| 1 | /* |
| 2 | ** Memory access optimizations. |
| 3 | ** AA: Alias Analysis using high-level semantic disambiguation. |
| 4 | ** FWD: Load Forwarding (L2L) + Store Forwarding (S2L). |
| 5 | ** DSE: Dead-Store Elimination. |
| 6 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
| 7 | */ |
| 8 | |
| 9 | #define lj_opt_mem_c |
| 10 | #define LUA_CORE |
| 11 | |
| 12 | #include "lj_obj.h" |
| 13 | |
| 14 | #if LJ_HASJIT |
| 15 | |
| 16 | #include "lj_tab.h" |
| 17 | #include "lj_ir.h" |
| 18 | #include "lj_jit.h" |
| 19 | #include "lj_iropt.h" |
| 20 | #include "lj_ircall.h" |
| 21 | #include "lj_dispatch.h" |
| 22 | |
| 23 | /* Some local macros to save typing. Undef'd at the end. */ |
| 24 | #define IR(ref) (&J->cur.ir[(ref)]) |
| 25 | #define fins (&J->fold.ins) |
| 26 | #define fleft (J->fold.left) |
| 27 | #define fright (J->fold.right) |
| 28 | |
| 29 | /* |
| 30 | ** Caveat #1: return value is not always a TRef -- only use with tref_ref(). |
| 31 | ** Caveat #2: FWD relies on active CSE for xREF operands -- see lj_opt_fold(). |
| 32 | */ |
| 33 | |
| 34 | /* Return values from alias analysis. */ |
| 35 | typedef enum { |
| 36 | ALIAS_NO, /* The two refs CANNOT alias (exact). */ |
| 37 | ALIAS_MAY, /* The two refs MAY alias (inexact). */ |
| 38 | ALIAS_MUST /* The two refs MUST alias (exact). */ |
| 39 | } AliasRet; |
| 40 | |
| 41 | /* -- ALOAD/HLOAD forwarding and ASTORE/HSTORE elimination ---------------- */ |
| 42 | |
| 43 | /* Simplified escape analysis: check for intervening stores. */ |
| 44 | static AliasRet aa_escape(jit_State *J, IRIns *ir, IRIns *stop) |
| 45 | { |
| 46 | IRRef ref = (IRRef)(ir - J->cur.ir); /* The ref that might be stored. */ |
| 47 | for (ir++; ir < stop; ir++) |
| 48 | if (ir->op2 == ref && |
| 49 | (ir->o == IR_ASTORE || ir->o == IR_HSTORE || |
| 50 | ir->o == IR_USTORE || ir->o == IR_FSTORE)) |
| 51 | return ALIAS_MAY; /* Reference was stored and might alias. */ |
| 52 | return ALIAS_NO; /* Reference was not stored. */ |
| 53 | } |
| 54 | |
| 55 | /* Alias analysis for two different table references. */ |
| 56 | static AliasRet aa_table(jit_State *J, IRRef ta, IRRef tb) |
| 57 | { |
| 58 | IRIns *taba = IR(ta), *tabb = IR(tb); |
| 59 | int newa, newb; |
| 60 | lj_assertJ(ta != tb, "bad usage" ); |
| 61 | lj_assertJ(irt_istab(taba->t) && irt_istab(tabb->t), "bad usage" ); |
| 62 | /* Disambiguate new allocations. */ |
| 63 | newa = (taba->o == IR_TNEW || taba->o == IR_TDUP); |
| 64 | newb = (tabb->o == IR_TNEW || tabb->o == IR_TDUP); |
| 65 | if (newa && newb) |
| 66 | return ALIAS_NO; /* Two different allocations never alias. */ |
| 67 | if (newb) { /* At least one allocation? */ |
| 68 | IRIns *tmp = taba; taba = tabb; tabb = tmp; |
| 69 | } else if (!newa) { |
| 70 | return ALIAS_MAY; /* Anything else: we just don't know. */ |
| 71 | } |
| 72 | return aa_escape(J, taba, tabb); |
| 73 | } |
| 74 | |
| 75 | /* Alias analysis for array and hash access using key-based disambiguation. */ |
| 76 | static AliasRet aa_ahref(jit_State *J, IRIns *refa, IRIns *refb) |
| 77 | { |
| 78 | IRRef ka = refa->op2; |
| 79 | IRRef kb = refb->op2; |
| 80 | IRIns *keya, *keyb; |
| 81 | IRRef ta, tb; |
| 82 | if (refa == refb) |
| 83 | return ALIAS_MUST; /* Shortcut for same refs. */ |
| 84 | keya = IR(ka); |
| 85 | if (keya->o == IR_KSLOT) { ka = keya->op1; keya = IR(ka); } |
| 86 | keyb = IR(kb); |
| 87 | if (keyb->o == IR_KSLOT) { kb = keyb->op1; keyb = IR(kb); } |
| 88 | ta = (refa->o==IR_HREFK || refa->o==IR_AREF) ? IR(refa->op1)->op1 : refa->op1; |
| 89 | tb = (refb->o==IR_HREFK || refb->o==IR_AREF) ? IR(refb->op1)->op1 : refb->op1; |
| 90 | if (ka == kb) { |
| 91 | /* Same key. Check for same table with different ref (NEWREF vs. HREF). */ |
| 92 | if (ta == tb) |
| 93 | return ALIAS_MUST; /* Same key, same table. */ |
| 94 | else |
| 95 | return aa_table(J, ta, tb); /* Same key, possibly different table. */ |
| 96 | } |
| 97 | if (irref_isk(ka) && irref_isk(kb)) |
| 98 | return ALIAS_NO; /* Different constant keys. */ |
| 99 | if (refa->o == IR_AREF) { |
| 100 | /* Disambiguate array references based on index arithmetic. */ |
| 101 | int32_t ofsa = 0, ofsb = 0; |
| 102 | IRRef basea = ka, baseb = kb; |
| 103 | lj_assertJ(refb->o == IR_AREF, "expected AREF" ); |
| 104 | /* Gather base and offset from t[base] or t[base+-ofs]. */ |
| 105 | if (keya->o == IR_ADD && irref_isk(keya->op2)) { |
| 106 | basea = keya->op1; |
| 107 | ofsa = IR(keya->op2)->i; |
| 108 | if (basea == kb && ofsa != 0) |
| 109 | return ALIAS_NO; /* t[base+-ofs] vs. t[base]. */ |
| 110 | } |
| 111 | if (keyb->o == IR_ADD && irref_isk(keyb->op2)) { |
| 112 | baseb = keyb->op1; |
| 113 | ofsb = IR(keyb->op2)->i; |
| 114 | if (ka == baseb && ofsb != 0) |
| 115 | return ALIAS_NO; /* t[base] vs. t[base+-ofs]. */ |
| 116 | } |
