1 | /* |
2 | Copyright (c) 2005, 2017, Oracle and/or its affiliates. |
3 | Copyright (c) 2009, 2018, MariaDB |
4 | |
5 | This program is free software; you can redistribute it and/or modify |
6 | it under the terms of the GNU General Public License as published by |
7 | the Free Software Foundation; version 2 of the License. |
8 | |
9 | This program is distributed in the hope that it will be useful, |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12 | GNU General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU General Public License |
15 | along with this program; if not, write to the Free Software |
16 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
17 | */ |
18 | |
19 | /* |
20 | This handler was developed by Mikael Ronstrom for version 5.1 of MySQL. |
21 | It is an abstraction layer on top of other handlers such as MyISAM, |
22 | InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also |
23 | be handled by a storage engine. The current example of this is NDB |
24 | Cluster that has internally handled partitioning. This have benefits in |
25 | that many loops needed in the partition handler can be avoided. |
26 | |
27 | Partitioning has an inherent feature which in some cases is positive and |
28 | in some cases is negative. It splits the data into chunks. This makes |
29 | the data more manageable, queries can easily be parallelised towards the |
30 | parts and indexes are split such that there are less levels in the |
31 | index trees. The inherent disadvantage is that to use a split index |
32 | one has to scan all index parts which is ok for large queries but for |
33 | small queries it can be a disadvantage. |
34 | |
35 | Partitioning lays the foundation for more manageable databases that are |
36 | extremely large. It does also lay the foundation for more parallelism |
37 | in the execution of queries. This functionality will grow with later |
38 | versions of MySQL/MariaDB. |
39 | |
40 | The partition is setup to use table locks. It implements an partition "SHARE" |
41 | that is inserted into a hash by table name. You can use this to store |
42 | information of state that any partition handler object will be able to see |
43 | if it is using the same table. |
44 | |
45 | Please read the object definition in ha_partition.h before reading the rest |
46 | if this file. |
47 | */ |
48 | |
49 | #include "mariadb.h" |
50 | #include "sql_priv.h" |
51 | #include "sql_parse.h" // append_file_to_dir |
52 | #include "create_options.h" |
53 | |
54 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
55 | #include "ha_partition.h" |
56 | #include "sql_table.h" // tablename_to_filename |
57 | #include "key.h" |
58 | #include "sql_plugin.h" |
59 | #include "sql_show.h" // append_identifier |
60 | #include "sql_admin.h" // SQL_ADMIN_MSG_TEXT_SIZE |
61 | #include "sql_select.h" |
62 | |
63 | #include "debug_sync.h" |
64 | |
65 | /* First 4 bytes in the .par file is the number of 32-bit words in the file */ |
66 | #define PAR_WORD_SIZE 4 |
67 | /* offset to the .par file checksum */ |
68 | #define PAR_CHECKSUM_OFFSET 4 |
69 | /* offset to the total number of partitions */ |
70 | #define PAR_NUM_PARTS_OFFSET 8 |
71 | /* offset to the engines array */ |
72 | #define PAR_ENGINES_OFFSET 12 |
73 | #define PARTITION_ENABLED_TABLE_FLAGS (HA_FILE_BASED | \ |
74 | HA_REC_NOT_IN_SEQ | \ |
75 | HA_CAN_REPAIR) |
76 | #define PARTITION_DISABLED_TABLE_FLAGS (HA_CAN_GEOMETRY | \ |
77 | HA_DUPLICATE_POS | \ |
78 | HA_CAN_INSERT_DELAYED | \ |
79 | HA_READ_BEFORE_WRITE_REMOVAL |\ |
80 | HA_CAN_TABLES_WITHOUT_ROLLBACK) |
81 | |
82 | static const char *ha_par_ext= ".par" ; |
83 | |
84 | /**************************************************************************** |
85 | MODULE create/delete handler object |
86 | ****************************************************************************/ |
87 | |
88 | static handler *partition_create_handler(handlerton *hton, |
89 | TABLE_SHARE *share, |
90 | MEM_ROOT *mem_root); |
91 | static uint partition_flags(); |
92 | static alter_table_operations alter_table_flags(alter_table_operations flags); |
93 | |
94 | /* |
95 | If frm_error() is called then we will use this to to find out what file |
96 | extensions exist for the storage engine. This is also used by the default |
97 | rename_table and delete_table method in handler.cc. |
98 | */ |
99 | static const char *ha_partition_ext[]= |
100 | { |
101 | ha_par_ext, NullS |
102 | }; |
103 | |
104 | |
105 | #ifdef HAVE_PSI_INTERFACE |
106 | PSI_mutex_key key_partition_auto_inc_mutex; |
107 | |
108 | static PSI_mutex_info all_partition_mutexes[]= |
109 | { |
110 | { &key_partition_auto_inc_mutex, "Partition_share::auto_inc_mutex" , 0} |
111 | }; |
112 | |
113 | static void init_partition_psi_keys(void) |
114 | { |
115 | const char* category= "partition" ; |
116 | int count; |
117 | |
118 | count= array_elements(all_partition_mutexes); |
119 | mysql_mutex_register(category, all_partition_mutexes, count); |
120 | } |
121 | #endif /* HAVE_PSI_INTERFACE */ |
122 | |
123 | static int partition_initialize(void *p) |
124 | { |
125 | handlerton *partition_hton; |
126 | partition_hton= (handlerton *)p; |
127 | |
128 | partition_hton->state= SHOW_OPTION_YES; |
129 | partition_hton->db_type= DB_TYPE_PARTITION_DB; |
130 | partition_hton->create= partition_create_handler; |
131 | partition_hton->partition_flags= partition_flags; |
132 | partition_hton->alter_table_flags= alter_table_flags; |
133 | partition_hton->flags= HTON_NOT_USER_SELECTABLE | |
134 | HTON_HIDDEN | |
135 | HTON_TEMPORARY_NOT_SUPPORTED; |
136 | partition_hton->tablefile_extensions= ha_partition_ext; |
137 | |
138 | #ifdef HAVE_PSI_INTERFACE |
139 | init_partition_psi_keys(); |
140 | #endif |
141 | return 0; |
142 | } |
143 | |
144 | |
145 | /** |
146 | Initialize and allocate space for partitions shares. |
147 | |
148 | @param num_parts Number of partitions to allocate storage for. |
149 | |
150 | @return Operation status. |
151 | @retval true Failure (out of memory). |
152 | @retval false Success. |
153 | */ |
154 | |
155 | bool Partition_share::init(uint num_parts) |
156 | { |
157 | DBUG_ENTER("Partition_share::init" ); |
158 | auto_inc_initialized= false; |
159 | partition_name_hash_initialized= false; |
160 | next_auto_inc_val= 0; |
161 | if (partitions_share_refs.init(num_parts)) |
162 | { |
163 | DBUG_RETURN(true); |
164 | } |
165 | DBUG_RETURN(false); |
166 | } |
167 | |
168 | |
169 | /* |
170 | Create new partition handler |
171 | |
172 | SYNOPSIS |
173 | partition_create_handler() |
174 | table Table object |
175 | |
176 | RETURN VALUE |
177 | New partition object |
178 | */ |
179 | |
180 | static handler *partition_create_handler(handlerton *hton, |
181 | TABLE_SHARE *share, |
182 | MEM_ROOT *mem_root) |
183 | { |
184 | ha_partition *file= new (mem_root) ha_partition(hton, share); |
185 | if (file && file->initialize_partition(mem_root)) |
186 | { |
187 | delete file; |
188 | file= 0; |
189 | } |
190 | return file; |
191 | } |
192 | |
193 | /* |
194 | HA_CAN_PARTITION: |
195 | Used by storage engines that can handle partitioning without this |
196 | partition handler |
197 | (Partition, NDB) |
198 | |
199 | HA_CAN_UPDATE_PARTITION_KEY: |
200 | Set if the handler can update fields that are part of the partition |
201 | function. |
202 | |
203 | HA_CAN_PARTITION_UNIQUE: |
204 | Set if the handler can handle unique indexes where the fields of the |
205 | unique key are not part of the fields of the partition function. Thus |
206 | a unique key can be set on all fields. |
207 | |
208 | HA_USE_AUTO_PARTITION |
209 | Set if the handler sets all tables to be partitioned by default. |
210 | */ |
211 | |
212 | static uint partition_flags() |
213 | { |
214 | return HA_CAN_PARTITION; |
215 | } |
216 | |
217 | static alter_table_operations alter_table_flags(alter_table_operations flags __attribute__((unused))) |
218 | { |
219 | return (HA_PARTITION_FUNCTION_SUPPORTED | |
220 | HA_FAST_CHANGE_PARTITION); |
221 | } |
222 | |
223 | /* |
224 | Constructor method |
225 | |
226 | SYNOPSIS |
227 | ha_partition() |
228 | table Table object |
229 | |
230 | RETURN VALUE |
231 | NONE |
232 | */ |
233 | |
234 | ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share) |
235 | :handler(hton, share) |
236 | { |
237 | DBUG_ENTER("ha_partition::ha_partition(table)" ); |
238 | ha_partition_init(); |
239 | DBUG_VOID_RETURN; |
240 | } |
241 | |
242 | |
243 | /* Initialize all partition variables */ |
244 | |
245 | void ha_partition::ha_partition_init() |
246 | { |
247 | init_alloc_root(&m_mem_root, "ha_partition" , 512, 512, MYF(0)); |
248 | init_handler_variables(); |
249 | } |
250 | |
251 | /* |
252 | Constructor method |
253 | |
254 | SYNOPSIS |
255 | ha_partition() |
256 | part_info Partition info |
257 | |
258 | RETURN VALUE |
259 | NONE |
260 | */ |
261 | |
262 | ha_partition::ha_partition(handlerton *hton, partition_info *part_info) |
263 | :handler(hton, NULL) |
264 | { |
265 | DBUG_ENTER("ha_partition::ha_partition(part_info)" ); |
266 | DBUG_ASSERT(part_info); |
267 | ha_partition_init(); |
268 | m_part_info= part_info; |
269 | m_create_handler= TRUE; |
270 | m_is_sub_partitioned= m_part_info->is_sub_partitioned(); |
271 | DBUG_VOID_RETURN; |
272 | } |
273 | |
274 | /** |
275 | ha_partition constructor method used by ha_partition::clone() |
276 | |
277 | @param hton Handlerton (partition_hton) |
278 | @param share Table share object |
279 | @param part_info_arg partition_info to use |
280 | @param clone_arg ha_partition to clone |
281 | @param clme_mem_root_arg MEM_ROOT to use |
282 | |
283 | @return New partition handler |
284 | */ |
285 | |
286 | ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share, |
287 | partition_info *part_info_arg, |
288 | ha_partition *clone_arg, |
289 | MEM_ROOT *clone_mem_root_arg) |
290 | :handler(hton, share) |
291 | { |
292 | DBUG_ENTER("ha_partition::ha_partition(clone)" ); |
293 | ha_partition_init(); |
294 | m_part_info= part_info_arg; |
295 | m_create_handler= TRUE; |
296 | m_is_sub_partitioned= m_part_info->is_sub_partitioned(); |
297 | m_is_clone_of= clone_arg; |
298 | m_clone_mem_root= clone_mem_root_arg; |
299 | part_share= clone_arg->part_share; |
300 | m_tot_parts= clone_arg->m_tot_parts; |
301 | m_pkey_is_clustered= clone_arg->primary_key_is_clustered(); |
302 | DBUG_VOID_RETURN; |
303 | } |
304 | |
305 | /* |
306 | Initialize handler object |
307 | |
308 | SYNOPSIS |
309 | init_handler_variables() |
310 | |
311 | RETURN VALUE |
312 | NONE |
313 | */ |
314 | |
315 | void ha_partition::init_handler_variables() |
316 | { |
317 | active_index= MAX_KEY; |
318 | m_mode= 0; |
319 | m_open_test_lock= 0; |
320 | m_file_buffer= NULL; |
321 | m_name_buffer_ptr= NULL; |
322 | m_engine_array= NULL; |
323 | m_connect_string= NULL; |
324 | m_file= NULL; |
325 | m_file_tot_parts= 0; |
326 | m_reorged_file= NULL; |
327 | m_new_file= NULL; |
328 | m_reorged_parts= 0; |
329 | m_added_file= NULL; |
330 | m_tot_parts= 0; |
331 | m_pkey_is_clustered= 0; |
332 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
333 | m_scan_value= 2; |
334 | m_ref_length= 0; |
335 | m_part_spec.end_part= NO_CURRENT_PART_ID; |
336 | m_index_scan_type= partition_no_index_scan; |
337 | m_start_key.key= NULL; |
338 | m_start_key.length= 0; |
339 | m_myisam= FALSE; |
340 | m_innodb= FALSE; |
341 | m_extra_cache= FALSE; |
342 | m_extra_cache_size= 0; |
343 | m_extra_prepare_for_update= FALSE; |
344 | m_extra_cache_part_id= NO_CURRENT_PART_ID; |
345 | m_handler_status= handler_not_initialized; |
346 | m_part_field_array= NULL; |
347 | m_ordered_rec_buffer= NULL; |
348 | m_top_entry= NO_CURRENT_PART_ID; |
349 | m_rec_length= 0; |
350 | m_last_part= 0; |
351 | m_rec0= 0; |
352 | m_err_rec= NULL; |
353 | m_curr_key_info[0]= NULL; |
354 | m_curr_key_info[1]= NULL; |
355 | m_part_func_monotonicity_info= NON_MONOTONIC; |
356 | m_key_not_found= FALSE; |
357 | auto_increment_lock= FALSE; |
358 | auto_increment_safe_stmt_log_lock= FALSE; |
359 | /* |
360 | this allows blackhole to work properly |
361 | */ |
362 | m_num_locks= 0; |
363 | m_part_info= NULL; |
364 | m_create_handler= FALSE; |
365 | m_is_sub_partitioned= 0; |
366 | m_is_clone_of= NULL; |
367 | m_clone_mem_root= NULL; |
368 | part_share= NULL; |
369 | m_new_partitions_share_refs.empty(); |
370 | m_part_ids_sorted_by_num_of_records= NULL; |
371 | m_partitions_to_open= NULL; |
372 | |
373 | m_range_info= NULL; |
374 | m_mrr_full_buffer_size= 0; |
375 | m_mrr_new_full_buffer_size= 0; |
376 | m_mrr_full_buffer= NULL; |
377 | m_mrr_range_first= NULL; |
378 | |
379 | m_pre_calling= FALSE; |
380 | m_pre_call_use_parallel= FALSE; |
381 | |
382 | ft_first= ft_current= NULL; |
383 | bulk_access_executing= FALSE; // For future |
384 | |
385 | /* |
386 | Clear bitmaps to allow on one to call my_bitmap_free() on them at any time |
387 | */ |
388 | my_bitmap_clear(&m_bulk_insert_started); |
389 | my_bitmap_clear(&m_locked_partitions); |
390 | my_bitmap_clear(&m_partitions_to_reset); |
391 | my_bitmap_clear(&m_key_not_found_partitions); |
392 | my_bitmap_clear(&m_mrr_used_partitions); |
393 | my_bitmap_clear(&m_opened_partitions); |
394 | m_file_sample= NULL; |
395 | |
396 | #ifdef DONT_HAVE_TO_BE_INITALIZED |
397 | m_start_key.flag= 0; |
398 | m_ordered= TRUE; |
399 | #endif |
400 | } |
401 | |
402 | |
403 | const char *ha_partition::table_type() const |
404 | { |
405 | // we can do this since we only support a single engine type |
406 | return m_file[0]->table_type(); |
407 | } |
408 | |
409 | |
410 | /* |
411 | Destructor method |
412 | |
413 | SYNOPSIS |
414 | ~ha_partition() |
415 | |
416 | RETURN VALUE |
417 | NONE |
418 | */ |
419 | |
420 | ha_partition::~ha_partition() |
421 | { |
422 | DBUG_ENTER("ha_partition::~ha_partition()" ); |
423 | if (m_new_partitions_share_refs.elements) |
424 | m_new_partitions_share_refs.delete_elements(); |
425 | if (m_file != NULL) |
426 | { |
427 | uint i; |
428 | for (i= 0; i < m_tot_parts; i++) |
429 | delete m_file[i]; |
430 | } |
431 | destroy_record_priority_queue(); |
432 | my_free(m_part_ids_sorted_by_num_of_records); |
433 | |
434 | if (m_added_file) |
435 | { |
436 | for (handler **ph= m_added_file; *ph; ph++) |
437 | delete (*ph); |
438 | } |
439 | clear_handler_file(); |
440 | free_root(&m_mem_root, MYF(0)); |
441 | |
442 | DBUG_VOID_RETURN; |
443 | } |
444 | |
445 | |
446 | /* |
447 | Initialize partition handler object |
448 | |
449 | SYNOPSIS |
450 | initialize_partition() |
451 | mem_root Allocate memory through this |
452 | |
453 | RETURN VALUE |
454 | 1 Error |
455 | 0 Success |
456 | |
457 | DESCRIPTION |
458 | |
459 | The partition handler is only a layer on top of other engines. Thus it |
460 | can't really perform anything without the underlying handlers. Thus we |
461 | add this method as part of the allocation of a handler object. |
462 | |
463 | 1) Allocation of underlying handlers |
464 | If we have access to the partition info we will allocate one handler |
465 | instance for each partition. |
466 | 2) Allocation without partition info |
467 | The cases where we don't have access to this information is when called |
468 | in preparation for delete_table and rename_table and in that case we |
469 | only need to set HA_FILE_BASED. In that case we will use the .par file |
470 | that contains information about the partitions and their engines and |
471 | the names of each partition. |
472 | 3) Table flags initialisation |
473 | We need also to set table flags for the partition handler. This is not |
474 | static since it depends on what storage engines are used as underlying |
475 | handlers. |
476 | The table flags is set in this routine to simulate the behaviour of a |
477 | normal storage engine |
478 | The flag HA_FILE_BASED will be set independent of the underlying handlers |
479 | 4) Index flags initialisation |
480 | When knowledge exists on the indexes it is also possible to initialize the |
481 | index flags. Again the index flags must be initialized by using the under- |
482 | lying handlers since this is storage engine dependent. |
483 | The flag HA_READ_ORDER will be reset for the time being to indicate no |
484 | ordered output is available from partition handler indexes. Later a merge |
485 | sort will be performed using the underlying handlers. |
486 | 5) primary_key_is_clustered and has_transactions are |
487 | calculated here. |
488 | |
489 | */ |
490 | |
491 | bool ha_partition::initialize_partition(MEM_ROOT *mem_root) |
492 | { |
493 | handler **file_array, *file; |
494 | ulonglong check_table_flags; |
495 | DBUG_ENTER("ha_partition::initialize_partition" ); |
496 | |
497 | if (m_create_handler) |
498 | { |
499 | m_tot_parts= m_part_info->get_tot_partitions(); |
500 | DBUG_ASSERT(m_tot_parts > 0); |
501 | if (new_handlers_from_part_info(mem_root)) |
502 | DBUG_RETURN(1); |
503 | } |
504 | else if (!table_share || !table_share->normalized_path.str) |
505 | { |
506 | /* |
507 | Called with dummy table share (delete, rename and alter table). |
508 | Don't need to set-up anything. |
509 | */ |
510 | DBUG_RETURN(0); |
511 | } |
512 | else if (get_from_handler_file(table_share->normalized_path.str, |
513 | mem_root, false)) |
514 | { |
515 | my_error(ER_FAILED_READ_FROM_PAR_FILE, MYF(0)); |
516 | DBUG_RETURN(1); |
517 | } |
518 | /* |
519 | We create all underlying table handlers here. We do it in this special |
520 | method to be able to report allocation errors. |
521 | |
522 | Set up primary_key_is_clustered and |
523 | has_transactions since they are called often in all kinds of places, |
524 | other parameters are calculated on demand. |
525 | Verify that all partitions have the same table_flags. |
526 | */ |
527 | check_table_flags= m_file[0]->ha_table_flags(); |
528 | m_pkey_is_clustered= TRUE; |
529 | file_array= m_file; |
530 | do |
531 | { |
532 | file= *file_array; |
533 | if (!file->primary_key_is_clustered()) |
534 | m_pkey_is_clustered= FALSE; |
535 | if (check_table_flags != file->ha_table_flags()) |
536 | { |
537 | my_error(ER_MIX_HANDLER_ERROR, MYF(0)); |
538 | DBUG_RETURN(1); |
539 | } |
540 | } while (*(++file_array)); |
541 | m_handler_status= handler_initialized; |
542 | DBUG_RETURN(0); |
543 | } |
544 | |
545 | /**************************************************************************** |
546 | MODULE meta data changes |
547 | ****************************************************************************/ |
548 | /* |
549 | Delete a table |
550 | |
551 | SYNOPSIS |
552 | delete_table() |
553 | name Full path of table name |
554 | |
555 | RETURN VALUE |
556 | >0 Error |
557 | 0 Success |
558 | |
559 | DESCRIPTION |
560 | Used to delete a table. By the time delete_table() has been called all |
561 | opened references to this table will have been closed (and your globally |
562 | shared references released. The variable name will just be the name of |
563 | the table. You will need to remove any files you have created at this |
564 | point. |
565 | |
566 | If you do not implement this, the default delete_table() is called from |
567 | handler.cc and it will delete all files with the file extentions returned |
568 | by bas_ext(). |
569 | |
570 | Called from handler.cc by delete_table and ha_create_table(). Only used |
571 | during create if the table_flag HA_DROP_BEFORE_CREATE was specified for |
572 | the storage engine. |
573 | */ |
574 | |
575 | int ha_partition::delete_table(const char *name) |
576 | { |
577 | DBUG_ENTER("ha_partition::delete_table" ); |
578 | |
579 | DBUG_RETURN(del_ren_table(name, NULL)); |
580 | } |
581 | |
582 | |
583 | /* |
584 | Rename a table |
585 | |
586 | SYNOPSIS |
587 | rename_table() |
588 | from Full path of old table name |
589 | to Full path of new table name |
590 | |
591 | RETURN VALUE |
592 | >0 Error |
593 | 0 Success |
594 | |
595 | DESCRIPTION |
596 | Renames a table from one name to another from alter table call. |
597 | |
598 | If you do not implement this, the default rename_table() is called from |
599 | handler.cc and it will rename all files with the file extentions returned |
600 | by bas_ext(). |
601 | |
602 | Called from sql_table.cc by mysql_rename_table(). |
603 | */ |
604 | |
605 | int ha_partition::rename_table(const char *from, const char *to) |
606 | { |
607 | DBUG_ENTER("ha_partition::rename_table" ); |
608 | |
609 | DBUG_RETURN(del_ren_table(from, to)); |
610 | } |
611 | |
612 | |
613 | /* |
614 | Create the handler file (.par-file) |
615 | |
616 | SYNOPSIS |
617 | create_partitioning_metadata() |
618 | name Full path of table name |
619 | create_info Create info generated for CREATE TABLE |
620 | |
621 | RETURN VALUE |
622 | >0 Error |
623 | 0 Success |
624 | |
625 | DESCRIPTION |
626 | create_partitioning_metadata is called to create any handler specific files |
627 | before opening the file with openfrm to later call ::create on the |
628 | file object. |
629 | In the partition handler this is used to store the names of partitions |
630 | and types of engines in the partitions. |
631 | */ |
632 | |
633 | int ha_partition::create_partitioning_metadata(const char *path, |
634 | const char *old_path, |
635 | int action_flag) |
636 | { |
637 | DBUG_ENTER("ha_partition::create_partitioning_metadata()" ); |
638 | |
639 | /* |
640 | We need to update total number of parts since we might write the handler |
641 | file as part of a partition management command |
642 | */ |
643 | if (action_flag == CHF_DELETE_FLAG || |
644 | action_flag == CHF_RENAME_FLAG) |
645 | { |
646 | char name[FN_REFLEN]; |
647 | char old_name[FN_REFLEN]; |
648 | |
649 | strxmov(name, path, ha_par_ext, NullS); |
650 | strxmov(old_name, old_path, ha_par_ext, NullS); |
651 | if ((action_flag == CHF_DELETE_FLAG && |
652 | mysql_file_delete(key_file_partition, name, MYF(MY_WME))) || |
653 | (action_flag == CHF_RENAME_FLAG && |
654 | mysql_file_rename(key_file_partition, old_name, name, MYF(MY_WME)))) |
655 | { |
656 | DBUG_RETURN(TRUE); |
657 | } |
658 | } |
659 | else if (action_flag == CHF_CREATE_FLAG) |
660 | { |
661 | if (create_handler_file(path)) |
662 | { |
663 | my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0)); |
664 | DBUG_RETURN(1); |
665 | } |
666 | } |
667 | DBUG_RETURN(0); |
668 | } |
669 | |
670 | |
671 | /* |
672 | Create a partitioned table |
673 | |
674 | SYNOPSIS |
675 | create() |
676 | name Full path of table name |
677 | table_arg Table object |
678 | create_info Create info generated for CREATE TABLE |
679 | |
680 | RETURN VALUE |
681 | >0 Error |
682 | 0 Success |
683 | |
684 | DESCRIPTION |
685 | create() is called to create a table. The variable name will have the name |
686 | of the table. When create() is called you do not need to worry about |
687 | opening the table. Also, the FRM file will have already been created so |
688 | adjusting create_info will not do you any good. You can overwrite the frm |
689 | file at this point if you wish to change the table definition, but there |
690 | are no methods currently provided for doing that. |
691 | |
692 | Called from handler.cc by ha_create_table(). |
693 | */ |
694 | |
695 | int ha_partition::create(const char *name, TABLE *table_arg, |
696 | HA_CREATE_INFO *create_info) |
697 | { |
698 | int error; |
699 | char name_buff[FN_REFLEN + 1], name_lc_buff[FN_REFLEN]; |
700 | char *name_buffer_ptr; |
701 | const char *path; |
702 | uint i; |
703 | List_iterator_fast <partition_element> part_it(m_part_info->partitions); |
704 | partition_element *part_elem; |
705 | handler **file, **abort_file; |
706 | DBUG_ENTER("ha_partition::create" ); |
707 | DBUG_PRINT("enter" , ("name: '%s'" , name)); |
708 | |
709 | DBUG_ASSERT(!fn_frm_ext(name)); |
710 | |
711 | /* Not allowed to create temporary partitioned tables */ |
712 | if (create_info && create_info->tmp_table()) |
713 | { |
714 | my_error(ER_PARTITION_NO_TEMPORARY, MYF(0)); |
715 | DBUG_RETURN(TRUE); |
716 | } |
717 | |
718 | if (get_from_handler_file(name, ha_thd()->mem_root, false)) |
719 | DBUG_RETURN(TRUE); |
720 | DBUG_ASSERT(m_file_buffer); |
721 | name_buffer_ptr= m_name_buffer_ptr; |
722 | file= m_file; |
723 | /* |
724 | Since ha_partition has HA_FILE_BASED, it must alter underlying table names |
725 | if they do not have HA_FILE_BASED and lower_case_table_names == 2. |
726 | See Bug#37402, for Mac OS X. |
727 | The appended #P#<partname>[#SP#<subpartname>] will remain in current case. |
728 | Using the first partitions handler, since mixing handlers is not allowed. |
729 | */ |
730 | path= get_canonical_filename(*file, name, name_lc_buff); |
731 | for (i= 0; i < m_part_info->num_parts; i++) |
732 | { |
733 | part_elem= part_it++; |
734 | if (m_is_sub_partitioned) |
735 | { |
736 | uint j; |
737 | List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); |
738 | for (j= 0; j < m_part_info->num_subparts; j++) |
739 | { |
740 | part_elem= sub_it++; |
741 | if (unlikely((error= create_partition_name(name_buff, |
742 | sizeof(name_buff), path, |
743 | name_buffer_ptr, |
744 | NORMAL_PART_NAME, FALSE)))) |
745 | goto create_error; |
746 | if (unlikely((error= set_up_table_before_create(table_arg, name_buff, |
747 | create_info, |
748 | part_elem)) || |
749 | ((error= (*file)->ha_create(name_buff, table_arg, |
750 | create_info))))) |
751 | goto create_error; |
752 | |
753 | name_buffer_ptr= strend(name_buffer_ptr) + 1; |
754 | file++; |
755 | } |
756 | } |
757 | else |
758 | { |
759 | if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff), |
760 | path, name_buffer_ptr, |
761 | NORMAL_PART_NAME, FALSE)))) |
762 | goto create_error; |
763 | if (unlikely((error= set_up_table_before_create(table_arg, name_buff, |
764 | create_info, |
765 | part_elem)) || |
766 | ((error= (*file)->ha_create(name_buff, table_arg, |
767 | create_info))))) |
768 | goto create_error; |
769 | |
770 | name_buffer_ptr= strend(name_buffer_ptr) + 1; |
771 | file++; |
772 | } |
773 | } |
774 | DBUG_RETURN(0); |
775 | |
776 | create_error: |
777 | name_buffer_ptr= m_name_buffer_ptr; |
778 | for (abort_file= file, file= m_file; file < abort_file; file++) |
779 | { |
780 | if (!create_partition_name(name_buff, sizeof(name_buff), path, |
781 | name_buffer_ptr, NORMAL_PART_NAME, FALSE)) |
782 | (void) (*file)->ha_delete_table((const char*) name_buff); |
783 | name_buffer_ptr= strend(name_buffer_ptr) + 1; |
784 | } |
785 | handler::delete_table(name); |
786 | DBUG_RETURN(error); |
787 | } |
788 | |
789 | |
790 | /* |
791 | Drop partitions as part of ALTER TABLE of partitions |
792 | |
793 | SYNOPSIS |
794 | drop_partitions() |
795 | path Complete path of db and table name |
796 | |
797 | RETURN VALUE |
798 | >0 Failure |
799 | 0 Success |
800 | |
801 | DESCRIPTION |
802 | Use part_info object on handler object to deduce which partitions to |
803 | drop (each partition has a state attached to it) |
804 | */ |
805 | |
806 | int ha_partition::drop_partitions(const char *path) |
807 | { |
808 | List_iterator<partition_element> part_it(m_part_info->partitions); |
809 | char part_name_buff[FN_REFLEN + 1]; |
810 | uint num_parts= m_part_info->partitions.elements; |
811 | uint num_subparts= m_part_info->num_subparts; |
812 | uint i= 0; |
813 | uint name_variant; |
814 | int ret_error; |
815 | int error= 0; |
816 | DBUG_ENTER("ha_partition::drop_partitions" ); |
817 | |
818 | /* |
819 | Assert that it works without HA_FILE_BASED and lower_case_table_name = 2. |
820 | We use m_file[0] as long as all partitions have the same storage engine. |
821 | */ |
822 | DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path, |
823 | part_name_buff))); |
824 | do |
825 | { |
826 | partition_element *part_elem= part_it++; |
827 | if (part_elem->part_state == PART_TO_BE_DROPPED) |
828 | { |
829 | handler *file; |
830 | /* |
831 | This part is to be dropped, meaning the part or all its subparts. |
832 | */ |
833 | name_variant= NORMAL_PART_NAME; |
834 | if (m_is_sub_partitioned) |
835 | { |
836 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
837 | uint j= 0, part; |
838 | do |
839 | { |
840 | partition_element *sub_elem= sub_it++; |
841 | part= i * num_subparts + j; |
842 | if (unlikely((ret_error= |
843 | create_subpartition_name(part_name_buff, |
844 | sizeof(part_name_buff), path, |
845 | part_elem->partition_name, |
846 | sub_elem->partition_name, |
847 | name_variant)))) |
848 | error= ret_error; |
849 | file= m_file[part]; |
850 | DBUG_PRINT("info" , ("Drop subpartition %s" , part_name_buff)); |
851 | if (unlikely((ret_error= file->ha_delete_table(part_name_buff)))) |
852 | error= ret_error; |
853 | if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry-> |
854 | entry_pos))) |
855 | error= 1; |
856 | } while (++j < num_subparts); |
857 | } |
858 | else |
859 | { |
860 | if ((ret_error= create_partition_name(part_name_buff, |
861 | sizeof(part_name_buff), path, |
862 | part_elem->partition_name, name_variant, TRUE))) |
863 | error= ret_error; |
864 | else |
865 | { |
866 | file= m_file[i]; |
867 | DBUG_PRINT("info" , ("Drop partition %s" , part_name_buff)); |
868 | if (unlikely((ret_error= file->ha_delete_table(part_name_buff)))) |
869 | error= ret_error; |
870 | if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry-> |
871 | entry_pos))) |
872 | error= 1; |
873 | } |
874 | } |
875 | if (part_elem->part_state == PART_IS_CHANGED) |
876 | part_elem->part_state= PART_NORMAL; |
877 | else |
878 | part_elem->part_state= PART_IS_DROPPED; |
879 | } |
880 | } while (++i < num_parts); |
881 | (void) sync_ddl_log(); |
882 | DBUG_RETURN(error); |
883 | } |
884 | |
885 | |
886 | /* |
887 | Rename partitions as part of ALTER TABLE of partitions |
888 | |
889 | SYNOPSIS |
890 | rename_partitions() |
891 | path Complete path of db and table name |
892 | |
893 | RETURN VALUE |
894 | TRUE Failure |
895 | FALSE Success |
896 | |
897 | DESCRIPTION |
898 | When reorganising partitions, adding hash partitions and coalescing |
899 | partitions it can be necessary to rename partitions while holding |
900 | an exclusive lock on the table. |
901 | Which partitions to rename is given by state of partitions found by the |
902 | partition info struct referenced from the handler object |
903 | */ |
904 | |
905 | int ha_partition::rename_partitions(const char *path) |
906 | { |
907 | List_iterator<partition_element> part_it(m_part_info->partitions); |
908 | List_iterator<partition_element> temp_it(m_part_info->temp_partitions); |
909 | char part_name_buff[FN_REFLEN + 1]; |
910 | char norm_name_buff[FN_REFLEN + 1]; |
911 | uint num_parts= m_part_info->partitions.elements; |
912 | uint part_count= 0; |
913 | uint num_subparts= m_part_info->num_subparts; |
914 | uint i= 0; |
915 | uint j= 0; |
916 | int error= 0; |
917 | int ret_error; |
918 | uint temp_partitions= m_part_info->temp_partitions.elements; |
919 | handler *file; |
920 | partition_element *part_elem, *sub_elem; |
921 | DBUG_ENTER("ha_partition::rename_partitions" ); |
922 | |
923 | /* |
924 | Assert that it works without HA_FILE_BASED and lower_case_table_name = 2. |
925 | We use m_file[0] as long as all partitions have the same storage engine. |
926 | */ |
927 | DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path, |
928 | norm_name_buff))); |
929 | |
930 | DEBUG_SYNC(ha_thd(), "before_rename_partitions" ); |
931 | if (temp_partitions) |
932 | { |
933 | /* |
934 | These are the reorganised partitions that have already been copied. |
935 | We delete the partitions and log the delete by inactivating the |
936 | delete log entry in the table log. We only need to synchronise |
937 | these writes before moving to the next loop since there is no |
938 | interaction among reorganised partitions, they cannot have the |
939 | same name. |
940 | */ |
941 | do |
942 | { |
943 | part_elem= temp_it++; |
944 | if (m_is_sub_partitioned) |
945 | { |
946 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
947 | j= 0; |
948 | do |
949 | { |
950 | sub_elem= sub_it++; |
951 | file= m_reorged_file[part_count++]; |
952 | if (unlikely((ret_error= |
953 | create_subpartition_name(norm_name_buff, |
954 | sizeof(norm_name_buff), path, |
955 | part_elem->partition_name, |
956 | sub_elem->partition_name, |
957 | NORMAL_PART_NAME)))) |
958 | error= ret_error; |
959 | DBUG_PRINT("info" , ("Delete subpartition %s" , norm_name_buff)); |
960 | if (unlikely((ret_error= file->ha_delete_table(norm_name_buff)))) |
961 | error= ret_error; |
962 | else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry-> |
963 | entry_pos))) |
964 | error= 1; |
965 | else |
966 | sub_elem->log_entry= NULL; /* Indicate success */ |
967 | } while (++j < num_subparts); |
968 | } |
969 | else |
970 | { |
971 | file= m_reorged_file[part_count++]; |
972 | if (unlikely((ret_error= |
973 | create_partition_name(norm_name_buff, |
974 | sizeof(norm_name_buff), path, |
975 | part_elem->partition_name, |
976 | NORMAL_PART_NAME, TRUE)))) |
977 | error= ret_error; |
978 | else |
979 | { |
980 | DBUG_PRINT("info" , ("Delete partition %s" , norm_name_buff)); |
981 | if (unlikely((ret_error= file->ha_delete_table(norm_name_buff)))) |
982 | error= ret_error; |
983 | else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry-> |
984 | entry_pos))) |
985 | error= 1; |
986 | else |
987 | part_elem->log_entry= NULL; /* Indicate success */ |
988 | } |
989 | } |
990 | } while (++i < temp_partitions); |
991 | (void) sync_ddl_log(); |
992 | } |
993 | i= 0; |
994 | do |
995 | { |
996 | /* |
997 | When state is PART_IS_CHANGED it means that we have created a new |
998 | TEMP partition that is to be renamed to normal partition name and |
999 | we are to delete the old partition with currently the normal name. |
1000 | |
1001 | We perform this operation by |
1002 | 1) Delete old partition with normal partition name |
1003 | 2) Signal this in table log entry |
1004 | 3) Synch table log to ensure we have consistency in crashes |
1005 | 4) Rename temporary partition name to normal partition name |
1006 | 5) Signal this to table log entry |
1007 | It is not necessary to synch the last state since a new rename |
1008 | should not corrupt things if there was no temporary partition. |
1009 | |
1010 | The only other parts we need to cater for are new parts that |
1011 | replace reorganised parts. The reorganised parts were deleted |
1012 | by the code above that goes through the temp_partitions list. |
1013 | Thus the synch above makes it safe to simply perform step 4 and 5 |
1014 | for those entries. |
1015 | */ |
1016 | part_elem= part_it++; |
1017 | if (part_elem->part_state == PART_IS_CHANGED || |
1018 | part_elem->part_state == PART_TO_BE_DROPPED || |
1019 | (part_elem->part_state == PART_IS_ADDED && temp_partitions)) |
1020 | { |
1021 | if (m_is_sub_partitioned) |
1022 | { |
1023 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
1024 | uint part; |
1025 | |
1026 | j= 0; |
1027 | do |
1028 | { |
1029 | sub_elem= sub_it++; |
1030 | part= i * num_subparts + j; |
1031 | if (unlikely((ret_error= |
1032 | create_subpartition_name(norm_name_buff, |
1033 | sizeof(norm_name_buff), path, |
1034 | part_elem->partition_name, |
1035 | sub_elem->partition_name, |
1036 | NORMAL_PART_NAME)))) |
1037 | error= ret_error; |
1038 | if (part_elem->part_state == PART_IS_CHANGED) |
1039 | { |
1040 | file= m_reorged_file[part_count++]; |
1041 | DBUG_PRINT("info" , ("Delete subpartition %s" , norm_name_buff)); |
1042 | if (unlikely((ret_error= file->ha_delete_table(norm_name_buff)))) |
1043 | error= ret_error; |
1044 | else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry-> |
1045 | entry_pos))) |
1046 | error= 1; |
1047 | (void) sync_ddl_log(); |
1048 | } |
1049 | file= m_new_file[part]; |
1050 | if (unlikely((ret_error= |
1051 | create_subpartition_name(part_name_buff, |
1052 | sizeof(part_name_buff), path, |
1053 | part_elem->partition_name, |
1054 | sub_elem->partition_name, |
1055 | TEMP_PART_NAME)))) |
1056 | error= ret_error; |
1057 | DBUG_PRINT("info" , ("Rename subpartition from %s to %s" , |
1058 | part_name_buff, norm_name_buff)); |
1059 | if (unlikely((ret_error= file->ha_rename_table(part_name_buff, |
1060 | norm_name_buff)))) |
1061 | error= ret_error; |
1062 | else if (unlikely(deactivate_ddl_log_entry(sub_elem->log_entry-> |
1063 | entry_pos))) |
1064 | error= 1; |
1065 | else |
1066 | sub_elem->log_entry= NULL; |
1067 | } while (++j < num_subparts); |
1068 | } |
1069 | else |
1070 | { |
1071 | if (unlikely((ret_error= |
1072 | create_partition_name(norm_name_buff, |
1073 | sizeof(norm_name_buff), path, |
1074 | part_elem->partition_name, |
1075 | NORMAL_PART_NAME, TRUE)) || |
1076 | (ret_error= create_partition_name(part_name_buff, |
1077 | sizeof(part_name_buff), |
1078 | path, |
1079 | part_elem-> |
1080 | partition_name, |
1081 | TEMP_PART_NAME, TRUE)))) |
1082 | error= ret_error; |
1083 | else |
1084 | { |
1085 | if (part_elem->part_state == PART_IS_CHANGED) |
1086 | { |
1087 | file= m_reorged_file[part_count++]; |
1088 | DBUG_PRINT("info" , ("Delete partition %s" , norm_name_buff)); |
1089 | if (unlikely((ret_error= file->ha_delete_table(norm_name_buff)))) |
1090 | error= ret_error; |
1091 | else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry-> |
1092 | entry_pos))) |
1093 | error= 1; |
1094 | (void) sync_ddl_log(); |
1095 | } |
1096 | file= m_new_file[i]; |
1097 | DBUG_PRINT("info" , ("Rename partition from %s to %s" , |
1098 | part_name_buff, norm_name_buff)); |
1099 | if (unlikely((ret_error= file->ha_rename_table(part_name_buff, |
1100 | norm_name_buff)))) |
1101 | error= ret_error; |
1102 | else if (unlikely(deactivate_ddl_log_entry(part_elem->log_entry-> |
1103 | entry_pos))) |
1104 | error= 1; |
1105 | else |
1106 | part_elem->log_entry= NULL; |
1107 | } |
1108 | } |
1109 | } |
1110 | } while (++i < num_parts); |
1111 | (void) sync_ddl_log(); |
1112 | DBUG_RETURN(error); |
1113 | } |
1114 | |
1115 | |
1116 | #define OPTIMIZE_PARTS 1 |
1117 | #define ANALYZE_PARTS 2 |
1118 | #define CHECK_PARTS 3 |
1119 | #define REPAIR_PARTS 4 |
1120 | #define ASSIGN_KEYCACHE_PARTS 5 |
1121 | #define PRELOAD_KEYS_PARTS 6 |
1122 | |
1123 | static const char *opt_op_name[]= {NULL, |
1124 | "optimize" , "analyze" , "check" , "repair" , |
1125 | "assign_to_keycache" , "preload_keys" }; |
1126 | |
1127 | /* |
1128 | Optimize table |
1129 | |
1130 | SYNOPSIS |
1131 | optimize() |
1132 | thd Thread object |
1133 | check_opt Check/analyze/repair/optimize options |
1134 | |
1135 | RETURN VALUES |
1136 | >0 Error |
1137 | 0 Success |
1138 | */ |
1139 | |
1140 | int ha_partition::optimize(THD *thd, HA_CHECK_OPT *check_opt) |
1141 | { |
1142 | DBUG_ENTER("ha_partition::optimize" ); |
1143 | |
1144 | DBUG_RETURN(handle_opt_partitions(thd, check_opt, OPTIMIZE_PARTS)); |
1145 | } |
1146 | |
1147 | |
1148 | /* |
1149 | Analyze table |
1150 | |
1151 | SYNOPSIS |
1152 | analyze() |
1153 | thd Thread object |
1154 | check_opt Check/analyze/repair/optimize options |
1155 | |
1156 | RETURN VALUES |
1157 | >0 Error |
1158 | 0 Success |
1159 | */ |
1160 | |
1161 | int ha_partition::analyze(THD *thd, HA_CHECK_OPT *check_opt) |
1162 | { |
1163 | DBUG_ENTER("ha_partition::analyze" ); |
1164 | |
1165 | DBUG_RETURN(handle_opt_partitions(thd, check_opt, ANALYZE_PARTS)); |
1166 | } |
1167 | |
1168 | |
1169 | /* |
1170 | Check table |
1171 | |
1172 | SYNOPSIS |
1173 | check() |
1174 | thd Thread object |
1175 | check_opt Check/analyze/repair/optimize options |
1176 | |
1177 | RETURN VALUES |
