREF reference. */ |
609 | IRRef val = fins->op2; /* Stored value reference. */ |
610 | IRIns *xr = IR(fref); |
611 | IRRef1 *refp = &J->chain[IR_FSTORE]; |
612 | IRRef ref = *refp; |
613 | while (ref > fref) { /* Search for redundant or conflicting stores. */ |
614 | IRIns *store = IR(ref); |
615 | switch (aa_fref(J, xr, IR(store->op1))) { |
616 | case ALIAS_NO: |
617 | break; /* Continue searching. */ |
618 | case ALIAS_MAY: |
619 | if (store->op2 != val) /* Conflict if the value is different. */ |
620 | goto doemit; |
621 | break; /* Otherwise continue searching. */ |
622 | case ALIAS_MUST: |
623 | if (store->op2 == val) /* Same value: drop the new store. */ |
624 | return DROPFOLD; |
625 | /* Different value: try to eliminate the redundant store. */ |
626 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
627 | IRIns *ir; |
628 | /* Check for any intervening guards or conflicting loads. */ |
629 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
630 | if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2)) |
631 | goto doemit; /* No elimination possible. */ |
632 | /* Remove redundant store from chain and replace with NOP. */ |
633 | *refp = store->prev; |
634 | lj_ir_nop(store); |
635 | /* Now emit the new store instead. */ |
636 | } |
637 | goto doemit; |
638 | } |
639 | ref = *(refp = &store->prev); |
640 | } |
641 | doemit: |
642 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
643 | } |
644 | |
645 | /* -- XLOAD forwarding and XSTORE elimination ----------------------------- */ |
646 | |
647 | /* Find cdata allocation for a reference (if any). */ |
648 | static IRIns *aa_findcnew(jit_State *J, IRIns *ir) |
649 | { |
650 | while (ir->o == IR_ADD) { |
651 | if (!irref_isk(ir->op1)) { |
652 | IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */ |
653 | if (ir1) return ir1; |
654 | } |
655 | if (irref_isk(ir->op2)) return NULL; |
656 | ir = IR(ir->op2); /* Flatten right-recursion. */ |
657 | } |
658 | return ir->o == IR_CNEW ? ir : NULL; |
659 | } |
660 | |
661 | /* Alias analysis for two cdata allocations. */ |
662 | static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb) |
663 | { |
664 | IRIns *cnewa = aa_findcnew(J, refa); |
665 | IRIns *cnewb = aa_findcnew(J, refb); |
666 | if (cnewa == cnewb) |
667 | return ALIAS_MAY; /* Same allocation or neither is an allocation. */ |
668 | if (cnewa && cnewb) |
669 | return ALIAS_NO; /* Two different allocations never alias. */ |
670 | if (cnewb) { cnewa = cnewb; refb = refa; } |
671 | return aa_escape(J, cnewa, refb); |
672 | } |
673 | |
674 | /* Alias analysis for XLOAD/XSTORE. */ |
675 | static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb) |
676 | { |
677 | ptrdiff_t ofsa = 0, ofsb = 0; |
678 | IRIns *refb = IR(xb->op1); |
679 | IRIns *basea = refa, *baseb = refb; |
680 | if (refa == refb && irt_sametype(xa->t, xb->t)) |
681 | return ALIAS_MUST; /* Shortcut for same refs with identical type. */ |
682 | /* Offset-based disambiguation. */ |
683 | if (refa->o == IR_ADD && irref_isk(refa->op2)) { |
684 | IRIns *irk = IR(refa->op2); |
685 | basea = IR(refa->op1); |
686 | ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
687 | (ptrdiff_t)irk->i; |
688 | } |
689 | if (refb->o == IR_ADD && irref_isk(refb->op2)) { |
690 | IRIns *irk = IR(refb->op2); |
691 | baseb = IR(refb->op1); |
692 | ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
693 | (ptrdiff_t)irk->i; |
694 | } |
695 | /* Treat constified pointers like base vs. base+offset. */ |
696 | if (basea->o == IR_KPTR && baseb->o == IR_KPTR) { |
697 | ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea); |
698 | baseb = basea; |
699 | } |
700 | /* This implements (very) strict aliasing rules. |
701 | ** Different types do NOT alias, except for differences in signedness. |
702 | ** Type punning through unions is allowed (but forces a reload). |
703 | */ |
704 | if (basea == baseb) { |
705 | ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t); |
706 | if (ofsa == ofsb) { |
707 | if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t)) |
708 | return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */ |
709 | } else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) { |
710 | return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */ |
711 | } |
712 | /* NYI: extract, extend or reinterpret bits (int <-> fp). */ |
713 | return ALIAS_MAY; /* Overlapping or type punning: force reload. */ |
714 | } |
715 | if (!irt_sametype(xa->t, xb->t) && |
716 | !(irt_typerange(xa->t, IRT_I8, IRT_U64) && |