| 117 | if (basea == baseb && ofsa != ofsb) |
| 118 | return ALIAS_NO; /* t[base+-o1] vs. t[base+-o2] and o1 != o2. */ |
| 119 | } else { |
| 120 | /* Disambiguate hash references based on the type of their keys. */ |
| 121 | lj_assertJ((refa->o==IR_HREF || refa->o==IR_HREFK || refa->o==IR_NEWREF) && |
| 122 | (refb->o==IR_HREF || refb->o==IR_HREFK || refb->o==IR_NEWREF), |
| 123 | "bad xREF IR op %d or %d" , refa->o, refb->o); |
| 124 | if (!irt_sametype(keya->t, keyb->t)) |
| 125 | return ALIAS_NO; /* Different key types. */ |
| 126 | } |
| 127 | if (ta == tb) |
| 128 | return ALIAS_MAY; /* Same table, cannot disambiguate keys. */ |
| 129 | else |
| 130 | return aa_table(J, ta, tb); /* Try to disambiguate tables. */ |
| 131 | } |
| 132 | |
| 133 | /* Array and hash load forwarding. */ |
| 134 | static TRef fwd_ahload(jit_State *J, IRRef xref) |
| 135 | { |
| 136 | IRIns *xr = IR(xref); |
| 137 | IRRef lim = xref; /* Search limit. */ |
| 138 | IRRef ref; |
| 139 | |
| 140 | /* Search for conflicting stores. */ |
| 141 | ref = J->chain[fins->o+IRDELTA_L2S]; |
| 142 | while (ref > xref) { |
| 143 | IRIns *store = IR(ref); |
| 144 | switch (aa_ahref(J, xr, IR(store->op1))) { |
| 145 | case ALIAS_NO: break; /* Continue searching. */ |
| 146 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
| 147 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
| 148 | } |
| 149 | ref = store->prev; |
| 150 | } |
| 151 | |
| 152 | /* No conflicting store (yet): const-fold loads from allocations. */ |
| 153 | { |
| 154 | IRIns *ir = (xr->o == IR_HREFK || xr->o == IR_AREF) ? IR(xr->op1) : xr; |
| 155 | IRRef tab = ir->op1; |
| 156 | ir = IR(tab); |
| 157 | if (ir->o == IR_TNEW || (ir->o == IR_TDUP && irref_isk(xr->op2))) { |
| 158 | /* A NEWREF with a number key may end up pointing to the array part. |
| 159 | ** But it's referenced from HSTORE and not found in the ASTORE chain. |
| 160 | ** For now simply consider this a conflict without forwarding anything. |
| 161 | */ |
| 162 | if (xr->o == IR_AREF) { |
| 163 | IRRef ref2 = J->chain[IR_NEWREF]; |
| 164 | while (ref2 > tab) { |
| 165 | IRIns *newref = IR(ref2); |
| 166 | if (irt_isnum(IR(newref->op2)->t)) |
| 167 | goto cselim; |
| 168 | ref2 = newref->prev; |
| 169 | } |
| 170 | } |
| 171 | /* NEWREF inhibits CSE for HREF, and dependent FLOADs from HREFK/AREF. |
| 172 | ** But the above search for conflicting stores was limited by xref. |
| 173 | ** So continue searching, limited by the TNEW/TDUP. Store forwarding |
| 174 | ** is ok, too. A conflict does NOT limit the search for a matching load. |
| 175 | */ |
| 176 | while (ref > tab) { |
| 177 | IRIns *store = IR(ref); |
| 178 | switch (aa_ahref(J, xr, IR(store->op1))) { |
| 179 | case ALIAS_NO: break; /* Continue searching. */ |
| 180 | case ALIAS_MAY: goto cselim; /* Conflicting store. */ |
| 181 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
| 182 | } |
| 183 | ref = store->prev; |
| 184 | } |
| 185 | if (ir->o == IR_TNEW && !irt_isnil(fins->t)) |
| 186 | return 0; /* Type instability in loop-carried dependency. */ |
| 187 | if (irt_ispri(fins->t)) { |
| 188 | return TREF_PRI(irt_type(fins->t)); |
| 189 | } else if (irt_isnum(fins->t) || (LJ_DUALNUM && irt_isint(fins->t)) || |
| 190 | irt_isstr(fins->t)) { |
| 191 | TValue keyv; |
| 192 | cTValue *tv; |
| 193 | IRIns *key = IR(xr->op2); |
| 194 | if (key->o == IR_KSLOT) key = IR(key->op1); |
| 195 | lj_ir_kvalue(J->L, &keyv, key); |
| 196 | tv = lj_tab_get(J->L, ir_ktab(IR(ir->op1)), &keyv); |
| 197 | lj_assertJ(itype2irt(tv) == irt_type(fins->t), |
| 198 | "mismatched type in constant table" ); |
| 199 | if (irt_isnum(fins->t)) |
| 200 | return lj_ir_knum_u64(J, tv->u64); |
| 201 | else if (LJ_DUALNUM && irt_isint(fins->t)) |
| 202 | return lj_ir_kint(J, intV(tv)); |
| 203 | else |
| 204 | return lj_ir_kstr(J, strV(tv)); |
| 205 | } |
| 206 | /* Othwerwise: don't intern as a constant. */ |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | cselim: |
| 211 | /* Try to find a matching load. Below the conflicting store, if any. */ |
| 212 | ref = J->chain[fins->o]; |
| 213 | while (ref > lim) { |
| 214 | IRIns *load = IR(ref); |
| 215 | if (load->op1 == xref) |
| 216 | return ref; /* Load forwarding. */ |
| 217 | ref = load->prev; |
| 218 | } |
| 219 | return 0; /* Conflict or no match. */ |
| 220 | } |
| 221 | |
| 222 | /* Reassociate ALOAD across PHIs to handle t[i-1] forwarding case. */ |
| 223 | static TRef fwd_aload_reassoc(jit_State *J) |
| 224 | { |
| 225 | IRIns *irx = IR(fins->op1); |
| 226 | IRIns *key = IR(irx->op2); |
| 227 | if (key->o == IR_ADD && irref_isk(key->op2)) { |
| 228 | IRIns *add2 = IR(key->op1); |
| 229 | if (add2->o == IR_ADD && irref_isk(add2->op2) && |
| 230 | IR(key->op2)->i == -IR(add2->op2)->i) { |
| 231 | IRRef ref = J->chain[IR_AREF]; |