1178 | >0 Error |
1179 | 0 Success |
1180 | */ |
1181 | |
1182 | int ha_partition::check(THD *thd, HA_CHECK_OPT *check_opt) |
1183 | { |
1184 | DBUG_ENTER("ha_partition::check" ); |
1185 | |
1186 | DBUG_RETURN(handle_opt_partitions(thd, check_opt, CHECK_PARTS)); |
1187 | } |
1188 | |
1189 | |
1190 | /* |
1191 | Repair table |
1192 | |
1193 | SYNOPSIS |
1194 | repair() |
1195 | thd Thread object |
1196 | check_opt Check/analyze/repair/optimize options |
1197 | |
1198 | RETURN VALUES |
1199 | >0 Error |
1200 | 0 Success |
1201 | */ |
1202 | |
1203 | int ha_partition::repair(THD *thd, HA_CHECK_OPT *check_opt) |
1204 | { |
1205 | DBUG_ENTER("ha_partition::repair" ); |
1206 | |
1207 | int res= handle_opt_partitions(thd, check_opt, REPAIR_PARTS); |
1208 | DBUG_RETURN(res); |
1209 | } |
1210 | |
1211 | /** |
1212 | Assign to keycache |
1213 | |
1214 | @param thd Thread object |
1215 | @param check_opt Check/analyze/repair/optimize options |
1216 | |
1217 | @return |
1218 | @retval >0 Error |
1219 | @retval 0 Success |
1220 | */ |
1221 | |
1222 | int ha_partition::assign_to_keycache(THD *thd, HA_CHECK_OPT *check_opt) |
1223 | { |
1224 | DBUG_ENTER("ha_partition::assign_to_keycache" ); |
1225 | |
1226 | DBUG_RETURN(handle_opt_partitions(thd, check_opt, ASSIGN_KEYCACHE_PARTS)); |
1227 | } |
1228 | |
1229 | |
1230 | /** |
1231 | Preload to keycache |
1232 | |
1233 | @param thd Thread object |
1234 | @param check_opt Check/analyze/repair/optimize options |
1235 | |
1236 | @return |
1237 | @retval >0 Error |
1238 | @retval 0 Success |
1239 | */ |
1240 | |
1241 | int ha_partition::preload_keys(THD *thd, HA_CHECK_OPT *check_opt) |
1242 | { |
1243 | DBUG_ENTER("ha_partition::preload_keys" ); |
1244 | |
1245 | DBUG_RETURN(handle_opt_partitions(thd, check_opt, PRELOAD_KEYS_PARTS)); |
1246 | } |
1247 | |
1248 | |
1249 | /* |
1250 | Handle optimize/analyze/check/repair of one partition |
1251 | |
1252 | SYNOPSIS |
1253 | handle_opt_part() |
1254 | thd Thread object |
1255 | check_opt Options |
1256 | file Handler object of partition |
1257 | flag Optimize/Analyze/Check/Repair flag |
1258 | |
1259 | RETURN VALUE |
1260 | >0 Failure |
1261 | 0 Success |
1262 | */ |
1263 | |
1264 | int ha_partition::handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt, |
1265 | uint part_id, uint flag) |
1266 | { |
1267 | int error; |
1268 | handler *file= m_file[part_id]; |
1269 | DBUG_ENTER("handle_opt_part" ); |
1270 | DBUG_PRINT("enter" , ("flag: %u" , flag)); |
1271 | |
1272 | if (flag == OPTIMIZE_PARTS) |
1273 | error= file->ha_optimize(thd, check_opt); |
1274 | else if (flag == ANALYZE_PARTS) |
1275 | error= file->ha_analyze(thd, check_opt); |
1276 | else if (flag == CHECK_PARTS) |
1277 | { |
1278 | error= file->ha_check(thd, check_opt); |
1279 | if (!error || |
1280 | error == HA_ADMIN_ALREADY_DONE || |
1281 | error == HA_ADMIN_NOT_IMPLEMENTED) |
1282 | { |
1283 | if (check_opt->flags & (T_MEDIUM | T_EXTEND)) |
1284 | error= check_misplaced_rows(part_id, false); |
1285 | } |
1286 | } |
1287 | else if (flag == REPAIR_PARTS) |
1288 | { |
1289 | error= file->ha_repair(thd, check_opt); |
1290 | if (!error || |
1291 | error == HA_ADMIN_ALREADY_DONE || |
1292 | error == HA_ADMIN_NOT_IMPLEMENTED) |
1293 | { |
1294 | if (check_opt->flags & (T_MEDIUM | T_EXTEND)) |
1295 | error= check_misplaced_rows(part_id, true); |
1296 | } |
1297 | } |
1298 | else if (flag == ASSIGN_KEYCACHE_PARTS) |
1299 | error= file->assign_to_keycache(thd, check_opt); |
1300 | else if (flag == PRELOAD_KEYS_PARTS) |
1301 | error= file->preload_keys(thd, check_opt); |
1302 | else |
1303 | { |
1304 | DBUG_ASSERT(FALSE); |
1305 | error= 1; |
1306 | } |
1307 | if (error == HA_ADMIN_ALREADY_DONE) |
1308 | error= 0; |
1309 | DBUG_RETURN(error); |
1310 | } |
1311 | |
1312 | |
1313 | /* |
1314 | print a message row formatted for ANALYZE/CHECK/OPTIMIZE/REPAIR TABLE |
1315 | (modelled after mi_check_print_msg) |
1316 | TODO: move this into the handler, or rewrite mysql_admin_table. |
1317 | */ |
1318 | bool print_admin_msg(THD* thd, uint len, |
1319 | const char* msg_type, |
1320 | const char* db_name, String &table_name, |
1321 | const char* op_name, const char *fmt, ...) |
1322 | ATTRIBUTE_FORMAT(printf, 7, 8); |
1323 | bool print_admin_msg(THD* thd, uint len, |
1324 | const char* msg_type, |
1325 | const char* db_name, String &table_name, |
1326 | const char* op_name, const char *fmt, ...) |
1327 | { |
1328 | va_list args; |
1329 | Protocol *protocol= thd->protocol; |
1330 | size_t length; |
1331 | size_t msg_length; |
1332 | char name[NAME_LEN*2+2]; |
1333 | char *msgbuf; |
1334 | bool error= true; |
1335 | |
1336 | if (!(msgbuf= (char*) my_malloc(len, MYF(0)))) |
1337 | return true; |
1338 | va_start(args, fmt); |
1339 | msg_length= my_vsnprintf(msgbuf, len, fmt, args); |
1340 | va_end(args); |
1341 | if (msg_length >= (len - 1)) |
1342 | goto err; |
1343 | msgbuf[len - 1]= 0; // healthy paranoia |
1344 | |
1345 | |
1346 | if (!thd->vio_ok()) |
1347 | { |
1348 | sql_print_error("%s" , msgbuf); |
1349 | goto err; |
1350 | } |
1351 | |
1352 | length=(size_t)(strxmov(name, db_name, "." , table_name.c_ptr_safe(), NullS) - name); |
1353 | /* |
1354 | TODO: switch from protocol to push_warning here. The main reason we didn't |
1355 | it yet is parallel repair, which threads have no THD object accessible via |
1356 | current_thd. |
1357 | |
1358 | Also we likely need to lock mutex here (in both cases with protocol and |
1359 | push_warning). |
1360 | */ |
1361 | DBUG_PRINT("info" ,("print_admin_msg: %s, %s, %s, %s" , name, op_name, |
1362 | msg_type, msgbuf)); |
1363 | protocol->prepare_for_resend(); |
1364 | protocol->store(name, length, system_charset_info); |
1365 | protocol->store(op_name, system_charset_info); |
1366 | protocol->store(msg_type, system_charset_info); |
1367 | protocol->store(msgbuf, msg_length, system_charset_info); |
1368 | if (protocol->write()) |
1369 | { |
1370 | sql_print_error("Failed on my_net_write, writing to stderr instead: %s\n" , |
1371 | msgbuf); |
1372 | goto err; |
1373 | } |
1374 | error= false; |
1375 | err: |
1376 | my_free(msgbuf); |
1377 | return error; |
1378 | } |
1379 | |
1380 | |
1381 | /* |
1382 | Handle optimize/analyze/check/repair of partitions |
1383 | |
1384 | SYNOPSIS |
1385 | handle_opt_partitions() |
1386 | thd Thread object |
1387 | check_opt Options |
1388 | flag Optimize/Analyze/Check/Repair flag |
1389 | |
1390 | RETURN VALUE |
1391 | >0 Failure |
1392 | 0 Success |
1393 | */ |
1394 | |
1395 | int ha_partition::handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt, |
1396 | uint flag) |
1397 | { |
1398 | List_iterator<partition_element> part_it(m_part_info->partitions); |
1399 | uint num_parts= m_part_info->num_parts; |
1400 | uint num_subparts= m_part_info->num_subparts; |
1401 | uint i= 0; |
1402 | int error; |
1403 | DBUG_ENTER("ha_partition::handle_opt_partitions" ); |
1404 | DBUG_PRINT("enter" , ("flag= %u" , flag)); |
1405 | |
1406 | do |
1407 | { |
1408 | partition_element *part_elem= part_it++; |
1409 | /* |
1410 | when ALTER TABLE <CMD> PARTITION ... |
1411 | it should only do named partitions, otherwise all partitions |
1412 | */ |
1413 | if (!(thd->lex->alter_info.partition_flags & ALTER_PARTITION_ADMIN) || |
1414 | part_elem->part_state == PART_ADMIN) |
1415 | { |
1416 | if (m_is_sub_partitioned) |
1417 | { |
1418 | List_iterator<partition_element> subpart_it(part_elem->subpartitions); |
1419 | partition_element *sub_elem; |
1420 | uint j= 0, part; |
1421 | do |
1422 | { |
1423 | sub_elem= subpart_it++; |
1424 | part= i * num_subparts + j; |
1425 | DBUG_PRINT("info" , ("Optimize subpartition %u (%s)" , |
1426 | part, sub_elem->partition_name)); |
1427 | if (unlikely((error= handle_opt_part(thd, check_opt, part, flag)))) |
1428 | { |
1429 | /* print a line which partition the error belongs to */ |
1430 | if (error != HA_ADMIN_NOT_IMPLEMENTED && |
1431 | error != HA_ADMIN_ALREADY_DONE && |
1432 | error != HA_ADMIN_TRY_ALTER) |
1433 | { |
1434 | print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error" , |
1435 | table_share->db.str, table->alias, |
1436 | opt_op_name[flag], |
1437 | "Subpartition %s returned error" , |
1438 | sub_elem->partition_name); |
1439 | } |
1440 | /* reset part_state for the remaining partitions */ |
1441 | do |
1442 | { |
1443 | if (part_elem->part_state == PART_ADMIN) |
1444 | part_elem->part_state= PART_NORMAL; |
1445 | } while ((part_elem= part_it++)); |
1446 | DBUG_RETURN(error); |
1447 | } |
1448 | } while (++j < num_subparts); |
1449 | } |
1450 | else |
1451 | { |
1452 | DBUG_PRINT("info" , ("Optimize partition %u (%s)" , i, |
1453 | part_elem->partition_name)); |
1454 | if (unlikely((error= handle_opt_part(thd, check_opt, i, flag)))) |
1455 | { |
1456 | /* print a line which partition the error belongs to */ |
1457 | if (error != HA_ADMIN_NOT_IMPLEMENTED && |
1458 | error != HA_ADMIN_ALREADY_DONE && |
1459 | error != HA_ADMIN_TRY_ALTER) |
1460 | { |
1461 | print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error" , |
1462 | table_share->db.str, table->alias, |
1463 | opt_op_name[flag], "Partition %s returned error" , |
1464 | part_elem->partition_name); |
1465 | } |
1466 | /* reset part_state for the remaining partitions */ |
1467 | do |
1468 | { |
1469 | if (part_elem->part_state == PART_ADMIN) |
1470 | part_elem->part_state= PART_NORMAL; |
1471 | } while ((part_elem= part_it++)); |
1472 | DBUG_RETURN(error); |
1473 | } |
1474 | } |
1475 | part_elem->part_state= PART_NORMAL; |
1476 | } |
1477 | } while (++i < num_parts); |
1478 | DBUG_RETURN(FALSE); |
1479 | } |
1480 | |
1481 | |
1482 | /** |
1483 | @brief Check and repair the table if neccesary |
1484 | |
1485 | @param thd Thread object |
1486 | |
1487 | @retval TRUE Error/Not supported |
1488 | @retval FALSE Success |
1489 | |
1490 | @note Called if open_table_from_share fails and ::is_crashed(). |
1491 | */ |
1492 | |
1493 | bool ha_partition::check_and_repair(THD *thd) |
1494 | { |
1495 | handler **file= m_file; |
1496 | DBUG_ENTER("ha_partition::check_and_repair" ); |
1497 | |
1498 | do |
1499 | { |
1500 | if ((*file)->ha_check_and_repair(thd)) |
1501 | DBUG_RETURN(TRUE); |
1502 | } while (*(++file)); |
1503 | DBUG_RETURN(FALSE); |
1504 | } |
1505 | |
1506 | |
1507 | /** |
1508 | @breif Check if the table can be automatically repaired |
1509 | |
1510 | @retval TRUE Can be auto repaired |
1511 | @retval FALSE Cannot be auto repaired |
1512 | */ |
1513 | |
1514 | bool ha_partition::auto_repair(int error) const |
1515 | { |
1516 | DBUG_ENTER("ha_partition::auto_repair" ); |
1517 | |
1518 | /* |
1519 | As long as we only support one storage engine per table, |
1520 | we can use the first partition for this function. |
1521 | */ |
1522 | DBUG_RETURN(m_file[0]->auto_repair(error)); |
1523 | } |
1524 | |
1525 | |
1526 | /** |
1527 | @breif Check if the table is crashed |
1528 | |
1529 | @retval TRUE Crashed |
1530 | @retval FALSE Not crashed |
1531 | */ |
1532 | |
1533 | bool ha_partition::is_crashed() const |
1534 | { |
1535 | handler **file= m_file; |
1536 | DBUG_ENTER("ha_partition::is_crashed" ); |
1537 | |
1538 | do |
1539 | { |
1540 | if ((*file)->is_crashed()) |
1541 | DBUG_RETURN(TRUE); |
1542 | } while (*(++file)); |
1543 | DBUG_RETURN(FALSE); |
1544 | } |
1545 | |
1546 | |
1547 | /* |
1548 | Prepare by creating a new partition |
1549 | |
1550 | SYNOPSIS |
1551 | prepare_new_partition() |
1552 | table Table object |
1553 | create_info Create info from CREATE TABLE |
1554 | file Handler object of new partition |
1555 | part_name partition name |
1556 | |
1557 | RETURN VALUE |
1558 | >0 Error |
1559 | 0 Success |
1560 | */ |
1561 | |
1562 | int ha_partition::prepare_new_partition(TABLE *tbl, |
1563 | HA_CREATE_INFO *create_info, |
1564 | handler *file, const char *part_name, |
1565 | partition_element *p_elem, |
1566 | uint disable_non_uniq_indexes) |
1567 | { |
1568 | int error; |
1569 | DBUG_ENTER("prepare_new_partition" ); |
1570 | |
1571 | /* |
1572 | This call to set_up_table_before_create() is done for an alter table. |
1573 | So this may be the second time around for this partition_element, |
1574 | depending on how many partitions and subpartitions there were before, |
1575 | and how many there are now. |
1576 | The first time, on the CREATE, data_file_name and index_file_name |
1577 | came from the parser. They did not have the file name attached to |
1578 | the end. But if this partition is less than the total number of |
1579 | previous partitions, it's data_file_name has the filename attached. |
1580 | So we need to take the partition filename off if it exists. |
1581 | That file name may be different from part_name, which will be |
1582 | attached in append_file_to_dir(). |
1583 | */ |
1584 | truncate_partition_filename((char*) p_elem->data_file_name); |
1585 | truncate_partition_filename((char*) p_elem->index_file_name); |
1586 | |
1587 | if (unlikely((error= set_up_table_before_create(tbl, part_name, create_info, |
1588 | p_elem)))) |
1589 | goto error_create; |
1590 | |
1591 | if (!(file->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION)) |
1592 | tbl->s->connect_string= p_elem->connect_string; |
1593 | if ((error= file->ha_create(part_name, tbl, create_info))) |
1594 | { |
1595 | /* |
1596 | Added for safety, InnoDB reports HA_ERR_FOUND_DUPP_KEY |
1597 | if the table/partition already exists. |
1598 | If we return that error code, then print_error would try to |
1599 | get_dup_key on a non-existing partition. |
1600 | So return a more reasonable error code. |
1601 | */ |
1602 | if (error == HA_ERR_FOUND_DUPP_KEY) |
1603 | error= HA_ERR_TABLE_EXIST; |
1604 | goto error_create; |
1605 | } |
1606 | DBUG_PRINT("info" , ("partition %s created" , part_name)); |
1607 | if (unlikely((error= file->ha_open(tbl, part_name, m_mode, |
1608 | m_open_test_lock | HA_OPEN_NO_PSI_CALL)))) |
1609 | goto error_open; |
1610 | DBUG_PRINT("info" , ("partition %s opened" , part_name)); |
1611 | |
1612 | /* |
1613 | Note: if you plan to add another call that may return failure, |
1614 | better to do it before external_lock() as cleanup_new_partition() |
1615 | assumes that external_lock() is last call that may fail here. |
1616 | Otherwise see description for cleanup_new_partition(). |
1617 | */ |
1618 | if (unlikely((error= file->ha_external_lock(ha_thd(), F_WRLCK)))) |
1619 | goto error_external_lock; |
1620 | DBUG_PRINT("info" , ("partition %s external locked" , part_name)); |
1621 | |
1622 | if (disable_non_uniq_indexes) |
1623 | file->ha_disable_indexes(HA_KEY_SWITCH_NONUNIQ_SAVE); |
1624 | |
1625 | DBUG_RETURN(0); |
1626 | error_external_lock: |
1627 | (void) file->ha_close(); |
1628 | error_open: |
1629 | (void) file->ha_delete_table(part_name); |
1630 | error_create: |
1631 | DBUG_RETURN(error); |
1632 | } |
1633 | |
1634 | |
1635 | /* |
1636 | Cleanup by removing all created partitions after error |
1637 | |
1638 | SYNOPSIS |
1639 | cleanup_new_partition() |
1640 | part_count Number of partitions to remove |
1641 | |
1642 | RETURN VALUE |
1643 | NONE |
1644 | |
1645 | DESCRIPTION |
1646 | This function is called immediately after prepare_new_partition() in |
1647 | case the latter fails. |
1648 | |
1649 | In prepare_new_partition() last call that may return failure is |
1650 | external_lock(). That means if prepare_new_partition() fails, |
1651 | partition does not have external lock. Thus no need to call |
1652 | external_lock(F_UNLCK) here. |
1653 | |
1654 | TODO: |
1655 | We must ensure that in the case that we get an error during the process |
1656 | that we call external_lock with F_UNLCK, close the table and delete the |
1657 | table in the case where we have been successful with prepare_handler. |
1658 | We solve this by keeping an array of successful calls to prepare_handler |
1659 | which can then be used to undo the call. |
1660 | */ |
1661 | |
1662 | void ha_partition::cleanup_new_partition(uint part_count) |
1663 | { |
1664 | DBUG_ENTER("ha_partition::cleanup_new_partition" ); |
1665 | |
1666 | if (m_added_file) |
1667 | { |
1668 | THD *thd= ha_thd(); |
1669 | handler **file= m_added_file; |
1670 | while ((part_count > 0) && (*file)) |
1671 | { |
1672 | (*file)->ha_external_lock(thd, F_UNLCK); |
1673 | (*file)->ha_close(); |
1674 | |
1675 | /* Leave the (*file)->ha_delete_table(part_name) to the ddl-log */ |
1676 | |
1677 | file++; |
1678 | part_count--; |
1679 | } |
1680 | m_added_file= NULL; |
1681 | } |
1682 | DBUG_VOID_RETURN; |
1683 | } |
1684 | |
1685 | /* |
1686 | Implement the partition changes defined by ALTER TABLE of partitions |
1687 | |
1688 | SYNOPSIS |
1689 | change_partitions() |
1690 | create_info HA_CREATE_INFO object describing all |
1691 | fields and indexes in table |
1692 | path Complete path of db and table name |
1693 | out: copied Output parameter where number of copied |
1694 | records are added |
1695 | out: deleted Output parameter where number of deleted |
1696 | records are added |
1697 | pack_frm_data Reference to packed frm file |
1698 | pack_frm_len Length of packed frm file |
1699 | |
1700 | RETURN VALUE |
1701 | >0 Failure |
1702 | 0 Success |
1703 | |
1704 | DESCRIPTION |
1705 | Add and copy if needed a number of partitions, during this operation |
1706 | no other operation is ongoing in the server. This is used by |
1707 | ADD PARTITION all types as well as by REORGANIZE PARTITION. For |
1708 | one-phased implementations it is used also by DROP and COALESCE |
1709 | PARTITIONs. |
1710 | One-phased implementation needs the new frm file, other handlers will |
1711 | get zero length and a NULL reference here. |
1712 | */ |
1713 | |
1714 | int ha_partition::change_partitions(HA_CREATE_INFO *create_info, |
1715 | const char *path, |
1716 | ulonglong * const copied, |
1717 | ulonglong * const deleted, |
1718 | const uchar *pack_frm_data |
1719 | __attribute__((unused)), |
1720 | size_t pack_frm_len |
1721 | __attribute__((unused))) |
1722 | { |
1723 | List_iterator<partition_element> part_it(m_part_info->partitions); |
1724 | List_iterator <partition_element> t_it(m_part_info->temp_partitions); |
1725 | char part_name_buff[FN_REFLEN + 1]; |
1726 | uint num_parts= m_part_info->partitions.elements; |
1727 | uint num_subparts= m_part_info->num_subparts; |
1728 | uint i= 0; |
1729 | uint num_remain_partitions, part_count, orig_count; |
1730 | handler **new_file_array; |
1731 | int error= 1; |
1732 | bool first; |
1733 | uint temp_partitions= m_part_info->temp_partitions.elements; |
1734 | THD *thd= ha_thd(); |
1735 | DBUG_ENTER("ha_partition::change_partitions" ); |
1736 | |
1737 | /* |
1738 | Assert that it works without HA_FILE_BASED and lower_case_table_name = 2. |
1739 | We use m_file[0] as long as all partitions have the same storage engine. |
1740 | */ |
1741 | DBUG_ASSERT(!strcmp(path, get_canonical_filename(m_file[0], path, |
1742 | part_name_buff))); |
1743 | m_reorged_parts= 0; |
1744 | if (!m_part_info->is_sub_partitioned()) |
1745 | num_subparts= 1; |
1746 | |
1747 | /* |
1748 | Step 1: |
1749 | Calculate number of reorganised partitions and allocate space for |
1750 | their handler references. |
1751 | */ |
1752 | if (temp_partitions) |
1753 | { |
1754 | m_reorged_parts= temp_partitions * num_subparts; |
1755 | } |
1756 | else |
1757 | { |
1758 | do |
1759 | { |
1760 | partition_element *part_elem= part_it++; |
1761 | if (part_elem->part_state == PART_CHANGED || |
1762 | part_elem->part_state == PART_REORGED_DROPPED) |
1763 | { |
1764 | m_reorged_parts+= num_subparts; |
1765 | } |
1766 | } while (++i < num_parts); |
1767 | } |
1768 | if (m_reorged_parts && |
1769 | !(m_reorged_file= (handler**) thd->calloc(sizeof(handler*)* |
1770 | (m_reorged_parts + 1)))) |
1771 | { |
1772 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1773 | } |
1774 | |
1775 | /* |
1776 | Step 2: |
1777 | Calculate number of partitions after change and allocate space for |
1778 | their handler references. |
1779 | */ |
1780 | num_remain_partitions= 0; |
1781 | if (temp_partitions) |
1782 | { |
1783 | num_remain_partitions= num_parts * num_subparts; |
1784 | } |
1785 | else |
1786 | { |
1787 | part_it.rewind(); |
1788 | i= 0; |
1789 | do |
1790 | { |
1791 | partition_element *part_elem= part_it++; |
1792 | if (part_elem->part_state == PART_NORMAL || |
1793 | part_elem->part_state == PART_TO_BE_ADDED || |
1794 | part_elem->part_state == PART_CHANGED) |
1795 | { |
1796 | num_remain_partitions+= num_subparts; |
1797 | } |
1798 | } while (++i < num_parts); |
1799 | } |
1800 | if (!(new_file_array= ((handler**) |
1801 | thd->calloc(sizeof(handler*)* |
1802 | (2*(num_remain_partitions + 1)))))) |
1803 | { |
1804 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1805 | } |
1806 | m_added_file= &new_file_array[num_remain_partitions + 1]; |
1807 | |
1808 | /* |
1809 | Step 3: |
1810 | Fill m_reorged_file with handler references and NULL at the end |
1811 | */ |
1812 | if (m_reorged_parts) |
1813 | { |
1814 | i= 0; |
1815 | part_count= 0; |
1816 | first= TRUE; |
1817 | part_it.rewind(); |
1818 | do |
1819 | { |
1820 | partition_element *part_elem= part_it++; |
1821 | if (part_elem->part_state == PART_CHANGED || |
1822 | part_elem->part_state == PART_REORGED_DROPPED) |
1823 | { |
1824 | memcpy((void*)&m_reorged_file[part_count], |
1825 | (void*)&m_file[i*num_subparts], |
1826 | sizeof(handler*)*num_subparts); |
1827 | part_count+= num_subparts; |
1828 | } |
1829 | else if (first && temp_partitions && |
1830 | part_elem->part_state == PART_TO_BE_ADDED) |
1831 | { |
1832 | /* |
1833 | When doing an ALTER TABLE REORGANIZE PARTITION a number of |
1834 | partitions is to be reorganised into a set of new partitions. |
1835 | The reorganised partitions are in this case in the temp_partitions |
1836 | list. We copy all of them in one batch and thus we only do this |
1837 | until we find the first partition with state PART_TO_BE_ADDED |
1838 | since this is where the new partitions go in and where the old |
1839 | ones used to be. |
1840 | */ |
1841 | first= FALSE; |
1842 | DBUG_ASSERT(((i*num_subparts) + m_reorged_parts) <= m_file_tot_parts); |
1843 | memcpy((void*)m_reorged_file, &m_file[i*num_subparts], |
1844 | sizeof(handler*)*m_reorged_parts); |
1845 | } |
1846 | } while (++i < num_parts); |
1847 | } |
1848 | |
1849 | /* |
1850 | Step 4: |
1851 | Fill new_array_file with handler references. Create the handlers if |
1852 | needed. |
1853 | */ |
1854 | i= 0; |
1855 | part_count= 0; |
1856 | orig_count= 0; |
1857 | first= TRUE; |
1858 | part_it.rewind(); |
1859 | do |
1860 | { |
1861 | partition_element *part_elem= part_it++; |
1862 | if (part_elem->part_state == PART_NORMAL) |
1863 | { |
1864 | DBUG_ASSERT(orig_count + num_subparts <= m_file_tot_parts); |
1865 | memcpy((void*)&new_file_array[part_count], (void*)&m_file[orig_count], |
1866 | sizeof(handler*)*num_subparts); |
1867 | part_count+= num_subparts; |
1868 | orig_count+= num_subparts; |
1869 | } |
1870 | else if (part_elem->part_state == PART_CHANGED || |
1871 | part_elem->part_state == PART_TO_BE_ADDED) |
1872 | { |
1873 | uint j= 0; |
1874 | Parts_share_refs *p_share_refs; |
1875 | /* |
1876 | The Handler_shares for each partition's handler can be allocated |
1877 | within this handler, since there will not be any more instances of the |
1878 | new partitions, until the table is reopened after the ALTER succeeded. |
1879 | */ |
1880 | p_share_refs= new Parts_share_refs; |
1881 | if (!p_share_refs) |
1882 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1883 | if (p_share_refs->init(num_subparts)) |
1884 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1885 | if (m_new_partitions_share_refs.push_back(p_share_refs, thd->mem_root)) |
1886 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1887 | do |
1888 | { |
1889 | handler **new_file= &new_file_array[part_count++]; |
1890 | if (!(*new_file= |
1891 | get_new_handler(table->s, |
1892 | thd->mem_root, |
1893 | part_elem->engine_type))) |
1894 | { |
1895 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1896 | } |
1897 | if ((*new_file)->set_ha_share_ref(&p_share_refs->ha_shares[j])) |
1898 | { |
1899 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
1900 | } |
1901 | } while (++j < num_subparts); |
1902 | if (part_elem->part_state == PART_CHANGED) |
1903 | orig_count+= num_subparts; |
1904 | else if (temp_partitions && first) |
1905 | { |
1906 | orig_count+= (num_subparts * temp_partitions); |
1907 | first= FALSE; |
1908 | } |
1909 | } |
1910 | } while (++i < num_parts); |
1911 | first= FALSE; |
1912 | /* |
1913 | Step 5: |
1914 | Create the new partitions and also open, lock and call external_lock |
1915 | on them to prepare them for copy phase and also for later close |
1916 | calls |
1917 | */ |
1918 | |
1919 | /* |
1920 | Before creating new partitions check whether indexes are disabled |
1921 | in the partitions. |
1922 | */ |
1923 | |
1924 | uint disable_non_uniq_indexes= indexes_are_disabled(); |
1925 | |
1926 | i= 0; |
1927 | part_count= 0; |
1928 | part_it.rewind(); |
1929 | do |
1930 | { |
1931 | partition_element *part_elem= part_it++; |
1932 | if (part_elem->part_state == PART_TO_BE_ADDED || |
1933 | part_elem->part_state == PART_CHANGED) |
1934 | { |
1935 | /* |
1936 | A new partition needs to be created PART_TO_BE_ADDED means an |
1937 | entirely new partition and PART_CHANGED means a changed partition |
1938 | that will still exist with either more or less data in it. |
1939 | */ |
1940 | uint name_variant= NORMAL_PART_NAME; |
1941 | if (part_elem->part_state == PART_CHANGED || |
1942 | (part_elem->part_state == PART_TO_BE_ADDED && temp_partitions)) |
1943 | name_variant= TEMP_PART_NAME; |
1944 | if (m_part_info->is_sub_partitioned()) |
1945 | { |
1946 | List_iterator<partition_element> sub_it(part_elem->subpartitions); |
1947 | uint j= 0, part; |
1948 | do |
1949 | { |
1950 | partition_element *sub_elem= sub_it++; |
1951 | if (unlikely((error= |
1952 | create_subpartition_name(part_name_buff, |
1953 | sizeof(part_name_buff), path, |
1954 | part_elem->partition_name, |
1955 | sub_elem->partition_name, |
1956 | name_variant)))) |
1957 | { |
1958 | cleanup_new_partition(part_count); |
1959 | DBUG_RETURN(error); |
1960 | } |
1961 | part= i * num_subparts + j; |
1962 | DBUG_PRINT("info" , ("Add subpartition %s" , part_name_buff)); |
1963 | if (unlikely((error= |
1964 | prepare_new_partition(table, create_info, |
1965 | new_file_array[part], |
1966 | (const char *)part_name_buff, |
1967 | sub_elem, |
1968 | disable_non_uniq_indexes)))) |
1969 | { |
1970 | cleanup_new_partition(part_count); |
1971 | DBUG_RETURN(error); |
1972 | } |
1973 | |
1974 | m_added_file[part_count++]= new_file_array[part]; |
1975 | } while (++j < num_subparts); |
1976 | } |
1977 | else |
1978 | { |
1979 | if (unlikely((error= |
1980 | create_partition_name(part_name_buff, |
1981 | sizeof(part_name_buff), path, |
1982 | part_elem->partition_name, |
1983 | name_variant, TRUE)))) |
1984 | { |
1985 | cleanup_new_partition(part_count); |
1986 | DBUG_RETURN(error); |
1987 | } |
1988 | |
1989 | DBUG_PRINT("info" , ("Add partition %s" , part_name_buff)); |
1990 | if (unlikely((error= |
1991 | prepare_new_partition(table, create_info, |
1992 | new_file_array[i], |
1993 | (const char *)part_name_buff, |
1994 | part_elem, |
1995 | disable_non_uniq_indexes)))) |
1996 | { |
1997 | cleanup_new_partition(part_count); |
1998 | DBUG_RETURN(error); |
1999 | } |
2000 | |
2001 | m_added_file[part_count++]= new_file_array[i]; |
2002 | } |
2003 | } |
2004 | } while (++i < num_parts); |
2005 | |
2006 | /* |
2007 | Step 6: |
2008 | State update to prepare for next write of the frm file. |
2009 | */ |
2010 | i= 0; |
2011 | part_it.rewind(); |
2012 | do |
2013 | { |
2014 | partition_element *part_elem= part_it++; |
2015 | if (part_elem->part_state == PART_TO_BE_ADDED) |
2016 | part_elem->part_state= PART_IS_ADDED; |
2017 | else if (part_elem->part_state == PART_CHANGED) |
2018 | part_elem->part_state= PART_IS_CHANGED; |
2019 | else if (part_elem->part_state == PART_REORGED_DROPPED) |
2020 | part_elem->part_state= PART_TO_BE_DROPPED; |
2021 | } while (++i < num_parts); |
2022 | for (i= 0; i < temp_partitions; i++) |
2023 | { |
2024 | partition_element *part_elem= t_it++; |
2025 | DBUG_ASSERT(part_elem->part_state == PART_TO_BE_REORGED); |
2026 | part_elem->part_state= PART_TO_BE_DROPPED; |
2027 | } |
2028 | m_new_file= new_file_array; |
2029 | if (unlikely((error= copy_partitions(copied, deleted)))) |
2030 | { |
2031 | /* |
2032 | Close and unlock the new temporary partitions. |
2033 | They will later be deleted through the ddl-log. |
2034 | */ |
2035 | cleanup_new_partition(part_count); |
2036 | } |
2037 | DBUG_RETURN(error); |
2038 | } |
2039 | |
2040 | |
2041 | /* |
2042 | Copy partitions as part of ALTER TABLE of partitions |
2043 | |
2044 | SYNOPSIS |
2045 | copy_partitions() |
2046 | out:copied Number of records copied |
2047 | out:deleted Number of records deleted |
2048 | |
2049 | RETURN VALUE |
2050 | >0 Error code |
2051 | 0 Success |
2052 | |
2053 | DESCRIPTION |
2054 | change_partitions has done all the preparations, now it is time to |
2055 | actually copy the data from the reorganised partitions to the new |
2056 | partitions. |
2057 | */ |
2058 | |
2059 | int ha_partition::copy_partitions(ulonglong * const copied, |
2060 | ulonglong * const deleted) |
2061 | { |
2062 | uint reorg_part= 0; |
2063 | int result= 0; |
2064 | longlong func_value; |
2065 | DBUG_ENTER("ha_partition::copy_partitions" ); |
2066 | |
2067 | if (m_part_info->linear_hash_ind) |
2068 | { |
2069 | if (m_part_info->part_type == HASH_PARTITION) |
2070 | set_linear_hash_mask(m_part_info, m_part_info->num_parts); |
2071 | else |
2072 | set_linear_hash_mask(m_part_info, m_part_info->num_subparts); |
2073 | } |
2074 | else if (m_part_info->part_type == VERSIONING_PARTITION) |
2075 | { |
2076 | if (m_part_info->check_constants(ha_thd(), m_part_info)) |
2077 | goto init_error; |
2078 | } |
2079 | |
2080 | while (reorg_part < m_reorged_parts) |
2081 | { |
2082 | handler *file= m_reorged_file[reorg_part]; |
2083 | uint32 new_part; |
2084 | |
2085 | late_extra_cache(reorg_part); |
2086 | if (unlikely((result= file->ha_rnd_init_with_error(1)))) |
2087 | goto init_error; |
2088 | while (TRUE) |
2089 | { |
2090 | if ((result= file->ha_rnd_next(m_rec0))) |
2091 | { |
2092 | if (result != HA_ERR_END_OF_FILE) |
2093 | goto error; |
2094 | /* |
2095 | End-of-file reached, break out to continue with next partition or |
2096 | end the copy process. |
2097 | */ |
2098 | break; |
2099 | } |
2100 | /* Found record to insert into new handler */ |
2101 | if (m_part_info->get_partition_id(m_part_info, &new_part, |
2102 | &func_value)) |
2103 | { |
2104 | /* |
2105 | This record is in the original table but will not be in the new |
2106 | table since it doesn't fit into any partition any longer due to |
2107 | changed partitioning ranges or list values. |
2108 | */ |
2109 | (*deleted)++; |
2110 | } |
2111 | else |
2112 | { |
2113 | THD *thd= ha_thd(); |
2114 | /* Copy record to new handler */ |
2115 | (*copied)++; |
2116 | tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ |
2117 | result= m_new_file[new_part]->ha_write_row(m_rec0); |
2118 | reenable_binlog(thd); |
2119 | if (result) |
2120 | goto error; |
2121 | } |
2122 | } |
2123 | late_extra_no_cache(reorg_part); |
2124 | file->ha_rnd_end(); |
2125 | reorg_part++; |
2126 | } |
2127 | DBUG_RETURN(FALSE); |
2128 | error: |
2129 | m_reorged_file[reorg_part]->ha_rnd_end(); |
2130 | init_error: |
2131 | DBUG_RETURN(result); |
2132 | } |
2133 | |
2134 | /* |
2135 | Update create info as part of ALTER TABLE |
2136 | |
2137 | SYNOPSIS |
2138 | update_create_info() |
2139 | create_info Create info from ALTER TABLE |
2140 | |
2141 | RETURN VALUE |
2142 | NONE |
2143 | |
2144 | DESCRIPTION |
2145 | Forward this handler call to the storage engine foreach |
2146 | partition handler. The data_file_name for each partition may |
2147 | need to be reset if the tablespace was moved. Use a dummy |
2148 | HA_CREATE_INFO structure and transfer necessary data. |
2149 | */ |
2150 | |
2151 | void ha_partition::update_create_info(HA_CREATE_INFO *create_info) |
2152 | { |
2153 | DBUG_ENTER("ha_partition::update_create_info" ); |
2154 | |
2155 | /* |
2156 | Fix for bug#38751, some engines needs info-calls in ALTER. |
2157 | Archive need this since it flushes in ::info. |
2158 | HA_STATUS_AUTO is optimized so it will not always be forwarded |
2159 | to all partitions, but HA_STATUS_VARIABLE will. |
2160 | */ |
2161 | info(HA_STATUS_VARIABLE | HA_STATUS_OPEN); |
2162 | |
2163 | info(HA_STATUS_AUTO); |
2164 | |
2165 | if (!(create_info->used_fields & HA_CREATE_USED_AUTO)) |
2166 | create_info->auto_increment_value= stats.auto_increment_value; |
2167 | |
2168 | /* |
2169 | DATA DIRECTORY and INDEX DIRECTORY are never applied to the whole |
2170 | partitioned table, only its parts. |
2171 | */ |
2172 | my_bool from_alter= (create_info->data_file_name == (const char*) -1); |
2173 | create_info->data_file_name= create_info->index_file_name= NULL; |
2174 | |
2175 | if (!(m_file[0]->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION)) |
2176 | create_info->connect_string= null_clex_str; |
2177 | |
2178 | /* |
2179 | We do not need to update the individual partition DATA DIRECTORY settings |
2180 | since they can be changed by ALTER TABLE ... REORGANIZE PARTITIONS. |
2181 | */ |
2182 | if (from_alter) |
2183 | DBUG_VOID_RETURN; |
2184 | |
2185 | /* |
2186 | send Handler::update_create_info() to the storage engine for each |
2187 | partition that currently has a handler object. Using a dummy |
2188 | HA_CREATE_INFO structure to collect DATA and INDEX DIRECTORYs. |
2189 | */ |
2190 | |
2191 | List_iterator<partition_element> part_it(m_part_info->partitions); |
2192 | partition_element *part_elem, *sub_elem; |
2193 | uint num_subparts= m_part_info->num_subparts; |
2194 | uint num_parts= (num_subparts ? m_file_tot_parts / num_subparts : |
2195 | m_file_tot_parts); |
2196 | HA_CREATE_INFO dummy_info; |
2197 | memset(&dummy_info, 0, sizeof(dummy_info)); |
2198 | |
2199 | /* |
2200 | Since update_create_info() can be called from mysql_prepare_alter_table() |
2201 | when not all handlers are set up, we look for that condition first. |
2202 | If all handlers are not available, do not call update_create_info for any. |
2203 | */ |
2204 | uint i, j, part; |
2205 | for (i= 0; i < num_parts; i++) |
2206 | { |
2207 | part_elem= part_it++; |
2208 | if (!part_elem) |
2209 | DBUG_VOID_RETURN; |
2210 | if (m_is_sub_partitioned) |
2211 | { |
2212 | List_iterator<partition_element> subpart_it(part_elem->subpartitions); |
2213 | for (j= 0; j < num_subparts; j++) |
2214 | { |
2215 | sub_elem= subpart_it++; |
2216 | if (!sub_elem) |
2217 | DBUG_VOID_RETURN; |
2218 | part= i * num_subparts + j; |
2219 | if (part >= m_file_tot_parts || !m_file[part]) |
2220 | DBUG_VOID_RETURN; |
2221 | } |
2222 | } |
2223 | else |
2224 | { |
2225 | if (!m_file[i]) |
2226 | DBUG_VOID_RETURN; |
2227 | } |
2228 | } |
2229 | part_it.rewind(); |
2230 | |
2231 | for (i= 0; i < num_parts; i++) |
2232 | { |
2233 | part_elem= part_it++; |
2234 | DBUG_ASSERT(part_elem); |
2235 | if (m_is_sub_partitioned) |
2236 | { |
2237 | List_iterator<partition_element> subpart_it(part_elem->subpartitions); |
2238 | for (j= 0; j < num_subparts; j++) |
2239 | { |
2240 | sub_elem= subpart_it++; |
2241 | DBUG_ASSERT(sub_elem); |
2242 | part= i * num_subparts + j; |
2243 | DBUG_ASSERT(part < m_file_tot_parts && m_file[part]); |
2244 | dummy_info.data_file_name= dummy_info.index_file_name = NULL; |
2245 | m_file[part]->update_create_info(&dummy_info); |
2246 | sub_elem->data_file_name = (char*) dummy_info.data_file_name; |
2247 | sub_elem->index_file_name = (char*) dummy_info.index_file_name; |
2248 | } |
2249 | } |
2250 | else |
2251 | { |
2252 | DBUG_ASSERT(m_file[i]); |
2253 | dummy_info.data_file_name= dummy_info.index_file_name= NULL; |
2254 | m_file[i]->update_create_info(&dummy_info); |
2255 | part_elem->data_file_name = (char*) dummy_info.data_file_name; |
2256 | part_elem->index_file_name = (char*) dummy_info.index_file_name; |
2257 | } |
2258 | } |
2259 | DBUG_VOID_RETURN; |
2260 | } |
2261 | |
2262 | |
2263 | /** |
2264 | Change the internal TABLE_SHARE pointer |
2265 | |
2266 | @param table_arg TABLE object |
2267 | @param share New share to use |
2268 | |
2269 | @note Is used in error handling in ha_delete_table. |
2270 | All handlers should exist (lock_partitions should not be used) |
2271 | */ |
2272 | |
2273 | void ha_partition::change_table_ptr(TABLE *table_arg, TABLE_SHARE *share) |
2274 | { |
2275 | handler **file_array; |
2276 | table= table_arg; |
2277 | table_share= share; |
2278 | /* |
2279 | m_file can be NULL when using an old cached table in DROP TABLE, when the |
2280 | table just has REMOVED PARTITIONING, see Bug#42438 |
2281 | */ |
2282 | if (m_file) |
2283 | { |
2284 | file_array= m_file; |
2285 | DBUG_ASSERT(*file_array); |
2286 | do |
2287 | { |
2288 | (*file_array)->change_table_ptr(table_arg, share); |
2289 | } while (*(++file_array)); |
2290 | } |
2291 | |
2292 | if (m_added_file && m_added_file[0]) |
2293 | { |
2294 | /* if in middle of a drop/rename etc */ |
2295 | file_array= m_added_file; |
2296 | do |
2297 | { |
2298 | (*file_array)->change_table_ptr(table_arg, share); |
2299 | } while (*(++file_array)); |
2300 | } |
2301 | } |
2302 | |
2303 | /* |
2304 | Change comments specific to handler |
2305 | |
2306 | SYNOPSIS |
2307 | update_table_comment() |
2308 | comment Original comment |
2309 | |
2310 | RETURN VALUE |
2311 | new comment |
2312 | |
2313 | DESCRIPTION |
2314 | No comment changes so far |
2315 | */ |
2316 | |
2317 | char *ha_partition::(const char *) |
2318 | { |
2319 | return (char*) comment; /* Nothing to change */ |
2320 | } |
2321 | |
2322 | |
2323 | /** |
2324 | Handle delete and rename table |
2325 | |
2326 | @param from Full path of old table |
2327 | @param to Full path of new table |
2328 | |
2329 | @return Operation status |
2330 | @retval >0 Error |
2331 | @retval 0 Success |
2332 | |
2333 | @note Common routine to handle delete_table and rename_table. |
2334 | The routine uses the partition handler file to get the |
2335 | names of the partition instances. Both these routines |
2336 | are called after creating the handler without table |
2337 | object and thus the file is needed to discover the |
2338 | names of the partitions and the underlying storage engines. |
2339 | */ |
2340 | |
2341 | uint ha_partition::del_ren_table(const char *from, const char *to) |
2342 | { |
2343 | int save_error= 0; |
2344 | int error; |
2345 | char from_buff[FN_REFLEN + 1], to_buff[FN_REFLEN + 1], |
2346 | from_lc_buff[FN_REFLEN], to_lc_buff[FN_REFLEN]; |
2347 | char *name_buffer_ptr; |
2348 | const char *from_path; |
2349 | const char *to_path= NULL; |
2350 | uint i; |
2351 | handler **file, **abort_file; |
2352 | DBUG_ENTER("ha_partition::del_ren_table" ); |
2353 | |
2354 | if (get_from_handler_file(from, ha_thd()->mem_root, false)) |
2355 | DBUG_RETURN(TRUE); |
2356 | DBUG_ASSERT(m_file_buffer); |
2357 | DBUG_PRINT("enter" , ("from: (%s) to: (%s)" , from, to ? to : "(nil)" )); |
2358 | name_buffer_ptr= m_name_buffer_ptr; |
2359 | file= m_file; |
2360 | if (to == NULL) |
2361 | { |
2362 | /* |
2363 | Delete table, start by delete the .par file. If error, break, otherwise |