717 | ((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1)) |
718 | return ALIAS_NO; |
719 | /* NYI: structural disambiguation. */ |
720 | return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */ |
721 | } |
722 | |
723 | /* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */ |
724 | static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2) |
725 | { |
726 | IRRef ref = J->chain[op]; |
727 | IRRef lim = op1; |
728 | if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; } |
729 | while (ref > lim) { |
730 | IRIns *ir = IR(ref); |
731 | if (ir->op1 == op1 && ir->op2 == op2) |
732 | return ref; |
733 | ref = ir->prev; |
734 | } |
735 | return 0; |
736 | } |
737 | |
738 | /* Reassociate index references. */ |
739 | static IRRef reassoc_xref(jit_State *J, IRIns *ir) |
740 | { |
741 | ptrdiff_t ofs = 0; |
742 | if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */ |
743 | IRIns *irk = IR(ir->op2); |
744 | ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
745 | (ptrdiff_t)irk->i; |
746 | ir = IR(ir->op1); |
747 | } |
748 | if (ir->o == IR_ADD) { /* Add of base + index. */ |
749 | /* Index ref > base ref for loop-carried dependences. Only check op1. */ |
750 | IRIns *ir2, *ir1 = IR(ir->op1); |
751 | int32_t shift = 0; |
752 | IRRef idxref; |
753 | /* Determine index shifts. Don't bother with IR_MUL here. */ |
754 | if (ir1->o == IR_BSHL && irref_isk(ir1->op2)) |
755 | shift = IR(ir1->op2)->i; |
756 | else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2) |
757 | shift = 1; |
758 | else |
759 | ir1 = ir; |
760 | ir2 = IR(ir1->op1); |
761 | /* A non-reassociated add. Must be a loop-carried dependence. */ |
762 | if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2)) |
763 | ofs += (ptrdiff_t)IR(ir2->op2)->i << shift; |
764 | else |
765 | return 0; |
766 | idxref = ir2->op1; |
767 | /* Try to CSE the reassociated chain. Give up if not found. */ |
768 | if (ir1 != ir && |
769 | !(idxref = reassoc_trycse(J, ir1->o, idxref, |
770 | ir1->o == IR_BSHL ? ir1->op2 : idxref))) |
771 | return 0; |
772 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2))) |
773 | return 0; |
774 | if (ofs != 0) { |
775 | IRRef refk = tref_ref(lj_ir_kintp(J, ofs)); |
776 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk))) |
777 | return 0; |
778 | } |
779 | return idxref; /* Success, found a reassociated index reference. Phew. */ |
780 | } |
781 | return 0; /* Failure. */ |
782 | } |
783 | |
784 | /* XLOAD forwarding. */ |
785 | TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J) |
786 | { |
787 | IRRef xref = fins->op1; |
788 | IRIns *xr = IR(xref); |
789 | IRRef lim = xref; /* Search limit. */ |
790 | IRRef ref; |
791 | |
792 | if ((fins->op2 & IRXLOAD_READONLY)) |
793 | goto cselim; |
794 | if ((fins->op2 & IRXLOAD_VOLATILE)) |
795 | goto doemit; |
796 | |
797 | /* Search for conflicting stores. */ |
798 | ref = J->chain[IR_XSTORE]; |
799 | retry: |
800 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
801 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
802 | while (ref > lim) { |
803 | IRIns *store = IR(ref); |
804 | switch (aa_xref(J, xr, fins, store)) { |
805 | case ALIAS_NO: break; /* Continue searching. */ |
806 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
807 | case ALIAS_MUST: |
808 | /* Emit conversion if the loaded type doesn't match the forwarded type. */ |
809 | if (!irt_sametype(fins->t, IR(store->op2)->t)) { |
810 | IRType dt = irt_type(fins->t), st = irt_type(IR(store->op2)->t); |
811 | if (dt == IRT_I8 || dt == IRT_I16) { /* Trunc + sign-extend. */ |
812 | st = dt | IRCONV_SEXT; |
813 | dt = IRT_INT; |
814 | } else if (dt == IRT_U8 || dt == IRT_U16) { /* Trunc + zero-extend. */ |
815 | st = dt; |
816 | dt = IRT_INT; |
817 | } |
818 | fins->ot = IRT(IR_CONV, dt); |
819 | fins->op1 = store->op2; |
820 | fins->op2 = (dt<<5)|st; |
821 | return RETRYFOLD; |
822 | } |
823 | return store->op2; /* Store forwarding. */ |
824 | } |
825 | ref = store->prev; |
826 | } |
827 | |
828 | cselim: |
829 | /* Try to find a matching load. Below the conflicting store, if any. */ |
830 | ref = J->chain[IR_XLOAD]; |
831 | while (ref > lim) { |
832 | /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */ |
833 | if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t)) |
834 | return ref; |
835 | ref = IR(ref)->prev; |
836 | } |
837 | |
838 | /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */ |
839 | if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] && |
840 | xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) { |