| 232 | IRRef lim = add2->op1; |
| 233 | if (irx->op1 > lim) lim = irx->op1; |
| 234 | while (ref > lim) { |
| 235 | IRIns *ir = IR(ref); |
| 236 | if (ir->op1 == irx->op1 && ir->op2 == add2->op1) |
| 237 | return fwd_ahload(J, ref); |
| 238 | ref = ir->prev; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | return 0; |
| 243 | } |
| 244 | |
| 245 | /* ALOAD forwarding. */ |
| 246 | TRef LJ_FASTCALL lj_opt_fwd_aload(jit_State *J) |
| 247 | { |
| 248 | IRRef ref; |
| 249 | if ((ref = fwd_ahload(J, fins->op1)) || |
| 250 | (ref = fwd_aload_reassoc(J))) |
| 251 | return ref; |
| 252 | return EMITFOLD; |
| 253 | } |
| 254 | |
| 255 | /* HLOAD forwarding. */ |
| 256 | TRef LJ_FASTCALL lj_opt_fwd_hload(jit_State *J) |
| 257 | { |
| 258 | IRRef ref = fwd_ahload(J, fins->op1); |
| 259 | if (ref) |
| 260 | return ref; |
| 261 | return EMITFOLD; |
| 262 | } |
| 263 | |
| 264 | /* HREFK forwarding. */ |
| 265 | TRef LJ_FASTCALL lj_opt_fwd_hrefk(jit_State *J) |
| 266 | { |
| 267 | IRRef tab = fleft->op1; |
| 268 | IRRef ref = J->chain[IR_NEWREF]; |
| 269 | while (ref > tab) { |
| 270 | IRIns *newref = IR(ref); |
| 271 | if (tab == newref->op1) { |
| 272 | if (fright->op1 == newref->op2) |
| 273 | return ref; /* Forward from NEWREF. */ |
| 274 | else |
| 275 | goto docse; |
| 276 | } else if (aa_table(J, tab, newref->op1) != ALIAS_NO) { |
| 277 | goto docse; |
| 278 | } |
| 279 | ref = newref->prev; |
| 280 | } |
| 281 | /* No conflicting NEWREF: key location unchanged for HREFK of TDUP. */ |
| 282 | if (IR(tab)->o == IR_TDUP) |
| 283 | fins->t.irt &= ~IRT_GUARD; /* Drop HREFK guard. */ |
| 284 | docse: |
| 285 | return CSEFOLD; |
| 286 | } |
| 287 | |
| 288 | /* Check whether HREF of TNEW/TDUP can be folded to niltv. */ |
| 289 | int LJ_FASTCALL lj_opt_fwd_href_nokey(jit_State *J) |
| 290 | { |
| 291 | IRRef lim = fins->op1; /* Search limit. */ |
| 292 | IRRef ref; |
| 293 | |
| 294 | /* The key for an ASTORE may end up in the hash part after a NEWREF. */ |
| 295 | if (irt_isnum(fright->t) && J->chain[IR_NEWREF] > lim) { |
| 296 | ref = J->chain[IR_ASTORE]; |
| 297 | while (ref > lim) { |
| 298 | if (ref < J->chain[IR_NEWREF]) |
| 299 | return 0; /* Conflict. */ |
| 300 | ref = IR(ref)->prev; |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /* Search for conflicting stores. */ |
| 305 | ref = J->chain[IR_HSTORE]; |
| 306 | while (ref > lim) { |
| 307 | IRIns *store = IR(ref); |
| 308 | if (aa_ahref(J, fins, IR(store->op1)) != ALIAS_NO) |
| 309 | return 0; /* Conflict. */ |
| 310 | ref = store->prev; |
| 311 | } |
| 312 | |
| 313 | return 1; /* No conflict. Can fold to niltv. */ |
| 314 | } |
| 315 | |
| 316 | /* Check whether there's no aliasing table.clear. */ |
| 317 | static int fwd_aa_tab_clear(jit_State *J, IRRef lim, IRRef ta) |
| 318 | { |
| 319 | IRRef ref = J->chain[IR_CALLS]; |
| 320 | while (ref > lim) { |
| 321 | IRIns *calls = IR(ref); |
| 322 | if (calls->op2 == IRCALL_lj_tab_clear && |
| 323 | (ta == calls->op1 || aa_table(J, ta, calls->op1) != ALIAS_NO)) |
| 324 | return 0; /* Conflict. */ |
| 325 | ref = calls->prev; |
| 326 | } |
| 327 | return 1; /* No conflict. Can safely FOLD/CSE. */ |
| 328 | } |
| 329 | |
| 330 | /* Check whether there's no aliasing NEWREF/table.clear for the left operand. */ |
| 331 | int LJ_FASTCALL lj_opt_fwd_tptr(jit_State *J, IRRef lim) |
| 332 | { |
| 333 | IRRef ta = fins->op1; |
| 334 | IRRef ref = J->chain[IR_NEWREF]; |
| 335 | while (ref > lim) { |
| 336 | IRIns *newref = IR(ref); |
| 337 | if (ta == newref->op1 || aa_table(J, ta, newref->op1) != ALIAS_NO) |
| 338 | return 0; /* Conflict. */ |
| 339 | ref = newref->prev; |
| 340 | } |
| 341 | return fwd_aa_tab_clear(J, lim, ta); |
| 342 | } |
| 343 | |
| 344 | /* ASTORE/HSTORE elimination. */ |
| 345 | TRef LJ_FASTCALL lj_opt_dse_ahstore(jit_State *J) |
| 346 | { |
| 347 | IRRef xref = fins->op1; /* xREF reference. */ |
| 348 | IRRef val = fins->op2; /* Stored value reference. */ |
| 349 | IRIns *xr = IR(xref); |
| 350 | IRRef1 *refp = &J->chain[fins->o]; |
| 351 | IRRef ref = *refp; |
| 352 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
| 353 | IRIns *store = IR(ref); |
| 354 | switch (aa_ahref(J, xr, IR(store->op1))) { |
| 355 | case ALIAS_NO: |
| 356 | break; /* Continue searching. */ |
| 357 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
| 358 | if (store->op2 != val) /* Conflict if the value is different. */ |
| 359 | goto doemit; |
| 360 | break; /* Otherwise continue searching. */ |
| 361 | case ALIAS_MUST: /* Store to the same location. */ |
| 362 | if (store->op2 == val) /* Same value: drop the new store. */ |
| 363 | return DROPFOLD; |
| 364 | /* Different value: try to eliminate the redundant store. */ |
| 365 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
| 366 | IRIns *ir; |