2364 | delete as much as possible. |
2365 | */ |
2366 | if (unlikely((error= handler::delete_table(from)))) |
2367 | DBUG_RETURN(error); |
2368 | } |
2369 | /* |
2370 | Since ha_partition has HA_FILE_BASED, it must alter underlying table names |
2371 | if they do not have HA_FILE_BASED and lower_case_table_names == 2. |
2372 | See Bug#37402, for Mac OS X. |
2373 | The appended #P#<partname>[#SP#<subpartname>] will remain in current case. |
2374 | Using the first partitions handler, since mixing handlers is not allowed. |
2375 | */ |
2376 | from_path= get_canonical_filename(*file, from, from_lc_buff); |
2377 | if (to != NULL) |
2378 | to_path= get_canonical_filename(*file, to, to_lc_buff); |
2379 | i= 0; |
2380 | do |
2381 | { |
2382 | if (unlikely((error= create_partition_name(from_buff, sizeof(from_buff), |
2383 | from_path, name_buffer_ptr, |
2384 | NORMAL_PART_NAME, FALSE)))) |
2385 | goto rename_error; |
2386 | |
2387 | if (to != NULL) |
2388 | { // Rename branch |
2389 | if (unlikely((error= create_partition_name(to_buff, sizeof(to_buff), |
2390 | to_path, name_buffer_ptr, |
2391 | NORMAL_PART_NAME, FALSE)))) |
2392 | goto rename_error; |
2393 | error= (*file)->ha_rename_table(from_buff, to_buff); |
2394 | if (unlikely(error)) |
2395 | goto rename_error; |
2396 | } |
2397 | else // delete branch |
2398 | { |
2399 | error= (*file)->ha_delete_table(from_buff); |
2400 | } |
2401 | name_buffer_ptr= strend(name_buffer_ptr) + 1; |
2402 | if (unlikely(error)) |
2403 | save_error= error; |
2404 | i++; |
2405 | } while (*(++file)); |
2406 | if (to != NULL) |
2407 | { |
2408 | if (unlikely((error= handler::rename_table(from, to)))) |
2409 | { |
2410 | /* Try to revert everything, ignore errors */ |
2411 | (void) handler::rename_table(to, from); |
2412 | goto rename_error; |
2413 | } |
2414 | } |
2415 | DBUG_RETURN(save_error); |
2416 | rename_error: |
2417 | name_buffer_ptr= m_name_buffer_ptr; |
2418 | for (abort_file= file, file= m_file; file < abort_file; file++) |
2419 | { |
2420 | /* Revert the rename, back from 'to' to the original 'from' */ |
2421 | if (!create_partition_name(from_buff, sizeof(from_buff), from_path, |
2422 | name_buffer_ptr, NORMAL_PART_NAME, FALSE) && |
2423 | !create_partition_name(to_buff, sizeof(to_buff), to_path, |
2424 | name_buffer_ptr, NORMAL_PART_NAME, FALSE)) |
2425 | { |
2426 | /* Ignore error here */ |
2427 | (void) (*file)->ha_rename_table(to_buff, from_buff); |
2428 | } |
2429 | name_buffer_ptr= strend(name_buffer_ptr) + 1; |
2430 | } |
2431 | DBUG_RETURN(error); |
2432 | } |
2433 | |
2434 | uint ha_partition::count_query_cache_dependant_tables(uint8 *tables_type) |
2435 | { |
2436 | DBUG_ENTER("ha_partition::count_query_cache_dependant_tables" ); |
2437 | /* Here we rely on the fact that all tables are of the same type */ |
2438 | uint8 type= m_file[0]->table_cache_type(); |
2439 | (*tables_type)|= type; |
2440 | DBUG_PRINT("enter" , ("cnt: %u" , (uint) m_tot_parts)); |
2441 | /* |
2442 | We need save underlying tables only for HA_CACHE_TBL_ASKTRANSACT: |
2443 | HA_CACHE_TBL_NONTRANSACT - because all changes goes through partition table |
2444 | HA_CACHE_TBL_NOCACHE - because will not be cached |
2445 | HA_CACHE_TBL_TRANSACT - QC need to know that such type present |
2446 | */ |
2447 | DBUG_RETURN(type == HA_CACHE_TBL_ASKTRANSACT ? m_tot_parts : 0); |
2448 | } |
2449 | |
2450 | my_bool ha_partition:: |
2451 | reg_query_cache_dependant_table(THD *thd, |
2452 | char *engine_key, uint engine_key_len, |
2453 | char *cache_key, uint cache_key_len, |
2454 | uint8 type, |
2455 | Query_cache *cache, |
2456 | Query_cache_block_table **block_table, |
2457 | handler *file, |
2458 | uint *n) |
2459 | { |
2460 | DBUG_ENTER("ha_partition::reg_query_cache_dependant_table" ); |
2461 | qc_engine_callback engine_callback; |
2462 | ulonglong engine_data; |
2463 | /* ask undelying engine */ |
2464 | if (!file->register_query_cache_table(thd, engine_key, |
2465 | engine_key_len, |
2466 | &engine_callback, |
2467 | &engine_data)) |
2468 | { |
2469 | DBUG_PRINT("qcache" , ("Handler does not allow caching for %.*s" , |
2470 | engine_key_len, engine_key)); |
2471 | /* |
2472 | As this can change from call to call, don't reset set |
2473 | thd->lex->safe_to_cache_query |
2474 | */ |
2475 | thd->query_cache_is_applicable= 0; // Query can't be cached |
2476 | DBUG_RETURN(TRUE); |
2477 | } |
2478 | (++(*block_table))->n= ++(*n); |
2479 | if (!cache->insert_table(thd, cache_key_len, |
2480 | cache_key, (*block_table), |
2481 | (uint32) table_share->db.length, |
2482 | (uint8) (cache_key_len - |
2483 | table_share->table_cache_key.length), |
2484 | type, |
2485 | engine_callback, engine_data, |
2486 | FALSE)) |
2487 | DBUG_RETURN(TRUE); |
2488 | DBUG_RETURN(FALSE); |
2489 | } |
2490 | |
2491 | |
2492 | my_bool ha_partition:: |
2493 | register_query_cache_dependant_tables(THD *thd, |
2494 | Query_cache *cache, |
2495 | Query_cache_block_table **block_table, |
2496 | uint *n) |
2497 | { |
2498 | char *engine_key_end, *query_cache_key_end; |
2499 | uint i; |
2500 | uint num_parts= m_part_info->num_parts; |
2501 | uint num_subparts= m_part_info->num_subparts; |
2502 | int diff_length; |
2503 | List_iterator<partition_element> part_it(m_part_info->partitions); |
2504 | char engine_key[FN_REFLEN], query_cache_key[FN_REFLEN]; |
2505 | DBUG_ENTER("ha_partition::register_query_cache_dependant_tables" ); |
2506 | |
2507 | /* see ha_partition::count_query_cache_dependant_tables */ |
2508 | if (m_file[0]->table_cache_type() != HA_CACHE_TBL_ASKTRANSACT) |
2509 | DBUG_RETURN(FALSE); // nothing to register |
2510 | |
2511 | /* prepare static part of the key */ |
2512 | memcpy(engine_key, table_share->normalized_path.str, |
2513 | table_share->normalized_path.length); |
2514 | memcpy(query_cache_key, table_share->table_cache_key.str, |
2515 | table_share->table_cache_key.length); |
2516 | |
2517 | diff_length= ((int) table_share->table_cache_key.length - |
2518 | (int) table_share->normalized_path.length -1); |
2519 | |
2520 | engine_key_end= engine_key + table_share->normalized_path.length; |
2521 | query_cache_key_end= query_cache_key + table_share->table_cache_key.length -1; |
2522 | |
2523 | engine_key_end[0]= engine_key_end[2]= query_cache_key_end[0]= |
2524 | query_cache_key_end[2]= '#'; |
2525 | query_cache_key_end[1]= engine_key_end[1]= 'P'; |
2526 | engine_key_end+= 3; |
2527 | query_cache_key_end+= 3; |
2528 | |
2529 | i= 0; |
2530 | do |
2531 | { |
2532 | partition_element *part_elem= part_it++; |
2533 | char *engine_pos= strmov(engine_key_end, part_elem->partition_name); |
2534 | if (m_is_sub_partitioned) |
2535 | { |
2536 | List_iterator<partition_element> subpart_it(part_elem->subpartitions); |
2537 | partition_element *sub_elem; |
2538 | uint j= 0, part; |
2539 | engine_pos[0]= engine_pos[3]= '#'; |
2540 | engine_pos[1]= 'S'; |
2541 | engine_pos[2]= 'P'; |
2542 | engine_pos += 4; |
2543 | do |
2544 | { |
2545 | char *end; |
2546 | uint length; |
2547 | sub_elem= subpart_it++; |
2548 | part= i * num_subparts + j; |
2549 | /* we store the end \0 as part of the key */ |
2550 | end= strmov(engine_pos, sub_elem->partition_name); |
2551 | length= (uint)(end - engine_key); |
2552 | /* Copy the suffix also to query cache key */ |
2553 | memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end)); |
2554 | if (reg_query_cache_dependant_table(thd, engine_key, length, |
2555 | query_cache_key, |
2556 | length + diff_length, |
2557 | m_file[part]->table_cache_type(), |
2558 | cache, |
2559 | block_table, m_file[part], |
2560 | n)) |
2561 | DBUG_RETURN(TRUE); |
2562 | } while (++j < num_subparts); |
2563 | } |
2564 | else |
2565 | { |
2566 | char *end= engine_pos+1; // copy end \0 |
2567 | uint length= (uint)(end - engine_key); |
2568 | /* Copy the suffix also to query cache key */ |
2569 | memcpy(query_cache_key_end, engine_key_end, (end - engine_key_end)); |
2570 | if (reg_query_cache_dependant_table(thd, engine_key, length, |
2571 | query_cache_key, |
2572 | length + diff_length, |
2573 | m_file[i]->table_cache_type(), |
2574 | cache, |
2575 | block_table, m_file[i], |
2576 | n)) |
2577 | DBUG_RETURN(TRUE); |
2578 | } |
2579 | } while (++i < num_parts); |
2580 | DBUG_PRINT("info" , ("cnt: %u" , (uint)m_tot_parts)); |
2581 | DBUG_RETURN(FALSE); |
2582 | } |
2583 | |
2584 | |
2585 | /** |
2586 | Set up table share object before calling create on underlying handler |
2587 | |
2588 | @param table Table object |
2589 | @param info Create info |
2590 | @param part_elem[in,out] Pointer to used partition_element, searched if NULL |
2591 | |
2592 | @return status |
2593 | @retval TRUE Error |
2594 | @retval FALSE Success |
2595 | |
2596 | @details |
2597 | Set up |
2598 | 1) Comment on partition |
2599 | 2) MAX_ROWS, MIN_ROWS on partition |
2600 | 3) Index file name on partition |
2601 | 4) Data file name on partition |
2602 | */ |
2603 | |
2604 | int ha_partition::set_up_table_before_create(TABLE *tbl, |
2605 | const char *partition_name_with_path, |
2606 | HA_CREATE_INFO *info, |
2607 | partition_element *part_elem) |
2608 | { |
2609 | int error= 0; |
2610 | LEX_CSTRING part_name; |
2611 | THD *thd= ha_thd(); |
2612 | DBUG_ENTER("set_up_table_before_create" ); |
2613 | |
2614 | DBUG_ASSERT(part_elem); |
2615 | |
2616 | if (!part_elem) |
2617 | DBUG_RETURN(1); |
2618 | tbl->s->max_rows= part_elem->part_max_rows; |
2619 | tbl->s->min_rows= part_elem->part_min_rows; |
2620 | part_name.str= strrchr(partition_name_with_path, FN_LIBCHAR)+1; |
2621 | part_name.length= strlen(part_name.str); |
2622 | if ((part_elem->index_file_name && |
2623 | (error= append_file_to_dir(thd, |
2624 | (const char**)&part_elem->index_file_name, |
2625 | &part_name))) || |
2626 | (part_elem->data_file_name && |
2627 | (error= append_file_to_dir(thd, |
2628 | (const char**)&part_elem->data_file_name, |
2629 | &part_name)))) |
2630 | { |
2631 | DBUG_RETURN(error); |
2632 | } |
2633 | info->index_file_name= part_elem->index_file_name; |
2634 | info->data_file_name= part_elem->data_file_name; |
2635 | info->connect_string= part_elem->connect_string; |
2636 | if (info->connect_string.length) |
2637 | info->used_fields|= HA_CREATE_USED_CONNECTION; |
2638 | tbl->s->connect_string= part_elem->connect_string; |
2639 | DBUG_RETURN(0); |
2640 | } |
2641 | |
2642 | |
2643 | /* |
2644 | Add two names together |
2645 | |
2646 | SYNOPSIS |
2647 | name_add() |
2648 | out:dest Destination string |
2649 | first_name First name |
2650 | sec_name Second name |
2651 | |
2652 | RETURN VALUE |
2653 | >0 Error |
2654 | 0 Success |
2655 | |
2656 | DESCRIPTION |
2657 | Routine used to add two names with '_' in between then. Service routine |
2658 | to create_handler_file |
2659 | Include the NULL in the count of characters since it is needed as separator |
2660 | between the partition names. |
2661 | */ |
2662 | |
2663 | static uint name_add(char *dest, const char *first_name, const char *sec_name) |
2664 | { |
2665 | return (uint) (strxmov(dest, first_name, "#SP#" , sec_name, NullS) -dest) + 1; |
2666 | } |
2667 | |
2668 | |
2669 | /** |
2670 | Create the special .par file |
2671 | |
2672 | @param name Full path of table name |
2673 | |
2674 | @return Operation status |
2675 | @retval FALSE Error code |
2676 | @retval TRUE Success |
2677 | |
2678 | @note |
2679 | Method used to create handler file with names of partitions, their |
2680 | engine types and the number of partitions. |
2681 | */ |
2682 | |
2683 | bool ha_partition::create_handler_file(const char *name) |
2684 | { |
2685 | partition_element *part_elem, *subpart_elem; |
2686 | size_t i, j, part_name_len, subpart_name_len; |
2687 | size_t tot_partition_words, tot_name_len, num_parts; |
2688 | size_t tot_parts= 0; |
2689 | size_t tot_len_words, tot_len_byte, chksum, tot_name_words; |
2690 | char *name_buffer_ptr; |
2691 | uchar *file_buffer, *engine_array; |
2692 | bool result= TRUE; |
2693 | char file_name[FN_REFLEN]; |
2694 | char part_name[FN_REFLEN]; |
2695 | char subpart_name[FN_REFLEN]; |
2696 | File file; |
2697 | List_iterator_fast <partition_element> part_it(m_part_info->partitions); |
2698 | DBUG_ENTER("create_handler_file" ); |
2699 | |
2700 | num_parts= m_part_info->partitions.elements; |
2701 | DBUG_PRINT("enter" , ("table name: %s num_parts: %zu" , name, num_parts)); |
2702 | tot_name_len= 0; |
2703 | for (i= 0; i < num_parts; i++) |
2704 | { |
2705 | part_elem= part_it++; |
2706 | if (part_elem->part_state != PART_NORMAL && |
2707 | part_elem->part_state != PART_TO_BE_ADDED && |
2708 | part_elem->part_state != PART_CHANGED) |
2709 | continue; |
2710 | tablename_to_filename(part_elem->partition_name, part_name, |
2711 | FN_REFLEN); |
2712 | part_name_len= strlen(part_name); |
2713 | if (!m_is_sub_partitioned) |
2714 | { |
2715 | tot_name_len+= part_name_len + 1; |
2716 | tot_parts++; |
2717 | } |
2718 | else |
2719 | { |
2720 | List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); |
2721 | for (j= 0; j < m_part_info->num_subparts; j++) |
2722 | { |
2723 | subpart_elem= sub_it++; |
2724 | tablename_to_filename(subpart_elem->partition_name, |
2725 | subpart_name, |
2726 | FN_REFLEN); |
2727 | subpart_name_len= strlen(subpart_name); |
2728 | tot_name_len+= part_name_len + subpart_name_len + 5; |
2729 | tot_parts++; |
2730 | } |
2731 | } |
2732 | } |
2733 | /* |
2734 | File format: |
2735 | Length in words 4 byte |
2736 | Checksum 4 byte |
2737 | Total number of partitions 4 byte |
2738 | Array of engine types n * 4 bytes where |
2739 | n = (m_tot_parts + 3)/4 |
2740 | Length of name part in bytes 4 bytes |
2741 | (Names in filename format) |
2742 | Name part m * 4 bytes where |
2743 | m = ((length_name_part + 3)/4)*4 |
2744 | |
2745 | All padding bytes are zeroed |
2746 | */ |
2747 | tot_partition_words= (tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; |
2748 | tot_name_words= (tot_name_len + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; |
2749 | /* 4 static words (tot words, checksum, tot partitions, name length) */ |
2750 | tot_len_words= 4 + tot_partition_words + tot_name_words; |
2751 | tot_len_byte= PAR_WORD_SIZE * tot_len_words; |
2752 | if (!(file_buffer= (uchar *) my_malloc(tot_len_byte, MYF(MY_ZEROFILL)))) |
2753 | DBUG_RETURN(TRUE); |
2754 | engine_array= (file_buffer + PAR_ENGINES_OFFSET); |
2755 | name_buffer_ptr= (char*) (engine_array + tot_partition_words * PAR_WORD_SIZE |
2756 | + PAR_WORD_SIZE); |
2757 | part_it.rewind(); |
2758 | for (i= 0; i < num_parts; i++) |
2759 | { |
2760 | part_elem= part_it++; |
2761 | if (part_elem->part_state != PART_NORMAL && |
2762 | part_elem->part_state != PART_TO_BE_ADDED && |
2763 | part_elem->part_state != PART_CHANGED) |
2764 | continue; |
2765 | if (!m_is_sub_partitioned) |
2766 | { |
2767 | tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN); |
2768 | name_buffer_ptr= strmov(name_buffer_ptr, part_name)+1; |
2769 | *engine_array= (uchar) ha_legacy_type(part_elem->engine_type); |
2770 | DBUG_PRINT("info" , ("engine: %u" , *engine_array)); |
2771 | engine_array++; |
2772 | } |
2773 | else |
2774 | { |
2775 | List_iterator_fast <partition_element> sub_it(part_elem->subpartitions); |
2776 | for (j= 0; j < m_part_info->num_subparts; j++) |
2777 | { |
2778 | subpart_elem= sub_it++; |
2779 | tablename_to_filename(part_elem->partition_name, part_name, |
2780 | FN_REFLEN); |
2781 | tablename_to_filename(subpart_elem->partition_name, subpart_name, |
2782 | FN_REFLEN); |
2783 | name_buffer_ptr+= name_add(name_buffer_ptr, |
2784 | part_name, |
2785 | subpart_name); |
2786 | *engine_array= (uchar) ha_legacy_type(subpart_elem->engine_type); |
2787 | DBUG_PRINT("info" , ("engine: %u" , *engine_array)); |
2788 | engine_array++; |
2789 | } |
2790 | } |
2791 | } |
2792 | chksum= 0; |
2793 | int4store(file_buffer, tot_len_words); |
2794 | int4store(file_buffer + PAR_NUM_PARTS_OFFSET, tot_parts); |
2795 | int4store(file_buffer + PAR_ENGINES_OFFSET + |
2796 | (tot_partition_words * PAR_WORD_SIZE), |
2797 | tot_name_len); |
2798 | for (i= 0; i < tot_len_words; i++) |
2799 | chksum^= uint4korr(file_buffer + PAR_WORD_SIZE * i); |
2800 | int4store(file_buffer + PAR_CHECKSUM_OFFSET, chksum); |
2801 | /* |
2802 | Add .par extension to the file name. |
2803 | Create and write and close file |
2804 | to be used at open, delete_table and rename_table |
2805 | */ |
2806 | fn_format(file_name, name, "" , ha_par_ext, MY_APPEND_EXT); |
2807 | if ((file= mysql_file_create(key_file_partition, |
2808 | file_name, CREATE_MODE, O_RDWR | O_TRUNC, |
2809 | MYF(MY_WME))) >= 0) |
2810 | { |
2811 | result= mysql_file_write(file, (uchar *) file_buffer, tot_len_byte, |
2812 | MYF(MY_WME | MY_NABP)) != 0; |
2813 | |
2814 | /* Write connection information (for federatedx engine) */ |
2815 | part_it.rewind(); |
2816 | for (i= 0; i < num_parts && !result; i++) |
2817 | { |
2818 | uchar buffer[4]; |
2819 | part_elem= part_it++; |
2820 | size_t length= part_elem->connect_string.length; |
2821 | int4store(buffer, length); |
2822 | if (my_write(file, buffer, 4, MYF(MY_WME | MY_NABP)) || |
2823 | my_write(file, (uchar *) part_elem->connect_string.str, length, |
2824 | MYF(MY_WME | MY_NABP))) |
2825 | { |
2826 | result= TRUE; |
2827 | break; |
2828 | } |
2829 | } |
2830 | (void) mysql_file_close(file, MYF(0)); |
2831 | } |
2832 | else |
2833 | result= TRUE; |
2834 | my_free(file_buffer); |
2835 | DBUG_RETURN(result); |
2836 | } |
2837 | |
2838 | |
2839 | /** |
2840 | Clear handler variables and free some memory |
2841 | */ |
2842 | |
2843 | void ha_partition::clear_handler_file() |
2844 | { |
2845 | if (m_engine_array) |
2846 | plugin_unlock_list(NULL, m_engine_array, m_tot_parts); |
2847 | free_root(&m_mem_root, MYF(MY_KEEP_PREALLOC)); |
2848 | m_file_buffer= NULL; |
2849 | m_engine_array= NULL; |
2850 | m_connect_string= NULL; |
2851 | } |
2852 | |
2853 | |
2854 | /** |
2855 | Create underlying handler objects |
2856 | |
2857 | @param mem_root Allocate memory through this |
2858 | |
2859 | @return Operation status |
2860 | @retval TRUE Error |
2861 | @retval FALSE Success |
2862 | */ |
2863 | |
2864 | bool ha_partition::create_handlers(MEM_ROOT *mem_root) |
2865 | { |
2866 | uint i; |
2867 | uint alloc_len= (m_tot_parts + 1) * sizeof(handler*); |
2868 | handlerton *hton0; |
2869 | DBUG_ENTER("create_handlers" ); |
2870 | |
2871 | if (!(m_file= (handler **) alloc_root(mem_root, alloc_len))) |
2872 | DBUG_RETURN(TRUE); |
2873 | m_file_tot_parts= m_tot_parts; |
2874 | bzero((char*) m_file, alloc_len); |
2875 | for (i= 0; i < m_tot_parts; i++) |
2876 | { |
2877 | handlerton *hton= plugin_data(m_engine_array[i], handlerton*); |
2878 | if (!(m_file[i]= get_new_handler(table_share, mem_root, hton))) |
2879 | DBUG_RETURN(TRUE); |
2880 | DBUG_PRINT("info" , ("engine_type: %u" , hton->db_type)); |
2881 | } |
2882 | /* For the moment we only support partition over the same table engine */ |
2883 | hton0= plugin_data(m_engine_array[0], handlerton*); |
2884 | if (hton0 == myisam_hton) |
2885 | { |
2886 | DBUG_PRINT("info" , ("MyISAM" )); |
2887 | m_myisam= TRUE; |
2888 | } |
2889 | /* INNODB may not be compiled in... */ |
2890 | else if (ha_legacy_type(hton0) == DB_TYPE_INNODB) |
2891 | { |
2892 | DBUG_PRINT("info" , ("InnoDB" )); |
2893 | m_innodb= TRUE; |
2894 | } |
2895 | DBUG_RETURN(FALSE); |
2896 | } |
2897 | |
2898 | |
2899 | /* |
2900 | Create underlying handler objects from partition info |
2901 | |
2902 | SYNOPSIS |
2903 | new_handlers_from_part_info() |
2904 | mem_root Allocate memory through this |
2905 | |
2906 | RETURN VALUE |
2907 | TRUE Error |
2908 | FALSE Success |
2909 | */ |
2910 | |
2911 | bool ha_partition::new_handlers_from_part_info(MEM_ROOT *mem_root) |
2912 | { |
2913 | uint i, j, part_count; |
2914 | partition_element *part_elem; |
2915 | uint alloc_len= (m_tot_parts + 1) * sizeof(handler*); |
2916 | List_iterator_fast <partition_element> part_it(m_part_info->partitions); |
2917 | DBUG_ENTER("ha_partition::new_handlers_from_part_info" ); |
2918 | |
2919 | if (!(m_file= (handler **) alloc_root(mem_root, alloc_len))) |
2920 | goto error; |
2921 | |
2922 | m_file_tot_parts= m_tot_parts; |
2923 | bzero((char*) m_file, alloc_len); |
2924 | DBUG_ASSERT(m_part_info->num_parts > 0); |
2925 | |
2926 | i= 0; |
2927 | part_count= 0; |
2928 | /* |
2929 | Don't know the size of the underlying storage engine, invent a number of |
2930 | bytes allocated for error message if allocation fails |
2931 | */ |
2932 | do |
2933 | { |
2934 | part_elem= part_it++; |
2935 | if (m_is_sub_partitioned) |
2936 | { |
2937 | for (j= 0; j < m_part_info->num_subparts; j++) |
2938 | { |
2939 | if (!(m_file[part_count++]= get_new_handler(table_share, mem_root, |
2940 | part_elem->engine_type))) |
2941 | goto error; |
2942 | DBUG_PRINT("info" , ("engine_type: %u" , |
2943 | (uint) ha_legacy_type(part_elem->engine_type))); |
2944 | } |
2945 | } |
2946 | else |
2947 | { |
2948 | if (!(m_file[part_count++]= get_new_handler(table_share, mem_root, |
2949 | part_elem->engine_type))) |
2950 | goto error; |
2951 | DBUG_PRINT("info" , ("engine_type: %u" , |
2952 | (uint) ha_legacy_type(part_elem->engine_type))); |
2953 | } |
2954 | } while (++i < m_part_info->num_parts); |
2955 | if (part_elem->engine_type == myisam_hton) |
2956 | { |
2957 | DBUG_PRINT("info" , ("MyISAM" )); |
2958 | m_myisam= TRUE; |
2959 | } |
2960 | DBUG_RETURN(FALSE); |
2961 | error: |
2962 | DBUG_RETURN(TRUE); |
2963 | } |
2964 | |
2965 | |
2966 | /** |
2967 | Read the .par file to get the partitions engines and names |
2968 | |
2969 | @param name Name of table file (without extention) |
2970 | |
2971 | @return Operation status |
2972 | @retval true Failure |
2973 | @retval false Success |
2974 | |
2975 | @note On success, m_file_buffer is allocated and must be |
2976 | freed by the caller. m_name_buffer_ptr and m_tot_parts is also set. |
2977 | */ |
2978 | |
2979 | bool ha_partition::read_par_file(const char *name) |
2980 | { |
2981 | char buff[FN_REFLEN]; |
2982 | uchar *tot_name_len_offset; |
2983 | File file; |
2984 | uchar *file_buffer; |
2985 | uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum; |
2986 | DBUG_ENTER("ha_partition::read_par_file" ); |
2987 | DBUG_PRINT("enter" , ("table name: '%s'" , name)); |
2988 | |
2989 | if (m_file_buffer) |
2990 | DBUG_RETURN(false); |
2991 | fn_format(buff, name, "" , ha_par_ext, MY_APPEND_EXT); |
2992 | |
2993 | /* Following could be done with mysql_file_stat to read in whole file */ |
2994 | if ((file= mysql_file_open(key_file_partition, |
2995 | buff, O_RDONLY | O_SHARE, MYF(0))) < 0) |
2996 | DBUG_RETURN(TRUE); |
2997 | if (mysql_file_read(file, (uchar *) &buff[0], PAR_WORD_SIZE, MYF(MY_NABP))) |
2998 | goto err1; |
2999 | len_words= uint4korr(buff); |
3000 | len_bytes= PAR_WORD_SIZE * len_words; |
3001 | if (mysql_file_seek(file, 0, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR) |
3002 | goto err1; |
3003 | if (!(file_buffer= (uchar*) alloc_root(&m_mem_root, len_bytes))) |
3004 | goto err1; |
3005 | if (mysql_file_read(file, file_buffer, len_bytes, MYF(MY_NABP))) |
3006 | goto err2; |
3007 | |
3008 | chksum= 0; |
3009 | for (i= 0; i < len_words; i++) |
3010 | chksum ^= uint4korr((file_buffer) + PAR_WORD_SIZE * i); |
3011 | if (chksum) |
3012 | goto err2; |
3013 | m_tot_parts= uint4korr((file_buffer) + PAR_NUM_PARTS_OFFSET); |
3014 | DBUG_PRINT("info" , ("No of parts: %u" , m_tot_parts)); |
3015 | tot_partition_words= (m_tot_parts + PAR_WORD_SIZE - 1) / PAR_WORD_SIZE; |
3016 | |
3017 | tot_name_len_offset= file_buffer + PAR_ENGINES_OFFSET + |
3018 | PAR_WORD_SIZE * tot_partition_words; |
3019 | tot_name_words= (uint4korr(tot_name_len_offset) + PAR_WORD_SIZE - 1) / |
3020 | PAR_WORD_SIZE; |
3021 | /* |
3022 | Verify the total length = tot size word, checksum word, num parts word + |
3023 | engines array + name length word + name array. |
3024 | */ |
3025 | if (len_words != (tot_partition_words + tot_name_words + 4)) |
3026 | goto err2; |
3027 | m_file_buffer= file_buffer; // Will be freed in clear_handler_file() |
3028 | m_name_buffer_ptr= (char*) (tot_name_len_offset + PAR_WORD_SIZE); |
3029 | |
3030 | if (!(m_connect_string= (LEX_CSTRING*) |
3031 | alloc_root(&m_mem_root, m_tot_parts * sizeof(LEX_CSTRING)))) |
3032 | goto err2; |
3033 | bzero(m_connect_string, m_tot_parts * sizeof(LEX_CSTRING)); |
3034 | |
3035 | /* Read connection arguments (for federated X engine) */ |
3036 | for (i= 0; i < m_tot_parts; i++) |
3037 | { |
3038 | LEX_CSTRING connect_string; |
3039 | uchar buffer[4]; |
3040 | char *tmp; |
3041 | if (my_read(file, buffer, 4, MYF(MY_NABP))) |
3042 | { |
3043 | /* No extra options; Probably not a federatedx engine */ |
3044 | break; |
3045 | } |
3046 | connect_string.length= uint4korr(buffer); |
3047 | connect_string.str= tmp= (char*) alloc_root(&m_mem_root, |
3048 | connect_string.length+1); |
3049 | if (my_read(file, (uchar*) connect_string.str, connect_string.length, |
3050 | MYF(MY_NABP))) |
3051 | break; |
3052 | tmp[connect_string.length]= 0; |
3053 | m_connect_string[i]= connect_string; |
3054 | } |
3055 | |
3056 | (void) mysql_file_close(file, MYF(0)); |
3057 | DBUG_RETURN(false); |
3058 | |
3059 | err2: |
3060 | err1: |
3061 | (void) mysql_file_close(file, MYF(0)); |
3062 | DBUG_RETURN(true); |
3063 | } |
3064 | |
3065 | |
3066 | /** |
3067 | Setup m_engine_array |
3068 | |
3069 | @param mem_root MEM_ROOT to use for allocating new handlers |
3070 | |
3071 | @return Operation status |
3072 | @retval false Success |
3073 | @retval true Failure |
3074 | */ |
3075 | |
3076 | bool ha_partition::setup_engine_array(MEM_ROOT *mem_root) |
3077 | { |
3078 | uint i; |
3079 | uchar *buff; |
3080 | handlerton **engine_array, *first_engine; |
3081 | enum legacy_db_type db_type, first_db_type; |
3082 | |
3083 | DBUG_ASSERT(!m_file); |
3084 | DBUG_ENTER("ha_partition::setup_engine_array" ); |
3085 | engine_array= (handlerton **) my_alloca(m_tot_parts * sizeof(handlerton*)); |
3086 | if (!engine_array) |
3087 | DBUG_RETURN(true); |
3088 | |
3089 | buff= (uchar *) (m_file_buffer + PAR_ENGINES_OFFSET); |
3090 | first_db_type= (enum legacy_db_type) buff[0]; |
3091 | first_engine= ha_resolve_by_legacy_type(ha_thd(), first_db_type); |
3092 | if (!first_engine) |
3093 | goto err; |
3094 | |
3095 | if (!(m_engine_array= (plugin_ref*) |
3096 | alloc_root(&m_mem_root, m_tot_parts * sizeof(plugin_ref)))) |
3097 | goto err; |
3098 | |
3099 | for (i= 0; i < m_tot_parts; i++) |
3100 | { |
3101 | db_type= (enum legacy_db_type) buff[i]; |
3102 | if (db_type != first_db_type) |
3103 | { |
3104 | DBUG_PRINT("error" , ("partition %u engine %d is not same as " |
3105 | "first partition %d" , i, db_type, |
3106 | (int) first_db_type)); |
3107 | DBUG_ASSERT(0); |
3108 | clear_handler_file(); |
3109 | goto err; |
3110 | } |
3111 | m_engine_array[i]= ha_lock_engine(NULL, first_engine); |
3112 | if (!m_engine_array[i]) |
3113 | { |
3114 | clear_handler_file(); |
3115 | goto err; |
3116 | } |
3117 | } |
3118 | |
3119 | my_afree(engine_array); |
3120 | |
3121 | if (create_handlers(mem_root)) |
3122 | { |
3123 | clear_handler_file(); |
3124 | DBUG_RETURN(true); |
3125 | } |
3126 | |
3127 | DBUG_RETURN(false); |
3128 | |
3129 | err: |
3130 | my_afree(engine_array); |
3131 | DBUG_RETURN(true); |
3132 | } |
3133 | |
3134 | |
3135 | /** |
3136 | Get info about partition engines and their names from the .par file |
3137 | |
3138 | @param name Full path of table name |
3139 | @param mem_root Allocate memory through this |
3140 | @param is_clone If it is a clone, don't create new handlers |
3141 | |
3142 | @return Operation status |
3143 | @retval true Error |
3144 | @retval false Success |
3145 | |
3146 | @note Open handler file to get partition names, engine types and number of |
3147 | partitions. |
3148 | */ |
3149 | |
3150 | bool ha_partition::get_from_handler_file(const char *name, MEM_ROOT *mem_root, |
3151 | bool is_clone) |
3152 | { |
3153 | DBUG_ENTER("ha_partition::get_from_handler_file" ); |
3154 | DBUG_PRINT("enter" , ("table name: '%s'" , name)); |
3155 | |
3156 | if (m_file_buffer) |
3157 | DBUG_RETURN(false); |
3158 | |
3159 | if (read_par_file(name)) |
3160 | DBUG_RETURN(true); |
3161 | |
3162 | if (!is_clone && setup_engine_array(mem_root)) |
3163 | DBUG_RETURN(true); |
3164 | |
3165 | DBUG_RETURN(false); |
3166 | } |
3167 | |
3168 | |
3169 | /**************************************************************************** |
3170 | MODULE open/close object |
3171 | ****************************************************************************/ |
3172 | |
3173 | /** |
3174 | Get the partition name. |
3175 | |
3176 | @param part Struct containing name and length |
3177 | @param[out] length Length of the name |
3178 | |
3179 | @return Partition name |
3180 | */ |
3181 | |
3182 | static uchar *get_part_name(PART_NAME_DEF *part, size_t *length, |
3183 | my_bool not_used __attribute__((unused))) |
3184 | { |
3185 | *length= part->length; |
3186 | return part->partition_name; |
3187 | } |
3188 | |
3189 | |
3190 | /** |
3191 | Insert a partition name in the partition_name_hash. |
3192 | |
3193 | @param name Name of partition |
3194 | @param part_id Partition id (number) |
3195 | @param is_subpart Set if the name belongs to a subpartition |
3196 | |
3197 | @return Operation status |
3198 | @retval true Failure |
3199 | @retval false Sucess |
3200 | */ |
3201 | |
3202 | bool ha_partition::insert_partition_name_in_hash(const char *name, uint part_id, |
3203 | bool is_subpart) |
3204 | { |
3205 | PART_NAME_DEF *part_def; |
3206 | uchar *part_name; |
3207 | size_t part_name_length; |
3208 | DBUG_ENTER("ha_partition::insert_partition_name_in_hash" ); |
3209 | /* |
3210 | Calculate and store the length here, to avoid doing it when |
3211 | searching the hash. |
3212 | */ |
3213 | part_name_length= strlen(name); |
3214 | /* |
3215 | Must use memory that lives as long as table_share. |
3216 | Freed in the Partition_share destructor. |
3217 | Since we use my_multi_malloc, then my_free(part_def) will also free |
3218 | part_name, as a part of my_hash_free. |
3219 | */ |
3220 | if (!my_multi_malloc(MY_WME, |
3221 | &part_def, sizeof(PART_NAME_DEF), |
3222 | &part_name, part_name_length + 1, |
3223 | NULL)) |
3224 | DBUG_RETURN(true); |
3225 | memcpy(part_name, name, part_name_length + 1); |
3226 | part_def->partition_name= part_name; |
3227 | part_def->length= (uint)part_name_length; |
3228 | part_def->part_id= part_id; |
3229 | part_def->is_subpart= is_subpart; |
3230 | if (my_hash_insert(&part_share->partition_name_hash, (uchar *) part_def)) |
3231 | { |
3232 | my_free(part_def); |
3233 | DBUG_RETURN(true); |
3234 | } |
3235 | DBUG_RETURN(false); |
3236 | } |
3237 | |
3238 | |
3239 | /** |
3240 | Populate the partition_name_hash in part_share. |
3241 | */ |
3242 | |
3243 | bool ha_partition::populate_partition_name_hash() |
3244 | { |
3245 | List_iterator<partition_element> part_it(m_part_info->partitions); |
3246 | uint num_parts= m_part_info->num_parts; |
3247 | uint num_subparts= m_is_sub_partitioned ? m_part_info->num_subparts : 1; |
3248 | uint tot_names; |
3249 | uint i= 0; |
3250 | DBUG_ASSERT(part_share); |
3251 | |
3252 | DBUG_ENTER("ha_partition::populate_partition_name_hash" ); |
3253 | |
3254 | /* |
3255 | partition_name_hash is only set once and never changed |
3256 | -> OK to check without locking. |
3257 | */ |
3258 | |
3259 | if (part_share->partition_name_hash_initialized) |
3260 | DBUG_RETURN(false); |
3261 | lock_shared_ha_data(); |
3262 | if (part_share->partition_name_hash_initialized) |
3263 | { |
3264 | unlock_shared_ha_data(); |
3265 | DBUG_RETURN(false); |
3266 | } |
3267 | tot_names= m_is_sub_partitioned ? m_tot_parts + num_parts : num_parts; |
3268 | if (my_hash_init(&part_share->partition_name_hash, |
3269 | system_charset_info, tot_names, 0, 0, |
3270 | (my_hash_get_key) get_part_name, |
3271 | my_free, HASH_UNIQUE)) |
3272 | { |
3273 | unlock_shared_ha_data(); |
3274 | DBUG_RETURN(TRUE); |
3275 | } |
3276 | |
3277 | do |
3278 | { |
3279 | partition_element *part_elem= part_it++; |
3280 | DBUG_ASSERT(part_elem->part_state == PART_NORMAL); |
3281 | if (part_elem->part_state == PART_NORMAL) |
3282 | { |
3283 | if (insert_partition_name_in_hash(part_elem->partition_name, |
3284 | i * num_subparts, false)) |
3285 | goto err; |
3286 | if (m_is_sub_partitioned) |
3287 | { |
3288 | List_iterator<partition_element> |
3289 | subpart_it(part_elem->subpartitions); |
3290 | partition_element *sub_elem; |
3291 | uint j= 0; |
3292 | do |
3293 | { |
3294 | sub_elem= subpart_it++; |
3295 | if (insert_partition_name_in_hash(sub_elem->partition_name, |
3296 | i * num_subparts + j, true)) |
3297 | goto err; |
3298 | |
3299 | } while (++j < num_subparts); |
3300 | } |
3301 | } |
3302 | } while (++i < num_parts); |
3303 | |
3304 | part_share->partition_name_hash_initialized= true; |
3305 | unlock_shared_ha_data(); |
3306 | |
3307 | DBUG_RETURN(FALSE); |
3308 | err: |
3309 | my_hash_free(&part_share->partition_name_hash); |
3310 | unlock_shared_ha_data(); |
3311 | |
3312 | DBUG_RETURN(TRUE); |
3313 | } |
3314 | |
3315 | |
3316 | /** |
3317 | Set Handler_share pointer and allocate Handler_share pointers |
3318 | for each partition and set those. |
3319 | |
3320 | @param ha_share_arg Where to store/retrieve the Partitioning_share pointer |
3321 | to be shared by all instances of the same table. |
3322 | |
3323 | @return Operation status |
3324 | @retval true Failure |
3325 | @retval false Sucess |
3326 | */ |
3327 | |
3328 | bool ha_partition::set_ha_share_ref(Handler_share **ha_share_arg) |
3329 | { |
3330 | Handler_share **ha_shares; |
3331 | uint i; |
3332 | DBUG_ENTER("ha_partition::set_ha_share_ref" ); |
3333 | |
3334 | DBUG_ASSERT(!part_share); |
3335 | DBUG_ASSERT(table_share); |
3336 | DBUG_ASSERT(!m_is_clone_of); |
3337 | DBUG_ASSERT(m_tot_parts); |
3338 | if (handler::set_ha_share_ref(ha_share_arg)) |
3339 | DBUG_RETURN(true); |
3340 | if (!(part_share= get_share())) |
3341 | DBUG_RETURN(true); |
3342 | DBUG_ASSERT(part_share->partitions_share_refs.num_parts >= m_tot_parts); |
3343 | ha_shares= part_share->partitions_share_refs.ha_shares; |
3344 | for (i= 0; i < m_tot_parts; i++) |
3345 | { |
3346 | if (m_file[i]->set_ha_share_ref(&ha_shares[i])) |
3347 | DBUG_RETURN(true); |
3348 | } |
3349 | DBUG_RETURN(false); |
3350 | } |
3351 | |
3352 | |
3353 | /** |
3354 | Get the PARTITION_SHARE for the table. |
3355 | |
3356 | @return Operation status |
3357 | @retval true Error |
3358 | @retval false Success |
3359 | |
3360 | @note Gets or initializes the Partition_share object used by partitioning. |
3361 | The Partition_share is used for handling the auto_increment etc. |
3362 | */ |
3363 | |
3364 | Partition_share *ha_partition::get_share() |
3365 | { |
3366 | Partition_share *tmp_share; |
3367 | DBUG_ENTER("ha_partition::get_share" ); |
3368 | DBUG_ASSERT(table_share); |
3369 | |
3370 | lock_shared_ha_data(); |
3371 | if (!(tmp_share= static_cast<Partition_share*>(get_ha_share_ptr()))) |
3372 | { |
3373 | tmp_share= new Partition_share; |
3374 | if (!tmp_share) |
3375 | goto err; |
3376 | if (tmp_share->init(m_tot_parts)) |
3377 | { |
3378 | delete tmp_share; |
3379 | tmp_share= NULL; |
3380 | goto err; |
3381 | } |
3382 | set_ha_share_ptr(static_cast<Handler_share*>(tmp_share)); |
3383 | } |
3384 | err: |
3385 | unlock_shared_ha_data(); |
3386 | DBUG_RETURN(tmp_share); |
3387 | } |
3388 | |
3389 | |
3390 | |
3391 | /** |
3392 | Helper function for freeing all internal bitmaps. |
3393 | */ |
3394 | |
3395 | void ha_partition::free_partition_bitmaps() |
3396 | { |
3397 | /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */ |
3398 | my_bitmap_free(&m_bulk_insert_started); |
3399 | my_bitmap_free(&m_locked_partitions); |
3400 | my_bitmap_free(&m_partitions_to_reset); |
3401 | my_bitmap_free(&m_key_not_found_partitions); |
3402 | my_bitmap_free(&m_opened_partitions); |
3403 | my_bitmap_free(&m_mrr_used_partitions); |
3404 | } |
3405 | |
3406 | |
3407 | /** |
3408 | Helper function for initializing all internal bitmaps. |
3409 | |
3410 | Note: |
3411 | All bitmaps, including partially allocated, are freed in |
3412 | free_partion_bitmaps() |
3413 | */ |
3414 | |
3415 | bool ha_partition::init_partition_bitmaps() |
3416 | { |
3417 | DBUG_ENTER("ha_partition::init_partition_bitmaps" ); |
3418 | |
3419 | /* Initialize the bitmap we use to minimize ha_start_bulk_insert calls */ |
3420 | if (my_bitmap_init(&m_bulk_insert_started, NULL, m_tot_parts + 1, FALSE)) |
3421 | DBUG_RETURN(true); |
3422 | |
3423 | /* Initialize the bitmap we use to keep track of locked partitions */ |
3424 | if (my_bitmap_init(&m_locked_partitions, NULL, m_tot_parts, FALSE)) |
3425 | DBUG_RETURN(true); |
3426 | |
3427 | /* |
3428 | Initialize the bitmap we use to keep track of partitions which may have |
3429 | something to reset in ha_reset(). |
3430 | */ |
3431 | if (my_bitmap_init(&m_partitions_to_reset, NULL, m_tot_parts, FALSE)) |
3432 | DBUG_RETURN(true); |
3433 | |
3434 | /* |
3435 | Initialize the bitmap we use to keep track of partitions which returned |
3436 | HA_ERR_KEY_NOT_FOUND from index_read_map. |
3437 | */ |
3438 | if (my_bitmap_init(&m_key_not_found_partitions, NULL, m_tot_parts, FALSE)) |
3439 | DBUG_RETURN(true); |
3440 | |
3441 | if (bitmap_init(&m_mrr_used_partitions, NULL, m_tot_parts, TRUE)) |
3442 | DBUG_RETURN(true); |
3443 | |
3444 | if (my_bitmap_init(&m_opened_partitions, NULL, m_tot_parts, FALSE)) |
3445 | DBUG_RETURN(true); |
3446 | |
3447 | m_file_sample= NULL; |
3448 | |
3449 | /* Initialize the bitmap for read/lock_partitions */ |
3450 | if (!m_is_clone_of) |
3451 | { |
3452 | DBUG_ASSERT(!m_clone_mem_root); |
3453 | if (m_part_info->set_partition_bitmaps(NULL)) |
3454 | DBUG_RETURN(true); |
3455 | } |
3456 | DBUG_RETURN(false); |
3457 | } |
3458 | |
3459 | |
3460 | /* |
3461 | Open handler object |
3462 | |
3463 | SYNOPSIS |
3464 | open() |
3465 | name Full path of table name |
3466 | mode Open mode flags |
3467 | test_if_locked ? |
3468 | |
3469 | RETURN VALUE |
3470 | >0 Error |
3471 | 0 Success |
3472 | |
3473 | DESCRIPTION |
3474 | Used for opening tables. The name will be the name of the file. |
3475 | A table is opened when it needs to be opened. For instance |
3476 | when a request comes in for a select on the table (tables are not |
3477 | open and closed for each request, they are cached). |
3478 | |
3479 | Called from handler.cc by handler::ha_open(). The server opens all tables |
3480 | by calling ha_open() which then calls the handler specific open(). |
3481 | */ |
3482 | |
3483 | int ha_partition::open(const char *name, int mode, uint test_if_locked) |
3484 | { |
3485 | int error= HA_ERR_INITIALIZATION; |
3486 | handler **file; |
3487 | char name_buff[FN_REFLEN + 1]; |
3488 | ulonglong check_table_flags; |
3489 | DBUG_ENTER("ha_partition::open" ); |
3490 | |
3491 | DBUG_ASSERT(table->s == table_share); |
3492 | ref_length= 0; |
3493 | m_mode= mode; |
3494 | m_open_test_lock= test_if_locked; |
3495 | m_part_field_array= m_part_info->full_part_field_array; |
3496 | if (get_from_handler_file(name, &table->mem_root, MY_TEST(m_is_clone_of))) |
3497 | DBUG_RETURN(error); |
3498 | if (populate_partition_name_hash()) |
3499 | { |
3500 | DBUG_RETURN(HA_ERR_INITIALIZATION); |
3501 | } |
3502 | m_start_key.length= 0; |
3503 | m_rec0= table->record[0]; |