841 | ref = J->chain[IR_XSTORE]; |
842 | while (ref > lim) /* Skip stores that have already been checked. */ |
843 | ref = IR(ref)->prev; |
844 | lim = xref; |
845 | xr = IR(xref); |
846 | goto retry; /* Retry with the reassociated reference. */ |
847 | } |
848 | doemit: |
849 | return EMITFOLD; |
850 | } |
851 | |
852 | /* XSTORE elimination. */ |
853 | TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J) |
854 | { |
855 | IRRef xref = fins->op1; |
856 | IRIns *xr = IR(xref); |
857 | IRRef lim = xref; /* Search limit. */ |
858 | IRRef val = fins->op2; /* Stored value reference. */ |
859 | IRRef1 *refp = &J->chain[IR_XSTORE]; |
860 | IRRef ref = *refp; |
861 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
862 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
863 | if (J->chain[IR_XSNEW] > lim) lim = J->chain[IR_XSNEW]; |
864 | while (ref > lim) { /* Search for redundant or conflicting stores. */ |
865 | IRIns *store = IR(ref); |
866 | switch (aa_xref(J, xr, fins, store)) { |
867 | case ALIAS_NO: |
868 | break; /* Continue searching. */ |
869 | case ALIAS_MAY: |
870 | if (store->op2 != val) /* Conflict if the value is different. */ |
871 | goto doemit; |
872 | break; /* Otherwise continue searching. */ |
873 | case ALIAS_MUST: |
874 | if (store->op2 == val) /* Same value: drop the new store. */ |
875 | return DROPFOLD; |
876 | /* Different value: try to eliminate the redundant store. */ |
877 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
878 | IRIns *ir; |
879 | /* Check for any intervening guards or any XLOADs (no AA performed). */ |
880 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
881 | if (irt_isguard(ir->t) || ir->o == IR_XLOAD) |
882 | goto doemit; /* No elimination possible. */ |
883 | /* Remove redundant store from chain and replace with NOP. */ |
884 | *refp = store->prev; |
885 | lj_ir_nop(store); |
886 | /* Now emit the new store instead. */ |
887 | } |
888 | goto doemit; |
889 | } |
890 | ref = *(refp = &store->prev); |
891 | } |
892 | doemit: |
893 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
894 | } |
895 | |
896 | /* -- ASTORE/HSTORE previous type analysis -------------------------------- */ |
897 | |
898 | /* Check whether the previous value for a table store is non-nil. |
899 | ** This can be derived either from a previous store or from a previous |
900 | ** load (because all loads from tables perform a type check). |
901 | ** |
902 | ** The result of the analysis can be used to avoid the metatable check |
903 | ** and the guard against HREF returning niltv. Both of these are cheap, |
904 | ** so let's not spend too much effort on the analysis. |
905 | ** |
906 | ** A result of 1 is exact: previous value CANNOT be nil. |
907 | ** A result of 0 is inexact: previous value MAY be nil. |
908 | */ |
909 | int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref) |
910 | { |
911 | /* First check stores. */ |
912 | IRRef ref = J->chain[loadop+IRDELTA_L2S]; |
913 | while (ref > xref) { |
914 | IRIns *store = IR(ref); |
915 | if (store->op1 == xref) { /* Same xREF. */ |
916 | /* A nil store MAY alias, but a non-nil store MUST alias. */ |
917 | return !irt_isnil(store->t); |
918 | } else if (irt_isnil(store->t)) { /* Must check any nil store. */ |
919 | IRRef skref = IR(store->op1)->op2; |
920 | IRRef xkref = IR(xref)->op2; |
921 | /* Same key type MAY alias. Need ALOAD check due to multiple int types. */ |
922 | if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) { |
923 | if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref)) |
924 | return 0; /* A nil store with same const key or var key MAY alias. */ |
925 | /* Different const keys CANNOT alias. */ |
926 | } /* Different key types CANNOT alias. */ |
927 | } /* Other non-nil stores MAY alias. */ |
928 | ref = store->prev; |
929 | } |
930 | |
931 | /* Check loads since nothing could be derived from stores. */ |
932 | ref = J->chain[loadop]; |
933 | while (ref > xref) { |
934 | IRIns *load = IR(ref); |
935 | if (load->op1 == xref) { /* Same xREF. */ |
936 | /* A nil load MAY alias, but a non-nil load MUST alias. */ |
937 | return !irt_isnil(load->t); |
938 | } /* Other non-nil loads MAY alias. */ |
939 | ref = load->prev; |
940 | } |
941 | return 0; /* Nothing derived at all, previous value MAY be nil. */ |
942 | } |
943 | |
944 | /* ------------------------------------------------------------------------ */ |
945 | |
946 | #undef IR |
947 | #undef fins |
948 | #undef fleft |
949 | #undef fright |
950 | |
951 | #endif |
952 | |