| 367 | /* Check for any intervening guards (includes conflicting loads). */ |
| 368 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
| 369 | if (irt_isguard(ir->t) || ir->o == IR_ALEN) |
| 370 | goto doemit; /* No elimination possible. */ |
| 371 | /* Remove redundant store from chain and replace with NOP. */ |
| 372 | *refp = store->prev; |
| 373 | lj_ir_nop(store); |
| 374 | /* Now emit the new store instead. */ |
| 375 | } |
| 376 | goto doemit; |
| 377 | } |
| 378 | ref = *(refp = &store->prev); |
| 379 | } |
| 380 | doemit: |
| 381 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
| 382 | } |
| 383 | |
| 384 | /* ALEN forwarding. */ |
| 385 | TRef LJ_FASTCALL lj_opt_fwd_alen(jit_State *J) |
| 386 | { |
| 387 | IRRef tab = fins->op1; /* Table reference. */ |
| 388 | IRRef lim = tab; /* Search limit. */ |
| 389 | IRRef ref; |
| 390 | |
| 391 | /* Search for conflicting HSTORE with numeric key. */ |
| 392 | ref = J->chain[IR_HSTORE]; |
| 393 | while (ref > lim) { |
| 394 | IRIns *store = IR(ref); |
| 395 | IRIns *href = IR(store->op1); |
| 396 | IRIns *key = IR(href->op2); |
| 397 | if (irt_isnum(key->o == IR_KSLOT ? IR(key->op1)->t : key->t)) { |
| 398 | lim = ref; /* Conflicting store found, limits search for ALEN. */ |
| 399 | break; |
| 400 | } |
| 401 | ref = store->prev; |
| 402 | } |
| 403 | |
| 404 | /* Try to find a matching ALEN. */ |
| 405 | ref = J->chain[IR_ALEN]; |
| 406 | while (ref > lim) { |
| 407 | /* CSE for ALEN only depends on the table, not the hint. */ |
| 408 | if (IR(ref)->op1 == tab) { |
| 409 | IRRef sref; |
| 410 | |
| 411 | /* Search for aliasing table.clear. */ |
| 412 | if (!fwd_aa_tab_clear(J, ref, tab)) |
| 413 | break; |
| 414 | |
| 415 | /* Search for hint-forwarding or conflicting store. */ |
| 416 | sref = J->chain[IR_ASTORE]; |
| 417 | while (sref > ref) { |
| 418 | IRIns *store = IR(sref); |
| 419 | IRIns *aref = IR(store->op1); |
| 420 | IRIns *fref = IR(aref->op1); |
| 421 | if (tab == fref->op1) { /* ASTORE to the same table. */ |
| 422 | /* Detect t[#t+1] = x idiom for push. */ |
| 423 | IRIns *idx = IR(aref->op2); |
| 424 | if (!irt_isnil(store->t) && |
| 425 | idx->o == IR_ADD && idx->op1 == ref && |
| 426 | IR(idx->op2)->o == IR_KINT && IR(idx->op2)->i == 1) { |
| 427 | /* Note: this requires an extra PHI check in loop unroll. */ |
| 428 | fins->op2 = aref->op2; /* Set ALEN hint. */ |
| 429 | } |
| 430 | goto doemit; /* Conflicting store, possibly giving a hint. */ |
| 431 | } else if (aa_table(J, tab, fref->op1) == ALIAS_NO) { |
| 432 | goto doemit; /* Conflicting store. */ |
| 433 | } |
| 434 | sref = store->prev; |
| 435 | } |
| 436 | |
| 437 | return ref; /* Plain ALEN forwarding. */ |
| 438 | } |
| 439 | ref = IR(ref)->prev; |
| 440 | } |
| 441 | doemit: |
| 442 | return EMITFOLD; |
| 443 | } |
| 444 | |
| 445 | /* -- ULOAD forwarding ---------------------------------------------------- */ |
| 446 | |
| 447 | /* The current alias analysis for upvalues is very simplistic. It only |
| 448 | ** disambiguates between the unique upvalues of the same function. |
| 449 | ** This is good enough for now, since most upvalues are read-only. |
| 450 | ** |
| 451 | ** A more precise analysis would be feasible with the help of the parser: |
| 452 | ** generate a unique key for every upvalue, even across all prototypes. |
| 453 | ** Lacking a realistic use-case, it's unclear whether this is beneficial. |
| 454 | */ |
| 455 | static AliasRet aa_uref(IRIns *refa, IRIns *refb) |
| 456 | { |
| 457 | if (refa->o != refb->o) |
| 458 | return ALIAS_NO; /* Different UREFx type. */ |
| 459 | if (refa->op1 == refb->op1) { /* Same function. */ |
| 460 | if (refa->op2 == refb->op2) |
| 461 | return ALIAS_MUST; /* Same function, same upvalue idx. */ |
| 462 | else |
| 463 | return ALIAS_NO; /* Same function, different upvalue idx. */ |
| 464 | } else { /* Different functions, check disambiguation hash values. */ |
| 465 | if (((refa->op2 ^ refb->op2) & 0xff)) |
| 466 | return ALIAS_NO; /* Upvalues with different hash values cannot alias. */ |
| 467 | else |
| 468 | return ALIAS_MAY; /* No conclusion can be drawn for same hash value. */ |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /* ULOAD forwarding. */ |
| 473 | TRef LJ_FASTCALL lj_opt_fwd_uload(jit_State *J) |
| 474 | { |
| 475 | IRRef uref = fins->op1; |
| 476 | IRRef lim = REF_BASE; /* Search limit. */ |
| 477 | IRIns *xr = IR(uref); |
| 478 | IRRef ref; |
| 479 | |
| 480 | /* Search for conflicting stores. */ |
| 481 | ref = J->chain[IR_USTORE]; |
| 482 | while (ref > lim) { |
| 483 | IRIns *store = IR(ref); |
| 484 | switch (aa_uref(xr, IR(store->op1))) { |
| 485 | case ALIAS_NO: break; /* Continue searching. */ |
| 486 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
| 487 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
| 488 | } |