3504 | m_rec_length= table_share->reclength; |
3505 | if (!m_part_ids_sorted_by_num_of_records) |
3506 | { |
3507 | if (!(m_part_ids_sorted_by_num_of_records= |
3508 | (uint32*) my_malloc(m_tot_parts * sizeof(uint32), MYF(MY_WME)))) |
3509 | DBUG_RETURN(error); |
3510 | uint32 i; |
3511 | /* Initialize it with all partition ids. */ |
3512 | for (i= 0; i < m_tot_parts; i++) |
3513 | m_part_ids_sorted_by_num_of_records[i]= i; |
3514 | } |
3515 | |
3516 | if (init_partition_bitmaps()) |
3517 | goto err_alloc; |
3518 | |
3519 | if (unlikely((error= |
3520 | m_part_info->set_partition_bitmaps(m_partitions_to_open)))) |
3521 | goto err_alloc; |
3522 | |
3523 | /* Allocate memory used with MMR */ |
3524 | if (!(m_range_info= (void **) |
3525 | my_multi_malloc(MYF(MY_WME), |
3526 | &m_range_info, sizeof(range_id_t) * m_tot_parts, |
3527 | &m_stock_range_seq, sizeof(uint) * m_tot_parts, |
3528 | &m_mrr_buffer, sizeof(HANDLER_BUFFER) * m_tot_parts, |
3529 | &m_mrr_buffer_size, sizeof(uint) * m_tot_parts, |
3530 | &m_part_mrr_range_length, sizeof(uint) * m_tot_parts, |
3531 | &m_part_mrr_range_first, |
3532 | sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts, |
3533 | &m_part_mrr_range_current, |
3534 | sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts, |
3535 | &m_partition_part_key_multi_range_hld, |
3536 | sizeof(PARTITION_PART_KEY_MULTI_RANGE_HLD) * |
3537 | m_tot_parts, |
3538 | NullS))) |
3539 | goto err_alloc; |
3540 | |
3541 | bzero(m_mrr_buffer, m_tot_parts * sizeof(HANDLER_BUFFER)); |
3542 | bzero(m_part_mrr_range_first, |
3543 | sizeof(PARTITION_PART_KEY_MULTI_RANGE *) * m_tot_parts); |
3544 | |
3545 | if (m_is_clone_of) |
3546 | { |
3547 | uint i, alloc_len; |
3548 | char *name_buffer_ptr; |
3549 | DBUG_ASSERT(m_clone_mem_root); |
3550 | /* Allocate an array of handler pointers for the partitions handlers. */ |
3551 | alloc_len= (m_tot_parts + 1) * sizeof(handler*); |
3552 | if (!(m_file= (handler **) alloc_root(m_clone_mem_root, alloc_len))) |
3553 | { |
3554 | error= HA_ERR_INITIALIZATION; |
3555 | goto err_alloc; |
3556 | } |
3557 | memset(m_file, 0, alloc_len); |
3558 | name_buffer_ptr= m_name_buffer_ptr; |
3559 | /* |
3560 | Populate them by cloning the original partitions. This also opens them. |
3561 | Note that file->ref is allocated too. |
3562 | */ |
3563 | file= m_is_clone_of->m_file; |
3564 | for (i= 0; i < m_tot_parts; i++) |
3565 | { |
3566 | if (!bitmap_is_set(&m_is_clone_of->m_opened_partitions, i)) |
3567 | continue; |
3568 | |
3569 | if (unlikely((error= create_partition_name(name_buff, sizeof(name_buff), |
3570 | name, name_buffer_ptr, |
3571 | NORMAL_PART_NAME, FALSE)))) |
3572 | goto err_handler; |
3573 | /* ::clone() will also set ha_share from the original. */ |
3574 | if (!(m_file[i]= file[i]->clone(name_buff, m_clone_mem_root))) |
3575 | { |
3576 | error= HA_ERR_INITIALIZATION; |
3577 | file= &m_file[i]; |
3578 | goto err_handler; |
3579 | } |
3580 | if (!m_file_sample) |
3581 | m_file_sample= m_file[i]; |
3582 | name_buffer_ptr+= strlen(name_buffer_ptr) + 1; |
3583 | bitmap_set_bit(&m_opened_partitions, i); |
3584 | } |
3585 | } |
3586 | else |
3587 | { |
3588 | if (unlikely((error= open_read_partitions(name_buff, sizeof(name_buff))))) |
3589 | goto err_handler; |
3590 | m_num_locks= m_file_sample->lock_count(); |
3591 | } |
3592 | /* |
3593 | We want to know the upper bound for locks, to allocate enough memory. |
3594 | There is no performance lost if we simply return in lock_count() the |
3595 | maximum number locks needed, only some minor over allocation of memory |
3596 | in get_lock_data(). |
3597 | */ |
3598 | m_num_locks*= m_tot_parts; |
3599 | |
3600 | file= m_file; |
3601 | ref_length= get_open_file_sample()->ref_length; |
3602 | check_table_flags= ((get_open_file_sample()->ha_table_flags() & |
3603 | ~(PARTITION_DISABLED_TABLE_FLAGS)) | |
3604 | (PARTITION_ENABLED_TABLE_FLAGS)); |
3605 | while (*(++file)) |
3606 | { |
3607 | if (!bitmap_is_set(&m_opened_partitions, (uint)(file - m_file))) |
3608 | continue; |
3609 | /* MyISAM can have smaller ref_length for partitions with MAX_ROWS set */ |
3610 | set_if_bigger(ref_length, ((*file)->ref_length)); |
3611 | /* |
3612 | Verify that all partitions have the same set of table flags. |
3613 | Mask all flags that partitioning enables/disables. |
3614 | */ |
3615 | if (check_table_flags != (((*file)->ha_table_flags() & |
3616 | ~(PARTITION_DISABLED_TABLE_FLAGS)) | |
3617 | (PARTITION_ENABLED_TABLE_FLAGS))) |
3618 | { |
3619 | error= HA_ERR_INITIALIZATION; |
3620 | /* set file to last handler, so all of them are closed */ |
3621 | file= &m_file[m_tot_parts - 1]; |
3622 | goto err_handler; |
3623 | } |
3624 | } |
3625 | key_used_on_scan= get_open_file_sample()->key_used_on_scan; |
3626 | implicit_emptied= get_open_file_sample()->implicit_emptied; |
3627 | /* |
3628 | Add 2 bytes for partition id in position ref length. |
3629 | ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS |
3630 | */ |
3631 | ref_length+= PARTITION_BYTES_IN_POS; |
3632 | m_ref_length= ref_length; |
3633 | |
3634 | /* |
3635 | Release buffer read from .par file. It will not be reused again after |
3636 | being opened once. |
3637 | */ |
3638 | clear_handler_file(); |
3639 | |
3640 | /* |
3641 | Some handlers update statistics as part of the open call. This will in |
3642 | some cases corrupt the statistics of the partition handler and thus |
3643 | to ensure we have correct statistics we call info from open after |
3644 | calling open on all individual handlers. |
3645 | */ |
3646 | m_handler_status= handler_opened; |
3647 | if (m_part_info->part_expr) |
3648 | m_part_func_monotonicity_info= |
3649 | m_part_info->part_expr->get_monotonicity_info(); |
3650 | else if (m_part_info->list_of_part_fields) |
3651 | m_part_func_monotonicity_info= MONOTONIC_STRICT_INCREASING; |
3652 | info(HA_STATUS_VARIABLE | HA_STATUS_CONST | HA_STATUS_OPEN); |
3653 | DBUG_RETURN(0); |
3654 | |
3655 | err_handler: |
3656 | DEBUG_SYNC(ha_thd(), "partition_open_error" ); |
3657 | file= &m_file[m_tot_parts - 1]; |
3658 | while (file-- != m_file) |
3659 | { |
3660 | if (bitmap_is_set(&m_opened_partitions, (uint)(file - m_file))) |
3661 | (*file)->ha_close(); |
3662 | } |
3663 | err_alloc: |
3664 | free_partition_bitmaps(); |
3665 | my_free(m_range_info); |
3666 | m_range_info= 0; |
3667 | |
3668 | DBUG_RETURN(error); |
3669 | } |
3670 | |
3671 | |
3672 | /* |
3673 | Disabled since it is not possible to prune yet. |
3674 | without pruning, it need to rebind/unbind every partition in every |
3675 | statement which uses a table from the table cache. Will also use |
3676 | as many PSI_tables as there are partitions. |
3677 | */ |
3678 | #ifdef HAVE_M_PSI_PER_PARTITION |
3679 | void ha_partition::unbind_psi() |
3680 | { |
3681 | uint i; |
3682 | |
3683 | DBUG_ENTER("ha_partition::unbind_psi" ); |
3684 | handler::unbind_psi(); |
3685 | for (i= 0; i < m_tot_parts; i++) |
3686 | { |
3687 | DBUG_ASSERT(m_file[i] != NULL); |
3688 | m_file[i]->unbind_psi(); |
3689 | } |
3690 | DBUG_VOID_RETURN; |
3691 | } |
3692 | |
3693 | void ha_partition::rebind_psi() |
3694 | { |
3695 | uint i; |
3696 | |
3697 | DBUG_ENTER("ha_partition::rebind_psi" ); |
3698 | handler::rebind_psi(); |
3699 | for (i= 0; i < m_tot_parts; i++) |
3700 | { |
3701 | DBUG_ASSERT(m_file[i] != NULL); |
3702 | m_file[i]->rebind_psi(); |
3703 | } |
3704 | DBUG_VOID_RETURN; |
3705 | } |
3706 | #endif /* HAVE_M_PSI_PER_PARTITION */ |
3707 | |
3708 | |
3709 | /** |
3710 | Clone the open and locked partitioning handler. |
3711 | |
3712 | @param mem_root MEM_ROOT to use. |
3713 | |
3714 | @return Pointer to the successfully created clone or NULL |
3715 | |
3716 | @details |
3717 | This function creates a new ha_partition handler as a clone/copy. The |
3718 | original (this) must already be opened and locked. The clone will use |
3719 | the originals m_part_info. |
3720 | It also allocates memory for ref + ref_dup. |
3721 | In ha_partition::open() it will clone its original handlers partitions |
3722 | which will allocate then on the correct MEM_ROOT and also open them. |
3723 | */ |
3724 | |
3725 | handler *ha_partition::clone(const char *name, MEM_ROOT *mem_root) |
3726 | { |
3727 | ha_partition *new_handler; |
3728 | |
3729 | DBUG_ENTER("ha_partition::clone" ); |
3730 | new_handler= new (mem_root) ha_partition(ht, table_share, m_part_info, |
3731 | this, mem_root); |
3732 | if (!new_handler) |
3733 | DBUG_RETURN(NULL); |
3734 | |
3735 | /* |
3736 | We will not clone each partition's handler here, it will be done in |
3737 | ha_partition::open() for clones. Also set_ha_share_ref is not needed |
3738 | here, since 1) ha_share is copied in the constructor used above |
3739 | 2) each partition's cloned handler will set it from its original. |
3740 | */ |
3741 | |
3742 | /* |
3743 | Allocate new_handler->ref here because otherwise ha_open will allocate it |
3744 | on this->table->mem_root and we will not be able to reclaim that memory |
3745 | when the clone handler object is destroyed. |
3746 | */ |
3747 | if (!(new_handler->ref= (uchar*) alloc_root(mem_root, |
3748 | ALIGN_SIZE(m_ref_length)*2))) |
3749 | goto err; |
3750 | |
3751 | if (new_handler->ha_open(table, name, |
3752 | table->db_stat, |
3753 | HA_OPEN_IGNORE_IF_LOCKED | HA_OPEN_NO_PSI_CALL)) |
3754 | goto err; |
3755 | |
3756 | DBUG_RETURN((handler*) new_handler); |
3757 | |
3758 | err: |
3759 | delete new_handler; |
3760 | DBUG_RETURN(NULL); |
3761 | } |
3762 | |
3763 | |
3764 | /* |
3765 | Close handler object |
3766 | |
3767 | SYNOPSIS |
3768 | close() |
3769 | |
3770 | RETURN VALUE |
3771 | >0 Error code |
3772 | 0 Success |
3773 | |
3774 | DESCRIPTION |
3775 | Called from sql_base.cc, sql_select.cc, and table.cc. |
3776 | In sql_select.cc it is only used to close up temporary tables or during |
3777 | the process where a temporary table is converted over to being a |
3778 | myisam table. |
3779 | For sql_base.cc look at close_data_tables(). |
3780 | */ |
3781 | |
3782 | int ha_partition::close(void) |
3783 | { |
3784 | bool first= TRUE; |
3785 | handler **file; |
3786 | uint i; |
3787 | st_partition_ft_info *tmp_ft_info; |
3788 | DBUG_ENTER("ha_partition::close" ); |
3789 | DBUG_ASSERT(table->s == table_share); |
3790 | DBUG_ASSERT(m_part_info); |
3791 | |
3792 | destroy_record_priority_queue(); |
3793 | |
3794 | for (; ft_first ; ft_first= tmp_ft_info) |
3795 | { |
3796 | tmp_ft_info= ft_first->next; |
3797 | my_free(ft_first); |
3798 | } |
3799 | |
3800 | /* Free active mrr_ranges */ |
3801 | for (i= 0; i < m_tot_parts; i++) |
3802 | { |
3803 | if (m_part_mrr_range_first[i]) |
3804 | { |
3805 | PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_first= |
3806 | m_part_mrr_range_first[i]; |
3807 | do |
3808 | { |
3809 | PARTITION_PART_KEY_MULTI_RANGE *tmp_mrr_range_current; |
3810 | tmp_mrr_range_current= tmp_mrr_range_first; |
3811 | tmp_mrr_range_first= tmp_mrr_range_first->next; |
3812 | my_free(tmp_mrr_range_current); |
3813 | } while (tmp_mrr_range_first); |
3814 | } |
3815 | } |
3816 | if (m_mrr_range_first) |
3817 | { |
3818 | do |
3819 | { |
3820 | m_mrr_range_current= m_mrr_range_first; |
3821 | m_mrr_range_first= m_mrr_range_first->next; |
3822 | if (m_mrr_range_current->key[0]) |
3823 | my_free(m_mrr_range_current->key[0]); |
3824 | if (m_mrr_range_current->key[1]) |
3825 | my_free(m_mrr_range_current->key[1]); |
3826 | my_free(m_mrr_range_current); |
3827 | } while (m_mrr_range_first); |
3828 | } |
3829 | my_free(m_range_info); |
3830 | m_range_info= NULL; // Safety |
3831 | |
3832 | if (m_mrr_full_buffer) |
3833 | { |
3834 | my_free(m_mrr_full_buffer); |
3835 | m_mrr_full_buffer= NULL; |
3836 | m_mrr_full_buffer_size= 0; |
3837 | } |
3838 | file= m_file; |
3839 | |
3840 | repeat: |
3841 | do |
3842 | { |
3843 | if (!first || bitmap_is_set(&m_opened_partitions, (uint)(file - m_file))) |
3844 | (*file)->ha_close(); |
3845 | } while (*(++file)); |
3846 | |
3847 | free_partition_bitmaps(); |
3848 | |
3849 | if (first && m_added_file && m_added_file[0]) |
3850 | { |
3851 | file= m_added_file; |
3852 | first= FALSE; |
3853 | goto repeat; |
3854 | } |
3855 | |
3856 | m_handler_status= handler_closed; |
3857 | DBUG_RETURN(0); |
3858 | } |
3859 | |
3860 | /**************************************************************************** |
3861 | MODULE start/end statement |
3862 | ****************************************************************************/ |
3863 | /* |
3864 | A number of methods to define various constants for the handler. In |
3865 | the case of the partition handler we need to use some max and min |
3866 | of the underlying handlers in most cases. |
3867 | */ |
3868 | |
3869 | /* |
3870 | Set external locks on table |
3871 | |
3872 | SYNOPSIS |
3873 | external_lock() |
3874 | thd Thread object |
3875 | lock_type Type of external lock |
3876 | |
3877 | RETURN VALUE |
3878 | >0 Error code |
3879 | 0 Success |
3880 | |
3881 | DESCRIPTION |
3882 | First you should go read the section "locking functions for mysql" in |
3883 | lock.cc to understand this. |
3884 | This create a lock on the table. If you are implementing a storage engine |
3885 | that can handle transactions look at ha_berkeley.cc to see how you will |
3886 | want to go about doing this. Otherwise you should consider calling |
3887 | flock() here. |
3888 | Originally this method was used to set locks on file level to enable |
3889 | several MySQL Servers to work on the same data. For transactional |
3890 | engines it has been "abused" to also mean start and end of statements |
3891 | to enable proper rollback of statements and transactions. When LOCK |
3892 | TABLES has been issued the start_stmt method takes over the role of |
3893 | indicating start of statement but in this case there is no end of |
3894 | statement indicator(?). |
3895 | |
3896 | Called from lock.cc by lock_external() and unlock_external(). Also called |
3897 | from sql_table.cc by copy_data_between_tables(). |
3898 | */ |
3899 | |
3900 | int ha_partition::external_lock(THD *thd, int lock_type) |
3901 | { |
3902 | int error; |
3903 | uint i, first_used_partition; |
3904 | MY_BITMAP *used_partitions; |
3905 | DBUG_ENTER("ha_partition::external_lock" ); |
3906 | |
3907 | DBUG_ASSERT(!auto_increment_lock && !auto_increment_safe_stmt_log_lock); |
3908 | |
3909 | if (lock_type == F_UNLCK) |
3910 | used_partitions= &m_locked_partitions; |
3911 | else |
3912 | used_partitions= &(m_part_info->lock_partitions); |
3913 | |
3914 | first_used_partition= bitmap_get_first_set(used_partitions); |
3915 | |
3916 | for (i= first_used_partition; |
3917 | i < m_tot_parts; |
3918 | i= bitmap_get_next_set(used_partitions, i)) |
3919 | { |
3920 | DBUG_PRINT("info" , ("external_lock(thd, %d) part %u" , lock_type, i)); |
3921 | if (unlikely((error= m_file[i]->ha_external_lock(thd, lock_type)))) |
3922 | { |
3923 | if (lock_type != F_UNLCK) |
3924 | goto err_handler; |
3925 | } |
3926 | DBUG_PRINT("info" , ("external_lock part %u lock %d" , i, lock_type)); |
3927 | if (lock_type != F_UNLCK) |
3928 | bitmap_set_bit(&m_locked_partitions, i); |
3929 | } |
3930 | if (lock_type == F_UNLCK) |
3931 | { |
3932 | bitmap_clear_all(used_partitions); |
3933 | } |
3934 | else |
3935 | { |
3936 | /* Add touched partitions to be included in reset(). */ |
3937 | bitmap_union(&m_partitions_to_reset, used_partitions); |
3938 | } |
3939 | |
3940 | if (m_added_file && m_added_file[0]) |
3941 | { |
3942 | handler **file= m_added_file; |
3943 | DBUG_ASSERT(lock_type == F_UNLCK); |
3944 | do |
3945 | { |
3946 | (void) (*file)->ha_external_lock(thd, lock_type); |
3947 | } while (*(++file)); |
3948 | } |
3949 | if (lock_type == F_WRLCK) |
3950 | { |
3951 | if (m_part_info->part_expr) |
3952 | m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0); |
3953 | if (m_part_info->part_type == VERSIONING_PARTITION) |
3954 | m_part_info->vers_set_hist_part(thd); |
3955 | } |
3956 | DBUG_RETURN(0); |
3957 | |
3958 | err_handler: |
3959 | uint j; |
3960 | for (j= first_used_partition; |
3961 | j < i; |
3962 | j= bitmap_get_next_set(&m_locked_partitions, j)) |
3963 | { |
3964 | (void) m_file[j]->ha_external_lock(thd, F_UNLCK); |
3965 | } |
3966 | bitmap_clear_all(&m_locked_partitions); |
3967 | DBUG_RETURN(error); |
3968 | } |
3969 | |
3970 | |
3971 | /* |
3972 | Get the lock(s) for the table and perform conversion of locks if needed |
3973 | |
3974 | SYNOPSIS |
3975 | store_lock() |
3976 | thd Thread object |
3977 | to Lock object array |
3978 | lock_type Table lock type |
3979 | |
3980 | RETURN VALUE |
3981 | >0 Error code |
3982 | 0 Success |
3983 | |
3984 | DESCRIPTION |
3985 | The idea with handler::store_lock() is the following: |
3986 | |
3987 | The statement decided which locks we should need for the table |
3988 | for updates/deletes/inserts we get WRITE locks, for SELECT... we get |
3989 | read locks. |
3990 | |
3991 | Before adding the lock into the table lock handler (see thr_lock.c) |
3992 | mysqld calls store lock with the requested locks. Store lock can now |
3993 | modify a write lock to a read lock (or some other lock), ignore the |
3994 | lock (if we don't want to use MySQL table locks at all) or add locks |
3995 | for many tables (like we do when we are using a MERGE handler). |
3996 | |
3997 | Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE |
3998 | (which signals that we are doing WRITES, but we are still allowing other |
3999 | reader's and writer's. |
4000 | |
4001 | When releasing locks, store_lock() is also called. In this case one |
4002 | usually doesn't have to do anything. |
4003 | |
4004 | store_lock is called when holding a global mutex to ensure that only |
4005 | one thread at a time changes the locking information of tables. |
4006 | |
4007 | In some exceptional cases MySQL may send a request for a TL_IGNORE; |
4008 | This means that we are requesting the same lock as last time and this |
4009 | should also be ignored. (This may happen when someone does a flush |
4010 | table when we have opened a part of the tables, in which case mysqld |
4011 | closes and reopens the tables and tries to get the same locks as last |
4012 | time). In the future we will probably try to remove this. |
4013 | |
4014 | Called from lock.cc by get_lock_data(). |
4015 | */ |
4016 | |
4017 | THR_LOCK_DATA **ha_partition::store_lock(THD *thd, |
4018 | THR_LOCK_DATA **to, |
4019 | enum thr_lock_type lock_type) |
4020 | { |
4021 | uint i; |
4022 | DBUG_ENTER("ha_partition::store_lock" ); |
4023 | DBUG_ASSERT(thd == current_thd); |
4024 | |
4025 | /* |
4026 | This can be called from get_lock_data() in mysql_lock_abort_for_thread(), |
4027 | even when thd != table->in_use. In that case don't use partition pruning, |
4028 | but use all partitions instead to avoid using another threads structures. |
4029 | */ |
4030 | if (thd != table->in_use) |
4031 | { |
4032 | for (i= 0; i < m_tot_parts; i++) |
4033 | to= m_file[i]->store_lock(thd, to, lock_type); |
4034 | } |
4035 | else |
4036 | { |
4037 | for (i= bitmap_get_first_set(&(m_part_info->lock_partitions)); |
4038 | i < m_tot_parts; |
4039 | i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) |
4040 | { |
4041 | DBUG_PRINT("info" , ("store lock %u iteration" , i)); |
4042 | to= m_file[i]->store_lock(thd, to, lock_type); |
4043 | } |
4044 | } |
4045 | DBUG_RETURN(to); |
4046 | } |
4047 | |
4048 | /* |
4049 | Start a statement when table is locked |
4050 | |
4051 | SYNOPSIS |
4052 | start_stmt() |
4053 | thd Thread object |
4054 | lock_type Type of external lock |
4055 | |
4056 | RETURN VALUE |
4057 | >0 Error code |
4058 | 0 Success |
4059 | |
4060 | DESCRIPTION |
4061 | This method is called instead of external lock when the table is locked |
4062 | before the statement is executed. |
4063 | */ |
4064 | |
4065 | int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type) |
4066 | { |
4067 | int error= 0; |
4068 | uint i; |
4069 | /* Assert that read_partitions is included in lock_partitions */ |
4070 | DBUG_ASSERT(bitmap_is_subset(&m_part_info->read_partitions, |
4071 | &m_part_info->lock_partitions)); |
4072 | /* |
4073 | m_locked_partitions is set in previous external_lock/LOCK TABLES. |
4074 | Current statement's lock requests must not include any partitions |
4075 | not previously locked. |
4076 | */ |
4077 | DBUG_ASSERT(bitmap_is_subset(&m_part_info->lock_partitions, |
4078 | &m_locked_partitions)); |
4079 | DBUG_ENTER("ha_partition::start_stmt" ); |
4080 | |
4081 | for (i= bitmap_get_first_set(&(m_part_info->lock_partitions)); |
4082 | i < m_tot_parts; |
4083 | i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) |
4084 | { |
4085 | if (unlikely((error= m_file[i]->start_stmt(thd, lock_type)))) |
4086 | break; |
4087 | /* Add partition to be called in reset(). */ |
4088 | bitmap_set_bit(&m_partitions_to_reset, i); |
4089 | } |
4090 | if (lock_type == F_WRLCK && m_part_info->part_expr) |
4091 | m_part_info->part_expr->walk(&Item::register_field_in_read_map, 1, 0); |
4092 | DBUG_RETURN(error); |
4093 | } |
4094 | |
4095 | |
4096 | /** |
4097 | Get number of lock objects returned in store_lock |
4098 | |
4099 | @returns Number of locks returned in call to store_lock |
4100 | |
4101 | @desc |
4102 | Returns the maxinum possible number of store locks needed in call to |
4103 | store lock. |
4104 | */ |
4105 | |
4106 | uint ha_partition::lock_count() const |
4107 | { |
4108 | DBUG_ENTER("ha_partition::lock_count" ); |
4109 | DBUG_RETURN(m_num_locks); |
4110 | } |
4111 | |
4112 | |
4113 | /* |
4114 | Unlock last accessed row |
4115 | |
4116 | SYNOPSIS |
4117 | unlock_row() |
4118 | |
4119 | RETURN VALUE |
4120 | NONE |
4121 | |
4122 | DESCRIPTION |
4123 | Record currently processed was not in the result set of the statement |
4124 | and is thus unlocked. Used for UPDATE and DELETE queries. |
4125 | */ |
4126 | |
4127 | void ha_partition::unlock_row() |
4128 | { |
4129 | DBUG_ENTER("ha_partition::unlock_row" ); |
4130 | m_file[m_last_part]->unlock_row(); |
4131 | DBUG_VOID_RETURN; |
4132 | } |
4133 | |
4134 | /** |
4135 | Check if semi consistent read was used |
4136 | |
4137 | SYNOPSIS |
4138 | was_semi_consistent_read() |
4139 | |
4140 | RETURN VALUE |
4141 | TRUE Previous read was a semi consistent read |
4142 | FALSE Previous read was not a semi consistent read |
4143 | |
4144 | DESCRIPTION |
4145 | See handler.h: |
4146 | In an UPDATE or DELETE, if the row under the cursor was locked by another |
4147 | transaction, and the engine used an optimistic read of the last |
4148 | committed row value under the cursor, then the engine returns 1 from this |
4149 | function. MySQL must NOT try to update this optimistic value. If the |
4150 | optimistic value does not match the WHERE condition, MySQL can decide to |
4151 | skip over this row. Currently only works for InnoDB. This can be used to |
4152 | avoid unnecessary lock waits. |
4153 | |
4154 | If this method returns nonzero, it will also signal the storage |
4155 | engine that the next read will be a locking re-read of the row. |
4156 | */ |
4157 | bool ha_partition::was_semi_consistent_read() |
4158 | { |
4159 | DBUG_ENTER("ha_partition::was_semi_consistent_read" ); |
4160 | DBUG_ASSERT(m_last_part < m_tot_parts && |
4161 | bitmap_is_set(&(m_part_info->read_partitions), m_last_part)); |
4162 | DBUG_RETURN(m_file[m_last_part]->was_semi_consistent_read()); |
4163 | } |
4164 | |
4165 | /** |
4166 | Use semi consistent read if possible |
4167 | |
4168 | SYNOPSIS |
4169 | try_semi_consistent_read() |
4170 | yes Turn on semi consistent read |
4171 | |
4172 | RETURN VALUE |
4173 | NONE |
4174 | |
4175 | DESCRIPTION |
4176 | See handler.h: |
4177 | Tell the engine whether it should avoid unnecessary lock waits. |
4178 | If yes, in an UPDATE or DELETE, if the row under the cursor was locked |
4179 | by another transaction, the engine may try an optimistic read of |
4180 | the last committed row value under the cursor. |
4181 | Note: prune_partitions are already called before this call, so using |
4182 | pruning is OK. |
4183 | */ |
4184 | void ha_partition::try_semi_consistent_read(bool yes) |
4185 | { |
4186 | uint i; |
4187 | DBUG_ENTER("ha_partition::try_semi_consistent_read" ); |
4188 | |
4189 | i= bitmap_get_first_set(&(m_part_info->read_partitions)); |
4190 | DBUG_ASSERT(i != MY_BIT_NONE); |
4191 | for (; |
4192 | i < m_tot_parts; |
4193 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
4194 | { |
4195 | m_file[i]->try_semi_consistent_read(yes); |
4196 | } |
4197 | DBUG_VOID_RETURN; |
4198 | } |
4199 | |
4200 | |
4201 | /**************************************************************************** |
4202 | MODULE change record |
4203 | ****************************************************************************/ |
4204 | |
4205 | /* |
4206 | Insert a row to the table |
4207 | |
4208 | SYNOPSIS |
4209 | write_row() |
4210 | buf The row in MySQL Row Format |
4211 | |
4212 | RETURN VALUE |
4213 | >0 Error code |
4214 | 0 Success |
4215 | |
4216 | DESCRIPTION |
4217 | write_row() inserts a row. buf() is a byte array of data, normally |
4218 | record[0]. |
4219 | |
4220 | You can use the field information to extract the data from the native byte |
4221 | array type. |
4222 | |
4223 | Example of this would be: |
4224 | for (Field **field=table->field ; *field ; field++) |
4225 | { |
4226 | ... |
4227 | } |
4228 | |
4229 | See ha_tina.cc for a variant of extracting all of the data as strings. |
4230 | ha_berkeley.cc has a variant of how to store it intact by "packing" it |
4231 | for ha_berkeley's own native storage type. |
4232 | |
4233 | Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc, |
4234 | sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc. |
4235 | |
4236 | ADDITIONAL INFO: |
4237 | |
4238 | We have to set auto_increment fields, because those may be used in |
4239 | determining which partition the row should be written to. |
4240 | */ |
4241 | |
4242 | int ha_partition::write_row(uchar * buf) |
4243 | { |
4244 | uint32 part_id; |
4245 | int error; |
4246 | longlong func_value; |
4247 | bool have_auto_increment= table->next_number_field && buf == table->record[0]; |
4248 | my_bitmap_map *old_map; |
4249 | THD *thd= ha_thd(); |
4250 | sql_mode_t saved_sql_mode= thd->variables.sql_mode; |
4251 | bool saved_auto_inc_field_not_null= table->auto_increment_field_not_null; |
4252 | DBUG_ENTER("ha_partition::write_row" ); |
4253 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
4254 | |
4255 | /* |
4256 | If we have an auto_increment column and we are writing a changed row |
4257 | or a new row, then update the auto_increment value in the record. |
4258 | */ |
4259 | if (have_auto_increment) |
4260 | { |
4261 | if (!table_share->next_number_keypart) |
4262 | update_next_auto_inc_val(); |
4263 | error= update_auto_increment(); |
4264 | |
4265 | /* |
4266 | If we have failed to set the auto-increment value for this row, |
4267 | it is highly likely that we will not be able to insert it into |
4268 | the correct partition. We must check and fail if neccessary. |
4269 | */ |
4270 | if (unlikely(error)) |
4271 | goto exit; |
4272 | |
4273 | /* |
4274 | Don't allow generation of auto_increment value the partitions handler. |
4275 | If a partitions handler would change the value, then it might not |
4276 | match the partition any longer. |
4277 | This can occur if 'SET INSERT_ID = 0; INSERT (NULL)', |
4278 | So allow this by adding 'MODE_NO_AUTO_VALUE_ON_ZERO' to sql_mode. |
4279 | The partitions handler::next_insert_id must always be 0. Otherwise |
4280 | we need to forward release_auto_increment, or reset it for all |
4281 | partitions. |
4282 | */ |
4283 | if (table->next_number_field->val_int() == 0) |
4284 | { |
4285 | table->auto_increment_field_not_null= TRUE; |
4286 | thd->variables.sql_mode|= MODE_NO_AUTO_VALUE_ON_ZERO; |
4287 | } |
4288 | } |
4289 | |
4290 | old_map= dbug_tmp_use_all_columns(table, table->read_set); |
4291 | error= m_part_info->get_partition_id(m_part_info, &part_id, &func_value); |
4292 | dbug_tmp_restore_column_map(table->read_set, old_map); |
4293 | if (unlikely(error)) |
4294 | { |
4295 | m_part_info->err_value= func_value; |
4296 | goto exit; |
4297 | } |
4298 | if (!bitmap_is_set(&(m_part_info->lock_partitions), part_id)) |
4299 | { |
4300 | DBUG_PRINT("info" , ("Write to non-locked partition %u (func_value: %ld)" , |
4301 | part_id, (long) func_value)); |
4302 | error= HA_ERR_NOT_IN_LOCK_PARTITIONS; |
4303 | goto exit; |
4304 | } |
4305 | m_last_part= part_id; |
4306 | DBUG_PRINT("info" , ("Insert in partition %u" , part_id)); |
4307 | start_part_bulk_insert(thd, part_id); |
4308 | |
4309 | tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ |
4310 | error= m_file[part_id]->ha_write_row(buf); |
4311 | if (have_auto_increment && !table->s->next_number_keypart) |
4312 | set_auto_increment_if_higher(table->next_number_field); |
4313 | reenable_binlog(thd); |
4314 | |
4315 | exit: |
4316 | thd->variables.sql_mode= saved_sql_mode; |
4317 | table->auto_increment_field_not_null= saved_auto_inc_field_not_null; |
4318 | DBUG_RETURN(error); |
4319 | } |
4320 | |
4321 | |
4322 | /* |
4323 | Update an existing row |
4324 | |
4325 | SYNOPSIS |
4326 | update_row() |
4327 | old_data Old record in MySQL Row Format |
4328 | new_data New record in MySQL Row Format |
4329 | |
4330 | RETURN VALUE |
4331 | >0 Error code |
4332 | 0 Success |
4333 | |
4334 | DESCRIPTION |
4335 | Yes, update_row() does what you expect, it updates a row. old_data will |
4336 | have the previous row record in it, while new_data will have the newest |
4337 | data in it. |
4338 | Keep in mind that the server can do updates based on ordering if an |
4339 | ORDER BY clause was used. Consecutive ordering is not guarenteed. |
4340 | |
4341 | Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc. |
4342 | new_data is always record[0] |
4343 | old_data is always record[1] |
4344 | */ |
4345 | |
4346 | int ha_partition::update_row(const uchar *old_data, const uchar *new_data) |
4347 | { |
4348 | THD *thd= ha_thd(); |
4349 | uint32 new_part_id, old_part_id= m_last_part; |
4350 | int error= 0; |
4351 | DBUG_ENTER("ha_partition::update_row" ); |
4352 | m_err_rec= NULL; |
4353 | |
4354 | // Need to read partition-related columns, to locate the row's partition: |
4355 | DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set, |
4356 | table->read_set)); |
4357 | #ifndef DBUG_OFF |
4358 | /* |
4359 | The protocol for updating a row is: |
4360 | 1) position the handler (cursor) on the row to be updated, |
4361 | either through the last read row (rnd or index) or by rnd_pos. |
4362 | 2) call update_row with both old and new full records as arguments. |
4363 | |
4364 | This means that m_last_part should already be set to actual partition |
4365 | where the row was read from. And if that is not the same as the |
4366 | calculated part_id we found a misplaced row, we return an error to |
4367 | notify the user that something is broken in the row distribution |
4368 | between partitions! Since we don't check all rows on read, we return an |
4369 | error instead of correcting m_last_part, to make the user aware of the |
4370 | problem! |
4371 | |
4372 | Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol, |
4373 | so this is not supported for this engine. |
4374 | */ |
4375 | error= get_part_for_buf(old_data, m_rec0, m_part_info, &old_part_id); |
4376 | DBUG_ASSERT(!error); |
4377 | DBUG_ASSERT(old_part_id == m_last_part); |
4378 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), old_part_id)); |
4379 | #endif |
4380 | |
4381 | if (unlikely((error= get_part_for_buf(new_data, m_rec0, m_part_info, |
4382 | &new_part_id)))) |
4383 | goto exit; |
4384 | if (unlikely(!bitmap_is_set(&(m_part_info->lock_partitions), new_part_id))) |
4385 | { |
4386 | error= HA_ERR_NOT_IN_LOCK_PARTITIONS; |
4387 | goto exit; |
4388 | } |
4389 | |
4390 | |
4391 | m_last_part= new_part_id; |
4392 | start_part_bulk_insert(thd, new_part_id); |
4393 | if (new_part_id == old_part_id) |
4394 | { |
4395 | DBUG_PRINT("info" , ("Update in partition %u" , (uint) new_part_id)); |
4396 | tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ |
4397 | error= m_file[new_part_id]->ha_update_row(old_data, new_data); |
4398 | reenable_binlog(thd); |
4399 | goto exit; |
4400 | } |
4401 | else |
4402 | { |
4403 | Field *saved_next_number_field= table->next_number_field; |
4404 | /* |
4405 | Don't allow generation of auto_increment value for update. |
4406 | table->next_number_field is never set on UPDATE. |
4407 | But is set for INSERT ... ON DUPLICATE KEY UPDATE, |
4408 | and since update_row() does not generate or update an auto_inc value, |
4409 | we cannot have next_number_field set when moving a row |
4410 | to another partition with write_row(), since that could |
4411 | generate/update the auto_inc value. |
4412 | This gives the same behavior for partitioned vs non partitioned tables. |
4413 | */ |
4414 | table->next_number_field= NULL; |
4415 | DBUG_PRINT("info" , ("Update from partition %u to partition %u" , |
4416 | (uint) old_part_id, (uint) new_part_id)); |
4417 | tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ |
4418 | error= m_file[new_part_id]->ha_write_row((uchar*) new_data); |
4419 | reenable_binlog(thd); |
4420 | table->next_number_field= saved_next_number_field; |
4421 | if (unlikely(error)) |
4422 | goto exit; |
4423 | |
4424 | tmp_disable_binlog(thd); /* Do not replicate the low-level changes. */ |
4425 | error= m_file[old_part_id]->ha_delete_row(old_data); |
4426 | reenable_binlog(thd); |
4427 | if (unlikely(error)) |
4428 | goto exit; |
4429 | } |
4430 | |
4431 | exit: |
4432 | /* |
4433 | if updating an auto_increment column, update |
4434 | part_share->next_auto_inc_val if needed. |
4435 | (not to be used if auto_increment on secondary field in a multi-column |
4436 | index) |
4437 | mysql_update does not set table->next_number_field, so we use |
4438 | table->found_next_number_field instead. |
4439 | Also checking that the field is marked in the write set. |
4440 | */ |
4441 | if (table->found_next_number_field && |
4442 | new_data == table->record[0] && |
4443 | !table->s->next_number_keypart && |
4444 | bitmap_is_set(table->write_set, |
4445 | table->found_next_number_field->field_index)) |
4446 | { |
4447 | update_next_auto_inc_val(); |
4448 | /* |
4449 | The following call is safe as part_share->auto_inc_initialized |
4450 | (tested in the call) is guaranteed to be set for update statements. |
4451 | */ |
4452 | set_auto_increment_if_higher(table->found_next_number_field); |
4453 | } |
4454 | DBUG_RETURN(error); |
4455 | } |
4456 | |
4457 | |
4458 | /* |
4459 | Remove an existing row |
4460 | |
4461 | SYNOPSIS |
4462 | delete_row |
4463 | buf Deleted row in MySQL Row Format |
4464 | |
4465 | RETURN VALUE |
4466 | >0 Error Code |
4467 | 0 Success |
4468 | |
4469 | DESCRIPTION |
4470 | This will delete a row. buf will contain a copy of the row to be deleted. |
4471 | The server will call this right after the current row has been read |
4472 | (from either a previous rnd_xxx() or index_xxx() call). |
4473 | If you keep a pointer to the last row or can access a primary key it will |
4474 | make doing the deletion quite a bit easier. |
4475 | Keep in mind that the server does no guarentee consecutive deletions. |
4476 | ORDER BY clauses can be used. |
4477 | |
4478 | Called in sql_acl.cc and sql_udf.cc to manage internal table information. |
4479 | Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select |
4480 | it is used for removing duplicates while in insert it is used for REPLACE |
4481 | calls. |
4482 | |
4483 | buf is either record[0] or record[1] |
4484 | */ |
4485 | |
4486 | int ha_partition::delete_row(const uchar *buf) |
4487 | { |
4488 | int error; |
4489 | THD *thd= ha_thd(); |
4490 | DBUG_ENTER("ha_partition::delete_row" ); |
4491 | m_err_rec= NULL; |
4492 | |
4493 | DBUG_ASSERT(bitmap_is_subset(&m_part_info->full_part_field_set, |
4494 | table->read_set)); |
4495 | #ifndef DBUG_OFF |
4496 | /* |
4497 | The protocol for deleting a row is: |
4498 | 1) position the handler (cursor) on the row to be deleted, |
4499 | either through the last read row (rnd or index) or by rnd_pos. |
4500 | 2) call delete_row with the full record as argument. |
4501 | |
4502 | This means that m_last_part should already be set to actual partition |
4503 | where the row was read from. And if that is not the same as the |
4504 | calculated part_id we found a misplaced row, we return an error to |
4505 | notify the user that something is broken in the row distribution |
4506 | between partitions! Since we don't check all rows on read, we return an |
4507 | error instead of forwarding the delete to the correct (m_last_part) |
4508 | partition! |
4509 | |
4510 | Notice that HA_READ_BEFORE_WRITE_REMOVAL does not require this protocol, |
4511 | so this is not supported for this engine. |
4512 | |
4513 | For partitions by system_time, get_part_for_buf() is always either current |
4514 | or last historical partition, but DELETE HISTORY can delete from any |
4515 | historical partition. So, skip the check in this case. |
4516 | */ |
4517 | if (!thd->lex->vers_conditions.is_set()) // if not DELETE HISTORY |
4518 | { |
4519 | uint32 part_id; |
4520 | error= get_part_for_buf(buf, m_rec0, m_part_info, &part_id); |
4521 | DBUG_ASSERT(!error); |
4522 | DBUG_ASSERT(part_id == m_last_part); |
4523 | } |
4524 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part)); |
4525 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), m_last_part)); |
4526 | #endif |
4527 | |
4528 | if (!bitmap_is_set(&(m_part_info->lock_partitions), m_last_part)) |
4529 | DBUG_RETURN(HA_ERR_NOT_IN_LOCK_PARTITIONS); |
4530 | |
4531 | tmp_disable_binlog(thd); |
4532 | error= m_file[m_last_part]->ha_delete_row(buf); |
4533 | reenable_binlog(thd); |
4534 | DBUG_RETURN(error); |
4535 | } |
4536 | |
4537 | |
4538 | /* |
4539 | Delete all rows in a table |
4540 | |
4541 | SYNOPSIS |
4542 | delete_all_rows() |
4543 | |
4544 | RETURN VALUE |
4545 | >0 Error Code |
4546 | 0 Success |
4547 | |
4548 | DESCRIPTION |
4549 | Used to delete all rows in a table. Both for cases of truncate and |
4550 | for cases where the optimizer realizes that all rows will be |
4551 | removed as a result of a SQL statement. |
4552 | |
4553 | Called from item_sum.cc by Item_func_group_concat::clear(), |
4554 | Item_sum_count::clear(), and Item_func_group_concat::clear(). |
4555 | Called from sql_delete.cc by mysql_delete(). |
4556 | Called from sql_select.cc by JOIN::reset(). |
4557 | Called from sql_union.cc by st_select_lex_unit::exec(). |
4558 | */ |
4559 | |
4560 | int ha_partition::delete_all_rows() |
4561 | { |
4562 | int error; |
4563 | uint i; |
4564 | DBUG_ENTER("ha_partition::delete_all_rows" ); |
4565 | |
4566 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
4567 | i < m_tot_parts; |
4568 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
4569 | { |
4570 | /* Can be pruned, like DELETE FROM t PARTITION (pX) */ |
4571 | if (unlikely((error= m_file[i]->ha_delete_all_rows()))) |
4572 | DBUG_RETURN(error); |
4573 | } |
4574 | DBUG_RETURN(0); |
4575 | } |
4576 | |
4577 | |
4578 | /** |
4579 | Manually truncate the table. |
4580 | |
4581 | @retval 0 Success. |
4582 | @retval > 0 Error code. |
4583 | */ |
4584 | |
4585 | int ha_partition::truncate() |
4586 | { |