| 489 | ref = store->prev; |
| 490 | } |
| 491 | |
| 492 | cselim: |
| 493 | /* Try to find a matching load. Below the conflicting store, if any. */ |
| 494 | ref = J->chain[IR_ULOAD]; |
| 495 | while (ref > lim) { |
| 496 | IRIns *ir = IR(ref); |
| 497 | if (ir->op1 == uref || |
| 498 | (IR(ir->op1)->op12 == IR(uref)->op12 && IR(ir->op1)->o == IR(uref)->o)) |
| 499 | return ref; /* Match for identical or equal UREFx (non-CSEable UREFO). */ |
| 500 | ref = ir->prev; |
| 501 | } |
| 502 | return lj_ir_emit(J); |
| 503 | } |
| 504 | |
| 505 | /* USTORE elimination. */ |
| 506 | TRef LJ_FASTCALL lj_opt_dse_ustore(jit_State *J) |
| 507 | { |
| 508 | IRRef xref = fins->op1; /* xREF reference. */ |
| 509 | IRRef val = fins->op2; /* Stored value reference. */ |
| 510 | IRIns *xr = IR(xref); |
| 511 | IRRef1 *refp = &J->chain[IR_USTORE]; |
| 512 | IRRef ref = *refp; |
| 513 | while (ref > xref) { /* Search for redundant or conflicting stores. */ |
| 514 | IRIns *store = IR(ref); |
| 515 | switch (aa_uref(xr, IR(store->op1))) { |
| 516 | case ALIAS_NO: |
| 517 | break; /* Continue searching. */ |
| 518 | case ALIAS_MAY: /* Store to MAYBE the same location. */ |
| 519 | if (store->op2 != val) /* Conflict if the value is different. */ |
| 520 | goto doemit; |
| 521 | break; /* Otherwise continue searching. */ |
| 522 | case ALIAS_MUST: /* Store to the same location. */ |
| 523 | if (store->op2 == val) /* Same value: drop the new store. */ |
| 524 | return DROPFOLD; |
| 525 | /* Different value: try to eliminate the redundant store. */ |
| 526 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
| 527 | IRIns *ir; |
| 528 | /* Check for any intervening guards (includes conflicting loads). */ |
| 529 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
| 530 | if (irt_isguard(ir->t)) |
| 531 | goto doemit; /* No elimination possible. */ |
| 532 | /* Remove redundant store from chain and replace with NOP. */ |
| 533 | *refp = store->prev; |
| 534 | lj_ir_nop(store); |
| 535 | if (ref+1 < J->cur.nins && |
| 536 | store[1].o == IR_OBAR && store[1].op1 == xref) { |
| 537 | IRRef1 *bp = &J->chain[IR_OBAR]; |
| 538 | IRIns *obar; |
| 539 | for (obar = IR(*bp); *bp > ref+1; obar = IR(*bp)) |
| 540 | bp = &obar->prev; |
| 541 | /* Remove OBAR, too. */ |
| 542 | *bp = obar->prev; |
| 543 | lj_ir_nop(obar); |
| 544 | } |
| 545 | /* Now emit the new store instead. */ |
| 546 | } |
| 547 | goto doemit; |
| 548 | } |
| 549 | ref = *(refp = &store->prev); |
| 550 | } |
| 551 | doemit: |
| 552 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
| 553 | } |
| 554 | |
| 555 | /* -- FLOAD forwarding and FSTORE elimination ----------------------------- */ |
| 556 | |
| 557 | /* Alias analysis for field access. |
| 558 | ** Field loads are cheap and field stores are rare. |
| 559 | ** Simple disambiguation based on field types is good enough. |
| 560 | */ |
| 561 | static AliasRet aa_fref(jit_State *J, IRIns *refa, IRIns *refb) |
| 562 | { |
| 563 | if (refa->op2 != refb->op2) |
| 564 | return ALIAS_NO; /* Different fields. */ |
| 565 | if (refa->op1 == refb->op1) |
| 566 | return ALIAS_MUST; /* Same field, same object. */ |
| 567 | else if (refa->op2 >= IRFL_TAB_META && refa->op2 <= IRFL_TAB_NOMM) |
| 568 | return aa_table(J, refa->op1, refb->op1); /* Disambiguate tables. */ |
| 569 | else |
| 570 | return ALIAS_MAY; /* Same field, possibly different object. */ |
| 571 | } |
| 572 | |
| 573 | /* Only the loads for mutable fields end up here (see FOLD). */ |
| 574 | TRef LJ_FASTCALL lj_opt_fwd_fload(jit_State *J) |
| 575 | { |
| 576 | IRRef oref = fins->op1; /* Object reference. */ |
| 577 | IRRef fid = fins->op2; /* Field ID. */ |
| 578 | IRRef lim = oref; /* Search limit. */ |
| 579 | IRRef ref; |
| 580 | |
| 581 | /* Search for conflicting stores. */ |
| 582 | ref = J->chain[IR_FSTORE]; |
| 583 | while (ref > oref) { |
| 584 | IRIns *store = IR(ref); |
| 585 | switch (aa_fref(J, fins, IR(store->op1))) { |
| 586 | case ALIAS_NO: break; /* Continue searching. */ |
| 587 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
| 588 | case ALIAS_MUST: return store->op2; /* Store forwarding. */ |
| 589 | } |
| 590 | ref = store->prev; |
| 591 | } |
| 592 | |
| 593 | /* No conflicting store: const-fold field loads from allocations. */ |
| 594 | if (fid == IRFL_TAB_META) { |
| 595 | IRIns *ir = IR(oref); |
| 596 | if (ir->o == IR_TNEW || ir->o == IR_TDUP) |
| 597 | return lj_ir_knull(J, IRT_TAB); |
| 598 | } |
| 599 | |
| 600 | cselim: |
| 601 | /* Try to find a matching load. Below the conflicting store, if any. */ |
| 602 | return lj_opt_cselim(J, lim); |
| 603 | } |
| 604 | |
| 605 | /* FSTORE elimination. */ |
| 606 | TRef LJ_FASTCALL lj_opt_dse_fstore(jit_State *J) |
| 607 | { |
| 608 | IRRef fref = fins->op1; /* FREF reference. */ |