4587 | int error; |
4588 | handler **file; |
4589 | DBUG_ENTER("ha_partition::truncate" ); |
4590 | |
4591 | /* |
4592 | TRUNCATE also means resetting auto_increment. Hence, reset |
4593 | it so that it will be initialized again at the next use. |
4594 | */ |
4595 | lock_auto_increment(); |
4596 | part_share->next_auto_inc_val= 0; |
4597 | part_share->auto_inc_initialized= false; |
4598 | unlock_auto_increment(); |
4599 | |
4600 | file= m_file; |
4601 | do |
4602 | { |
4603 | if (unlikely((error= (*file)->ha_truncate()))) |
4604 | DBUG_RETURN(error); |
4605 | } while (*(++file)); |
4606 | DBUG_RETURN(0); |
4607 | } |
4608 | |
4609 | |
4610 | /** |
4611 | Truncate a set of specific partitions. |
4612 | |
4613 | @remark Auto increment value will be truncated in that partition as well! |
4614 | |
4615 | ALTER TABLE t TRUNCATE PARTITION ... |
4616 | */ |
4617 | |
4618 | int ha_partition::truncate_partition(Alter_info *alter_info, bool *binlog_stmt) |
4619 | { |
4620 | int error= 0; |
4621 | List_iterator<partition_element> part_it(m_part_info->partitions); |
4622 | uint num_parts= m_part_info->num_parts; |
4623 | uint num_subparts= m_part_info->num_subparts; |
4624 | uint i= 0; |
4625 | DBUG_ENTER("ha_partition::truncate_partition" ); |
4626 | |
4627 | /* Only binlog when it starts any call to the partitions handlers */ |
4628 | *binlog_stmt= false; |
4629 | |
4630 | if (set_part_state(alter_info, m_part_info, PART_ADMIN)) |
4631 | DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND); |
4632 | |
4633 | /* |
4634 | TRUNCATE also means resetting auto_increment. Hence, reset |
4635 | it so that it will be initialized again at the next use. |
4636 | */ |
4637 | lock_auto_increment(); |
4638 | part_share->next_auto_inc_val= 0; |
4639 | part_share->auto_inc_initialized= FALSE; |
4640 | unlock_auto_increment(); |
4641 | |
4642 | *binlog_stmt= true; |
4643 | |
4644 | do |
4645 | { |
4646 | partition_element *part_elem= part_it++; |
4647 | if (part_elem->part_state == PART_ADMIN) |
4648 | { |
4649 | if (m_is_sub_partitioned) |
4650 | { |
4651 | List_iterator<partition_element> |
4652 | subpart_it(part_elem->subpartitions); |
4653 | partition_element *sub_elem; |
4654 | uint j= 0, part; |
4655 | do |
4656 | { |
4657 | sub_elem= subpart_it++; |
4658 | part= i * num_subparts + j; |
4659 | DBUG_PRINT("info" , ("truncate subpartition %u (%s)" , |
4660 | part, sub_elem->partition_name)); |
4661 | if (unlikely((error= m_file[part]->ha_truncate()))) |
4662 | break; |
4663 | sub_elem->part_state= PART_NORMAL; |
4664 | } while (++j < num_subparts); |
4665 | } |
4666 | else |
4667 | { |
4668 | DBUG_PRINT("info" , ("truncate partition %u (%s)" , i, |
4669 | part_elem->partition_name)); |
4670 | error= m_file[i]->ha_truncate(); |
4671 | } |
4672 | part_elem->part_state= PART_NORMAL; |
4673 | } |
4674 | } while (!error && (++i < num_parts)); |
4675 | DBUG_RETURN(error); |
4676 | } |
4677 | |
4678 | |
4679 | /* |
4680 | Start a large batch of insert rows |
4681 | |
4682 | SYNOPSIS |
4683 | start_bulk_insert() |
4684 | rows Number of rows to insert |
4685 | flags Flags to control index creation |
4686 | |
4687 | RETURN VALUE |
4688 | NONE |
4689 | |
4690 | DESCRIPTION |
4691 | rows == 0 means we will probably insert many rows |
4692 | */ |
4693 | void ha_partition::start_bulk_insert(ha_rows rows, uint flags) |
4694 | { |
4695 | DBUG_ENTER("ha_partition::start_bulk_insert" ); |
4696 | |
4697 | m_bulk_inserted_rows= 0; |
4698 | bitmap_clear_all(&m_bulk_insert_started); |
4699 | /* use the last bit for marking if bulk_insert_started was called */ |
4700 | bitmap_set_bit(&m_bulk_insert_started, m_tot_parts); |
4701 | DBUG_VOID_RETURN; |
4702 | } |
4703 | |
4704 | |
4705 | /* |
4706 | Check if start_bulk_insert has been called for this partition, |
4707 | if not, call it and mark it called |
4708 | */ |
4709 | void ha_partition::start_part_bulk_insert(THD *thd, uint part_id) |
4710 | { |
4711 | long old_buffer_size; |
4712 | if (!bitmap_is_set(&m_bulk_insert_started, part_id) && |
4713 | bitmap_is_set(&m_bulk_insert_started, m_tot_parts)) |
4714 | { |
4715 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->lock_partitions), part_id)); |
4716 | old_buffer_size= thd->variables.read_buff_size; |
4717 | /* Update read_buffer_size for this partition */ |
4718 | thd->variables.read_buff_size= estimate_read_buffer_size(old_buffer_size); |
4719 | m_file[part_id]->ha_start_bulk_insert(guess_bulk_insert_rows()); |
4720 | bitmap_set_bit(&m_bulk_insert_started, part_id); |
4721 | thd->variables.read_buff_size= old_buffer_size; |
4722 | } |
4723 | m_bulk_inserted_rows++; |
4724 | } |
4725 | |
4726 | /* |
4727 | Estimate the read buffer size for each partition. |
4728 | SYNOPSIS |
4729 | ha_partition::estimate_read_buffer_size() |
4730 | original_size read buffer size originally set for the server |
4731 | RETURN VALUE |
4732 | estimated buffer size. |
4733 | DESCRIPTION |
4734 | If the estimated number of rows to insert is less than 10 (but not 0) |
4735 | the new buffer size is same as original buffer size. |
4736 | In case of first partition of when partition function is monotonic |
4737 | new buffer size is same as the original buffer size. |
4738 | For rest of the partition total buffer of 10*original_size is divided |
4739 | equally if number of partition is more than 10 other wise each partition |
4740 | will be allowed to use original buffer size. |
4741 | */ |
4742 | long ha_partition::estimate_read_buffer_size(long original_size) |
4743 | { |
4744 | /* |
4745 | If number of rows to insert is less than 10, but not 0, |
4746 | return original buffer size. |
4747 | */ |
4748 | if (estimation_rows_to_insert && (estimation_rows_to_insert < 10)) |
4749 | return (original_size); |
4750 | /* |
4751 | If first insert/partition and monotonic partition function, |
4752 | allow using buffer size originally set. |
4753 | */ |
4754 | if (!m_bulk_inserted_rows && |
4755 | m_part_func_monotonicity_info != NON_MONOTONIC && |
4756 | m_tot_parts > 1) |
4757 | return original_size; |
4758 | /* |
4759 | Allow total buffer used in all partition to go up to 10*read_buffer_size. |
4760 | 11*read_buffer_size in case of monotonic partition function. |
4761 | */ |
4762 | |
4763 | if (m_tot_parts < 10) |
4764 | return original_size; |
4765 | return (original_size * 10 / m_tot_parts); |
4766 | } |
4767 | |
4768 | /* |
4769 | Try to predict the number of inserts into this partition. |
4770 | |
4771 | If less than 10 rows (including 0 which means Unknown) |
4772 | just give that as a guess |
4773 | If monotonic partitioning function was used |
4774 | guess that 50 % of the inserts goes to the first partition |
4775 | For all other cases, guess on equal distribution between the partitions |
4776 | */ |
4777 | ha_rows ha_partition::guess_bulk_insert_rows() |
4778 | { |
4779 | DBUG_ENTER("guess_bulk_insert_rows" ); |
4780 | |
4781 | if (estimation_rows_to_insert < 10) |
4782 | DBUG_RETURN(estimation_rows_to_insert); |
4783 | |
4784 | /* If first insert/partition and monotonic partition function, guess 50%. */ |
4785 | if (!m_bulk_inserted_rows && |
4786 | m_part_func_monotonicity_info != NON_MONOTONIC && |
4787 | m_tot_parts > 1) |
4788 | DBUG_RETURN(estimation_rows_to_insert / 2); |
4789 | |
4790 | /* Else guess on equal distribution (+1 is to avoid returning 0/Unknown) */ |
4791 | if (m_bulk_inserted_rows < estimation_rows_to_insert) |
4792 | DBUG_RETURN(((estimation_rows_to_insert - m_bulk_inserted_rows) |
4793 | / m_tot_parts) + 1); |
4794 | /* The estimation was wrong, must say 'Unknown' */ |
4795 | DBUG_RETURN(0); |
4796 | } |
4797 | |
4798 | |
4799 | /* |
4800 | Finish a large batch of insert rows |
4801 | |
4802 | SYNOPSIS |
4803 | end_bulk_insert() |
4804 | |
4805 | RETURN VALUE |
4806 | >0 Error code |
4807 | 0 Success |
4808 | |
4809 | Note: end_bulk_insert can be called without start_bulk_insert |
4810 | being called, see bug#44108. |
4811 | |
4812 | */ |
4813 | |
4814 | int ha_partition::end_bulk_insert() |
4815 | { |
4816 | int error= 0; |
4817 | uint i; |
4818 | DBUG_ENTER("ha_partition::end_bulk_insert" ); |
4819 | |
4820 | if (!bitmap_is_set(&m_bulk_insert_started, m_tot_parts)) |
4821 | DBUG_RETURN(error); |
4822 | |
4823 | for (i= bitmap_get_first_set(&m_bulk_insert_started); |
4824 | i < m_tot_parts; |
4825 | i= bitmap_get_next_set(&m_bulk_insert_started, i)) |
4826 | { |
4827 | int tmp; |
4828 | if ((tmp= m_file[i]->ha_end_bulk_insert())) |
4829 | error= tmp; |
4830 | } |
4831 | bitmap_clear_all(&m_bulk_insert_started); |
4832 | DBUG_RETURN(error); |
4833 | } |
4834 | |
4835 | |
4836 | /**************************************************************************** |
4837 | MODULE full table scan |
4838 | ****************************************************************************/ |
4839 | /* |
4840 | Initialize engine for random reads |
4841 | |
4842 | SYNOPSIS |
4843 | ha_partition::rnd_init() |
4844 | scan 0 Initialize for random reads through rnd_pos() |
4845 | 1 Initialize for random scan through rnd_next() |
4846 | |
4847 | RETURN VALUE |
4848 | >0 Error code |
4849 | 0 Success |
4850 | |
4851 | DESCRIPTION |
4852 | rnd_init() is called when the server wants the storage engine to do a |
4853 | table scan or when the server wants to access data through rnd_pos. |
4854 | |
4855 | When scan is used we will scan one handler partition at a time. |
4856 | When preparing for rnd_pos we will init all handler partitions. |
4857 | No extra cache handling is needed when scannning is not performed. |
4858 | |
4859 | Before initialising we will call rnd_end to ensure that we clean up from |
4860 | any previous incarnation of a table scan. |
4861 | Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc, |
4862 | sql_table.cc, and sql_update.cc. |
4863 | */ |
4864 | |
4865 | int ha_partition::rnd_init(bool scan) |
4866 | { |
4867 | int error; |
4868 | uint i= 0; |
4869 | uint32 part_id; |
4870 | DBUG_ENTER("ha_partition::rnd_init" ); |
4871 | |
4872 | /* |
4873 | For operations that may need to change data, we may need to extend |
4874 | read_set. |
4875 | */ |
4876 | if (get_lock_type() == F_WRLCK) |
4877 | { |
4878 | /* |
4879 | If write_set contains any of the fields used in partition and |
4880 | subpartition expression, we need to set all bits in read_set because |
4881 | the row may need to be inserted in a different [sub]partition. In |
4882 | other words update_row() can be converted into write_row(), which |
4883 | requires a complete record. |
4884 | */ |
4885 | if (bitmap_is_overlapping(&m_part_info->full_part_field_set, |
4886 | table->write_set)) |
4887 | { |
4888 | DBUG_PRINT("info" , ("partition set full bitmap" )); |
4889 | bitmap_set_all(table->read_set); |
4890 | } |
4891 | else |
4892 | { |
4893 | /* |
4894 | Some handlers only read fields as specified by the bitmap for the |
4895 | read set. For partitioned handlers we always require that the |
4896 | fields of the partition functions are read such that we can |
4897 | calculate the partition id to place updated and deleted records. |
4898 | */ |
4899 | DBUG_PRINT("info" , ("partition set part_field bitmap" )); |
4900 | bitmap_union(table->read_set, &m_part_info->full_part_field_set); |
4901 | } |
4902 | } |
4903 | |
4904 | /* Now we see what the index of our first important partition is */ |
4905 | DBUG_PRINT("info" , ("m_part_info->read_partitions: %p" , |
4906 | m_part_info->read_partitions.bitmap)); |
4907 | part_id= bitmap_get_first_set(&(m_part_info->read_partitions)); |
4908 | DBUG_PRINT("info" , ("m_part_spec.start_part: %u" , (uint) part_id)); |
4909 | |
4910 | if (part_id == MY_BIT_NONE) |
4911 | { |
4912 | error= 0; |
4913 | goto err1; |
4914 | } |
4915 | |
4916 | /* |
4917 | We have a partition and we are scanning with rnd_next |
4918 | so we bump our cache |
4919 | */ |
4920 | DBUG_PRINT("info" , ("rnd_init on partition: %u" , (uint) part_id)); |
4921 | if (scan) |
4922 | { |
4923 | /* |
4924 | rnd_end() is needed for partitioning to reset internal data if scan |
4925 | is already in use |
4926 | */ |
4927 | rnd_end(); |
4928 | late_extra_cache(part_id); |
4929 | |
4930 | m_index_scan_type= partition_no_index_scan; |
4931 | } |
4932 | |
4933 | for (i= part_id; |
4934 | i < m_tot_parts; |
4935 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
4936 | { |
4937 | if (unlikely((error= m_file[i]->ha_rnd_init(scan)))) |
4938 | goto err; |
4939 | } |
4940 | |
4941 | m_scan_value= scan; |
4942 | m_part_spec.start_part= part_id; |
4943 | m_part_spec.end_part= m_tot_parts - 1; |
4944 | m_rnd_init_and_first= TRUE; |
4945 | DBUG_PRINT("info" , ("m_scan_value: %u" , m_scan_value)); |
4946 | DBUG_RETURN(0); |
4947 | |
4948 | err: |
4949 | if (scan) |
4950 | late_extra_no_cache(part_id); |
4951 | |
4952 | /* Call rnd_end for all previously inited partitions. */ |
4953 | for (; |
4954 | part_id < i; |
4955 | part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id)) |
4956 | { |
4957 | m_file[part_id]->ha_rnd_end(); |
4958 | } |
4959 | err1: |
4960 | m_scan_value= 2; |
4961 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
4962 | DBUG_RETURN(error); |
4963 | } |
4964 | |
4965 | |
4966 | /* |
4967 | End of a table scan |
4968 | |
4969 | SYNOPSIS |
4970 | rnd_end() |
4971 | |
4972 | RETURN VALUE |
4973 | >0 Error code |
4974 | 0 Success |
4975 | */ |
4976 | |
4977 | int ha_partition::rnd_end() |
4978 | { |
4979 | DBUG_ENTER("ha_partition::rnd_end" ); |
4980 | switch (m_scan_value) { |
4981 | case 2: // Error |
4982 | break; |
4983 | case 1: // Table scan |
4984 | if (m_part_spec.start_part != NO_CURRENT_PART_ID) |
4985 | late_extra_no_cache(m_part_spec.start_part); |
4986 | /* fall through */ |
4987 | case 0: |
4988 | uint i; |
4989 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
4990 | i < m_tot_parts; |
4991 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
4992 | { |
4993 | m_file[i]->ha_rnd_end(); |
4994 | } |
4995 | break; |
4996 | } |
4997 | m_scan_value= 2; |
4998 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
4999 | DBUG_RETURN(0); |
5000 | } |
5001 | |
5002 | |
5003 | /* |
5004 | read next row during full table scan (scan in random row order) |
5005 | |
5006 | SYNOPSIS |
5007 | rnd_next() |
5008 | buf buffer that should be filled with data |
5009 | |
5010 | RETURN VALUE |
5011 | >0 Error code |
5012 | 0 Success |
5013 | |
5014 | DESCRIPTION |
5015 | This is called for each row of the table scan. When you run out of records |
5016 | you should return HA_ERR_END_OF_FILE. |
5017 | The Field structure for the table is the key to getting data into buf |
5018 | in a manner that will allow the server to understand it. |
5019 | |
5020 | Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc, |
5021 | sql_table.cc, and sql_update.cc. |
5022 | */ |
5023 | |
5024 | int ha_partition::rnd_next(uchar *buf) |
5025 | { |
5026 | handler *file; |
5027 | int result= HA_ERR_END_OF_FILE, error; |
5028 | uint part_id= m_part_spec.start_part; |
5029 | DBUG_ENTER("ha_partition::rnd_next" ); |
5030 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
5031 | |
5032 | /* upper level will increment this once again at end of call */ |
5033 | decrement_statistics(&SSV::ha_read_rnd_next_count); |
5034 | |
5035 | if (part_id == NO_CURRENT_PART_ID) |
5036 | { |
5037 | /* |
5038 | The original set of partitions to scan was empty and thus we report |
5039 | the result here. |
5040 | */ |
5041 | goto end; |
5042 | } |
5043 | |
5044 | DBUG_ASSERT(m_scan_value == 1); |
5045 | |
5046 | if (m_rnd_init_and_first) |
5047 | { |
5048 | m_rnd_init_and_first= FALSE; |
5049 | error= handle_pre_scan(FALSE, check_parallel_search()); |
5050 | if (m_pre_calling || error) |
5051 | DBUG_RETURN(error); |
5052 | } |
5053 | |
5054 | file= m_file[part_id]; |
5055 | |
5056 | while (TRUE) |
5057 | { |
5058 | result= file->ha_rnd_next(buf); |
5059 | if (!result) |
5060 | { |
5061 | m_last_part= part_id; |
5062 | DBUG_PRINT("info" , ("partition m_last_part: %u" , (uint) m_last_part)); |
5063 | m_part_spec.start_part= part_id; |
5064 | table->status= 0; |
5065 | DBUG_RETURN(0); |
5066 | } |
5067 | |
5068 | /* |
5069 | if we get here, then the current partition ha_rnd_next returned failure |
5070 | */ |
5071 | if (result != HA_ERR_END_OF_FILE) |
5072 | goto end_dont_reset_start_part; // Return error |
5073 | |
5074 | /* End current partition */ |
5075 | late_extra_no_cache(part_id); |
5076 | /* Shift to next partition */ |
5077 | part_id= bitmap_get_next_set(&m_part_info->read_partitions, part_id); |
5078 | if (part_id >= m_tot_parts) |
5079 | { |
5080 | result= HA_ERR_END_OF_FILE; |
5081 | break; |
5082 | } |
5083 | m_last_part= part_id; |
5084 | DBUG_PRINT("info" , ("partition m_last_part: %u" , (uint) m_last_part)); |
5085 | m_part_spec.start_part= part_id; |
5086 | file= m_file[part_id]; |
5087 | late_extra_cache(part_id); |
5088 | } |
5089 | |
5090 | end: |
5091 | DBUG_PRINT("exit" , ("reset start_part" )); |
5092 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
5093 | end_dont_reset_start_part: |
5094 | DBUG_RETURN(result); |
5095 | } |
5096 | |
5097 | |
5098 | /* |
5099 | Save position of current row |
5100 | |
5101 | SYNOPSIS |
5102 | position() |
5103 | record Current record in MySQL Row Format |
5104 | |
5105 | RETURN VALUE |
5106 | NONE |
5107 | |
5108 | DESCRIPTION |
5109 | position() is called after each call to rnd_next() if the data needs |
5110 | to be ordered. You can do something like the following to store |
5111 | the position: |
5112 | ha_store_ptr(ref, ref_length, current_position); |
5113 | |
5114 | The server uses ref to store data. ref_length in the above case is |
5115 | the size needed to store current_position. ref is just a byte array |
5116 | that the server will maintain. If you are using offsets to mark rows, then |
5117 | current_position should be the offset. If it is a primary key like in |
5118 | BDB, then it needs to be a primary key. |
5119 | |
5120 | Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc. |
5121 | */ |
5122 | |
5123 | void ha_partition::position(const uchar *record) |
5124 | { |
5125 | handler *file= m_file[m_last_part]; |
5126 | size_t pad_length; |
5127 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), m_last_part)); |
5128 | DBUG_ENTER("ha_partition::position" ); |
5129 | |
5130 | file->position(record); |
5131 | int2store(ref, m_last_part); |
5132 | memcpy((ref + PARTITION_BYTES_IN_POS), file->ref, file->ref_length); |
5133 | pad_length= m_ref_length - PARTITION_BYTES_IN_POS - file->ref_length; |
5134 | if (pad_length) |
5135 | memset((ref + PARTITION_BYTES_IN_POS + file->ref_length), 0, pad_length); |
5136 | |
5137 | DBUG_VOID_RETURN; |
5138 | } |
5139 | |
5140 | |
5141 | /* |
5142 | Read row using position |
5143 | |
5144 | SYNOPSIS |
5145 | rnd_pos() |
5146 | out:buf Row read in MySQL Row Format |
5147 | position Position of read row |
5148 | |
5149 | RETURN VALUE |
5150 | >0 Error code |
5151 | 0 Success |
5152 | |
5153 | DESCRIPTION |
5154 | This is like rnd_next, but you are given a position to use |
5155 | to determine the row. The position will be of the type that you stored in |
5156 | ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key |
5157 | or position you saved when position() was called. |
5158 | Called from filesort.cc records.cc sql_insert.cc sql_select.cc |
5159 | sql_update.cc. |
5160 | */ |
5161 | |
5162 | int ha_partition::rnd_pos(uchar * buf, uchar *pos) |
5163 | { |
5164 | uint part_id; |
5165 | handler *file; |
5166 | DBUG_ENTER("ha_partition::rnd_pos" ); |
5167 | decrement_statistics(&SSV::ha_read_rnd_count); |
5168 | |
5169 | part_id= uint2korr((const uchar *) pos); |
5170 | DBUG_ASSERT(part_id < m_tot_parts); |
5171 | file= m_file[part_id]; |
5172 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id)); |
5173 | m_last_part= part_id; |
5174 | DBUG_RETURN(file->ha_rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS))); |
5175 | } |
5176 | |
5177 | |
5178 | /* |
5179 | Read row using position using given record to find |
5180 | |
5181 | SYNOPSIS |
5182 | rnd_pos_by_record() |
5183 | record Current record in MySQL Row Format |
5184 | |
5185 | RETURN VALUE |
5186 | >0 Error code |
5187 | 0 Success |
5188 | |
5189 | DESCRIPTION |
5190 | this works as position()+rnd_pos() functions, but does some extra work, |
5191 | calculating m_last_part - the partition to where the 'record' |
5192 | should go. |
5193 | |
5194 | called from replication (log_event.cc) |
5195 | */ |
5196 | |
5197 | int ha_partition::rnd_pos_by_record(uchar *record) |
5198 | { |
5199 | DBUG_ENTER("ha_partition::rnd_pos_by_record" ); |
5200 | |
5201 | if (unlikely(get_part_for_buf(record, m_rec0, m_part_info, &m_last_part))) |
5202 | DBUG_RETURN(1); |
5203 | |
5204 | DBUG_RETURN(handler::rnd_pos_by_record(record)); |
5205 | } |
5206 | |
5207 | |
5208 | /**************************************************************************** |
5209 | MODULE index scan |
5210 | ****************************************************************************/ |
5211 | /* |
5212 | Positions an index cursor to the index specified in the handle. Fetches the |
5213 | row if available. If the key value is null, begin at the first key of the |
5214 | index. |
5215 | |
5216 | There are loads of optimisations possible here for the partition handler. |
5217 | The same optimisations can also be checked for full table scan although |
5218 | only through conditions and not from index ranges. |
5219 | Phase one optimisations: |
5220 | Check if the fields of the partition function are bound. If so only use |
5221 | the single partition it becomes bound to. |
5222 | Phase two optimisations: |
5223 | If it can be deducted through range or list partitioning that only a |
5224 | subset of the partitions are used, then only use those partitions. |
5225 | */ |
5226 | |
5227 | |
5228 | /** |
5229 | Setup the ordered record buffer and the priority queue. |
5230 | */ |
5231 | |
5232 | bool ha_partition::init_record_priority_queue() |
5233 | { |
5234 | DBUG_ENTER("ha_partition::init_record_priority_queue" ); |
5235 | DBUG_ASSERT(!m_ordered_rec_buffer); |
5236 | /* |
5237 | Initialize the ordered record buffer. |
5238 | */ |
5239 | if (!m_ordered_rec_buffer) |
5240 | { |
5241 | size_t alloc_len; |
5242 | uint used_parts= bitmap_bits_set(&m_part_info->read_partitions); |
5243 | DBUG_ASSERT(used_parts > 0); |
5244 | /* Allocate record buffer for each used partition. */ |
5245 | m_priority_queue_rec_len= m_rec_length + PARTITION_BYTES_IN_POS; |
5246 | if (!m_using_extended_keys) |
5247 | m_priority_queue_rec_len += get_open_file_sample()->ref_length; |
5248 | alloc_len= used_parts * m_priority_queue_rec_len; |
5249 | /* Allocate a key for temporary use when setting up the scan. */ |
5250 | alloc_len+= table_share->max_key_length; |
5251 | |
5252 | if (!(m_ordered_rec_buffer= (uchar*)my_malloc(alloc_len, MYF(MY_WME)))) |
5253 | DBUG_RETURN(true); |
5254 | |
5255 | /* |
5256 | We set-up one record per partition and each record has 2 bytes in |
5257 | front where the partition id is written. This is used by ordered |
5258 | index_read. |
5259 | We also set-up a reference to the first record for temporary use in |
5260 | setting up the scan. |
5261 | */ |
5262 | char *ptr= (char*) m_ordered_rec_buffer; |
5263 | uint i; |
5264 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
5265 | i < m_tot_parts; |
5266 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
5267 | { |
5268 | DBUG_PRINT("info" , ("init rec-buf for part %u" , i)); |
5269 | int2store(ptr, i); |
5270 | ptr+= m_priority_queue_rec_len; |
5271 | } |
5272 | m_start_key.key= (const uchar*)ptr; |
5273 | |
5274 | /* Initialize priority queue, initialized to reading forward. */ |
5275 | int (*cmp_func)(void *, uchar *, uchar *); |
5276 | void *cmp_arg= (void*) this; |
5277 | if (!m_using_extended_keys && !(table_flags() & HA_CMP_REF_IS_EXPENSIVE)) |
5278 | cmp_func= cmp_key_rowid_part_id; |
5279 | else |
5280 | cmp_func= cmp_key_part_id; |
5281 | DBUG_PRINT("info" , ("partition queue_init(1) used_parts: %u" , used_parts)); |
5282 | if (init_queue(&m_queue, used_parts, 0, 0, cmp_func, cmp_arg, 0, 0)) |
5283 | { |
5284 | my_free(m_ordered_rec_buffer); |
5285 | m_ordered_rec_buffer= NULL; |
5286 | DBUG_RETURN(true); |
5287 | } |
5288 | } |
5289 | DBUG_RETURN(false); |
5290 | } |
5291 | |
5292 | |
5293 | /** |
5294 | Destroy the ordered record buffer and the priority queue. |
5295 | */ |
5296 | |
5297 | void ha_partition::destroy_record_priority_queue() |
5298 | { |
5299 | DBUG_ENTER("ha_partition::destroy_record_priority_queue" ); |
5300 | if (m_ordered_rec_buffer) |
5301 | { |
5302 | delete_queue(&m_queue); |
5303 | my_free(m_ordered_rec_buffer); |
5304 | m_ordered_rec_buffer= NULL; |
5305 | } |
5306 | DBUG_VOID_RETURN; |
5307 | } |
5308 | |
5309 | |
5310 | /* |
5311 | Initialize handler before start of index scan |
5312 | |
5313 | SYNOPSIS |
5314 | index_init() |
5315 | inx Index number |
5316 | sorted Is rows to be returned in sorted order |
5317 | |
5318 | RETURN VALUE |
5319 | >0 Error code |
5320 | 0 Success |
5321 | |
5322 | DESCRIPTION |
5323 | index_init is always called before starting index scans (except when |
5324 | starting through index_read_idx and using read_range variants). |
5325 | */ |
5326 | |
5327 | int ha_partition::index_init(uint inx, bool sorted) |
5328 | { |
5329 | int error= 0; |
5330 | uint i; |
5331 | DBUG_ENTER("ha_partition::index_init" ); |
5332 | DBUG_PRINT("enter" , ("partition this: %p inx: %u sorted: %u" , this, inx, sorted)); |
5333 | |
5334 | active_index= inx; |
5335 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
5336 | m_start_key.length= 0; |
5337 | m_ordered= sorted; |
5338 | m_ordered_scan_ongoing= FALSE; |
5339 | m_curr_key_info[0]= table->key_info+inx; |
5340 | if (m_pkey_is_clustered && table->s->primary_key != MAX_KEY) |
5341 | { |
5342 | /* |
5343 | if PK is clustered, then the key cmp must use the pk to |
5344 | differentiate between equal key in given index. |
5345 | */ |
5346 | DBUG_PRINT("info" , ("Clustered pk, using pk as secondary cmp" )); |
5347 | m_curr_key_info[1]= table->key_info+table->s->primary_key; |
5348 | m_curr_key_info[2]= NULL; |
5349 | m_using_extended_keys= TRUE; |
5350 | } |
5351 | else |
5352 | { |
5353 | m_curr_key_info[1]= NULL; |
5354 | m_using_extended_keys= FALSE; |
5355 | } |
5356 | |
5357 | if (init_record_priority_queue()) |
5358 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
5359 | |
5360 | /* |
5361 | Some handlers only read fields as specified by the bitmap for the |
5362 | read set. For partitioned handlers we always require that the |
5363 | fields of the partition functions are read such that we can |
5364 | calculate the partition id to place updated and deleted records. |
5365 | But this is required for operations that may need to change data only. |
5366 | */ |
5367 | if (get_lock_type() == F_WRLCK) |
5368 | { |
5369 | DBUG_PRINT("info" , ("partition set part_field bitmap" )); |
5370 | bitmap_union(table->read_set, &m_part_info->full_part_field_set); |
5371 | } |
5372 | if (sorted) |
5373 | { |
5374 | /* |
5375 | An ordered scan is requested. We must make sure all fields of the |
5376 | used index are in the read set, as partitioning requires them for |
5377 | sorting (see ha_partition::handle_ordered_index_scan). |
5378 | |
5379 | The SQL layer may request an ordered index scan without having index |
5380 | fields in the read set when |
5381 | - it needs to do an ordered scan over an index prefix. |
5382 | - it evaluates ORDER BY with SELECT COUNT(*) FROM t1. |
5383 | |
5384 | TODO: handle COUNT(*) queries via unordered scan. |
5385 | */ |
5386 | KEY **key_info= m_curr_key_info; |
5387 | do |
5388 | { |
5389 | for (i= 0; i < (*key_info)->user_defined_key_parts; i++) |
5390 | bitmap_set_bit(table->read_set, |
5391 | (*key_info)->key_part[i].field->field_index); |
5392 | } while (*(++key_info)); |
5393 | } |
5394 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
5395 | i < m_tot_parts; |
5396 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
5397 | { |
5398 | if (unlikely((error= m_file[i]->ha_index_init(inx, sorted)))) |
5399 | goto err; |
5400 | |
5401 | DBUG_EXECUTE_IF("ha_partition_fail_index_init" , { |
5402 | i++; |
5403 | error= HA_ERR_NO_PARTITION_FOUND; |
5404 | goto err; |
5405 | }); |
5406 | } |
5407 | err: |
5408 | if (unlikely(error)) |
5409 | { |
5410 | /* End the previously initialized indexes. */ |
5411 | uint j; |
5412 | for (j= bitmap_get_first_set(&m_part_info->read_partitions); |
5413 | j < i; |
5414 | j= bitmap_get_next_set(&m_part_info->read_partitions, j)) |
5415 | { |
5416 | (void) m_file[j]->ha_index_end(); |
5417 | } |
5418 | destroy_record_priority_queue(); |
5419 | } |
5420 | DBUG_RETURN(error); |
5421 | } |
5422 | |
5423 | |
5424 | /* |
5425 | End of index scan |
5426 | |
5427 | SYNOPSIS |
5428 | index_end() |
5429 | |
5430 | RETURN VALUE |
5431 | >0 Error code |
5432 | 0 Success |
5433 | |
5434 | DESCRIPTION |
5435 | index_end is called at the end of an index scan to clean up any |
5436 | things needed to clean up. |
5437 | */ |
5438 | |
5439 | int ha_partition::index_end() |
5440 | { |
5441 | int error= 0; |
5442 | handler **file; |
5443 | DBUG_ENTER("ha_partition::index_end" ); |
5444 | |
5445 | active_index= MAX_KEY; |
5446 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
5447 | file= m_file; |
5448 | do |
5449 | { |
5450 | if ((*file)->inited == INDEX) |
5451 | { |
5452 | int tmp; |
5453 | if ((tmp= (*file)->ha_index_end())) |
5454 | error= tmp; |
5455 | } |
5456 | } while (*(++file)); |
5457 | destroy_record_priority_queue(); |
5458 | DBUG_RETURN(error); |
5459 | } |
5460 | |
5461 | |
5462 | /* |
5463 | Read one record in an index scan and start an index scan |
5464 | |
5465 | SYNOPSIS |
5466 | index_read_map() |
5467 | buf Read row in MySQL Row Format |
5468 | key Key parts in consecutive order |
5469 | keypart_map Which part of key is used |
5470 | find_flag What type of key condition is used |
5471 | |
5472 | RETURN VALUE |
5473 | >0 Error code |
5474 | 0 Success |
5475 | |
5476 | DESCRIPTION |
5477 | index_read_map starts a new index scan using a start key. The MySQL Server |
5478 | will check the end key on its own. Thus to function properly the |
5479 | partitioned handler need to ensure that it delivers records in the sort |
5480 | order of the MySQL Server. |
5481 | index_read_map can be restarted without calling index_end on the previous |
5482 | index scan and without calling index_init. In this case the index_read_map |
5483 | is on the same index as the previous index_scan. This is particularly |
5484 | used in conjuntion with multi read ranges. |
5485 | */ |
5486 | |
5487 | int ha_partition::index_read_map(uchar *buf, const uchar *key, |
5488 | key_part_map keypart_map, |
5489 | enum ha_rkey_function find_flag) |
5490 | { |
5491 | DBUG_ENTER("ha_partition::index_read_map" ); |
5492 | decrement_statistics(&SSV::ha_read_key_count); |
5493 | end_range= 0; |
5494 | m_index_scan_type= partition_index_read; |
5495 | m_start_key.key= key; |
5496 | m_start_key.keypart_map= keypart_map; |
5497 | m_start_key.flag= find_flag; |
5498 | DBUG_RETURN(common_index_read(buf, TRUE)); |
5499 | } |
5500 | |
5501 | |
5502 | /* Compare two part_no partition numbers */ |
5503 | static int cmp_part_ids(uchar *ref1, uchar *ref2) |
5504 | { |
5505 | uint32 diff2= uint2korr(ref2); |
5506 | uint32 diff1= uint2korr(ref1); |
5507 | if (diff2 > diff1) |
5508 | return -1; |
5509 | if (diff2 < diff1) |
5510 | return 1; |
5511 | return 0; |
5512 | } |
5513 | |
5514 | |
5515 | /* |
5516 | @brief |
5517 | Provide ordering by (key_value, part_no). |
5518 | */ |
5519 | |
5520 | extern "C" int cmp_key_part_id(void *ptr, uchar *ref1, uchar *ref2) |
5521 | { |
5522 | ha_partition *file= (ha_partition*)ptr; |
5523 | int res; |
5524 | if ((res= key_rec_cmp(file->m_curr_key_info, ref1 + PARTITION_BYTES_IN_POS, |
5525 | ref2 + PARTITION_BYTES_IN_POS))) |
5526 | { |
5527 | return res; |
5528 | } |
5529 | return cmp_part_ids(ref1, ref2); |
5530 | } |
5531 | |
5532 | /* |
5533 | @brief |
5534 | Provide ordering by (key_value, underying_table_rowid, part_no). |
5535 | */ |
5536 | extern "C" int cmp_key_rowid_part_id(void *ptr, uchar *ref1, uchar *ref2) |
5537 | { |
5538 | ha_partition *file= (ha_partition*)ptr; |
5539 | int res; |
5540 | |
5541 | if ((res= key_rec_cmp(file->m_curr_key_info, ref1 + PARTITION_BYTES_IN_POS, |
5542 | ref2 + PARTITION_BYTES_IN_POS))) |
5543 | { |
5544 | return res; |
5545 | } |
5546 | if ((res= file->m_file[0]->cmp_ref(ref1 + PARTITION_BYTES_IN_POS + file->m_rec_length, |
5547 | ref2 + PARTITION_BYTES_IN_POS + file->m_rec_length))) |
5548 | { |
5549 | return res; |
5550 | } |
5551 | return cmp_part_ids(ref1, ref2); |
5552 | } |
5553 | |
5554 | |
5555 | /** |
5556 | Common routine for a number of index_read variants |
5557 | |
5558 | @param buf Buffer where the record should be returned. |
5559 | @param have_start_key TRUE <=> the left endpoint is available, i.e. |
5560 | we're in index_read call or in read_range_first |
5561 | call and the range has left endpoint. |
5562 | FALSE <=> there is no left endpoint (we're in |
5563 | read_range_first() call and the range has no left |
5564 | endpoint). |
5565 | |
5566 | @return Operation status |
5567 | @retval 0 OK |
5568 | @retval HA_ERR_END_OF_FILE Whole index scanned, without finding the record. |
5569 | @retval HA_ERR_KEY_NOT_FOUND Record not found, but index cursor positioned. |
5570 | @retval other error code. |
5571 | |
5572 | @details |
5573 | Start scanning the range (when invoked from read_range_first()) or doing |
5574 | an index lookup (when invoked from index_read_XXX): |
5575 | - If possible, perform partition selection |
5576 | - Find the set of partitions we're going to use |
5577 | - Depending on whether we need ordering: |
5578 | NO: Get the first record from first used partition (see |
5579 | handle_unordered_scan_next_partition) |
5580 | YES: Fill the priority queue and get the record that is the first in |
5581 | the ordering |
5582 | */ |
5583 | |
5584 | int ha_partition::common_index_read(uchar *buf, bool have_start_key) |
5585 | { |
5586 | int error; |
5587 | uint UNINIT_VAR(key_len); /* used if have_start_key==TRUE */ |
5588 | bool reverse_order= FALSE; |
5589 | DBUG_ENTER("ha_partition::common_index_read" ); |
5590 | |
5591 | DBUG_PRINT("info" , ("m_ordered %u m_ordered_scan_ong %u" , |
5592 | m_ordered, m_ordered_scan_ongoing)); |
5593 | |
5594 | if (have_start_key) |
5595 | { |
5596 | m_start_key.length= key_len= calculate_key_len(table, active_index, |
5597 | m_start_key.key, |
5598 | m_start_key.keypart_map); |
5599 | DBUG_PRINT("info" , ("have_start_key map %lu find_flag %u len %u" , |
5600 | m_start_key.keypart_map, m_start_key.flag, key_len)); |
5601 | DBUG_ASSERT(key_len); |
5602 | } |
5603 | if (unlikely((error= partition_scan_set_up(buf, have_start_key)))) |
5604 | { |
5605 | DBUG_RETURN(error); |
5606 | } |
5607 | |
5608 | if (have_start_key && |
5609 | (m_start_key.flag == HA_READ_PREFIX_LAST || |
5610 | m_start_key.flag == HA_READ_PREFIX_LAST_OR_PREV || |
5611 | m_start_key.flag == HA_READ_BEFORE_KEY)) |
5612 | { |
5613 | reverse_order= TRUE; |
5614 | m_ordered_scan_ongoing= TRUE; |
5615 | } |
5616 | DBUG_PRINT("info" , ("m_ordered %u m_o_scan_ong %u have_start_key %u" , |
5617 | m_ordered, m_ordered_scan_ongoing, have_start_key)); |
5618 | if (!m_ordered_scan_ongoing) |
5619 | { |
5620 | /* |
5621 | We use unordered index scan when read_range is used and flag |
5622 | is set to not use ordered. |
5623 | We also use an unordered index scan when the number of partitions to |
5624 | scan is only one. |
5625 | The unordered index scan will use the partition set created. |
5626 | */ |
5627 | DBUG_PRINT("info" , ("doing unordered scan" )); |
5628 | error= handle_pre_scan(FALSE, FALSE); |
5629 | if (likely(!error)) |
5630 | error= handle_unordered_scan_next_partition(buf); |
5631 | } |
5632 | else |
5633 | { |
5634 | /* |
5635 | In all other cases we will use the ordered index scan. This will use |
5636 | the partition set created by the get_partition_set method. |
5637 | */ |
5638 | error= handle_ordered_index_scan(buf, reverse_order); |
5639 | } |
5640 | DBUG_RETURN(error); |
5641 | } |
5642 | |
5643 | |
5644 | /* |
5645 | Start an index scan from leftmost record and return first record |
5646 | |
5647 | SYNOPSIS |
5648 | index_first() |
5649 | buf Read row in MySQL Row Format |
5650 | |
5651 | RETURN VALUE |
5652 | >0 Error code |
5653 | 0 Success |
5654 | |
5655 | DESCRIPTION |
5656 | index_first() asks for the first key in the index. |
5657 | This is similar to index_read except that there is no start key since |
5658 | the scan starts from the leftmost entry and proceeds forward with |
5659 | index_next. |
5660 | |
5661 | Called from opt_range.cc, opt_sum.cc, sql_handler.cc, |
5662 | and sql_select.cc. |
5663 | */ |
5664 | |
5665 | int ha_partition::index_first(uchar * buf) |
5666 | { |
5667 | DBUG_ENTER("ha_partition::index_first" ); |
5668 | decrement_statistics(&SSV::ha_read_first_count); |
5669 | |
5670 | end_range= 0; |
5671 | m_index_scan_type= partition_index_first; |
5672 | DBUG_RETURN(common_first_last(buf)); |
5673 | } |
5674 | |
5675 | |
5676 | /* |
5677 | Start an index scan from rightmost record and return first record |
5678 | |
5679 | SYNOPSIS |
5680 | index_last() |
5681 | buf Read row in MySQL Row Format |
5682 | |
5683 | RETURN VALUE |
5684 | >0 Error code |
5685 | 0 Success |
5686 | |
5687 | DESCRIPTION |
5688 | index_last() asks for the last key in the index. |
5689 | This is similar to index_read except that there is no start key since |
5690 | the scan starts from the rightmost entry and proceeds forward with |
5691 | index_prev. |
5692 | |
5693 | Called from opt_range.cc, opt_sum.cc, sql_handler.cc, |
5694 | and sql_select.cc. |
5695 | */ |
5696 | |
5697 | int ha_partition::index_last(uchar * buf) |
5698 | { |
5699 | DBUG_ENTER("ha_partition::index_last" ); |
5700 | decrement_statistics(&SSV::ha_read_last_count); |
5701 | |
5702 | m_index_scan_type= partition_index_last; |
5703 | DBUG_RETURN(common_first_last(buf)); |
5704 | } |
5705 | |
5706 | /* |
5707 | Common routine for index_first/index_last |
5708 | |
5709 | SYNOPSIS |
5710 | ha_partition::common_first_last() |
5711 | |
5712 | see index_first for rest |
5713 | */ |
5714 | |
5715 | int ha_partition::common_first_last(uchar *buf) |
5716 | { |
5717 | int error; |
5718 | |
5719 | if (unlikely((error= partition_scan_set_up(buf, FALSE)))) |
5720 | return error; |
5721 | if (!m_ordered_scan_ongoing && |
5722 | m_index_scan_type != partition_index_last) |
5723 | { |
5724 | if (unlikely((error= handle_pre_scan(FALSE, check_parallel_search())))) |
5725 | return error; |
5726 | return handle_unordered_scan_next_partition(buf); |
5727 | } |
5728 | return handle_ordered_index_scan(buf, FALSE); |
5729 | } |
5730 | |
5731 | |
5732 | /* |
5733 | Optimization of the default implementation to take advantage of dynamic |
5734 | partition pruning. |
5735 | */ |
5736 | int ha_partition::index_read_idx_map(uchar *buf, uint index, |
5737 | const uchar *key, |
5738 | key_part_map keypart_map, |
5739 | enum ha_rkey_function find_flag) |
5740 | { |
5741 | int error= HA_ERR_KEY_NOT_FOUND; |
5742 | DBUG_ENTER("ha_partition::index_read_idx_map" ); |
5743 | |
5744 | if (find_flag == HA_READ_KEY_EXACT) |