| 609 | IRRef val = fins->op2; /* Stored value reference. */ |
| 610 | IRIns *xr = IR(fref); |
| 611 | IRRef1 *refp = &J->chain[IR_FSTORE]; |
| 612 | IRRef ref = *refp; |
| 613 | while (ref > fref) { /* Search for redundant or conflicting stores. */ |
| 614 | IRIns *store = IR(ref); |
| 615 | switch (aa_fref(J, xr, IR(store->op1))) { |
| 616 | case ALIAS_NO: |
| 617 | break; /* Continue searching. */ |
| 618 | case ALIAS_MAY: |
| 619 | if (store->op2 != val) /* Conflict if the value is different. */ |
| 620 | goto doemit; |
| 621 | break; /* Otherwise continue searching. */ |
| 622 | case ALIAS_MUST: |
| 623 | if (store->op2 == val) /* Same value: drop the new store. */ |
| 624 | return DROPFOLD; |
| 625 | /* Different value: try to eliminate the redundant store. */ |
| 626 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
| 627 | IRIns *ir; |
| 628 | /* Check for any intervening guards or conflicting loads. */ |
| 629 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
| 630 | if (irt_isguard(ir->t) || (ir->o == IR_FLOAD && ir->op2 == xr->op2)) |
| 631 | goto doemit; /* No elimination possible. */ |
| 632 | /* Remove redundant store from chain and replace with NOP. */ |
| 633 | *refp = store->prev; |
| 634 | lj_ir_nop(store); |
| 635 | /* Now emit the new store instead. */ |
| 636 | } |
| 637 | goto doemit; |
| 638 | } |
| 639 | ref = *(refp = &store->prev); |
| 640 | } |
| 641 | doemit: |
| 642 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
| 643 | } |
| 644 | |
| 645 | /* -- XLOAD forwarding and XSTORE elimination ----------------------------- */ |
| 646 | |
| 647 | /* Find cdata allocation for a reference (if any). */ |
| 648 | static IRIns *aa_findcnew(jit_State *J, IRIns *ir) |
| 649 | { |
| 650 | while (ir->o == IR_ADD) { |
| 651 | if (!irref_isk(ir->op1)) { |
| 652 | IRIns *ir1 = aa_findcnew(J, IR(ir->op1)); /* Left-recursion. */ |
| 653 | if (ir1) return ir1; |
| 654 | } |
| 655 | if (irref_isk(ir->op2)) return NULL; |
| 656 | ir = IR(ir->op2); /* Flatten right-recursion. */ |
| 657 | } |
| 658 | return ir->o == IR_CNEW ? ir : NULL; |
| 659 | } |
| 660 | |
| 661 | /* Alias analysis for two cdata allocations. */ |
| 662 | static AliasRet aa_cnew(jit_State *J, IRIns *refa, IRIns *refb) |
| 663 | { |
| 664 | IRIns *cnewa = aa_findcnew(J, refa); |
| 665 | IRIns *cnewb = aa_findcnew(J, refb); |
| 666 | if (cnewa == cnewb) |
| 667 | return ALIAS_MAY; /* Same allocation or neither is an allocation. */ |
| 668 | if (cnewa && cnewb) |
| 669 | return ALIAS_NO; /* Two different allocations never alias. */ |
| 670 | if (cnewb) { cnewa = cnewb; refb = refa; } |
| 671 | return aa_escape(J, cnewa, refb); |
| 672 | } |
| 673 | |
| 674 | /* Alias analysis for XLOAD/XSTORE. */ |
| 675 | static AliasRet aa_xref(jit_State *J, IRIns *refa, IRIns *xa, IRIns *xb) |
| 676 | { |
| 677 | ptrdiff_t ofsa = 0, ofsb = 0; |
| 678 | IRIns *refb = IR(xb->op1); |
| 679 | IRIns *basea = refa, *baseb = refb; |
| 680 | if (refa == refb && irt_sametype(xa->t, xb->t)) |
| 681 | return ALIAS_MUST; /* Shortcut for same refs with identical type. */ |
| 682 | /* Offset-based disambiguation. */ |
| 683 | if (refa->o == IR_ADD && irref_isk(refa->op2)) { |
| 684 | IRIns *irk = IR(refa->op2); |
| 685 | basea = IR(refa->op1); |
| 686 | ofsa = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
| 687 | (ptrdiff_t)irk->i; |
| 688 | } |
| 689 | if (refb->o == IR_ADD && irref_isk(refb->op2)) { |
| 690 | IRIns *irk = IR(refb->op2); |
| 691 | baseb = IR(refb->op1); |
| 692 | ofsb = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
| 693 | (ptrdiff_t)irk->i; |
| 694 | } |
| 695 | /* Treat constified pointers like base vs. base+offset. */ |
| 696 | if (basea->o == IR_KPTR && baseb->o == IR_KPTR) { |
| 697 | ofsb += (char *)ir_kptr(baseb) - (char *)ir_kptr(basea); |
| 698 | baseb = basea; |
| 699 | } |
| 700 | /* This implements (very) strict aliasing rules. |
| 701 | ** Different types do NOT alias, except for differences in signedness. |
| 702 | ** Type punning through unions is allowed (but forces a reload). |
| 703 | */ |
| 704 | if (basea == baseb) { |
| 705 | ptrdiff_t sza = irt_size(xa->t), szb = irt_size(xb->t); |
| 706 | if (ofsa == ofsb) { |
| 707 | if (sza == szb && irt_isfp(xa->t) == irt_isfp(xb->t)) |
| 708 | return ALIAS_MUST; /* Same-sized, same-kind. May need to convert. */ |
| 709 | } else if (ofsa + sza <= ofsb || ofsb + szb <= ofsa) { |
| 710 | return ALIAS_NO; /* Non-overlapping base+-o1 vs. base+-o2. */ |
| 711 | } |
| 712 | /* NYI: extract, extend or reinterpret bits (int <-> fp). */ |
| 713 | return ALIAS_MAY; /* Overlapping or type punning: force reload. */ |
| 714 | } |
| 715 | if (!irt_sametype(xa->t, xb->t) && |
| 716 | !(irt_typerange(xa->t, IRT_I8, IRT_U64) && |
| 717 | ((xa->t.irt - IRT_I8) ^ (xb->t.irt - IRT_I8)) == 1)) |
| 718 | return ALIAS_NO; |
| 719 | /* NYI: structural disambiguation. */ |
| 720 | return aa_cnew(J, basea, baseb); /* Try to disambiguate allocations. */ |
| 721 | } |
| 722 | |
| 723 | /* Return CSEd reference or 0. Caveat: swaps lower ref to the right! */ |
| 724 | static IRRef reassoc_trycse(jit_State *J, IROp op, IRRef op1, IRRef op2) |
| 725 | { |
| 726 | IRRef ref = J->chain[op]; |
| 727 | IRRef lim = op1; |
| 728 | if (op2 > lim) { lim = op2; op2 = op1; op1 = lim; } |
| 729 | while (ref > lim) { |
| 730 | IRIns *ir = IR(ref); |
| 731 | if (ir->op1 == op1 && ir->op2 == op2) |
| 732 | return ref; |
| 733 | ref = ir->prev; |
| 734 | } |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | /* Reassociate index references. */ |
| 739 | static IRRef reassoc_xref(jit_State *J, IRIns *ir) |
| 740 | { |
| 741 | ptrdiff_t ofs = 0; |
| 742 | if (ir->o == IR_ADD && irref_isk(ir->op2)) { /* Get constant offset. */ |
| 743 | IRIns *irk = IR(ir->op2); |
| 744 | ofs = (LJ_64 && irk->o == IR_KINT64) ? (ptrdiff_t)ir_k64(irk)->u64 : |
| 745 | (ptrdiff_t)irk->i; |
| 746 | ir = IR(ir->op1); |
| 747 | } |
| 748 | if (ir->o == IR_ADD) { /* Add of base + index. */ |
| 749 | /* Index ref > base ref for loop-carried dependences. Only check op1. */ |
| 750 | IRIns *ir2, *ir1 = IR(ir->op1); |
| 751 | int32_t shift = 0; |
| 752 | IRRef idxref; |
| 753 | /* Determine index shifts. Don't bother with IR_MUL here. */ |
| 754 | if (ir1->o == IR_BSHL && irref_isk(ir1->op2)) |
| 755 | shift = IR(ir1->op2)->i; |
| 756 | else if (ir1->o == IR_ADD && ir1->op1 == ir1->op2) |
| 757 | shift = 1; |
| 758 | else |
| 759 | ir1 = ir; |
| 760 | ir2 = IR(ir1->op1); |
| 761 | /* A non-reassociated add. Must be a loop-carried dependence. */ |
| 762 | if (ir2->o == IR_ADD && irt_isint(ir2->t) && irref_isk(ir2->op2)) |
| 763 | ofs += (ptrdiff_t)IR(ir2->op2)->i << shift; |
| 764 | else |
| 765 | return 0; |
| 766 | idxref = ir2->op1; |
| 767 | /* Try to CSE the reassociated chain. Give up if not found. */ |
| 768 | if (ir1 != ir && |
| 769 | !(idxref = reassoc_trycse(J, ir1->o, idxref, |
| 770 | ir1->o == IR_BSHL ? ir1->op2 : idxref))) |
| 771 | return 0; |
| 772 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, ir->op2))) |
| 773 | return 0; |
| 774 | if (ofs != 0) { |
| 775 | IRRef refk = tref_ref(lj_ir_kintp(J, ofs)); |
| 776 | if (!(idxref = reassoc_trycse(J, IR_ADD, idxref, refk))) |
| 777 | return 0; |
| 778 | } |
| 779 | return idxref; /* Success, found a reassociated index reference. Phew. */ |
| 780 | } |
| 781 | return 0; /* Failure. */ |
| 782 | } |
| 783 | |
| 784 | /* XLOAD forwarding. */ |
| 785 | TRef LJ_FASTCALL lj_opt_fwd_xload(jit_State *J) |
| 786 | { |
| 787 | IRRef xref = fins->op1; |
| 788 | IRIns *xr = IR(xref); |
| 789 | IRRef lim = xref; /* Search limit. */ |
| 790 | IRRef ref; |
| 791 | |
| 792 | if ((fins->op2 & IRXLOAD_READONLY)) |
| 793 | goto cselim; |
| 794 | if ((fins->op2 & IRXLOAD_VOLATILE)) |
| 795 | goto doemit; |
| 796 | |
| 797 | /* Search for conflicting stores. */ |
| 798 | ref = J->chain[IR_XSTORE]; |
| 799 | retry: |
| 800 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
| 801 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
| 802 | while (ref > lim) { |
| 803 | IRIns *store = IR(ref); |
| 804 | switch (aa_xref(J, xr, fins, store)) { |
| 805 | case ALIAS_NO: break; /* Continue searching. */ |
| 806 | case ALIAS_MAY: lim = ref; goto cselim; /* Limit search for load. */ |
| 807 | case ALIAS_MUST: |
| 808 | /* Emit conversion if the loaded type doesn't match the forwarded type. */ |
| 809 | if (!irt_sametype(fins->t, IR(store->op2)->t)) { |
| 810 | IRType dt = irt_type(fins->t), st = irt_type(IR(store->op2)->t); |
| 811 | if (dt == IRT_I8 || dt == IRT_I16) { /* Trunc + sign-extend. */ |
| 812 | st = dt | IRCONV_SEXT; |
| 813 | dt = IRT_INT; |
| 814 | } else if (dt == IRT_U8 || dt == IRT_U16) { /* Trunc + zero-extend. */ |
| 815 | st = dt; |
| 816 | dt = IRT_INT; |
| 817 | } |
| 818 | fins->ot = IRT(IR_CONV, dt); |
| 819 | fins->op1 = store->op2; |
| 820 | fins->op2 = (dt<<5)|st; |
| 821 | return RETRYFOLD; |
| 822 | } |
| 823 | return store->op2; /* Store forwarding. */ |
| 824 | } |
| 825 | ref = store->prev; |
| 826 | } |
| 827 | |
| 828 | cselim: |
| 829 | /* Try to find a matching load. Below the conflicting store, if any. */ |
| 830 | ref = J->chain[IR_XLOAD]; |
| 831 | while (ref > lim) { |
| 832 | /* CSE for XLOAD depends on the type, but not on the IRXLOAD_* flags. */ |
| 833 | if (IR(ref)->op1 == xref && irt_sametype(IR(ref)->t, fins->t)) |
| 834 | return ref; |
| 835 | ref = IR(ref)->prev; |
| 836 | } |
| 837 | |
| 838 | /* Reassociate XLOAD across PHIs to handle a[i-1] forwarding case. */ |
| 839 | if (!(fins->op2 & IRXLOAD_READONLY) && J->chain[IR_LOOP] && |
| 840 | xref == fins->op1 && (xref = reassoc_xref(J, xr)) != 0) { |