5745 | { |
5746 | uint part; |
5747 | m_start_key.key= key; |
5748 | m_start_key.keypart_map= keypart_map; |
5749 | m_start_key.flag= find_flag; |
5750 | m_start_key.length= calculate_key_len(table, index, m_start_key.key, |
5751 | m_start_key.keypart_map); |
5752 | |
5753 | get_partition_set(table, buf, index, &m_start_key, &m_part_spec); |
5754 | |
5755 | /* |
5756 | We have either found exactly 1 partition |
5757 | (in which case start_part == end_part) |
5758 | or no matching partitions (start_part > end_part) |
5759 | */ |
5760 | DBUG_ASSERT(m_part_spec.start_part >= m_part_spec.end_part); |
5761 | /* The start part is must be marked as used. */ |
5762 | DBUG_ASSERT(m_part_spec.start_part > m_part_spec.end_part || |
5763 | bitmap_is_set(&(m_part_info->read_partitions), |
5764 | m_part_spec.start_part)); |
5765 | |
5766 | for (part= m_part_spec.start_part; |
5767 | part <= m_part_spec.end_part; |
5768 | part= bitmap_get_next_set(&m_part_info->read_partitions, part)) |
5769 | { |
5770 | error= m_file[part]->ha_index_read_idx_map(buf, index, key, |
5771 | keypart_map, find_flag); |
5772 | if (likely(error != HA_ERR_KEY_NOT_FOUND && |
5773 | error != HA_ERR_END_OF_FILE)) |
5774 | break; |
5775 | } |
5776 | if (part <= m_part_spec.end_part) |
5777 | m_last_part= part; |
5778 | } |
5779 | else |
5780 | { |
5781 | /* |
5782 | If not only used with READ_EXACT, we should investigate if possible |
5783 | to optimize for other find_flag's as well. |
5784 | */ |
5785 | DBUG_ASSERT(0); |
5786 | /* fall back on the default implementation */ |
5787 | error= handler::index_read_idx_map(buf, index, key, keypart_map, find_flag); |
5788 | } |
5789 | DBUG_RETURN(error); |
5790 | } |
5791 | |
5792 | |
5793 | /* |
5794 | Read next record in a forward index scan |
5795 | |
5796 | SYNOPSIS |
5797 | index_next() |
5798 | buf Read row in MySQL Row Format |
5799 | |
5800 | RETURN VALUE |
5801 | >0 Error code |
5802 | 0 Success |
5803 | |
5804 | DESCRIPTION |
5805 | Used to read forward through the index. |
5806 | */ |
5807 | |
5808 | int ha_partition::index_next(uchar * buf) |
5809 | { |
5810 | DBUG_ENTER("ha_partition::index_next" ); |
5811 | decrement_statistics(&SSV::ha_read_next_count); |
5812 | |
5813 | /* |
5814 | TODO(low priority): |
5815 | If we want partition to work with the HANDLER commands, we |
5816 | must be able to do index_last() -> index_prev() -> index_next() |
5817 | and if direction changes, we must step back those partitions in |
5818 | the record queue so we don't return a value from the wrong direction. |
5819 | */ |
5820 | if (m_index_scan_type == partition_index_last) |
5821 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
5822 | if (!m_ordered_scan_ongoing) |
5823 | { |
5824 | DBUG_RETURN(handle_unordered_next(buf, FALSE)); |
5825 | } |
5826 | DBUG_RETURN(handle_ordered_next(buf, FALSE)); |
5827 | } |
5828 | |
5829 | |
5830 | /* |
5831 | Read next record special |
5832 | |
5833 | SYNOPSIS |
5834 | index_next_same() |
5835 | buf Read row in MySQL Row Format |
5836 | key Key |
5837 | keylen Length of key |
5838 | |
5839 | RETURN VALUE |
5840 | >0 Error code |
5841 | 0 Success |
5842 | |
5843 | DESCRIPTION |
5844 | This routine is used to read the next but only if the key is the same |
5845 | as supplied in the call. |
5846 | */ |
5847 | |
5848 | int ha_partition::index_next_same(uchar *buf, const uchar *key, uint keylen) |
5849 | { |
5850 | DBUG_ENTER("ha_partition::index_next_same" ); |
5851 | decrement_statistics(&SSV::ha_read_next_count); |
5852 | |
5853 | DBUG_ASSERT(keylen == m_start_key.length); |
5854 | if (m_index_scan_type == partition_index_last) |
5855 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
5856 | if (!m_ordered_scan_ongoing) |
5857 | DBUG_RETURN(handle_unordered_next(buf, TRUE)); |
5858 | DBUG_RETURN(handle_ordered_next(buf, TRUE)); |
5859 | } |
5860 | |
5861 | |
5862 | int ha_partition::index_read_last_map(uchar *buf, |
5863 | const uchar *key, |
5864 | key_part_map keypart_map) |
5865 | { |
5866 | DBUG_ENTER("ha_partition::index_read_last_map" ); |
5867 | |
5868 | m_ordered= true; // Safety measure |
5869 | end_range= NULL; |
5870 | m_index_scan_type= partition_index_read_last; |
5871 | m_start_key.key= key; |
5872 | m_start_key.keypart_map= keypart_map; |
5873 | m_start_key.flag= HA_READ_PREFIX_LAST; |
5874 | DBUG_RETURN(common_index_read(buf, true)); |
5875 | } |
5876 | |
5877 | |
5878 | /* |
5879 | Read next record when performing index scan backwards |
5880 | |
5881 | SYNOPSIS |
5882 | index_prev() |
5883 | buf Read row in MySQL Row Format |
5884 | |
5885 | RETURN VALUE |
5886 | >0 Error code |
5887 | 0 Success |
5888 | |
5889 | DESCRIPTION |
5890 | Used to read backwards through the index. |
5891 | */ |
5892 | |
5893 | int ha_partition::index_prev(uchar * buf) |
5894 | { |
5895 | DBUG_ENTER("ha_partition::index_prev" ); |
5896 | decrement_statistics(&SSV::ha_read_prev_count); |
5897 | |
5898 | /* TODO: read comment in index_next */ |
5899 | if (m_index_scan_type == partition_index_first) |
5900 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
5901 | DBUG_RETURN(handle_ordered_prev(buf)); |
5902 | } |
5903 | |
5904 | |
5905 | /* |
5906 | Start a read of one range with start and end key |
5907 | |
5908 | SYNOPSIS |
5909 | read_range_first() |
5910 | start_key Specification of start key |
5911 | end_key Specification of end key |
5912 | eq_range_arg Is it equal range |
5913 | sorted Should records be returned in sorted order |
5914 | |
5915 | RETURN VALUE |
5916 | >0 Error code |
5917 | 0 Success |
5918 | |
5919 | DESCRIPTION |
5920 | We reimplement read_range_first since we don't want the compare_key |
5921 | check at the end. This is already performed in the partition handler. |
5922 | read_range_next is very much different due to that we need to scan |
5923 | all underlying handlers. |
5924 | */ |
5925 | |
5926 | int ha_partition::read_range_first(const key_range *start_key, |
5927 | const key_range *end_key, |
5928 | bool eq_range_arg, bool sorted) |
5929 | { |
5930 | int error; |
5931 | DBUG_ENTER("ha_partition::read_range_first" ); |
5932 | |
5933 | m_ordered= sorted; |
5934 | eq_range= eq_range_arg; |
5935 | set_end_range(end_key); |
5936 | |
5937 | range_key_part= m_curr_key_info[0]->key_part; |
5938 | if (start_key) |
5939 | m_start_key= *start_key; |
5940 | else |
5941 | m_start_key.key= NULL; |
5942 | |
5943 | m_index_scan_type= partition_read_range; |
5944 | error= common_index_read(m_rec0, MY_TEST(start_key)); |
5945 | DBUG_RETURN(error); |
5946 | } |
5947 | |
5948 | |
5949 | /* |
5950 | Read next record in read of a range with start and end key |
5951 | |
5952 | SYNOPSIS |
5953 | read_range_next() |
5954 | |
5955 | RETURN VALUE |
5956 | >0 Error code |
5957 | 0 Success |
5958 | */ |
5959 | |
5960 | int ha_partition::read_range_next() |
5961 | { |
5962 | DBUG_ENTER("ha_partition::read_range_next" ); |
5963 | |
5964 | if (m_ordered_scan_ongoing) |
5965 | { |
5966 | DBUG_RETURN(handle_ordered_next(table->record[0], eq_range)); |
5967 | } |
5968 | DBUG_RETURN(handle_unordered_next(table->record[0], eq_range)); |
5969 | } |
5970 | |
5971 | /** |
5972 | Create a copy of all keys used by multi_range_read() |
5973 | |
5974 | @retval 0 ok |
5975 | @retval HA_ERR_END_OF_FILE no keys in range |
5976 | @retval other value: error |
5977 | |
5978 | TODO to save memory: |
5979 | - If (mrr_mode & HA_MRR_MATERIALIZED_KEYS) is set then the keys data is |
5980 | stable and we don't have to copy the keys, only store a pointer to the |
5981 | key. |
5982 | - When allocating key data, store things in a MEM_ROOT buffer instead of |
5983 | a malloc() per key. This will simplify and speed up the current code |
5984 | and use less memory. |
5985 | */ |
5986 | |
5987 | int ha_partition::multi_range_key_create_key(RANGE_SEQ_IF *seq, |
5988 | range_seq_t seq_it) |
5989 | { |
5990 | uint i, length; |
5991 | key_range *start_key, *end_key; |
5992 | KEY_MULTI_RANGE *range; |
5993 | DBUG_ENTER("ha_partition::multi_range_key_create_key" ); |
5994 | |
5995 | bitmap_clear_all(&m_mrr_used_partitions); |
5996 | m_mrr_range_length= 0; |
5997 | bzero(m_part_mrr_range_length, |
5998 | sizeof(*m_part_mrr_range_length) * m_tot_parts); |
5999 | if (!m_mrr_range_first) |
6000 | { |
6001 | if (!(m_mrr_range_first= (PARTITION_KEY_MULTI_RANGE *) |
6002 | my_multi_malloc(MYF(MY_WME), |
6003 | &m_mrr_range_current, |
6004 | sizeof(PARTITION_KEY_MULTI_RANGE), |
6005 | NullS))) |
6006 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6007 | |
6008 | m_mrr_range_first->id= 1; |
6009 | m_mrr_range_first->key[0]= NULL; |
6010 | m_mrr_range_first->key[1]= NULL; |
6011 | m_mrr_range_first->next= NULL; |
6012 | } |
6013 | else |
6014 | m_mrr_range_current= m_mrr_range_first; |
6015 | |
6016 | for (i= 0; i < m_tot_parts; i++) |
6017 | { |
6018 | if (!m_part_mrr_range_first[i]) |
6019 | { |
6020 | if (!(m_part_mrr_range_first[i]= (PARTITION_PART_KEY_MULTI_RANGE *) |
6021 | my_multi_malloc(MYF(MY_WME | MY_ZEROFILL), |
6022 | &m_part_mrr_range_current[i], |
6023 | sizeof(PARTITION_PART_KEY_MULTI_RANGE), |
6024 | NullS))) |
6025 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6026 | } |
6027 | else |
6028 | { |
6029 | m_part_mrr_range_current[i]= m_part_mrr_range_first[i]; |
6030 | m_part_mrr_range_current[i]->partition_key_multi_range= NULL; |
6031 | } |
6032 | } |
6033 | m_mrr_range_current->key_multi_range.start_key.key= NULL; |
6034 | m_mrr_range_current->key_multi_range.end_key.key= NULL; |
6035 | |
6036 | while (!seq->next(seq_it, &m_mrr_range_current->key_multi_range)) |
6037 | { |
6038 | m_mrr_range_length++; |
6039 | range= &m_mrr_range_current->key_multi_range; |
6040 | |
6041 | /* Copy start key */ |
6042 | start_key= &range->start_key; |
6043 | DBUG_PRINT("info" ,("partition range->range_flag: %u" , range->range_flag)); |
6044 | DBUG_PRINT("info" ,("partition start_key->key: %p" , start_key->key)); |
6045 | DBUG_PRINT("info" ,("partition start_key->length: %u" , start_key->length)); |
6046 | DBUG_PRINT("info" ,("partition start_key->keypart_map: %lu" , |
6047 | start_key->keypart_map)); |
6048 | DBUG_PRINT("info" ,("partition start_key->flag: %u" , start_key->flag)); |
6049 | |
6050 | if (start_key->key) |
6051 | { |
6052 | length= start_key->length; |
6053 | if (!m_mrr_range_current->key[0] || |
6054 | m_mrr_range_current->length[0] < length) |
6055 | { |
6056 | if (m_mrr_range_current->key[0]) |
6057 | my_free(m_mrr_range_current->key[0]); |
6058 | if (!(m_mrr_range_current->key[0]= |
6059 | (uchar *) my_malloc(length, MYF(MY_WME)))) |
6060 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6061 | m_mrr_range_current->length[0]= length; |
6062 | } |
6063 | memcpy(m_mrr_range_current->key[0], start_key->key, length); |
6064 | start_key->key= m_mrr_range_current->key[0]; |
6065 | } |
6066 | |
6067 | /* Copy end key */ |
6068 | end_key= &range->end_key; |
6069 | DBUG_PRINT("info" ,("partition end_key->key: %p" , end_key->key)); |
6070 | DBUG_PRINT("info" ,("partition end_key->length: %u" , end_key->length)); |
6071 | DBUG_PRINT("info" ,("partition end_key->keypart_map: %lu" , |
6072 | end_key->keypart_map)); |
6073 | DBUG_PRINT("info" ,("partition end_key->flag: %u" , end_key->flag)); |
6074 | if (end_key->key) |
6075 | { |
6076 | length= end_key->length; |
6077 | if (!m_mrr_range_current->key[1] || |
6078 | m_mrr_range_current->length[1] < length) |
6079 | { |
6080 | if (m_mrr_range_current->key[1]) |
6081 | my_free(m_mrr_range_current->key[1]); |
6082 | if (!(m_mrr_range_current->key[1]= |
6083 | (uchar *) my_malloc(length, MYF(MY_WME)))) |
6084 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6085 | m_mrr_range_current->length[1]= length; |
6086 | } |
6087 | memcpy(m_mrr_range_current->key[1], end_key->key, length); |
6088 | end_key->key= m_mrr_range_current->key[1]; |
6089 | } |
6090 | |
6091 | m_mrr_range_current->ptr= m_mrr_range_current->key_multi_range.ptr; |
6092 | m_mrr_range_current->key_multi_range.ptr= m_mrr_range_current; |
6093 | |
6094 | if (start_key->key && (start_key->flag & HA_READ_KEY_EXACT)) |
6095 | get_partition_set(table, table->record[0], active_index, |
6096 | start_key, &m_part_spec); |
6097 | else |
6098 | { |
6099 | m_part_spec.start_part= 0; |
6100 | m_part_spec.end_part= m_tot_parts - 1; |
6101 | } |
6102 | |
6103 | /* Copy key to those partitions that needs it */ |
6104 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
6105 | { |
6106 | if (bitmap_is_set(&(m_part_info->read_partitions), i)) |
6107 | { |
6108 | bitmap_set_bit(&m_mrr_used_partitions, i); |
6109 | m_part_mrr_range_length[i]++; |
6110 | m_part_mrr_range_current[i]->partition_key_multi_range= |
6111 | m_mrr_range_current; |
6112 | |
6113 | if (!m_part_mrr_range_current[i]->next) |
6114 | { |
6115 | PARTITION_PART_KEY_MULTI_RANGE *tmp_part_mrr_range; |
6116 | if (!(tmp_part_mrr_range= (PARTITION_PART_KEY_MULTI_RANGE *) |
6117 | my_malloc(sizeof(PARTITION_PART_KEY_MULTI_RANGE), |
6118 | MYF(MY_WME | MY_ZEROFILL)))) |
6119 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6120 | |
6121 | m_part_mrr_range_current[i]->next= tmp_part_mrr_range; |
6122 | m_part_mrr_range_current[i]= tmp_part_mrr_range; |
6123 | } |
6124 | else |
6125 | { |
6126 | m_part_mrr_range_current[i]= m_part_mrr_range_current[i]->next; |
6127 | m_part_mrr_range_current[i]->partition_key_multi_range= NULL; |
6128 | } |
6129 | } |
6130 | } |
6131 | |
6132 | if (!m_mrr_range_current->next) |
6133 | { |
6134 | /* Add end of range sentinel */ |
6135 | PARTITION_KEY_MULTI_RANGE *tmp_mrr_range; |
6136 | if (!(tmp_mrr_range= (PARTITION_KEY_MULTI_RANGE *) |
6137 | my_malloc(sizeof(PARTITION_KEY_MULTI_RANGE), MYF(MY_WME)))) |
6138 | DBUG_RETURN(HA_ERR_OUT_OF_MEM); |
6139 | |
6140 | tmp_mrr_range->id= m_mrr_range_current->id + 1; |
6141 | tmp_mrr_range->key[0]= NULL; |
6142 | tmp_mrr_range->key[1]= NULL; |
6143 | tmp_mrr_range->next= NULL; |
6144 | m_mrr_range_current->next= tmp_mrr_range; |
6145 | } |
6146 | m_mrr_range_current= m_mrr_range_current->next; |
6147 | } |
6148 | |
6149 | if (!m_mrr_range_length) |
6150 | { |
6151 | DBUG_PRINT("Warning" ,("No keys to use for mrr" )); |
6152 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
6153 | } |
6154 | |
6155 | /* set start and end part */ |
6156 | m_part_spec.start_part= bitmap_get_first_set(&m_mrr_used_partitions); |
6157 | |
6158 | for (i= m_tot_parts; i-- > 0;) |
6159 | { |
6160 | if (bitmap_is_set(&m_mrr_used_partitions, i)) |
6161 | { |
6162 | m_part_spec.end_part= i; |
6163 | break; |
6164 | } |
6165 | } |
6166 | for (i= 0; i < m_tot_parts; i++) |
6167 | { |
6168 | m_partition_part_key_multi_range_hld[i].partition= this; |
6169 | m_partition_part_key_multi_range_hld[i].part_id= i; |
6170 | m_partition_part_key_multi_range_hld[i].partition_part_key_multi_range= |
6171 | m_part_mrr_range_first[i]; |
6172 | } |
6173 | DBUG_PRINT("return" ,("OK" )); |
6174 | DBUG_RETURN(0); |
6175 | } |
6176 | |
6177 | |
6178 | static void partition_multi_range_key_get_key_info(void *init_params, |
6179 | uint *length, |
6180 | key_part_map *map) |
6181 | { |
6182 | PARTITION_PART_KEY_MULTI_RANGE_HLD *hld= |
6183 | (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params; |
6184 | ha_partition *partition= hld->partition; |
6185 | key_range *start_key= (&partition->m_mrr_range_first-> |
6186 | key_multi_range.start_key); |
6187 | DBUG_ENTER("partition_multi_range_key_get_key_info" ); |
6188 | *length= start_key->length; |
6189 | *map= start_key->keypart_map; |
6190 | DBUG_VOID_RETURN; |
6191 | } |
6192 | |
6193 | |
6194 | static range_seq_t partition_multi_range_key_init(void *init_params, |
6195 | uint n_ranges, |
6196 | uint flags) |
6197 | { |
6198 | PARTITION_PART_KEY_MULTI_RANGE_HLD *hld= |
6199 | (PARTITION_PART_KEY_MULTI_RANGE_HLD *)init_params; |
6200 | ha_partition *partition= hld->partition; |
6201 | uint i= hld->part_id; |
6202 | DBUG_ENTER("partition_multi_range_key_init" ); |
6203 | partition->m_mrr_range_init_flags= flags; |
6204 | hld->partition_part_key_multi_range= partition->m_part_mrr_range_first[i]; |
6205 | DBUG_RETURN(init_params); |
6206 | } |
6207 | |
6208 | |
6209 | static bool partition_multi_range_key_next(range_seq_t seq, |
6210 | KEY_MULTI_RANGE *range) |
6211 | { |
6212 | PARTITION_PART_KEY_MULTI_RANGE_HLD *hld= |
6213 | (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq; |
6214 | PARTITION_KEY_MULTI_RANGE *partition_key_multi_range= |
6215 | hld->partition_part_key_multi_range->partition_key_multi_range; |
6216 | DBUG_ENTER("partition_multi_range_key_next" ); |
6217 | if (!partition_key_multi_range) |
6218 | DBUG_RETURN(TRUE); |
6219 | *range= partition_key_multi_range->key_multi_range; |
6220 | hld->partition_part_key_multi_range= |
6221 | hld->partition_part_key_multi_range->next; |
6222 | DBUG_RETURN(FALSE); |
6223 | } |
6224 | |
6225 | |
6226 | static bool partition_multi_range_key_skip_record(range_seq_t seq, |
6227 | range_id_t range_info, |
6228 | uchar *rowid) |
6229 | { |
6230 | PARTITION_PART_KEY_MULTI_RANGE_HLD *hld= |
6231 | (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq; |
6232 | DBUG_ENTER("partition_multi_range_key_skip_record" ); |
6233 | DBUG_RETURN(hld->partition->m_seq_if->skip_record(hld->partition->m_seq, |
6234 | range_info, rowid)); |
6235 | } |
6236 | |
6237 | |
6238 | static bool partition_multi_range_key_skip_index_tuple(range_seq_t seq, |
6239 | range_id_t range_info) |
6240 | { |
6241 | PARTITION_PART_KEY_MULTI_RANGE_HLD *hld= |
6242 | (PARTITION_PART_KEY_MULTI_RANGE_HLD *)seq; |
6243 | DBUG_ENTER("partition_multi_range_key_skip_index_tuple" ); |
6244 | DBUG_RETURN(hld->partition->m_seq_if->skip_index_tuple(hld->partition->m_seq, |
6245 | range_info)); |
6246 | } |
6247 | |
6248 | ha_rows ha_partition::multi_range_read_info_const(uint keyno, |
6249 | RANGE_SEQ_IF *seq, |
6250 | void *seq_init_param, |
6251 | uint n_ranges, uint *bufsz, |
6252 | uint *mrr_mode, |
6253 | Cost_estimate *cost) |
6254 | { |
6255 | int error; |
6256 | uint i; |
6257 | handler **file; |
6258 | ha_rows rows= 0; |
6259 | uint ret_mrr_mode= 0; |
6260 | range_seq_t seq_it; |
6261 | part_id_range save_part_spec; |
6262 | DBUG_ENTER("ha_partition::multi_range_read_info_const" ); |
6263 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
6264 | |
6265 | m_mrr_new_full_buffer_size= 0; |
6266 | save_part_spec= m_part_spec; |
6267 | |
6268 | seq_it= seq->init(seq_init_param, n_ranges, *mrr_mode); |
6269 | if (unlikely((error= multi_range_key_create_key(seq, seq_it)))) |
6270 | { |
6271 | if (likely(error == HA_ERR_END_OF_FILE)) // No keys in range |
6272 | { |
6273 | rows= 0; |
6274 | goto calc_cost; |
6275 | } |
6276 | /* |
6277 | This error means that we can't do multi_range_read for the moment |
6278 | (probably running out of memory) and we need to fallback to |
6279 | normal reads |
6280 | */ |
6281 | m_part_spec= save_part_spec; |
6282 | DBUG_RETURN(HA_POS_ERROR); |
6283 | } |
6284 | m_part_seq_if.get_key_info= |
6285 | seq->get_key_info ? partition_multi_range_key_get_key_info : NULL; |
6286 | m_part_seq_if.init= partition_multi_range_key_init; |
6287 | m_part_seq_if.next= partition_multi_range_key_next; |
6288 | m_part_seq_if.skip_record= (seq->skip_record ? |
6289 | partition_multi_range_key_skip_record : NULL); |
6290 | m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ? |
6291 | partition_multi_range_key_skip_index_tuple : |
6292 | NULL); |
6293 | file= m_file; |
6294 | do |
6295 | { |
6296 | i= (uint)(file - m_file); |
6297 | DBUG_PRINT("info" ,("partition part_id: %u" , i)); |
6298 | if (bitmap_is_set(&m_mrr_used_partitions, i)) |
6299 | { |
6300 | ha_rows tmp_rows; |
6301 | uint tmp_mrr_mode; |
6302 | m_mrr_buffer_size[i]= 0; |
6303 | tmp_mrr_mode= *mrr_mode; |
6304 | tmp_rows= (*file)-> |
6305 | multi_range_read_info_const(keyno, &m_part_seq_if, |
6306 | &m_partition_part_key_multi_range_hld[i], |
6307 | m_part_mrr_range_length[i], |
6308 | &m_mrr_buffer_size[i], |
6309 | &tmp_mrr_mode, cost); |
6310 | if (tmp_rows == HA_POS_ERROR) |
6311 | { |
6312 | m_part_spec= save_part_spec; |
6313 | DBUG_RETURN(HA_POS_ERROR); |
6314 | } |
6315 | rows+= tmp_rows; |
6316 | ret_mrr_mode|= tmp_mrr_mode; |
6317 | m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i]; |
6318 | } |
6319 | } while (*(++file)); |
6320 | *mrr_mode= ret_mrr_mode; |
6321 | |
6322 | calc_cost: |
6323 | m_part_spec= save_part_spec; |
6324 | cost->reset(); |
6325 | cost->avg_io_cost= 1; |
6326 | if ((*mrr_mode & HA_MRR_INDEX_ONLY) && rows > 2) |
6327 | cost->io_count= keyread_time(keyno, n_ranges, (uint) rows); |
6328 | else |
6329 | cost->io_count= read_time(keyno, n_ranges, rows); |
6330 | cost->cpu_cost= (double) rows / TIME_FOR_COMPARE + 0.01; |
6331 | DBUG_RETURN(rows); |
6332 | } |
6333 | |
6334 | |
6335 | ha_rows ha_partition::multi_range_read_info(uint keyno, uint n_ranges, |
6336 | uint keys, |
6337 | uint key_parts, uint *bufsz, |
6338 | uint *mrr_mode, |
6339 | Cost_estimate *cost) |
6340 | { |
6341 | uint i; |
6342 | handler **file; |
6343 | ha_rows rows; |
6344 | DBUG_ENTER("ha_partition::multi_range_read_info" ); |
6345 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
6346 | |
6347 | m_mrr_new_full_buffer_size= 0; |
6348 | file= m_file; |
6349 | do |
6350 | { |
6351 | i= (uint)(file - m_file); |
6352 | if (bitmap_is_set(&(m_part_info->read_partitions), (i))) |
6353 | { |
6354 | m_mrr_buffer_size[i]= 0; |
6355 | if ((rows= (*file)->multi_range_read_info(keyno, n_ranges, keys, |
6356 | key_parts, |
6357 | &m_mrr_buffer_size[i], |
6358 | mrr_mode, cost))) |
6359 | DBUG_RETURN(rows); |
6360 | m_mrr_new_full_buffer_size+= m_mrr_buffer_size[i]; |
6361 | } |
6362 | } while (*(++file)); |
6363 | |
6364 | cost->reset(); |
6365 | cost->avg_io_cost= 1; |
6366 | if (*mrr_mode & HA_MRR_INDEX_ONLY) |
6367 | cost->io_count= keyread_time(keyno, n_ranges, (uint) rows); |
6368 | else |
6369 | cost->io_count= read_time(keyno, n_ranges, rows); |
6370 | DBUG_RETURN(0); |
6371 | } |
6372 | |
6373 | |
6374 | int ha_partition::multi_range_read_init(RANGE_SEQ_IF *seq, |
6375 | void *seq_init_param, |
6376 | uint n_ranges, uint mrr_mode, |
6377 | HANDLER_BUFFER *buf) |
6378 | { |
6379 | int error; |
6380 | uint i; |
6381 | handler **file; |
6382 | uchar *tmp_buffer; |
6383 | DBUG_ENTER("ha_partition::multi_range_read_init" ); |
6384 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
6385 | |
6386 | m_seq_if= seq; |
6387 | m_seq= seq->init(seq_init_param, n_ranges, mrr_mode); |
6388 | if (unlikely((error= multi_range_key_create_key(seq, m_seq)))) |
6389 | DBUG_RETURN(0); |
6390 | |
6391 | m_part_seq_if.get_key_info= (seq->get_key_info ? |
6392 | partition_multi_range_key_get_key_info : |
6393 | NULL); |
6394 | m_part_seq_if.init= partition_multi_range_key_init; |
6395 | m_part_seq_if.next= partition_multi_range_key_next; |
6396 | m_part_seq_if.skip_record= (seq->skip_record ? |
6397 | partition_multi_range_key_skip_record : |
6398 | NULL); |
6399 | m_part_seq_if.skip_index_tuple= (seq->skip_index_tuple ? |
6400 | partition_multi_range_key_skip_index_tuple : |
6401 | NULL); |
6402 | |
6403 | /* m_mrr_new_full_buffer_size was calculated in multi_range_read_info */ |
6404 | if (m_mrr_full_buffer_size < m_mrr_new_full_buffer_size) |
6405 | { |
6406 | if (m_mrr_full_buffer) |
6407 | my_free(m_mrr_full_buffer); |
6408 | if (!(m_mrr_full_buffer= |
6409 | (uchar *) my_malloc(m_mrr_new_full_buffer_size, MYF(MY_WME)))) |
6410 | { |
6411 | m_mrr_full_buffer_size= 0; |
6412 | error= HA_ERR_OUT_OF_MEM; |
6413 | goto error; |
6414 | } |
6415 | m_mrr_full_buffer_size= m_mrr_new_full_buffer_size; |
6416 | } |
6417 | |
6418 | tmp_buffer= m_mrr_full_buffer; |
6419 | file= m_file; |
6420 | do |
6421 | { |
6422 | i= (uint)(file - m_file); |
6423 | DBUG_PRINT("info" ,("partition part_id: %u" , i)); |
6424 | if (bitmap_is_set(&m_mrr_used_partitions, i)) |
6425 | { |
6426 | if (m_mrr_new_full_buffer_size) |
6427 | { |
6428 | if (m_mrr_buffer_size[i]) |
6429 | { |
6430 | m_mrr_buffer[i].buffer= tmp_buffer; |
6431 | m_mrr_buffer[i].end_of_used_area= tmp_buffer; |
6432 | tmp_buffer+= m_mrr_buffer_size[i]; |
6433 | m_mrr_buffer[i].buffer_end= tmp_buffer; |
6434 | } |
6435 | } |
6436 | else |
6437 | m_mrr_buffer[i]= *buf; |
6438 | |
6439 | if (unlikely((error= (*file)-> |
6440 | multi_range_read_init(&m_part_seq_if, |
6441 | &m_partition_part_key_multi_range_hld[i], |
6442 | m_part_mrr_range_length[i], |
6443 | mrr_mode, |
6444 | &m_mrr_buffer[i])))) |
6445 | goto error; |
6446 | m_stock_range_seq[i]= 0; |
6447 | } |
6448 | } while (*(++file)); |
6449 | |
6450 | m_multi_range_read_first= TRUE; |
6451 | m_mrr_range_current= m_mrr_range_first; |
6452 | m_index_scan_type= partition_read_multi_range; |
6453 | m_mrr_mode= mrr_mode; |
6454 | m_mrr_n_ranges= n_ranges; |
6455 | DBUG_RETURN(0); |
6456 | |
6457 | error: |
6458 | DBUG_RETURN(error); |
6459 | } |
6460 | |
6461 | |
6462 | int ha_partition::multi_range_read_next(range_id_t *range_info) |
6463 | { |
6464 | int error; |
6465 | DBUG_ENTER("ha_partition::multi_range_read_next" ); |
6466 | DBUG_PRINT("enter" , ("partition this: %p partition m_mrr_mode: %u" , |
6467 | this, m_mrr_mode)); |
6468 | |
6469 | if ((m_mrr_mode & HA_MRR_SORTED)) |
6470 | { |
6471 | if (m_multi_range_read_first) |
6472 | { |
6473 | if (unlikely((error= handle_ordered_index_scan(table->record[0], |
6474 | FALSE)))) |
6475 | DBUG_RETURN(error); |
6476 | if (!m_pre_calling) |
6477 | m_multi_range_read_first= FALSE; |
6478 | } |
6479 | else if (unlikely((error= handle_ordered_next(table->record[0], |
6480 | eq_range)))) |
6481 | DBUG_RETURN(error); |
6482 | *range_info= m_mrr_range_current->ptr; |
6483 | } |
6484 | else |
6485 | { |
6486 | if (unlikely(m_multi_range_read_first)) |
6487 | { |
6488 | if (unlikely((error= |
6489 | handle_unordered_scan_next_partition(table->record[0])))) |
6490 | DBUG_RETURN(error); |
6491 | if (!m_pre_calling) |
6492 | m_multi_range_read_first= FALSE; |
6493 | } |
6494 | else if (unlikely((error= handle_unordered_next(table->record[0], FALSE)))) |
6495 | DBUG_RETURN(error); |
6496 | |
6497 | *range_info= |
6498 | ((PARTITION_KEY_MULTI_RANGE *) m_range_info[m_last_part])->ptr; |
6499 | } |
6500 | DBUG_RETURN(0); |
6501 | } |
6502 | |
6503 | |
6504 | int ha_partition::multi_range_read_explain_info(uint mrr_mode, char *str, |
6505 | size_t size) |
6506 | { |
6507 | DBUG_ENTER("ha_partition::multi_range_read_explain_info" ); |
6508 | DBUG_RETURN(get_open_file_sample()-> |
6509 | multi_range_read_explain_info(mrr_mode, str, size)); |
6510 | } |
6511 | |
6512 | |
6513 | /** |
6514 | Find and retrieve the Full Text Search relevance ranking for a search string |
6515 | in a full text index. |
6516 | |
6517 | @param handler Full Text Search handler |
6518 | @param record Search string |
6519 | @param length Length of the search string |
6520 | |
6521 | @retval Relevance value |
6522 | */ |
6523 | |
6524 | float partition_ft_find_relevance(FT_INFO *handler, |
6525 | uchar *record, uint length) |
6526 | { |
6527 | st_partition_ft_info *info= (st_partition_ft_info *)handler; |
6528 | uint m_last_part= ((ha_partition*) info->file)->last_part(); |
6529 | FT_INFO *m_handler= info->part_ft_info[m_last_part]; |
6530 | DBUG_ENTER("partition_ft_find_relevance" ); |
6531 | if (!m_handler) |
6532 | DBUG_RETURN((float)-1.0); |
6533 | DBUG_RETURN(m_handler->please->find_relevance(m_handler, record, length)); |
6534 | } |
6535 | |
6536 | |
6537 | /** |
6538 | Retrieve the Full Text Search relevance ranking for the current |
6539 | full text search. |
6540 | |
6541 | @param handler Full Text Search handler |
6542 | |
6543 | @retval Relevance value |
6544 | */ |
6545 | |
6546 | float partition_ft_get_relevance(FT_INFO *handler) |
6547 | { |
6548 | st_partition_ft_info *info= (st_partition_ft_info *)handler; |
6549 | uint m_last_part= ((ha_partition*) info->file)->last_part(); |
6550 | FT_INFO *m_handler= info->part_ft_info[m_last_part]; |
6551 | DBUG_ENTER("partition_ft_get_relevance" ); |
6552 | if (!m_handler) |
6553 | DBUG_RETURN((float)-1.0); |
6554 | DBUG_RETURN(m_handler->please->get_relevance(m_handler)); |
6555 | } |
6556 | |
6557 | |
6558 | /** |
6559 | Free the memory for a full text search handler. |
6560 | |
6561 | @param handler Full Text Search handler |
6562 | */ |
6563 | |
6564 | void partition_ft_close_search(FT_INFO *handler) |
6565 | { |
6566 | st_partition_ft_info *info= (st_partition_ft_info *)handler; |
6567 | info->file->ft_close_search(handler); |
6568 | } |
6569 | |
6570 | |
6571 | /** |
6572 | Free the memory for a full text search handler. |
6573 | |
6574 | @param handler Full Text Search handler |
6575 | */ |
6576 | |
6577 | void ha_partition::ft_close_search(FT_INFO *handler) |
6578 | { |
6579 | uint i; |
6580 | st_partition_ft_info *info= (st_partition_ft_info *)handler; |
6581 | DBUG_ENTER("ha_partition::ft_close_search" ); |
6582 | |
6583 | for (i= 0; i < m_tot_parts; i++) |
6584 | { |
6585 | FT_INFO *m_handler= info->part_ft_info[i]; |
6586 | DBUG_ASSERT(!m_handler || |
6587 | (m_handler->please && m_handler->please->close_search)); |
6588 | if (m_handler && |
6589 | m_handler->please && |
6590 | m_handler->please->close_search) |
6591 | m_handler->please->close_search(m_handler); |
6592 | } |
6593 | DBUG_VOID_RETURN; |
6594 | } |
6595 | |
6596 | |
6597 | /* Partition Full Text search function table */ |
6598 | _ft_vft partition_ft_vft = |
6599 | { |
6600 | NULL, // partition_ft_read_next |
6601 | partition_ft_find_relevance, |
6602 | partition_ft_close_search, |
6603 | partition_ft_get_relevance, |
6604 | NULL // partition_ft_reinit_search |
6605 | }; |
6606 | |
6607 | |
6608 | /** |
6609 | Initialize a full text search. |
6610 | */ |
6611 | |
6612 | int ha_partition::ft_init() |
6613 | { |
6614 | int error; |
6615 | uint i= 0; |
6616 | uint32 part_id; |
6617 | DBUG_ENTER("ha_partition::ft_init" ); |
6618 | DBUG_PRINT("info" , ("partition this: %p" , this)); |
6619 | |
6620 | /* |
6621 | For operations that may need to change data, we may need to extend |
6622 | read_set. |
6623 | */ |
6624 | if (get_lock_type() == F_WRLCK) |
6625 | { |
6626 | /* |
6627 | If write_set contains any of the fields used in partition and |
6628 | subpartition expression, we need to set all bits in read_set because |
6629 | the row may need to be inserted in a different [sub]partition. In |
6630 | other words update_row() can be converted into write_row(), which |
6631 | requires a complete record. |
6632 | */ |
6633 | if (bitmap_is_overlapping(&m_part_info->full_part_field_set, |
6634 | table->write_set)) |
6635 | bitmap_set_all(table->read_set); |
6636 | else |
6637 | { |
6638 | /* |
6639 | Some handlers only read fields as specified by the bitmap for the |
6640 | read set. For partitioned handlers we always require that the |
6641 | fields of the partition functions are read such that we can |
6642 | calculate the partition id to place updated and deleted records. |
6643 | */ |
6644 | bitmap_union(table->read_set, &m_part_info->full_part_field_set); |
6645 | } |
6646 | } |
6647 | |
6648 | /* Now we see what the index of our first important partition is */ |
6649 | DBUG_PRINT("info" , ("m_part_info->read_partitions: %p" , |
6650 | (void *) m_part_info->read_partitions.bitmap)); |
6651 | part_id= bitmap_get_first_set(&(m_part_info->read_partitions)); |
6652 | DBUG_PRINT("info" , ("m_part_spec.start_part %u" , (uint) part_id)); |
6653 | |
6654 | if (part_id == MY_BIT_NONE) |
6655 | { |
6656 | error= 0; |
6657 | goto err1; |
6658 | } |
6659 | |
6660 | DBUG_PRINT("info" , ("ft_init on partition %u" , (uint) part_id)); |
6661 | /* |
6662 | ft_end() is needed for partitioning to reset internal data if scan |
6663 | is already in use |
6664 | */ |
6665 | if (m_pre_calling) |
6666 | { |
6667 | if (unlikely((error= pre_ft_end()))) |
6668 | goto err1; |
6669 | } |
6670 | else |
6671 | ft_end(); |
6672 | m_index_scan_type= partition_ft_read; |
6673 | for (i= part_id; i < m_tot_parts; i++) |
6674 | { |
6675 | if (bitmap_is_set(&(m_part_info->read_partitions), i)) |
6676 | { |
6677 | error= m_pre_calling ? m_file[i]->pre_ft_init() : m_file[i]->ft_init(); |
6678 | if (unlikely(error)) |
6679 | goto err2; |
6680 | } |
6681 | } |
6682 | m_scan_value= 1; |
6683 | m_part_spec.start_part= part_id; |
6684 | m_part_spec.end_part= m_tot_parts - 1; |
6685 | m_ft_init_and_first= TRUE; |
6686 | DBUG_PRINT("info" , ("m_scan_value: %u" , m_scan_value)); |
6687 | DBUG_RETURN(0); |
6688 | |
6689 | err2: |
6690 | late_extra_no_cache(part_id); |
6691 | while ((int)--i >= (int)part_id) |
6692 | { |
6693 | if (bitmap_is_set(&(m_part_info->read_partitions), i)) |
6694 | { |
6695 | if (m_pre_calling) |
6696 | m_file[i]->pre_ft_end(); |
6697 | else |
6698 | m_file[i]->ft_end(); |
6699 | } |
6700 | } |
6701 | err1: |
6702 | m_scan_value= 2; |
6703 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
6704 | DBUG_RETURN(error); |
6705 | } |
6706 | |
6707 | |
6708 | /** |
6709 | Initialize a full text search during a bulk access request. |
6710 | */ |
6711 | |
6712 | int ha_partition::pre_ft_init() |
6713 | { |
6714 | bool save_m_pre_calling; |
6715 | int error; |
6716 | DBUG_ENTER("ha_partition::pre_ft_init" ); |
6717 | save_m_pre_calling= m_pre_calling; |
6718 | m_pre_calling= TRUE; |
6719 | error= ft_init(); |
6720 | m_pre_calling= save_m_pre_calling; |
6721 | DBUG_RETURN(error); |
6722 | } |
6723 | |
6724 | |
6725 | /** |
6726 | Terminate a full text search. |
6727 | */ |
6728 | |
6729 | void ha_partition::ft_end() |
6730 | { |
6731 | handler **file; |
6732 | DBUG_ENTER("ha_partition::ft_end" ); |
6733 | DBUG_PRINT("info" , ("partition this: %p" , this)); |
6734 | |
6735 | switch (m_scan_value) { |
6736 | case 2: // Error |
6737 | break; |
6738 | case 1: // Table scan |
6739 | if (NO_CURRENT_PART_ID != m_part_spec.start_part) |
6740 | late_extra_no_cache(m_part_spec.start_part); |
6741 | file= m_file; |
6742 | do |
6743 | { |
6744 | if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file))) |
6745 | { |
6746 | if (m_pre_calling) |
6747 | (*file)->pre_ft_end(); |
6748 | else |
6749 | (*file)->ft_end(); |
6750 | } |
6751 | } while (*(++file)); |
6752 | break; |
6753 | } |
6754 | m_scan_value= 2; |
6755 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
6756 | ft_current= 0; |
6757 | DBUG_VOID_RETURN; |
6758 | } |
6759 | |
6760 | |
6761 | /** |
6762 | Terminate a full text search during a bulk access request. |
6763 | */ |
6764 | |
6765 | int ha_partition::pre_ft_end() |
6766 | { |
6767 | bool save_m_pre_calling; |
6768 | DBUG_ENTER("ha_partition::pre_ft_end" ); |
6769 | save_m_pre_calling= m_pre_calling; |
6770 | m_pre_calling= TRUE; |
6771 | ft_end(); |
6772 | m_pre_calling= save_m_pre_calling; |
6773 | DBUG_RETURN(0); |
6774 | } |
6775 | |
6776 | |
6777 | /** |
6778 | Initialize a full text search using the extended API. |
6779 | |
6780 | @param flags Search flags |
6781 | @param inx Key number |
6782 | @param key Key value |
6783 | |
6784 | @return FT_INFO structure if successful |
6785 | NULL otherwise |
6786 | */ |
6787 | |
6788 | FT_INFO *ha_partition::ft_init_ext(uint flags, uint inx, String *key) |
6789 | { |
6790 | FT_INFO *ft_handler; |
6791 | handler **file; |
6792 | st_partition_ft_info *ft_target, **parent; |
6793 | DBUG_ENTER("ha_partition::ft_init_ext" ); |
6794 | |
6795 | if (ft_current) |
6796 | parent= &ft_current->next; |
6797 | else |
6798 | parent= &ft_first; |
6799 | |
6800 | if (!(ft_target= *parent)) |
6801 | { |
6802 | FT_INFO **tmp_ft_info; |
6803 | if (!(ft_target= (st_partition_ft_info *) |
6804 | my_multi_malloc(MYF(MY_WME | MY_ZEROFILL), |
6805 | &ft_target, |
6806 | sizeof(st_partition_ft_info), |
6807 | &tmp_ft_info, |
6808 | sizeof(FT_INFO *) * m_tot_parts, |
6809 | NullS))) |
6810 | { |
6811 | my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR)); |
6812 | DBUG_RETURN(NULL); |
6813 | } |
6814 | ft_target->part_ft_info= tmp_ft_info; |
6815 | (*parent)= ft_target; |
6816 | } |
6817 | |
6818 | ft_current= ft_target; |
6819 | file= m_file; |
6820 | do |
6821 | { |
6822 | if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file))) |
6823 | { |
6824 | if ((ft_handler= (*file)->ft_init_ext(flags, inx, key))) |
6825 | (*file)->ft_handler= ft_handler; |
6826 | else |
6827 | (*file)->ft_handler= NULL; |
6828 | ft_target->part_ft_info[file - m_file]= ft_handler; |
6829 | } |
6830 | else |
6831 | { |
6832 | (*file)->ft_handler= NULL; |
6833 | ft_target->part_ft_info[file - m_file]= NULL; |
6834 | } |
6835 | } while (*(++file)); |
6836 | |
6837 | ft_target->please= &partition_ft_vft; |
6838 | ft_target->file= this; |
6839 | DBUG_RETURN((FT_INFO*)ft_target); |
6840 | } |
6841 | |
6842 | |
6843 | /** |
6844 | Return the next record from the FT result set during an ordered index |
6845 | pre-scan |
6846 | |
6847 | @param use_parallel Is it a parallel search |
6848 | |
6849 | @return >0 Error code |
6850 | 0 Success |
6851 | */ |
6852 | |
6853 | int ha_partition::pre_ft_read(bool use_parallel) |
6854 | { |
6855 | bool save_m_pre_calling; |
6856 | int error; |
6857 | DBUG_ENTER("ha_partition::pre_ft_read" ); |
6858 | DBUG_PRINT("info" , ("partition this: %p" , this)); |
6859 | save_m_pre_calling= m_pre_calling; |
6860 | m_pre_calling= TRUE; |
6861 | m_pre_call_use_parallel= use_parallel; |
6862 | error= ft_read(table->record[0]); |
6863 | m_pre_calling= save_m_pre_calling; |
6864 | DBUG_RETURN(error); |
6865 | } |
6866 | |
6867 | |
6868 | /** |
6869 | Return the first or next record in a full text search. |
6870 | |
6871 | @param buf Buffer where the record should be returned |
6872 | |
6873 | @return >0 Error code |
6874 | 0 Success |
6875 | */ |
6876 | |
6877 | int ha_partition::ft_read(uchar *buf) |
6878 | { |
6879 | handler *file; |
6880 | int result= HA_ERR_END_OF_FILE, error; |
6881 | uint part_id= m_part_spec.start_part; |
6882 | DBUG_ENTER("ha_partition::ft_read" ); |
6883 | DBUG_PRINT("info" , ("partition this: %p" , this)); |
6884 | DBUG_PRINT("info" , ("part_id: %u" , part_id)); |
6885 | |
6886 | if (part_id == NO_CURRENT_PART_ID) |
6887 | { |
6888 | /* |
6889 | The original set of partitions to scan was empty and thus we report |
6890 | the result here. |
6891 | */ |
6892 | DBUG_PRINT("info" , ("NO_CURRENT_PART_ID" )); |
6893 | goto end; |
6894 | } |
6895 | |
6896 | DBUG_ASSERT(m_scan_value == 1); |
6897 | |
6898 | if (m_ft_init_and_first) // First call to ft_read() |
6899 | { |
6900 | m_ft_init_and_first= FALSE; |
6901 | if (!bulk_access_executing) |
6902 | { |
6903 | error= handle_pre_scan(FALSE, check_parallel_search()); |
6904 | if (m_pre_calling || error) |
6905 | DBUG_RETURN(error); |
6906 | } |
6907 | late_extra_cache(part_id); |
6908 | } |
6909 | |
6910 | file= m_file[part_id]; |
6911 | |
6912 | while (TRUE) |
6913 | { |
6914 | if (!(result= file->ft_read(buf))) |
6915 | { |
6916 | /* Found row: remember position and return it. */ |
6917 | m_part_spec.start_part= m_last_part= part_id; |
6918 | table->status= 0; |
6919 | DBUG_RETURN(0); |
6920 | } |
6921 | |
6922 | /* |
6923 | if we get here, then the current partition ft_next returned failure |
6924 | */ |
6925 | if (result != HA_ERR_END_OF_FILE) |
6926 | goto end_dont_reset_start_part; // Return error |
6927 | |
6928 | /* End current partition */ |
6929 | late_extra_no_cache(part_id); |
6930 | DBUG_PRINT("info" , ("stopping using partition %u" , (uint) part_id)); |
6931 | |