| 841 | ref = J->chain[IR_XSTORE]; |
| 842 | while (ref > lim) /* Skip stores that have already been checked. */ |
| 843 | ref = IR(ref)->prev; |
| 844 | lim = xref; |
| 845 | xr = IR(xref); |
| 846 | goto retry; /* Retry with the reassociated reference. */ |
| 847 | } |
| 848 | doemit: |
| 849 | return EMITFOLD; |
| 850 | } |
| 851 | |
| 852 | /* XSTORE elimination. */ |
| 853 | TRef LJ_FASTCALL lj_opt_dse_xstore(jit_State *J) |
| 854 | { |
| 855 | IRRef xref = fins->op1; |
| 856 | IRIns *xr = IR(xref); |
| 857 | IRRef lim = xref; /* Search limit. */ |
| 858 | IRRef val = fins->op2; /* Stored value reference. */ |
| 859 | IRRef1 *refp = &J->chain[IR_XSTORE]; |
| 860 | IRRef ref = *refp; |
| 861 | if (J->chain[IR_CALLXS] > lim) lim = J->chain[IR_CALLXS]; |
| 862 | if (J->chain[IR_XBAR] > lim) lim = J->chain[IR_XBAR]; |
| 863 | if (J->chain[IR_XSNEW] > lim) lim = J->chain[IR_XSNEW]; |
| 864 | while (ref > lim) { /* Search for redundant or conflicting stores. */ |
| 865 | IRIns *store = IR(ref); |
| 866 | switch (aa_xref(J, xr, fins, store)) { |
| 867 | case ALIAS_NO: |
| 868 | break; /* Continue searching. */ |
| 869 | case ALIAS_MAY: |
| 870 | if (store->op2 != val) /* Conflict if the value is different. */ |
| 871 | goto doemit; |
| 872 | break; /* Otherwise continue searching. */ |
| 873 | case ALIAS_MUST: |
| 874 | if (store->op2 == val) /* Same value: drop the new store. */ |
| 875 | return DROPFOLD; |
| 876 | /* Different value: try to eliminate the redundant store. */ |
| 877 | if (ref > J->chain[IR_LOOP]) { /* Quick check to avoid crossing LOOP. */ |
| 878 | IRIns *ir; |
| 879 | /* Check for any intervening guards or any XLOADs (no AA performed). */ |
| 880 | for (ir = IR(J->cur.nins-1); ir > store; ir--) |
| 881 | if (irt_isguard(ir->t) || ir->o == IR_XLOAD) |
| 882 | goto doemit; /* No elimination possible. */ |
| 883 | /* Remove redundant store from chain and replace with NOP. */ |
| 884 | *refp = store->prev; |
| 885 | lj_ir_nop(store); |
| 886 | /* Now emit the new store instead. */ |
| 887 | } |
| 888 | goto doemit; |
| 889 | } |
| 890 | ref = *(refp = &store->prev); |
| 891 | } |
| 892 | doemit: |
| 893 | return EMITFOLD; /* Otherwise we have a conflict or simply no match. */ |
| 894 | } |
| 895 | |
| 896 | /* -- ASTORE/HSTORE previous type analysis -------------------------------- */ |
| 897 | |
| 898 | /* Check whether the previous value for a table store is non-nil. |
| 899 | ** This can be derived either from a previous store or from a previous |
| 900 | ** load (because all loads from tables perform a type check). |
| 901 | ** |
| 902 | ** The result of the analysis can be used to avoid the metatable check |
| 903 | ** and the guard against HREF returning niltv. Both of these are cheap, |
| 904 | ** so let's not spend too much effort on the analysis. |
| 905 | ** |
| 906 | ** A result of 1 is exact: previous value CANNOT be nil. |
| 907 | ** A result of 0 is inexact: previous value MAY be nil. |
| 908 | */ |
| 909 | int lj_opt_fwd_wasnonnil(jit_State *J, IROpT loadop, IRRef xref) |
| 910 | { |
| 911 | /* First check stores. */ |
| 912 | IRRef ref = J->chain[loadop+IRDELTA_L2S]; |
| 913 | while (ref > xref) { |
| 914 | IRIns *store = IR(ref); |
| 915 | if (store->op1 == xref) { /* Same xREF. */ |
| 916 | /* A nil store MAY alias, but a non-nil store MUST alias. */ |
| 917 | return !irt_isnil(store->t); |
| 918 | } else if (irt_isnil(store->t)) { /* Must check any nil store. */ |
| 919 | IRRef skref = IR(store->op1)->op2; |
| 920 | IRRef xkref = IR(xref)->op2; |
| 921 | /* Same key type MAY alias. Need ALOAD check due to multiple int types. */ |
| 922 | if (loadop == IR_ALOAD || irt_sametype(IR(skref)->t, IR(xkref)->t)) { |
| 923 | if (skref == xkref || !irref_isk(skref) || !irref_isk(xkref)) |
| 924 | return 0; /* A nil store with same const key or var key MAY alias. */ |
| 925 | /* Different const keys CANNOT alias. */ |
| 926 | } /* Different key types CANNOT alias. */ |
| 927 | } /* Other non-nil stores MAY alias. */ |
| 928 | ref = store->prev; |
| 929 | } |
| 930 | |
| 931 | /* Check loads since nothing could be derived from stores. */ |
| 932 | ref = J->chain[loadop]; |
| 933 | while (ref > xref) { |
| 934 | IRIns *load = IR(ref); |
| 935 | if (load->op1 == xref) { /* Same xREF. */ |
| 936 | /* A nil load MAY alias, but a non-nil load MUST alias. */ |
| 937 | return !irt_isnil(load->t); |
| 938 | } /* Other non-nil loads MAY alias. */ |
| 939 | ref = load->prev; |
| 940 | } |
| 941 | return 0; /* Nothing derived at all, previous value MAY be nil. */ |
| 942 | } |
| 943 | |
| 944 | /* ------------------------------------------------------------------------ */ |
| 945 | |
| 946 | #undef IR |
| 947 | #undef fins |
| 948 | #undef fleft |
| 949 | #undef fright |
| 950 | |
| 951 | #endif |
| 952 | |