6932 | /* Shift to next partition */ |
6933 | while (++part_id < m_tot_parts && |
6934 | !bitmap_is_set(&(m_part_info->read_partitions), part_id)) |
6935 | ; |
6936 | if (part_id >= m_tot_parts) |
6937 | { |
6938 | result= HA_ERR_END_OF_FILE; |
6939 | break; |
6940 | } |
6941 | m_part_spec.start_part= m_last_part= part_id; |
6942 | file= m_file[part_id]; |
6943 | DBUG_PRINT("info" , ("now using partition %u" , (uint) part_id)); |
6944 | late_extra_cache(part_id); |
6945 | } |
6946 | |
6947 | end: |
6948 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
6949 | end_dont_reset_start_part: |
6950 | table->status= STATUS_NOT_FOUND; |
6951 | DBUG_RETURN(result); |
6952 | } |
6953 | |
6954 | |
6955 | /* |
6956 | Common routine to set up index scans |
6957 | |
6958 | SYNOPSIS |
6959 | ha_partition::partition_scan_set_up() |
6960 | buf Buffer to later return record in (this function |
6961 | needs it to calculcate partitioning function |
6962 | values) |
6963 | |
6964 | idx_read_flag TRUE <=> m_start_key has range start endpoint which |
6965 | probably can be used to determine the set of partitions |
6966 | to scan. |
6967 | FALSE <=> there is no start endpoint. |
6968 | |
6969 | DESCRIPTION |
6970 | Find out which partitions we'll need to read when scanning the specified |
6971 | range. |
6972 | |
6973 | If we need to scan only one partition, set m_ordered_scan_ongoing=FALSE |
6974 | as we will not need to do merge ordering. |
6975 | |
6976 | RETURN VALUE |
6977 | >0 Error code |
6978 | 0 Success |
6979 | */ |
6980 | |
6981 | int ha_partition::partition_scan_set_up(uchar * buf, bool idx_read_flag) |
6982 | { |
6983 | DBUG_ENTER("ha_partition::partition_scan_set_up" ); |
6984 | |
6985 | if (idx_read_flag) |
6986 | get_partition_set(table, buf, active_index, &m_start_key, &m_part_spec); |
6987 | else |
6988 | { |
6989 | m_part_spec.start_part= 0; |
6990 | m_part_spec.end_part= m_tot_parts - 1; |
6991 | } |
6992 | if (m_part_spec.start_part > m_part_spec.end_part) |
6993 | { |
6994 | /* |
6995 | We discovered a partition set but the set was empty so we report |
6996 | key not found. |
6997 | */ |
6998 | DBUG_PRINT("info" , ("scan with no partition to scan" )); |
6999 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7000 | } |
7001 | if (m_part_spec.start_part == m_part_spec.end_part) |
7002 | { |
7003 | /* |
7004 | We discovered a single partition to scan, this never needs to be |
7005 | performed using the ordered index scan. |
7006 | */ |
7007 | DBUG_PRINT("info" , ("index scan using the single partition %u" , |
7008 | (uint) m_part_spec.start_part)); |
7009 | m_ordered_scan_ongoing= FALSE; |
7010 | } |
7011 | else |
7012 | { |
7013 | /* |
7014 | Set m_ordered_scan_ongoing according how the scan should be done |
7015 | Only exact partitions are discovered atm by get_partition_set. |
7016 | Verify this, also bitmap must have at least one bit set otherwise |
7017 | the result from this table is the empty set. |
7018 | */ |
7019 | uint start_part= bitmap_get_first_set(&(m_part_info->read_partitions)); |
7020 | if (start_part == MY_BIT_NONE) |
7021 | { |
7022 | DBUG_PRINT("info" , ("scan with no partition to scan" )); |
7023 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7024 | } |
7025 | if (start_part > m_part_spec.start_part) |
7026 | m_part_spec.start_part= start_part; |
7027 | DBUG_ASSERT(m_part_spec.start_part < m_tot_parts); |
7028 | m_ordered_scan_ongoing= m_ordered; |
7029 | } |
7030 | DBUG_ASSERT(m_part_spec.start_part < m_tot_parts && |
7031 | m_part_spec.end_part < m_tot_parts); |
7032 | DBUG_RETURN(0); |
7033 | } |
7034 | |
7035 | /** |
7036 | Check if we can search partitions in parallel |
7037 | |
7038 | @retval TRUE yes |
7039 | @retval FALSE no |
7040 | */ |
7041 | |
7042 | bool ha_partition::check_parallel_search() |
7043 | { |
7044 | TABLE_LIST *table_list= table->pos_in_table_list; |
7045 | st_select_lex *select_lex; |
7046 | JOIN *join; |
7047 | DBUG_ENTER("ha_partition::check_parallel_search" ); |
7048 | if (!table_list) |
7049 | goto not_parallel; |
7050 | |
7051 | while (table_list->parent_l) |
7052 | table_list= table_list->parent_l; |
7053 | |
7054 | select_lex= table_list->select_lex; |
7055 | DBUG_PRINT("info" ,("partition select_lex: %p" , select_lex)); |
7056 | if (!select_lex) |
7057 | goto not_parallel; |
7058 | if (!select_lex->explicit_limit) |
7059 | { |
7060 | DBUG_PRINT("info" ,("partition not using explicit_limit" )); |
7061 | goto parallel; |
7062 | } |
7063 | |
7064 | join= select_lex->join; |
7065 | DBUG_PRINT("info" ,("partition join: %p" , join)); |
7066 | if (join && join->skip_sort_order) |
7067 | { |
7068 | DBUG_PRINT("info" ,("partition order_list.elements: %u" , |
7069 | select_lex->order_list.elements)); |
7070 | if (select_lex->order_list.elements) |
7071 | { |
7072 | Item *item= *select_lex->order_list.first->item; |
7073 | DBUG_PRINT("info" ,("partition item: %p" , item)); |
7074 | DBUG_PRINT("info" ,("partition item->type(): %u" , item->type())); |
7075 | DBUG_PRINT("info" ,("partition m_part_info->part_type: %u" , |
7076 | m_part_info->part_type)); |
7077 | DBUG_PRINT("info" ,("partition m_is_sub_partitioned: %s" , |
7078 | m_is_sub_partitioned ? "TRUE" : "FALSE" )); |
7079 | DBUG_PRINT("info" ,("partition m_part_info->part_expr: %p" , |
7080 | m_part_info->part_expr)); |
7081 | if (item->type() == Item::FIELD_ITEM && |
7082 | m_part_info->part_type == RANGE_PARTITION && |
7083 | !m_is_sub_partitioned && |
7084 | (!m_part_info->part_expr || |
7085 | m_part_info->part_expr->type() == Item::FIELD_ITEM)) |
7086 | { |
7087 | Field *order_field= ((Item_field *)item)->field; |
7088 | DBUG_PRINT("info" ,("partition order_field: %p" , order_field)); |
7089 | if (order_field && order_field->table == table_list->table) |
7090 | { |
7091 | Field *part_field= m_part_info->full_part_field_array[0]; |
7092 | if (set_top_table_fields) |
7093 | order_field= top_table_field[order_field->field_index]; |
7094 | DBUG_PRINT("info" ,("partition order_field: %p" , order_field)); |
7095 | DBUG_PRINT("info" ,("partition part_field: %p" , part_field)); |
7096 | if (part_field == order_field) |
7097 | { |
7098 | /* |
7099 | We are using ORDER BY partition_field LIMIT # |
7100 | In this case, let's not do things in parallel as it's |
7101 | likely that the query can be satisfied from the first |
7102 | partition |
7103 | */ |
7104 | DBUG_PRINT("info" ,("partition with ORDER on partition field" )); |
7105 | goto not_parallel; |
7106 | } |
7107 | } |
7108 | } |
7109 | DBUG_PRINT("info" ,("partition have order" )); |
7110 | goto parallel; |
7111 | } |
7112 | |
7113 | DBUG_PRINT("info" ,("partition group_list.elements: %u" , |
7114 | select_lex->group_list.elements)); |
7115 | if (select_lex->group_list.elements) |
7116 | { |
7117 | Item *item= *select_lex->group_list.first->item; |
7118 | DBUG_PRINT("info" ,("partition item: %p" , item)); |
7119 | DBUG_PRINT("info" ,("partition item->type(): %u" , item->type())); |
7120 | DBUG_PRINT("info" ,("partition m_part_info->part_type: %u" , |
7121 | m_part_info->part_type)); |
7122 | DBUG_PRINT("info" ,("partition m_is_sub_partitioned: %s" , |
7123 | m_is_sub_partitioned ? "TRUE" : "FALSE" )); |
7124 | DBUG_PRINT("info" ,("partition m_part_info->part_expr: %p" , |
7125 | m_part_info->part_expr)); |
7126 | if (item->type() == Item::FIELD_ITEM && |
7127 | m_part_info->part_type == RANGE_PARTITION && |
7128 | !m_is_sub_partitioned && |
7129 | (!m_part_info->part_expr || |
7130 | m_part_info->part_expr->type() == Item::FIELD_ITEM)) |
7131 | { |
7132 | Field *group_field= ((Item_field *)item)->field; |
7133 | DBUG_PRINT("info" ,("partition group_field: %p" , group_field)); |
7134 | if (group_field && group_field->table == table_list->table) |
7135 | { |
7136 | Field *part_field= m_part_info->full_part_field_array[0]; |
7137 | if (set_top_table_fields) |
7138 | group_field= top_table_field[group_field->field_index]; |
7139 | DBUG_PRINT("info" ,("partition group_field: %p" , group_field)); |
7140 | DBUG_PRINT("info" ,("partition part_field: %p" , part_field)); |
7141 | if (part_field == group_field) |
7142 | { |
7143 | DBUG_PRINT("info" ,("partition with GROUP BY on partition field" )); |
7144 | goto not_parallel; |
7145 | } |
7146 | } |
7147 | } |
7148 | DBUG_PRINT("info" ,("partition with GROUP BY" )); |
7149 | goto parallel; |
7150 | } |
7151 | } |
7152 | else if (select_lex->order_list.elements || |
7153 | select_lex->group_list.elements) |
7154 | { |
7155 | DBUG_PRINT("info" ,("partition is not skip_order" )); |
7156 | DBUG_PRINT("info" ,("partition order_list.elements: %u" , |
7157 | select_lex->order_list.elements)); |
7158 | DBUG_PRINT("info" ,("partition group_list.elements: %u" , |
7159 | select_lex->group_list.elements)); |
7160 | goto parallel; |
7161 | } |
7162 | DBUG_PRINT("info" ,("partition is not skip_order" )); |
7163 | |
7164 | not_parallel: |
7165 | DBUG_PRINT("return" ,("partition FALSE" )); |
7166 | DBUG_RETURN(FALSE); |
7167 | |
7168 | parallel: |
7169 | DBUG_PRINT("return" ,("partition TRUE" )); |
7170 | DBUG_RETURN(TRUE); |
7171 | } |
7172 | |
7173 | |
7174 | int ha_partition::handle_pre_scan(bool reverse_order, bool use_parallel) |
7175 | { |
7176 | uint i; |
7177 | DBUG_ENTER("ha_partition::handle_pre_scan" ); |
7178 | DBUG_PRINT("enter" , |
7179 | ("m_part_spec.start_part: %u m_part_spec.end_part: %u" , |
7180 | (uint) m_part_spec.start_part, (uint) m_part_spec.end_part)); |
7181 | |
7182 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
7183 | { |
7184 | if (!(bitmap_is_set(&(m_part_info->read_partitions), i))) |
7185 | continue; |
7186 | int error; |
7187 | handler *file= m_file[i]; |
7188 | |
7189 | switch (m_index_scan_type) { |
7190 | case partition_index_read: |
7191 | error= file->pre_index_read_map(m_start_key.key, |
7192 | m_start_key.keypart_map, |
7193 | m_start_key.flag, |
7194 | use_parallel); |
7195 | break; |
7196 | case partition_index_first: |
7197 | error= file->pre_index_first(use_parallel); |
7198 | break; |
7199 | case partition_index_last: |
7200 | error= file->pre_index_last(use_parallel); |
7201 | break; |
7202 | case partition_index_read_last: |
7203 | error= file->pre_index_read_last_map(m_start_key.key, |
7204 | m_start_key.keypart_map, |
7205 | use_parallel); |
7206 | break; |
7207 | case partition_read_range: |
7208 | error= file->pre_read_range_first(m_start_key.key? &m_start_key: NULL, |
7209 | end_range, eq_range, TRUE, use_parallel); |
7210 | break; |
7211 | case partition_read_multi_range: |
7212 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7213 | continue; |
7214 | error= file->pre_multi_range_read_next(use_parallel); |
7215 | break; |
7216 | case partition_ft_read: |
7217 | error= file->pre_ft_read(use_parallel); |
7218 | break; |
7219 | case partition_no_index_scan: |
7220 | error= file->pre_rnd_next(use_parallel); |
7221 | break; |
7222 | default: |
7223 | DBUG_ASSERT(FALSE); |
7224 | DBUG_RETURN(0); |
7225 | } |
7226 | if (error == HA_ERR_END_OF_FILE) |
7227 | error= 0; |
7228 | if (unlikely(error)) |
7229 | DBUG_RETURN(error); |
7230 | } |
7231 | table->status= 0; |
7232 | DBUG_RETURN(0); |
7233 | } |
7234 | |
7235 | |
7236 | /**************************************************************************** |
7237 | Unordered Index Scan Routines |
7238 | ****************************************************************************/ |
7239 | /* |
7240 | Common routine to handle index_next with unordered results |
7241 | |
7242 | SYNOPSIS |
7243 | handle_unordered_next() |
7244 | out:buf Read row in MySQL Row Format |
7245 | next_same Called from index_next_same |
7246 | |
7247 | RETURN VALUE |
7248 | HA_ERR_END_OF_FILE End of scan |
7249 | 0 Success |
7250 | other Error code |
7251 | |
7252 | DESCRIPTION |
7253 | These routines are used to scan partitions without considering order. |
7254 | This is performed in two situations. |
7255 | 1) In read_multi_range this is the normal case |
7256 | 2) When performing any type of index_read, index_first, index_last where |
7257 | all fields in the partition function is bound. In this case the index |
7258 | scan is performed on only one partition and thus it isn't necessary to |
7259 | perform any sort. |
7260 | */ |
7261 | |
7262 | int ha_partition::handle_unordered_next(uchar *buf, bool is_next_same) |
7263 | { |
7264 | handler *file; |
7265 | int error; |
7266 | DBUG_ENTER("ha_partition::handle_unordered_next" ); |
7267 | |
7268 | if (m_part_spec.start_part >= m_tot_parts) |
7269 | { |
7270 | /* Should never happen! */ |
7271 | DBUG_ASSERT(0); |
7272 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7273 | } |
7274 | file= m_file[m_part_spec.start_part]; |
7275 | |
7276 | /* |
7277 | We should consider if this should be split into three functions as |
7278 | partition_read_range is_next_same are always local constants |
7279 | */ |
7280 | |
7281 | if (m_index_scan_type == partition_read_multi_range) |
7282 | { |
7283 | if (likely(!(error= file-> |
7284 | multi_range_read_next(&m_range_info[m_part_spec.start_part])))) |
7285 | { |
7286 | m_last_part= m_part_spec.start_part; |
7287 | DBUG_RETURN(0); |
7288 | } |
7289 | } |
7290 | else if (m_index_scan_type == partition_read_range) |
7291 | { |
7292 | if (likely(!(error= file->read_range_next()))) |
7293 | { |
7294 | m_last_part= m_part_spec.start_part; |
7295 | DBUG_RETURN(0); |
7296 | } |
7297 | } |
7298 | else if (is_next_same) |
7299 | { |
7300 | if (likely(!(error= file->ha_index_next_same(buf, m_start_key.key, |
7301 | m_start_key.length)))) |
7302 | { |
7303 | m_last_part= m_part_spec.start_part; |
7304 | DBUG_RETURN(0); |
7305 | } |
7306 | } |
7307 | else |
7308 | { |
7309 | if (likely(!(error= file->ha_index_next(buf)))) |
7310 | { |
7311 | m_last_part= m_part_spec.start_part; |
7312 | DBUG_RETURN(0); // Row was in range |
7313 | } |
7314 | } |
7315 | |
7316 | if (unlikely(error == HA_ERR_END_OF_FILE)) |
7317 | { |
7318 | m_part_spec.start_part++; // Start using next part |
7319 | error= handle_unordered_scan_next_partition(buf); |
7320 | } |
7321 | DBUG_RETURN(error); |
7322 | } |
7323 | |
7324 | |
7325 | /* |
7326 | Handle index_next when changing to new partition |
7327 | |
7328 | SYNOPSIS |
7329 | handle_unordered_scan_next_partition() |
7330 | buf Read row in MariaDB Row Format |
7331 | |
7332 | RETURN VALUE |
7333 | HA_ERR_END_OF_FILE End of scan |
7334 | 0 Success |
7335 | other Error code |
7336 | |
7337 | DESCRIPTION |
7338 | This routine is used to start the index scan on the next partition. |
7339 | Both initial start and after completing scan on one partition. |
7340 | */ |
7341 | |
7342 | int ha_partition::handle_unordered_scan_next_partition(uchar * buf) |
7343 | { |
7344 | uint i= m_part_spec.start_part; |
7345 | int saved_error= HA_ERR_END_OF_FILE; |
7346 | DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition" ); |
7347 | |
7348 | /* Read next partition that includes start_part */ |
7349 | if (i) |
7350 | i= bitmap_get_next_set(&m_part_info->read_partitions, i - 1); |
7351 | else |
7352 | i= bitmap_get_first_set(&m_part_info->read_partitions); |
7353 | |
7354 | for (; |
7355 | i <= m_part_spec.end_part; |
7356 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
7357 | { |
7358 | int error; |
7359 | handler *file= m_file[i]; |
7360 | m_part_spec.start_part= i; |
7361 | |
7362 | switch (m_index_scan_type) { |
7363 | case partition_read_multi_range: |
7364 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7365 | continue; |
7366 | DBUG_PRINT("info" , ("read_multi_range on partition %u" , i)); |
7367 | error= file->multi_range_read_next(&m_range_info[i]); |
7368 | break; |
7369 | case partition_read_range: |
7370 | DBUG_PRINT("info" , ("read_range_first on partition %u" , i)); |
7371 | error= file->read_range_first(m_start_key.key? &m_start_key: NULL, |
7372 | end_range, eq_range, FALSE); |
7373 | break; |
7374 | case partition_index_read: |
7375 | DBUG_PRINT("info" , ("index_read on partition %u" , i)); |
7376 | error= file->ha_index_read_map(buf, m_start_key.key, |
7377 | m_start_key.keypart_map, |
7378 | m_start_key.flag); |
7379 | break; |
7380 | case partition_index_first: |
7381 | DBUG_PRINT("info" , ("index_first on partition %u" , i)); |
7382 | error= file->ha_index_first(buf); |
7383 | break; |
7384 | default: |
7385 | DBUG_ASSERT(FALSE); |
7386 | DBUG_RETURN(1); |
7387 | } |
7388 | if (likely(!error)) |
7389 | { |
7390 | m_last_part= i; |
7391 | DBUG_RETURN(0); |
7392 | } |
7393 | if (likely((error != HA_ERR_END_OF_FILE) && |
7394 | (error != HA_ERR_KEY_NOT_FOUND))) |
7395 | DBUG_RETURN(error); |
7396 | |
7397 | /* |
7398 | If HA_ERR_KEY_NOT_FOUND, we must return that error instead of |
7399 | HA_ERR_END_OF_FILE, to be able to continue search. |
7400 | */ |
7401 | if (saved_error != HA_ERR_KEY_NOT_FOUND) |
7402 | saved_error= error; |
7403 | DBUG_PRINT("info" , ("END_OF_FILE/KEY_NOT_FOUND on partition %u" , i)); |
7404 | } |
7405 | if (saved_error == HA_ERR_END_OF_FILE) |
7406 | m_part_spec.start_part= NO_CURRENT_PART_ID; |
7407 | DBUG_RETURN(saved_error); |
7408 | } |
7409 | |
7410 | |
7411 | /** |
7412 | Common routine to start index scan with ordered results. |
7413 | |
7414 | @param[out] buf Read row in MariaDB Row Format |
7415 | |
7416 | @return Operation status |
7417 | @retval HA_ERR_END_OF_FILE End of scan |
7418 | @retval HA_ERR_KEY_NOT_FOUNE End of scan |
7419 | @retval 0 Success |
7420 | @retval other Error code |
7421 | |
7422 | @details |
7423 | This part contains the logic to handle index scans that require ordered |
7424 | output. This includes all except those started by read_range_first with |
7425 | the flag ordered set to FALSE. Thus most direct index_read and all |
7426 | index_first and index_last. |
7427 | |
7428 | We implement ordering by keeping one record plus a key buffer for each |
7429 | partition. Every time a new entry is requested we will fetch a new |
7430 | entry from the partition that is currently not filled with an entry. |
7431 | Then the entry is put into its proper sort position. |
7432 | |
7433 | Returning a record is done by getting the top record, copying the |
7434 | record to the request buffer and setting the partition as empty on |
7435 | entries. |
7436 | */ |
7437 | |
7438 | int ha_partition::handle_ordered_index_scan(uchar *buf, bool reverse_order) |
7439 | { |
7440 | int error; |
7441 | uint i; |
7442 | uint j= queue_first_element(&m_queue); |
7443 | uint smallest_range_seq= 0; |
7444 | bool found= FALSE; |
7445 | uchar *part_rec_buf_ptr= m_ordered_rec_buffer; |
7446 | int saved_error= HA_ERR_END_OF_FILE; |
7447 | DBUG_ENTER("ha_partition::handle_ordered_index_scan" ); |
7448 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
7449 | |
7450 | if (m_pre_calling) |
7451 | error= handle_pre_scan(reverse_order, m_pre_call_use_parallel); |
7452 | else |
7453 | error= handle_pre_scan(reverse_order, check_parallel_search()); |
7454 | if (unlikely(error)) |
7455 | DBUG_RETURN(error); |
7456 | |
7457 | if (m_key_not_found) |
7458 | { |
7459 | /* m_key_not_found was set in the previous call to this function */ |
7460 | m_key_not_found= false; |
7461 | bitmap_clear_all(&m_key_not_found_partitions); |
7462 | } |
7463 | m_top_entry= NO_CURRENT_PART_ID; |
7464 | DBUG_PRINT("info" , ("partition queue_remove_all(1)" )); |
7465 | queue_remove_all(&m_queue); |
7466 | DBUG_ASSERT(bitmap_is_set(&m_part_info->read_partitions, |
7467 | m_part_spec.start_part)); |
7468 | |
7469 | /* |
7470 | Position part_rec_buf_ptr to point to the first used partition >= |
7471 | start_part. There may be partitions marked by used_partitions, |
7472 | but is before start_part. These partitions has allocated record buffers |
7473 | but is dynamically pruned, so those buffers must be skipped. |
7474 | */ |
7475 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
7476 | i < m_part_spec.start_part; |
7477 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
7478 | { |
7479 | part_rec_buf_ptr+= m_priority_queue_rec_len; |
7480 | } |
7481 | DBUG_PRINT("info" , ("m_part_spec.start_part %u first_used_part %u" , |
7482 | m_part_spec.start_part, i)); |
7483 | for (/* continue from above */ ; |
7484 | i <= m_part_spec.end_part ; |
7485 | i= bitmap_get_next_set(&m_part_info->read_partitions, i), |
7486 | part_rec_buf_ptr+= m_priority_queue_rec_len) |
7487 | { |
7488 | DBUG_PRINT("info" , ("reading from part %u (scan_type: %u)" , |
7489 | i, m_index_scan_type)); |
7490 | DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr)); |
7491 | uchar *rec_buf_ptr= part_rec_buf_ptr + PARTITION_BYTES_IN_POS; |
7492 | handler *file= m_file[i]; |
7493 | |
7494 | switch (m_index_scan_type) { |
7495 | case partition_index_read: |
7496 | error= file->ha_index_read_map(rec_buf_ptr, |
7497 | m_start_key.key, |
7498 | m_start_key.keypart_map, |
7499 | m_start_key.flag); |
7500 | /* Caller has specified reverse_order */ |
7501 | break; |
7502 | case partition_index_first: |
7503 | error= file->ha_index_first(rec_buf_ptr); |
7504 | reverse_order= FALSE; |
7505 | break; |
7506 | case partition_index_last: |
7507 | error= file->ha_index_last(rec_buf_ptr); |
7508 | reverse_order= TRUE; |
7509 | break; |
7510 | case partition_read_range: |
7511 | { |
7512 | /* |
7513 | This can only read record to table->record[0], as it was set when |
7514 | the table was being opened. We have to memcpy data ourselves. |
7515 | */ |
7516 | error= file->read_range_first(m_start_key.key? &m_start_key: NULL, |
7517 | end_range, eq_range, TRUE); |
7518 | if (likely(!error)) |
7519 | memcpy(rec_buf_ptr, table->record[0], m_rec_length); |
7520 | reverse_order= FALSE; |
7521 | break; |
7522 | } |
7523 | case partition_read_multi_range: |
7524 | { |
7525 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7526 | continue; |
7527 | DBUG_PRINT("info" , ("partition %u" , i)); |
7528 | error= file->multi_range_read_next(&m_range_info[i]); |
7529 | DBUG_PRINT("info" , ("error: %d" , error)); |
7530 | if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE) |
7531 | { |
7532 | bitmap_clear_bit(&m_mrr_used_partitions, i); |
7533 | continue; |
7534 | } |
7535 | if (likely(!error)) |
7536 | { |
7537 | memcpy(rec_buf_ptr, table->record[0], m_rec_length); |
7538 | reverse_order= FALSE; |
7539 | m_stock_range_seq[i]= (((PARTITION_KEY_MULTI_RANGE *) |
7540 | m_range_info[i])->id); |
7541 | /* Test if the key is in the first key range */ |
7542 | if (m_stock_range_seq[i] != m_mrr_range_current->id) |
7543 | { |
7544 | /* |
7545 | smallest_range_seq contains the smallest key range we have seen |
7546 | so far |
7547 | */ |
7548 | if (!smallest_range_seq || smallest_range_seq > m_stock_range_seq[i]) |
7549 | smallest_range_seq= m_stock_range_seq[i]; |
7550 | continue; |
7551 | } |
7552 | } |
7553 | break; |
7554 | } |
7555 | default: |
7556 | DBUG_ASSERT(FALSE); |
7557 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7558 | } |
7559 | if (likely(!error)) |
7560 | { |
7561 | found= TRUE; |
7562 | if (!m_using_extended_keys) |
7563 | { |
7564 | file->position(rec_buf_ptr); |
7565 | memcpy(rec_buf_ptr + m_rec_length, file->ref, file->ref_length); |
7566 | } |
7567 | /* |
7568 | Initialize queue without order first, simply insert |
7569 | */ |
7570 | queue_element(&m_queue, j++)= part_rec_buf_ptr; |
7571 | } |
7572 | else if (error == HA_ERR_KEY_NOT_FOUND) |
7573 | { |
7574 | DBUG_PRINT("info" , ("HA_ERR_KEY_NOT_FOUND from partition %u" , i)); |
7575 | bitmap_set_bit(&m_key_not_found_partitions, i); |
7576 | m_key_not_found= true; |
7577 | saved_error= error; |
7578 | } |
7579 | else if (error != HA_ERR_END_OF_FILE) |
7580 | { |
7581 | DBUG_RETURN(error); |
7582 | } |
7583 | } |
7584 | |
7585 | if (!found && smallest_range_seq) |
7586 | { |
7587 | /* We know that there is an existing row based on code above */ |
7588 | found= TRUE; |
7589 | part_rec_buf_ptr= m_ordered_rec_buffer; |
7590 | |
7591 | /* |
7592 | No key found in the first key range |
7593 | Collect all partitions that has a key in smallest_range_seq |
7594 | */ |
7595 | DBUG_PRINT("info" , ("partition !found && smallest_range_seq" )); |
7596 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
7597 | i <= m_part_spec.end_part; |
7598 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
7599 | { |
7600 | DBUG_PRINT("info" , ("partition current_part: %u" , i)); |
7601 | if (i < m_part_spec.start_part) |
7602 | { |
7603 | part_rec_buf_ptr+= m_priority_queue_rec_len; |
7604 | DBUG_PRINT("info" , ("partition i < m_part_spec.start_part" )); |
7605 | continue; |
7606 | } |
7607 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7608 | { |
7609 | part_rec_buf_ptr+= m_priority_queue_rec_len; |
7610 | DBUG_PRINT("info" , ("partition !bitmap_is_set(&m_mrr_used_partitions, i)" )); |
7611 | continue; |
7612 | } |
7613 | DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr)); |
7614 | if (smallest_range_seq == m_stock_range_seq[i]) |
7615 | { |
7616 | m_stock_range_seq[i]= 0; |
7617 | queue_element(&m_queue, j++)= (uchar *) part_rec_buf_ptr; |
7618 | DBUG_PRINT("info" , ("partition smallest_range_seq == m_stock_range_seq[i]" )); |
7619 | } |
7620 | part_rec_buf_ptr+= m_priority_queue_rec_len; |
7621 | } |
7622 | |
7623 | /* Update global m_mrr_range_current to the current range */ |
7624 | while (m_mrr_range_current->id < smallest_range_seq) |
7625 | m_mrr_range_current= m_mrr_range_current->next; |
7626 | } |
7627 | if (found) |
7628 | { |
7629 | /* |
7630 | We found at least one partition with data, now sort all entries and |
7631 | after that read the first entry and copy it to the buffer to return in. |
7632 | */ |
7633 | queue_set_max_at_top(&m_queue, reverse_order); |
7634 | queue_set_cmp_arg(&m_queue, (void*) this); |
7635 | m_queue.elements= j - queue_first_element(&m_queue); |
7636 | queue_fix(&m_queue); |
7637 | return_top_record(buf); |
7638 | DBUG_PRINT("info" , ("Record returned from partition %u" , m_top_entry)); |
7639 | DBUG_RETURN(0); |
7640 | } |
7641 | DBUG_RETURN(saved_error); |
7642 | } |
7643 | |
7644 | |
7645 | /* |
7646 | Return the top record in sort order |
7647 | |
7648 | SYNOPSIS |
7649 | return_top_record() |
7650 | out:buf Row returned in MySQL Row Format |
7651 | |
7652 | RETURN VALUE |
7653 | NONE |
7654 | */ |
7655 | |
7656 | void ha_partition::return_top_record(uchar *buf) |
7657 | { |
7658 | uint part_id; |
7659 | uchar *key_buffer= queue_top(&m_queue); |
7660 | uchar *rec_buffer= key_buffer + PARTITION_BYTES_IN_POS; |
7661 | DBUG_ENTER("ha_partition::return_top_record" ); |
7662 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
7663 | |
7664 | part_id= uint2korr(key_buffer); |
7665 | memcpy(buf, rec_buffer, m_rec_length); |
7666 | m_last_part= part_id; |
7667 | DBUG_PRINT("info" , ("partition m_last_part: %u" , m_last_part)); |
7668 | m_top_entry= part_id; |
7669 | table->status= 0; // Found an existing row |
7670 | m_file[part_id]->return_record_by_parent(); |
7671 | DBUG_VOID_RETURN; |
7672 | } |
7673 | |
7674 | /* |
7675 | This function is only used if the partitioned table has own partitions. |
7676 | This can happen if the partitioned VP engine is used (part of spider). |
7677 | */ |
7678 | |
7679 | void ha_partition::return_record_by_parent() |
7680 | { |
7681 | m_file[m_last_part]->return_record_by_parent(); |
7682 | DBUG_ASSERT(0); |
7683 | } |
7684 | |
7685 | |
7686 | /** |
7687 | Add index_next/prev from partitions without exact match. |
7688 | |
7689 | If there where any partitions that returned HA_ERR_KEY_NOT_FOUND when |
7690 | ha_index_read_map was done, those partitions must be included in the |
7691 | following index_next/prev call. |
7692 | */ |
7693 | |
7694 | int ha_partition::handle_ordered_index_scan_key_not_found() |
7695 | { |
7696 | int error; |
7697 | uint i, old_elements= m_queue.elements; |
7698 | uchar *part_buf= m_ordered_rec_buffer; |
7699 | uchar *curr_rec_buf= NULL; |
7700 | DBUG_ENTER("ha_partition::handle_ordered_index_scan_key_not_found" ); |
7701 | DBUG_PRINT("enter" , ("partition this: %p" , this)); |
7702 | DBUG_ASSERT(m_key_not_found); |
7703 | /* |
7704 | Loop over all used partitions to get the correct offset |
7705 | into m_ordered_rec_buffer. |
7706 | */ |
7707 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
7708 | i < m_tot_parts; |
7709 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
7710 | { |
7711 | if (bitmap_is_set(&m_key_not_found_partitions, i)) |
7712 | { |
7713 | /* |
7714 | This partition is used and did return HA_ERR_KEY_NOT_FOUND |
7715 | in index_read_map. |
7716 | */ |
7717 | curr_rec_buf= part_buf + PARTITION_BYTES_IN_POS; |
7718 | error= m_file[i]->ha_index_next(curr_rec_buf); |
7719 | /* HA_ERR_KEY_NOT_FOUND is not allowed from index_next! */ |
7720 | DBUG_ASSERT(error != HA_ERR_KEY_NOT_FOUND); |
7721 | if (likely(!error)) |
7722 | { |
7723 | DBUG_PRINT("info" , ("partition queue_insert(1)" )); |
7724 | queue_insert(&m_queue, part_buf); |
7725 | } |
7726 | else if (error != HA_ERR_END_OF_FILE && error != HA_ERR_KEY_NOT_FOUND) |
7727 | DBUG_RETURN(error); |
7728 | } |
7729 | part_buf += m_priority_queue_rec_len; |
7730 | } |
7731 | DBUG_ASSERT(curr_rec_buf); |
7732 | bitmap_clear_all(&m_key_not_found_partitions); |
7733 | m_key_not_found= false; |
7734 | |
7735 | if (m_queue.elements > old_elements) |
7736 | { |
7737 | /* Update m_top_entry, which may have changed. */ |
7738 | uchar *key_buffer= queue_top(&m_queue); |
7739 | m_top_entry= uint2korr(key_buffer); |
7740 | } |
7741 | DBUG_RETURN(0); |
7742 | } |
7743 | |
7744 | |
7745 | /* |
7746 | Common routine to handle index_next with ordered results |
7747 | |
7748 | SYNOPSIS |
7749 | handle_ordered_next() |
7750 | out:buf Read row in MySQL Row Format |
7751 | next_same Called from index_next_same |
7752 | |
7753 | RETURN VALUE |
7754 | HA_ERR_END_OF_FILE End of scan |
7755 | 0 Success |
7756 | other Error code |
7757 | */ |
7758 | |
7759 | int ha_partition::handle_ordered_next(uchar *buf, bool is_next_same) |
7760 | { |
7761 | int error; |
7762 | DBUG_ENTER("ha_partition::handle_ordered_next" ); |
7763 | |
7764 | if (m_top_entry == NO_CURRENT_PART_ID) |
7765 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7766 | |
7767 | uint part_id= m_top_entry; |
7768 | uchar *rec_buf= queue_top(&m_queue) + PARTITION_BYTES_IN_POS; |
7769 | handler *file; |
7770 | |
7771 | if (m_key_not_found) |
7772 | { |
7773 | if (is_next_same) |
7774 | { |
7775 | /* Only rows which match the key. */ |
7776 | m_key_not_found= false; |
7777 | bitmap_clear_all(&m_key_not_found_partitions); |
7778 | } |
7779 | else |
7780 | { |
7781 | /* There are partitions not included in the index record queue. */ |
7782 | uint old_elements= m_queue.elements; |
7783 | if (unlikely((error= handle_ordered_index_scan_key_not_found()))) |
7784 | DBUG_RETURN(error); |
7785 | /* |
7786 | If the queue top changed, i.e. one of the partitions that gave |
7787 | HA_ERR_KEY_NOT_FOUND in index_read_map found the next record, |
7788 | return it. |
7789 | Otherwise replace the old with a call to index_next (fall through). |
7790 | */ |
7791 | if (old_elements != m_queue.elements && part_id != m_top_entry) |
7792 | { |
7793 | return_top_record(buf); |
7794 | DBUG_RETURN(0); |
7795 | } |
7796 | } |
7797 | } |
7798 | if (part_id >= m_tot_parts) |
7799 | { |
7800 | /* This should never happen! */ |
7801 | DBUG_ASSERT(0); |
7802 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7803 | } |
7804 | |
7805 | file= m_file[part_id]; |
7806 | |
7807 | if (m_index_scan_type == partition_read_range) |
7808 | { |
7809 | error= file->read_range_next(); |
7810 | memcpy(rec_buf, table->record[0], m_rec_length); |
7811 | } |
7812 | else if (m_index_scan_type == partition_read_multi_range) |
7813 | { |
7814 | DBUG_PRINT("info" , ("partition_read_multi_range route" )); |
7815 | DBUG_PRINT("info" , ("part_id: %u" , part_id)); |
7816 | bool get_next= FALSE; |
7817 | error= file->multi_range_read_next(&m_range_info[part_id]); |
7818 | DBUG_PRINT("info" , ("error: %d" , error)); |
7819 | if (unlikely(error == HA_ERR_KEY_NOT_FOUND)) |
7820 | error= HA_ERR_END_OF_FILE; |
7821 | if (unlikely(error == HA_ERR_END_OF_FILE)) |
7822 | { |
7823 | bitmap_clear_bit(&m_mrr_used_partitions, part_id); |
7824 | DBUG_PRINT("info" , ("partition m_queue.elements: %u" , m_queue.elements)); |
7825 | if (m_queue.elements) |
7826 | { |
7827 | DBUG_PRINT("info" , ("partition queue_remove_top(1)" )); |
7828 | queue_remove_top(&m_queue); |
7829 | if (m_queue.elements) |
7830 | { |
7831 | return_top_record(buf); |
7832 | DBUG_PRINT("info" , ("Record returned from partition %u (3)" , |
7833 | m_top_entry)); |
7834 | DBUG_RETURN(0); |
7835 | } |
7836 | } |
7837 | get_next= TRUE; |
7838 | } |
7839 | else if (likely(!error)) |
7840 | { |
7841 | DBUG_PRINT("info" , ("m_range_info[%u])->id: %u" , part_id, |
7842 | ((PARTITION_KEY_MULTI_RANGE *) |
7843 | m_range_info[part_id])->id)); |
7844 | DBUG_PRINT("info" , ("m_mrr_range_current->id: %u" , |
7845 | m_mrr_range_current->id)); |
7846 | memcpy(rec_buf, table->record[0], m_rec_length); |
7847 | if (((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id != |
7848 | m_mrr_range_current->id) |
7849 | { |
7850 | m_stock_range_seq[part_id]= |
7851 | ((PARTITION_KEY_MULTI_RANGE *) m_range_info[part_id])->id; |
7852 | DBUG_PRINT("info" , ("partition queue_remove_top(2)" )); |
7853 | queue_remove_top(&m_queue); |
7854 | if (!m_queue.elements) |
7855 | get_next= TRUE; |
7856 | } |
7857 | } |
7858 | if (get_next) |
7859 | { |
7860 | DBUG_PRINT("info" , ("get_next route" )); |
7861 | uint i, j= 0, smallest_range_seq= UINT_MAX32; |
7862 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
7863 | { |
7864 | if (!(bitmap_is_set(&(m_part_info->read_partitions), i))) |
7865 | continue; |
7866 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7867 | continue; |
7868 | if (smallest_range_seq > m_stock_range_seq[i]) |
7869 | smallest_range_seq= m_stock_range_seq[i]; |
7870 | } |
7871 | |
7872 | DBUG_PRINT("info" , ("smallest_range_seq: %u" , smallest_range_seq)); |
7873 | if (smallest_range_seq != UINT_MAX32) |
7874 | { |
7875 | uchar *part_rec_buf_ptr= m_ordered_rec_buffer; |
7876 | DBUG_PRINT("info" , ("partition queue_remove_all(2)" )); |
7877 | queue_remove_all(&m_queue); |
7878 | DBUG_PRINT("info" , ("m_part_spec.start_part: %u" , |
7879 | m_part_spec.start_part)); |
7880 | |
7881 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
7882 | i <= m_part_spec.end_part; |
7883 | i= bitmap_get_next_set(&m_part_info->read_partitions, i), |
7884 | part_rec_buf_ptr+= m_priority_queue_rec_len) |
7885 | { |
7886 | DBUG_PRINT("info" ,("partition part_id: %u" , i)); |
7887 | if (i < m_part_spec.start_part) |
7888 | { |
7889 | DBUG_PRINT("info" ,("partition i < m_part_spec.start_part" )); |
7890 | continue; |
7891 | } |
7892 | if (!bitmap_is_set(&m_mrr_used_partitions, i)) |
7893 | { |
7894 | DBUG_PRINT("info" ,("partition !bitmap_is_set(&m_mrr_used_partitions, i)" )); |
7895 | continue; |
7896 | } |
7897 | DBUG_PRINT("info" ,("partition uint2korr: %u" , |
7898 | uint2korr(part_rec_buf_ptr))); |
7899 | DBUG_ASSERT(i == uint2korr(part_rec_buf_ptr)); |
7900 | DBUG_PRINT("info" , ("partition m_stock_range_seq[%u]: %u" , |
7901 | i, m_stock_range_seq[i])); |
7902 | if (smallest_range_seq == m_stock_range_seq[i]) |
7903 | { |
7904 | m_stock_range_seq[i]= 0; |
7905 | DBUG_PRINT("info" , ("partition queue_insert(2)" )); |
7906 | queue_insert(&m_queue, part_rec_buf_ptr); |
7907 | j++; |
7908 | } |
7909 | } |
7910 | while (m_mrr_range_current->id < smallest_range_seq) |
7911 | m_mrr_range_current= m_mrr_range_current->next; |
7912 | |
7913 | DBUG_PRINT("info" ,("partition m_mrr_range_current: %p" , |
7914 | m_mrr_range_current)); |
7915 | DBUG_PRINT("info" ,("partition m_mrr_range_current->id: %u" , |
7916 | m_mrr_range_current ? m_mrr_range_current->id : 0)); |
7917 | queue_set_max_at_top(&m_queue, FALSE); |
7918 | queue_set_cmp_arg(&m_queue, (void*) this); |
7919 | m_queue.elements= j; |
7920 | queue_fix(&m_queue); |
7921 | return_top_record(buf); |
7922 | DBUG_PRINT("info" , ("Record returned from partition %u (4)" , |
7923 | m_top_entry)); |
7924 | DBUG_RETURN(0); |
7925 | } |
7926 | } |
7927 | } |
7928 | else if (!is_next_same) |
7929 | error= file->ha_index_next(rec_buf); |
7930 | else |
7931 | error= file->ha_index_next_same(rec_buf, m_start_key.key, |
7932 | m_start_key.length); |
7933 | |
7934 | if (unlikely(error)) |
7935 | { |
7936 | if (error == HA_ERR_END_OF_FILE && m_queue.elements) |
7937 | { |
7938 | /* Return next buffered row */ |
7939 | DBUG_PRINT("info" , ("partition queue_remove_top(3)" )); |
7940 | queue_remove_top(&m_queue); |
7941 | if (m_queue.elements) |
7942 | { |
7943 | return_top_record(buf); |
7944 | DBUG_PRINT("info" , ("Record returned from partition %u (2)" , |
7945 | m_top_entry)); |
7946 | error= 0; |
7947 | } |
7948 | } |
7949 | DBUG_RETURN(error); |
7950 | } |
7951 | |
7952 | if (!m_using_extended_keys) |
7953 | { |
7954 | file->position(rec_buf); |
7955 | memcpy(rec_buf + m_rec_length, file->ref, file->ref_length); |
7956 | } |
7957 | |
7958 | queue_replace_top(&m_queue); |
7959 | return_top_record(buf); |
7960 | DBUG_PRINT("info" , ("Record returned from partition %u" , m_top_entry)); |
7961 | DBUG_RETURN(0); |
7962 | } |
7963 | |
7964 | |
7965 | /* |
7966 | Common routine to handle index_prev with ordered results |
7967 | |
7968 | SYNOPSIS |
7969 | handle_ordered_prev() |
7970 | out:buf Read row in MySQL Row Format |
7971 | |
7972 | RETURN VALUE |
7973 | HA_ERR_END_OF_FILE End of scan |
7974 | 0 Success |
7975 | other Error code |
7976 | */ |
7977 | |
7978 | int ha_partition::handle_ordered_prev(uchar *buf) |
7979 | { |
7980 | int error; |
7981 | DBUG_ENTER("ha_partition::handle_ordered_prev" ); |
7982 | DBUG_PRINT("enter" , ("partition: %p" , this)); |
7983 | |
7984 | if (m_top_entry == NO_CURRENT_PART_ID) |
7985 | DBUG_RETURN(HA_ERR_END_OF_FILE); |
7986 | |
7987 | uint part_id= m_top_entry; |
7988 | uchar *rec_buf= queue_top(&m_queue) + PARTITION_BYTES_IN_POS; |
7989 | handler *file= m_file[part_id]; |
7990 | |
7991 | if (unlikely((error= file->ha_index_prev(rec_buf)))) |
7992 | { |
7993 | if (error == HA_ERR_END_OF_FILE && m_queue.elements) |
7994 | { |
7995 | DBUG_PRINT("info" , ("partition queue_remove_top(4)" )); |
7996 | queue_remove_top(&m_queue); |
7997 | if (m_queue.elements) |
7998 | { |
7999 | return_top_record(buf); |
8000 | DBUG_PRINT("info" , ("Record returned from partition %u (2)" , |
8001 | m_top_entry)); |
8002 | error= 0; |
8003 | } |
8004 | } |
8005 | DBUG_RETURN(error); |
8006 | } |
8007 | queue_replace_top(&m_queue); |
8008 | return_top_record(buf); |
8009 | DBUG_PRINT("info" , ("Record returned from partition %u" , m_top_entry)); |
8010 | DBUG_RETURN(0); |
8011 | } |
8012 | |
8013 | |
8014 | /**************************************************************************** |
8015 | MODULE information calls |
8016 | ****************************************************************************/ |
8017 | |
8018 | /* |
8019 | These are all first approximations of the extra, info, scan_time |
8020 | and read_time calls |
8021 | */ |
8022 | |
8023 | /** |
8024 | Helper function for sorting according to number of rows in descending order. |
8025 | */ |
8026 | |
8027 | int ha_partition::compare_number_of_records(ha_partition *me, |
8028 | const uint32 *a, |
8029 | const uint32 *b) |
8030 | { |
8031 | handler **file= me->m_file; |
8032 | /* Note: sorting in descending order! */ |
8033 | if (file[*a]->stats.records > file[*b]->stats.records) |
8034 | return -1; |
8035 | if (file[*a]->stats.records < file[*b]->stats.records) |
8036 | return 1; |
8037 | return 0; |
8038 | } |
8039 | |
8040 | |
8041 | /* |
8042 | General method to gather info from handler |
8043 | |
8044 | SYNOPSIS |
8045 | info() |
8046 | flag Specifies what info is requested |
8047 | |
8048 | RETURN VALUE |
8049 | NONE |
8050 | |
8051 | DESCRIPTION |
8052 | ::info() is used to return information to the optimizer. |
8053 | Currently this table handler doesn't implement most of the fields |
8054 | really needed. SHOW also makes use of this data |
8055 | Another note, if your handler doesn't provide exact record count, |
8056 | you will probably want to have the following in your code: |
8057 | if (records < 2) |
8058 | records = 2; |
8059 | The reason is that the server will optimize for cases of only a single |
8060 | record. If in a table scan you don't know the number of records |
8061 | it will probably be better to set records to two so you can return |
8062 | as many records as you need. |
8063 | |
8064 | Along with records a few more variables you may wish to set are: |
8065 | records |
8066 | deleted |
8067 | data_file_length |
8068 | index_file_length |
8069 | delete_length |
8070 | check_time |
8071 | Take a look at the public variables in handler.h for more information. |
8072 | |
8073 | Called in: |
8074 | filesort.cc |
8075 | ha_heap.cc |
8076 | item_sum.cc |
8077 | opt_sum.cc |
8078 | sql_delete.cc |
8079 | sql_delete.cc |
8080 | sql_derived.cc |
8081 | sql_select.cc |
8082 | sql_select.cc |
8083 | sql_select.cc |
8084 | sql_select.cc |
8085 | sql_select.cc |
8086 | sql_show.cc |
8087 | sql_show.cc |
8088 | sql_show.cc |
8089 | sql_show.cc |
8090 | sql_table.cc |
8091 | sql_union.cc |
8092 | sql_update.cc |
8093 | |
8094 | Some flags that are not implemented |
8095 | HA_STATUS_POS: |
8096 | This parameter is never used from the MySQL Server. It is checked in a |
8097 | place in MyISAM so could potentially be used by MyISAM specific |
8098 | programs. |
8099 | HA_STATUS_NO_LOCK: |
8100 | This is declared and often used. It's only used by MyISAM. |
8101 | It means that MySQL doesn't need the absolute latest statistics |
8102 | information. This may save the handler from doing internal locks while |
8103 | retrieving statistics data. |
8104 | */ |
8105 | |
8106 | int ha_partition::info(uint flag) |
8107 | { |
8108 | uint no_lock_flag= flag & HA_STATUS_NO_LOCK; |
8109 | uint = flag & HA_STATUS_VARIABLE_EXTRA; |
8110 | DBUG_ENTER("ha_partition::info" ); |
8111 | |
8112 | #ifndef DBUG_OFF |
8113 | if (bitmap_is_set_all(&(m_part_info->read_partitions))) |
8114 | DBUG_PRINT("info" , ("All partitions are used" )); |
8115 | #endif /* DBUG_OFF */ |
8116 | if (flag & HA_STATUS_AUTO) |
8117 | { |
8118 | bool auto_inc_is_first_in_idx= (table_share->next_number_keypart == 0); |
8119 | DBUG_PRINT("info" , ("HA_STATUS_AUTO" )); |
8120 | if (!table->found_next_number_field) |
8121 | stats.auto_increment_value= 0; |
8122 | else if (part_share->auto_inc_initialized) |
8123 | { |
8124 | lock_auto_increment(); |
8125 | stats.auto_increment_value= part_share->next_auto_inc_val; |
8126 | unlock_auto_increment(); |
8127 | } |
8128 | else |
8129 | { |
8130 | lock_auto_increment(); |
8131 | /* to avoid two concurrent initializations, check again when locked */ |
8132 | if (part_share->auto_inc_initialized) |
8133 | stats.auto_increment_value= part_share->next_auto_inc_val; |
8134 | else |
8135 | { |
8136 | /* |
8137 | The auto-inc mutex in the table_share is locked, so we do not need |
8138 | to have the handlers locked. |
8139 | HA_STATUS_NO_LOCK is not checked, since we cannot skip locking |
8140 | the mutex, because it is initialized. |
8141 | */ |
8142 | handler *file, **file_array; |
8143 | ulonglong auto_increment_value= 0; |
8144 | file_array= m_file; |
8145 | DBUG_PRINT("info" , |
8146 | ("checking all partitions for auto_increment_value" )); |
8147 | do |
8148 | { |
8149 | file= *file_array; |
8150 | file->info(HA_STATUS_AUTO | no_lock_flag); |
8151 | set_if_bigger(auto_increment_value, |
8152 | file->stats.auto_increment_value); |
8153 | } while (*(++file_array)); |
8154 | |
8155 | DBUG_ASSERT(auto_increment_value); |
8156 | stats.auto_increment_value= auto_increment_value; |
8157 | if (auto_inc_is_first_in_idx) |
8158 | { |
8159 | set_if_bigger(part_share->next_auto_inc_val, |
8160 | auto_increment_value); |
8161 | if (can_use_for_auto_inc_init()) |
8162 | part_share->auto_inc_initialized= true; |
8163 | DBUG_PRINT("info" , ("initializing next_auto_inc_val to %lu" , |
8164 | (ulong) part_share->next_auto_inc_val)); |
8165 | } |
8166 | } |
8167 | unlock_auto_increment(); |
8168 | } |
8169 | } |
8170 | if (flag & HA_STATUS_VARIABLE) |
8171 | { |
8172 | uint i; |
8173 | DBUG_PRINT("info" , ("HA_STATUS_VARIABLE" )); |
8174 | /* |
8175 | Calculates statistical variables |
8176 | records: Estimate of number records in table |
8177 | We report sum (always at least 2 if not empty) |
8178 | deleted: Estimate of number holes in the table due to |
8179 | deletes |
8180 | We report sum |
8181 | data_file_length: Length of data file, in principle bytes in table |
8182 | We report sum |
8183 | index_file_length: Length of index file, in principle bytes in |
8184 | indexes in the table |
8185 | We report sum |
8186 | delete_length: Length of free space easily used by new records in table |
8187 | We report sum |
8188 | mean_record_length:Mean record length in the table |
8189 | We calculate this |
8190 | check_time: Time of last check (only applicable to MyISAM) |
8191 | We report last time of all underlying handlers |
8192 | */ |
8193 | handler *file; |
8194 | stats.records= 0; |
8195 | stats.deleted= 0; |
8196 | stats.data_file_length= 0; |
8197 | stats.index_file_length= 0; |
8198 | stats.check_time= 0; |
8199 | stats.delete_length= 0; |
8200 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
8201 | i < m_tot_parts; |
8202 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
8203 | { |
8204 | file= m_file[i]; |
8205 | file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag); |
8206 | stats.records+= file->stats.records; |
8207 | stats.deleted+= file->stats.deleted; |
8208 | stats.data_file_length+= file->stats.data_file_length; |
8209 | stats.index_file_length+= file->stats.index_file_length; |
8210 | stats.delete_length+= file->stats.delete_length; |
8211 | if (file->stats.check_time > stats.check_time) |
8212 | stats.check_time= file->stats.check_time; |
8213 | } |
8214 | if (stats.records && stats.records < 2 && |
8215 | !(m_file[0]->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT)) |
8216 | stats.records= 2; |
8217 | if (stats.records > 0) |
8218 | stats.mean_rec_length= (ulong) (stats.data_file_length / stats.records); |
8219 | else |
8220 | stats.mean_rec_length= 0; |
8221 | } |
8222 | if (flag & HA_STATUS_CONST) |
8223 | { |
8224 | DBUG_PRINT("info" , ("HA_STATUS_CONST" )); |
8225 | /* |
8226 | Recalculate loads of constant variables. MyISAM also sets things |
8227 | directly on the table share object. |
8228 | |
8229 | Check whether this should be fixed since handlers should not |
8230 | change things directly on the table object. |
8231 | |
8232 | Monty comment: This should NOT be changed! It's the handlers |
8233 | responsibility to correct table->s->keys_xxxx information if keys |
8234 | have been disabled. |
8235 | |
8236 | The most important parameters set here is records per key on |
8237 | all indexes. block_size and primar key ref_length. |
8238 | |
8239 | For each index there is an array of rec_per_key. |
8240 | As an example if we have an index with three attributes a,b and c |
8241 | we will have an array of 3 rec_per_key. |
8242 | rec_per_key[0] is an estimate of number of records divided by |
8243 | number of unique values of the field a. |
8244 | rec_per_key[1] is an estimate of the number of records divided |
8245 | by the number of unique combinations of the fields a and b. |
8246 | rec_per_key[2] is an estimate of the number of records divided |
8247 | by the number of unique combinations of the fields a,b and c. |
8248 | |
8249 | Many handlers only set the value of rec_per_key when all fields |
8250 | are bound (rec_per_key[2] in the example above). |
8251 | |
8252 | If the handler doesn't support statistics, it should set all of the |
8253 | above to 0. |
8254 | |
8255 | We first scans through all partitions to get the one holding most rows. |
8256 | We will then allow the handler with the most rows to set |
8257 | the rec_per_key and use this as an estimate on the total table. |
8258 | |
8259 | max_data_file_length: Maximum data file length |
8260 | We ignore it, is only used in |
8261 | SHOW TABLE STATUS |
8262 | max_index_file_length: Maximum index file length |
8263 | We ignore it since it is never used |
8264 | block_size: Block size used |
8265 | We set it to the value of the first handler |
8266 | ref_length: We set this to the value calculated |
8267 | and stored in local object |
8268 | create_time: Creation time of table |
8269 | |
8270 | So we calculate these constants by using the variables from the |
8271 | handler with most rows. |
8272 | */ |
8273 | handler *file, **file_array; |
8274 | ulonglong max_records= 0; |
8275 | uint32 i= 0; |
8276 | uint32 handler_instance= 0; |
8277 | |
8278 | file_array= m_file; |
8279 | do |
8280 | { |
8281 | file= *file_array; |
8282 | if (bitmap_is_set(&(m_opened_partitions), (uint)(file_array - m_file))) |
8283 | { |
8284 | /* Get variables if not already done */ |
8285 | if (!(flag & HA_STATUS_VARIABLE) || |
8286 | !bitmap_is_set(&(m_part_info->read_partitions), |
8287 | (uint) (file_array - m_file))) |
8288 | file->info(HA_STATUS_VARIABLE | no_lock_flag | extra_var_flag); |
8289 | if (file->stats.records > max_records) |
8290 | { |
8291 | max_records= file->stats.records; |
8292 | handler_instance= i; |
8293 | } |
8294 | } |
8295 | i++; |
8296 | } while (*(++file_array)); |
8297 | /* |
8298 | Sort the array of part_ids by number of records in |
8299 | in descending order. |
8300 | */ |
8301 | my_qsort2((void*) m_part_ids_sorted_by_num_of_records, |
8302 | m_tot_parts, |
8303 | sizeof(uint32), |
8304 | (qsort2_cmp) compare_number_of_records, |
8305 | this); |
8306 | |
8307 | file= m_file[handler_instance]; |
8308 | file->info(HA_STATUS_CONST | no_lock_flag); |
8309 | stats.block_size= file->stats.block_size; |
8310 | stats.create_time= file->stats.create_time; |
8311 | ref_length= m_ref_length; |
8312 | } |
8313 | if (flag & HA_STATUS_ERRKEY) |
8314 | { |
8315 | handler *file= m_file[m_last_part]; |
8316 | DBUG_PRINT("info" , ("info: HA_STATUS_ERRKEY" )); |
8317 | /* |
8318 | This flag is used to get index number of the unique index that |
8319 | reported duplicate key |
8320 | We will report the errkey on the last handler used and ignore the rest |
8321 | Note: all engines does not support HA_STATUS_ERRKEY, so set errkey. |
8322 | */ |
8323 | file->errkey= errkey; |
8324 | file->info(HA_STATUS_ERRKEY | no_lock_flag); |
8325 | errkey= file->errkey; |
8326 | } |
8327 | if (flag & HA_STATUS_TIME) |
8328 | { |
8329 | handler *file, **file_array; |
8330 | DBUG_PRINT("info" , ("info: HA_STATUS_TIME" )); |
8331 | /* |
8332 | This flag is used to set the latest update time of the table. |
8333 | Used by SHOW commands |
8334 | We will report the maximum of these times |
8335 | */ |
8336 | stats.update_time= 0; |
8337 | file_array= m_file; |
8338 | do |
8339 | { |
8340 | file= *file_array; |
8341 | file->info(HA_STATUS_TIME | no_lock_flag); |
8342 | if (file->stats.update_time > stats.update_time) |
8343 | stats.update_time= file->stats.update_time; |
8344 | } while (*(++file_array)); |
8345 | } |
8346 | DBUG_RETURN(0); |
8347 | } |
8348 | |
8349 | |
8350 | void ha_partition::get_dynamic_partition_info(PARTITION_STATS *stat_info, |
8351 | uint part_id) |
8352 | { |
8353 | handler *file= m_file[part_id]; |
8354 | DBUG_ASSERT(bitmap_is_set(&(m_part_info->read_partitions), part_id)); |
8355 | file->info(HA_STATUS_TIME | HA_STATUS_VARIABLE | |
8356 | HA_STATUS_VARIABLE_EXTRA | HA_STATUS_NO_LOCK); |
8357 | |
8358 | stat_info->records= file->stats.records; |
8359 | stat_info->mean_rec_length= file->stats.mean_rec_length; |
8360 | stat_info->data_file_length= file->stats.data_file_length; |
8361 | stat_info->max_data_file_length= file->stats.max_data_file_length; |
8362 | stat_info->index_file_length= file->stats.index_file_length; |
8363 | stat_info->max_index_file_length= file->stats.max_index_file_length; |
8364 | stat_info->delete_length= file->stats.delete_length; |
8365 | stat_info->create_time= file->stats.create_time; |
8366 | stat_info->update_time= file->stats.update_time; |
8367 | stat_info->check_time= file->stats.check_time; |
8368 | stat_info->check_sum= 0; |
8369 | if (file->ha_table_flags() & (HA_HAS_OLD_CHECKSUM | HA_HAS_NEW_CHECKSUM)) |
8370 | stat_info->check_sum= file->checksum(); |
8371 | return; |
8372 | } |
8373 | |
8374 | |
8375 | void ha_partition::set_partitions_to_open(List<String> *partition_names) |
8376 | { |
8377 | m_partitions_to_open= partition_names; |
8378 | } |
8379 | |
8380 | |
8381 | int ha_partition::open_read_partitions(char *name_buff, size_t name_buff_size) |
8382 | { |
8383 | handler **file; |
8384 | char *name_buffer_ptr; |
8385 | int error= 0; |
8386 | |
8387 | name_buffer_ptr= m_name_buffer_ptr; |
8388 | file= m_file; |
8389 | m_file_sample= NULL; |
8390 | do |
8391 | { |
8392 | int n_file= (int)(file-m_file); |
8393 | int is_open= bitmap_is_set(&m_opened_partitions, n_file); |
8394 | int should_be_open= bitmap_is_set(&m_part_info->read_partitions, n_file); |
8395 | |
8396 | /* |
8397 | TODO: we can close some opened partitions if they're not |
8398 | used in the query. It probably should be syncronized with the |
8399 | table_open_cache value. |
8400 | |
8401 | if (is_open && !should_be_open) |
8402 | { |
8403 | if (unlikely((error= (*file)->ha_close()))) |
8404 | goto err_handler; |
8405 | bitmap_clear_bit(&m_opened_partitions, n_file); |
8406 | } |
8407 | else |
8408 | */ |
8409 | if (!is_open && should_be_open) |
8410 | { |
8411 | LEX_CSTRING save_connect_string= table->s->connect_string; |
8412 | if (unlikely((error= |
8413 | create_partition_name(name_buff, name_buff_size, |
8414 | table->s->normalized_path.str, |
8415 | name_buffer_ptr, NORMAL_PART_NAME, |
8416 | FALSE)))) |
8417 | goto err_handler; |
8418 | if (!((*file)->ht->flags & HTON_CAN_READ_CONNECT_STRING_IN_PARTITION)) |
8419 | table->s->connect_string= m_connect_string[(uint)(file-m_file)]; |
8420 | error= (*file)->ha_open(table, name_buff, m_mode, |
8421 | m_open_test_lock | HA_OPEN_NO_PSI_CALL); |
8422 | table->s->connect_string= save_connect_string; |
8423 | if (error) |
8424 | goto err_handler; |
8425 | bitmap_set_bit(&m_opened_partitions, n_file); |
8426 | m_last_part= n_file; |
8427 | } |
8428 | if (!m_file_sample && should_be_open) |
8429 | m_file_sample= *file; |
8430 | name_buffer_ptr+= strlen(name_buffer_ptr) + 1; |
8431 | } while (*(++file)); |
8432 | |
8433 | err_handler: |
8434 | return error; |
8435 | } |
8436 | |
8437 | |
8438 | int ha_partition::change_partitions_to_open(List<String> *partition_names) |
8439 | { |
8440 | char name_buff[FN_REFLEN+1]; |
8441 | int error= 0; |
8442 | |
8443 | if (m_is_clone_of) |
8444 | return 0; |
8445 | |
8446 | m_partitions_to_open= partition_names; |
8447 | if (unlikely((error= m_part_info->set_partition_bitmaps(partition_names)))) |
8448 | goto err_handler; |
8449 | |
8450 | if (m_lock_type != F_UNLCK) |
8451 | { |
8452 | /* |
8453 | That happens after the LOCK TABLE statement. |
8454 | Do nothing in this case. |
8455 | */ |
8456 | return 0; |
8457 | } |
8458 | |
8459 | if (bitmap_cmp(&m_opened_partitions, &m_part_info->read_partitions) != 0) |
8460 | return 0; |
8461 | |
8462 | if (unlikely((error= read_par_file(table->s->normalized_path.str)) || |
8463 | (error= open_read_partitions(name_buff, sizeof(name_buff))))) |
8464 | goto err_handler; |
8465 | |
8466 | clear_handler_file(); |
8467 | |
8468 | err_handler: |
8469 | return error; |
8470 | } |
8471 | |
8472 | |
8473 | /** |
8474 | General function to prepare handler for certain behavior. |
8475 | |
8476 | @param[in] operation operation to execute |
8477 | |
8478 | @return status |
8479 | @retval 0 success |
8480 | @retval >0 error code |
8481 | |
8482 | @detail |
8483 | |
8484 | extra() is called whenever the server wishes to send a hint to |
8485 | the storage engine. The MyISAM engine implements the most hints. |
8486 | |
8487 | We divide the parameters into the following categories: |
8488 | 1) Operations used by most handlers |
8489 | 2) Operations used by some non-MyISAM handlers |
8490 | 3) Operations used only by MyISAM |
8491 | 4) Operations only used by temporary tables for query processing |
8492 | 5) Operations only used by MyISAM internally |
8493 | 6) Operations not used at all |
8494 | 7) Operations only used by federated tables for query processing |
8495 | 8) Operations only used by NDB |
8496 | 9) Operations only used by MERGE |
8497 | |
8498 | The partition handler need to handle category 1), 2) and 3). |
8499 | |
8500 | 1) Operations used by most handlers |
8501 | ----------------------------------- |
8502 | HA_EXTRA_RESET: |
8503 | This option is used by most handlers and it resets the handler state |
8504 | to the same state as after an open call. This includes releasing |
8505 | any READ CACHE or WRITE CACHE or other internal buffer used. |
8506 | |
8507 | It is called from the reset method in the handler interface. There are |
8508 | three instances where this is called. |
8509 | 1) After completing a INSERT ... SELECT ... query the handler for the |
8510 | table inserted into is reset |
8511 | 2) It is called from close_thread_table which in turn is called from |
8512 | close_thread_tables except in the case where the tables are locked |
8513 | in which case ha_commit_stmt is called instead. |
8514 | It is only called from here if refresh_version hasn't changed and the |
8515 | table is not an old table when calling close_thread_table. |
8516 | close_thread_tables is called from many places as a general clean up |
8517 | function after completing a query. |
8518 | 3) It is called when deleting the QUICK_RANGE_SELECT object if the |
8519 | QUICK_RANGE_SELECT object had its own handler object. It is called |
8520 | immediatley before close of this local handler object. |
8521 | HA_EXTRA_KEYREAD: |
8522 | HA_EXTRA_NO_KEYREAD: |
8523 | These parameters are used to provide an optimisation hint to the handler. |
8524 | If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for |
8525 | many handlers this means that the index-only scans can be used and it |
8526 | is not necessary to use the real records to satisfy this part of the |
8527 | query. Index-only scans is a very important optimisation for disk-based |
8528 | indexes. For main-memory indexes most indexes contain a reference to the |
8529 | record and thus KEYREAD only says that it is enough to read key fields. |
8530 | HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET |
8531 | will disable this option. |
8532 | The handler will set HA_KEYREAD_ONLY in its table flags to indicate this |
8533 | feature is supported. |
8534 | HA_EXTRA_FLUSH: |
8535 | Indication to flush tables to disk, is supposed to be used to |
8536 | ensure disk based tables are flushed at end of query execution. |
8537 | Currently is never used. |
8538 | |
8539 | HA_EXTRA_FORCE_REOPEN: |
8540 | Only used by MyISAM and Archive, called when altering table, |
8541 | closing tables to enforce a reopen of the table files. |
8542 | |
8543 | 2) Operations used by some non-MyISAM handlers |
8544 | ---------------------------------------------- |
8545 | HA_EXTRA_KEYREAD_PRESERVE_FIELDS: |
8546 | This is a strictly InnoDB feature that is more or less undocumented. |
8547 | When it is activated InnoDB copies field by field from its fetch |
8548 | cache instead of all fields in one memcpy. Have no idea what the |
8549 | purpose of this is. |
8550 | Cut from include/my_base.h: |
8551 | When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep |
8552 | other fields intact. When this is off (by default) InnoDB will use memcpy |
8553 | to overwrite entire row. |
8554 | HA_EXTRA_IGNORE_DUP_KEY: |
8555 | HA_EXTRA_NO_IGNORE_DUP_KEY: |
8556 | Informs the handler to we will not stop the transaction if we get an |
8557 | duplicate key errors during insert/upate. |
8558 | Always called in pair, triggered by INSERT IGNORE and other similar |
8559 | SQL constructs. |
8560 | Not used by MyISAM. |
8561 | |
8562 | 3) Operations used only by MyISAM |
8563 | --------------------------------- |
8564 | HA_EXTRA_NORMAL: |
8565 | Only used in MyISAM to reset quick mode, not implemented by any other |
8566 | handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET. |
8567 | |
8568 | It is called after completing a successful DELETE query if the QUICK |
8569 | option is set. |
8570 | |
8571 | HA_EXTRA_QUICK: |
8572 | When the user does DELETE QUICK FROM table where-clause; this extra |
8573 | option is called before the delete query is performed and |
8574 | HA_EXTRA_NORMAL is called after the delete query is completed. |
8575 | Temporary tables used internally in MySQL always set this option |
8576 | |
8577 | The meaning of quick mode is that when deleting in a B-tree no merging |
8578 | of leafs is performed. This is a common method and many large DBMS's |
8579 | actually only support this quick mode since it is very difficult to |
8580 | merge leaves in a tree used by many threads concurrently. |
8581 | |
8582 | HA_EXTRA_CACHE: |
8583 | This flag is usually set with extra_opt along with a cache size. |
8584 | The size of this buffer is set by the user variable |
8585 | record_buffer_size. The value of this cache size is the amount of |
8586 | data read from disk in each fetch when performing a table scan. |
8587 | This means that before scanning a table it is normal to call |
8588 | extra with HA_EXTRA_CACHE and when the scan is completed to call |
8589 | HA_EXTRA_NO_CACHE to release the cache memory. |
8590 | |
8591 | Some special care is taken when using this extra parameter since there |
8592 | could be a write ongoing on the table in the same statement. In this |
8593 | one has to take special care since there might be a WRITE CACHE as |
8594 | well. HA_EXTRA_CACHE specifies using a READ CACHE and using |
8595 | READ CACHE and WRITE CACHE at the same time is not possible. |
8596 | |
8597 | Only MyISAM currently use this option. |
8598 | |
8599 | It is set when doing full table scans using rr_sequential and |
8600 | reset when completing such a scan with end_read_record |
8601 | (resetting means calling extra with HA_EXTRA_NO_CACHE). |
8602 | |
8603 | It is set in filesort.cc for MyISAM internal tables and it is set in |
8604 | a multi-update where HA_EXTRA_CACHE is called on a temporary result |
8605 | table and after that ha_rnd_init(0) on table to be updated |
8606 | and immediately after that HA_EXTRA_NO_CACHE on table to be updated. |
8607 | |
8608 | Apart from that it is always used from init_read_record but not when |
8609 | used from UPDATE statements. It is not used from DELETE statements |
8610 | with ORDER BY and LIMIT but it is used in normal scan loop in DELETE |
8611 | statements. The reason here is that DELETE's in MyISAM doesn't move |
8612 | existings data rows. |
8613 | |
8614 | It is also set in copy_data_between_tables when scanning the old table |
8615 | to copy over to the new table. |
8616 | And it is set in join_init_read_record where quick objects are used |
8617 | to perform a scan on the table. In this case the full table scan can |
8618 | even be performed multiple times as part of the nested loop join. |
8619 | |
8620 | For purposes of the partition handler it is obviously necessary to have |
8621 | special treatment of this extra call. If we would simply pass this |
8622 | extra call down to each handler we would allocate |
8623 | cache size * no of partitions amount of memory and this is not |
8624 | necessary since we will only scan one partition at a time when doing |
8625 | full table scans. |
8626 | |
8627 | Thus we treat it by first checking whether we have MyISAM handlers in |
8628 | the table, if not we simply ignore the call and if we have we will |
8629 | record the call but will not call any underlying handler yet. Then |
8630 | when performing the sequential scan we will check this recorded value |
8631 | and call extra_opt whenever we start scanning a new partition. |
8632 | |
8633 | HA_EXTRA_NO_CACHE: |
8634 | When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the |
8635 | flush method in the select_union class. |
8636 | It is used to some extent when insert delayed inserts. |
8637 | See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows(). |
8638 | |
8639 | It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers |
8640 | if they are MyISAM handlers. Other handlers we can ignore the call |
8641 | for. If no cache is in use they will quickly return after finding |
8642 | this out. And we also ensure that all caches are disabled and no one |
8643 | is left by mistake. |
8644 | In the future this call will probably be deleted and we will instead call |
8645 | ::reset(); |
8646 | |
8647 | HA_EXTRA_WRITE_CACHE: |
8648 | See above, called from various places. It is mostly used when we |
8649 | do INSERT ... SELECT |
8650 | No special handling to save cache space is developed currently. |
8651 | |
8652 | HA_EXTRA_PREPARE_FOR_UPDATE: |
8653 | This is called as part of a multi-table update. When the table to be |
8654 | updated is also scanned then this informs MyISAM handler to drop any |
8655 | caches if dynamic records are used (fixed size records do not care |
8656 | about this call). We pass this along to the first partition to scan, and |
8657 | flag that it is to be called after HA_EXTRA_CACHE when moving to the next |
8658 | partition to scan. |
8659 | |
8660 | HA_EXTRA_PREPARE_FOR_DROP: |
8661 | Only used by MyISAM, called in preparation for a DROP TABLE. |
8662 | It's used mostly by Windows that cannot handle dropping an open file. |
8663 | On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN. |
8664 | |
8665 | HA_EXTRA_PREPARE_FOR_RENAME: |
8666 | Informs the handler we are about to attempt a rename of the table. |
8667 | For handlers that have share open files (MyISAM key-file and |
8668 | Archive writer) they must close the files before rename is possible |
8669 | on Windows. |
8670 | |
8671 | HA_EXTRA_READCHECK: |
8672 | HA_EXTRA_NO_READCHECK: |
8673 | Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that |
8674 | this is not needed in SQL. The reason for this call is that MyISAM sets |
8675 | the READ_CHECK_USED in the open call so the call is needed for MyISAM |
8676 | to reset this feature. |
8677 | The idea with this parameter was to inform of doing/not doing a read |
8678 | check before applying an update. Since SQL always performs a read before |
8679 | applying the update No Read Check is needed in MyISAM as well. |
8680 | |
8681 | This is a cut from Docs/myisam.txt |
8682 | Sometimes you might want to force an update without checking whether |
8683 | another user has changed the record since you last read it. This is |
8684 | somewhat dangerous, so it should ideally not be used. That can be |
8685 | accomplished by wrapping the mi_update() call in two calls to mi_extra(), |
8686 | using these functions: |
8687 | HA_EXTRA_NO_READCHECK=5 No readcheck on update |
8688 | HA_EXTRA_READCHECK=6 Use readcheck (def) |
8689 | |
8690 | 4) Operations only used by temporary tables for query processing |
8691 | ---------------------------------------------------------------- |
8692 | HA_EXTRA_RESET_STATE: |
8693 | Same as reset() except that buffers are not released. If there is |
8694 | a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading |
8695 | or to change type of cache between READ CACHE and WRITE CACHE. |
8696 | |
8697 | This extra function is always called immediately before calling |
8698 | delete_all_rows on the handler for temporary tables. |
8699 | There are cases however when HA_EXTRA_RESET_STATE isn't called in |
8700 | a similar case for a temporary table in sql_union.cc and in two other |
8701 | cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE |
8702 | called afterwards. |
8703 | The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means |
8704 | disable caching, delete all rows and enable WRITE CACHE. This is |
8705 | used for temporary tables containing distinct sums and a |
8706 | functional group. |
8707 | |
8708 | The only case that delete_all_rows is called on non-temporary tables |
8709 | is in sql_delete.cc when DELETE FROM table; is called by a user. |
8710 | In this case no special extra calls are performed before or after this |
8711 | call. |
8712 | |
8713 | The partition handler should not need to bother about this one. It |
8714 | should never be called. |
8715 | |
8716 | HA_EXTRA_NO_ROWS: |
8717 | Don't insert rows indication to HEAP and MyISAM, only used by temporary |
8718 | tables used in query processing. |
8719 | Not handled by partition handler. |
8720 | |
8721 | 5) Operations only used by MyISAM internally |
8722 | -------------------------------------------- |
8723 | HA_EXTRA_REINIT_CACHE: |
8724 | This call reinitializes the READ CACHE described above if there is one |
8725 | and otherwise the call is ignored. |
8726 | |
8727 | We can thus safely call it on all underlying handlers if they are |
8728 | MyISAM handlers. It is however never called so we don't handle it at all. |
8729 | HA_EXTRA_FLUSH_CACHE: |
8730 | Flush WRITE CACHE in MyISAM. It is only from one place in the code. |
8731 | This is in sql_insert.cc where it is called if the table_flags doesn't |
8732 | contain HA_DUPLICATE_POS. The only handler having the HA_DUPLICATE_POS |
8733 | set is the MyISAM handler and so the only handler not receiving this |
8734 | call is MyISAM. |
8735 | Thus in effect this call is called but never used. Could be removed |
8736 | from sql_insert.cc |
8737 | HA_EXTRA_NO_USER_CHANGE: |
8738 | Only used by MyISAM, never called. |
8739 | Simulates lock_type as locked. |
8740 | HA_EXTRA_WAIT_LOCK: |
8741 | HA_EXTRA_WAIT_NOLOCK: |
8742 | Only used by MyISAM, called from MyISAM handler but never from server |
8743 | code on top of the handler. |
8744 | Sets lock_wait on/off |
8745 | HA_EXTRA_NO_KEYS: |
8746 | Only used MyISAM, only used internally in MyISAM handler, never called |
8747 | from server level. |
8748 | HA_EXTRA_KEYREAD_CHANGE_POS: |
8749 | HA_EXTRA_REMEMBER_POS: |
8750 | HA_EXTRA_RESTORE_POS: |
8751 | HA_EXTRA_PRELOAD_BUFFER_SIZE: |
8752 | HA_EXTRA_CHANGE_KEY_TO_DUP: |
8753 | HA_EXTRA_CHANGE_KEY_TO_UNIQUE: |
8754 | Only used by MyISAM, never called. |
8755 | |
8756 | 6) Operations not used at all |
8757 | ----------------------------- |
8758 | HA_EXTRA_KEY_CACHE: |
8759 | HA_EXTRA_NO_KEY_CACHE: |
8760 | This parameters are no longer used and could be removed. |
8761 | |
8762 | 7) Operations only used by federated tables for query processing |
8763 | ---------------------------------------------------------------- |
8764 | HA_EXTRA_INSERT_WITH_UPDATE: |
8765 | Inform handler that an "INSERT...ON DUPLICATE KEY UPDATE" will be |
8766 | executed. This condition is unset by HA_EXTRA_NO_IGNORE_DUP_KEY. |
8767 | |
8768 | 8) Operations only used by NDB |
8769 | ------------------------------ |
8770 | HA_EXTRA_DELETE_CANNOT_BATCH: |
8771 | HA_EXTRA_UPDATE_CANNOT_BATCH: |
8772 | Inform handler that delete_row()/update_row() cannot batch deletes/updates |
8773 | and should perform them immediately. This may be needed when table has |
8774 | AFTER DELETE/UPDATE triggers which access to subject table. |
8775 | These flags are reset by the handler::extra(HA_EXTRA_RESET) call. |
8776 | |
8777 | 9) Operations only used by MERGE |
8778 | ------------------------------ |
8779 | HA_EXTRA_ADD_CHILDREN_LIST: |
8780 | HA_EXTRA_ATTACH_CHILDREN: |
8781 | HA_EXTRA_IS_ATTACHED_CHILDREN: |
8782 | HA_EXTRA_DETACH_CHILDREN: |
8783 | Special actions for MERGE tables. Ignore. |
8784 | */ |
8785 | |
8786 | int ha_partition::(enum ha_extra_function operation) |
8787 | { |
8788 | DBUG_ENTER("ha_partition:extra" ); |
8789 | DBUG_PRINT("enter" , ("operation: %d" , (int) operation)); |
8790 | |
8791 | switch (operation) { |
8792 | /* Category 1), used by most handlers */ |
8793 | case HA_EXTRA_KEYREAD: |
8794 | case HA_EXTRA_NO_KEYREAD: |
8795 | case HA_EXTRA_FLUSH: |
8796 | case HA_EXTRA_PREPARE_FOR_FORCED_CLOSE: |
8797 | DBUG_RETURN(loop_extra(operation)); |
8798 | case HA_EXTRA_PREPARE_FOR_RENAME: |
8799 | case HA_EXTRA_FORCE_REOPEN: |
8800 | DBUG_RETURN(loop_extra_alter(operation)); |
8801 | break; |
8802 | |
8803 | /* Category 2), used by non-MyISAM handlers */ |
8804 | case HA_EXTRA_IGNORE_DUP_KEY: |
8805 | case HA_EXTRA_NO_IGNORE_DUP_KEY: |
8806 | case HA_EXTRA_KEYREAD_PRESERVE_FIELDS: |
8807 | { |
8808 | if (!m_myisam) |
8809 | DBUG_RETURN(loop_extra(operation)); |
8810 | } |
8811 | break; |
8812 | |
8813 | /* Category 3), used by MyISAM handlers */ |
8814 | case HA_EXTRA_PREPARE_FOR_UPDATE: |
8815 | /* |
8816 | Needs to be run on the first partition in the range now, and |
8817 | later in late_extra_cache, when switching to a new partition to scan. |
8818 | */ |
8819 | m_extra_prepare_for_update= TRUE; |
8820 | if (m_part_spec.start_part != NO_CURRENT_PART_ID) |
8821 | { |
8822 | if (!m_extra_cache) |
8823 | m_extra_cache_part_id= m_part_spec.start_part; |
8824 | DBUG_ASSERT(m_extra_cache_part_id == m_part_spec.start_part); |
8825 | (void) m_file[m_part_spec.start_part]->extra(HA_EXTRA_PREPARE_FOR_UPDATE); |
8826 | } |
8827 | break; |
8828 | case HA_EXTRA_NORMAL: |
8829 | case HA_EXTRA_QUICK: |
8830 | case HA_EXTRA_PREPARE_FOR_DROP: |
8831 | case HA_EXTRA_FLUSH_CACHE: |
8832 | case HA_EXTRA_PREPARE_FOR_ALTER_TABLE: |
8833 | { |
8834 | DBUG_RETURN(loop_extra(operation)); |
8835 | } |
8836 | case HA_EXTRA_NO_READCHECK: |
8837 | { |
8838 | /* |
8839 | This is only done as a part of ha_open, which is also used in |
8840 | ha_partition::open, so no need to do anything. |
8841 | */ |
8842 | break; |
8843 | } |
8844 | case HA_EXTRA_CACHE: |
8845 | { |
8846 | prepare_extra_cache(0); |
8847 | break; |
8848 | } |
8849 | case HA_EXTRA_NO_CACHE: |
8850 | { |
8851 | int ret= 0; |
8852 | if (m_extra_cache_part_id != NO_CURRENT_PART_ID) |
8853 | ret= m_file[m_extra_cache_part_id]->extra(HA_EXTRA_NO_CACHE); |
8854 | m_extra_cache= FALSE; |
8855 | m_extra_cache_size= 0; |
8856 | m_extra_prepare_for_update= FALSE; |
8857 | m_extra_cache_part_id= NO_CURRENT_PART_ID; |
8858 | DBUG_RETURN(ret); |
8859 | } |
8860 | case HA_EXTRA_WRITE_CACHE: |
8861 | { |
8862 | m_extra_cache= FALSE; |
8863 | m_extra_cache_size= 0; |
8864 | m_extra_prepare_for_update= FALSE; |
8865 | m_extra_cache_part_id= NO_CURRENT_PART_ID; |
8866 | DBUG_RETURN(loop_extra(operation)); |
8867 | } |
8868 | case HA_EXTRA_IGNORE_NO_KEY: |
8869 | case HA_EXTRA_NO_IGNORE_NO_KEY: |
8870 | { |
8871 | /* |
8872 | Ignore as these are specific to NDB for handling |
8873 | idempotency |
8874 | */ |
8875 | break; |
8876 | } |
8877 | case HA_EXTRA_WRITE_CAN_REPLACE: |
8878 | case HA_EXTRA_WRITE_CANNOT_REPLACE: |
8879 | { |
8880 | /* |
8881 | Informs handler that write_row() can replace rows which conflict |
8882 | with row being inserted by PK/unique key without reporting error |
8883 | to the SQL-layer. |
8884 | |
8885 | At this time, this is safe by limitation of ha_partition |
8886 | */ |
8887 | DBUG_RETURN(loop_extra(operation)); |
8888 | } |
8889 | /* Category 7), used by federated handlers */ |
8890 | case HA_EXTRA_INSERT_WITH_UPDATE: |
8891 | DBUG_RETURN(loop_extra(operation)); |
8892 | /* Category 8) Operations only used by NDB */ |
8893 | case HA_EXTRA_DELETE_CANNOT_BATCH: |
8894 | case HA_EXTRA_UPDATE_CANNOT_BATCH: |
8895 | { |
8896 | /* Currently only NDB use the *_CANNOT_BATCH */ |
8897 | break; |
8898 | } |
8899 | /* Category 9) Operations only used by MERGE */ |
8900 | case HA_EXTRA_ADD_CHILDREN_LIST: |
8901 | DBUG_RETURN(loop_extra(operation)); |
8902 | case HA_EXTRA_ATTACH_CHILDREN: |
8903 | { |
8904 | int result; |
8905 | uint num_locks; |
8906 | handler **file; |
8907 | if ((result= loop_extra(operation))) |
8908 | DBUG_RETURN(result); |
8909 | |
8910 | /* Recalculate lock count as each child may have different set of locks */ |
8911 | num_locks= 0; |
8912 | file= m_file; |
8913 | do |
8914 | { |
8915 | num_locks+= (*file)->lock_count(); |
8916 | } while (*(++file)); |
8917 | |
8918 | m_num_locks= num_locks; |
8919 | break; |
8920 | } |
8921 | case HA_EXTRA_IS_ATTACHED_CHILDREN: |
8922 | DBUG_RETURN(loop_extra(operation)); |
8923 | case HA_EXTRA_DETACH_CHILDREN: |
8924 | DBUG_RETURN(loop_extra(operation)); |
8925 | case HA_EXTRA_MARK_AS_LOG_TABLE: |
8926 | /* |
8927 | http://dev.mysql.com/doc/refman/5.1/en/partitioning-limitations.html |
8928 | says we no longer support logging to partitioned tables, so we fail |
8929 | here. |
8930 | */ |
8931 | DBUG_RETURN(ER_UNSUPORTED_LOG_ENGINE); |
8932 | case HA_EXTRA_STARTING_ORDERED_INDEX_SCAN: |
8933 | case HA_EXTRA_BEGIN_ALTER_COPY: |
8934 | case HA_EXTRA_END_ALTER_COPY: |
8935 | case HA_EXTRA_FAKE_START_STMT: |
8936 | DBUG_RETURN(loop_extra(operation)); |
8937 | default: |
8938 | { |
8939 | /* Temporary crash to discover what is wrong */ |
8940 | DBUG_ASSERT(0); |
8941 | break; |
8942 | } |
8943 | } |
8944 | DBUG_RETURN(0); |
8945 | } |
8946 | |
8947 | |
8948 | /** |
8949 | Special extra call to reset extra parameters |
8950 | |
8951 | @return Operation status. |
8952 | @retval >0 Error code |
8953 | @retval 0 Success |
8954 | |
8955 | @note Called at end of each statement to reset buffers. |
8956 | To avoid excessive calls, the m_partitions_to_reset bitmap keep records |
8957 | of which partitions that have been used in extra(), external_lock() or |
8958 | start_stmt() and is needed to be called. |
8959 | */ |
8960 | |
8961 | int ha_partition::reset(void) |
8962 | { |
8963 | int result= 0; |
8964 | int tmp; |
8965 | uint i; |
8966 | DBUG_ENTER("ha_partition::reset" ); |
8967 | |
8968 | for (i= bitmap_get_first_set(&m_partitions_to_reset); |
8969 | i < m_tot_parts; |
8970 | i= bitmap_get_next_set(&m_partitions_to_reset, i)) |
8971 | { |
8972 | if (bitmap_is_set(&m_opened_partitions, i) && |
8973 | (tmp= m_file[i]->ha_reset())) |
8974 | result= tmp; |
8975 | } |
8976 | bitmap_clear_all(&m_partitions_to_reset); |
8977 | m_extra_prepare_for_update= FALSE; |
8978 | DBUG_RETURN(result); |
8979 | } |
8980 | |
8981 | /* |
8982 | Special extra method for HA_EXTRA_CACHE with cachesize as extra parameter |
8983 | |
8984 | SYNOPSIS |
8985 | extra_opt() |
8986 | operation Must be HA_EXTRA_CACHE |
8987 | cachesize Size of cache in full table scan |
8988 | |
8989 | RETURN VALUE |
8990 | >0 Error code |
8991 | 0 Success |
8992 | */ |
8993 | |
8994 | int ha_partition::(enum ha_extra_function operation, ulong cachesize) |
8995 | { |
8996 | DBUG_ENTER("ha_partition::extra_opt()" ); |
8997 | |
8998 | DBUG_ASSERT(HA_EXTRA_CACHE == operation); |
8999 | prepare_extra_cache(cachesize); |
9000 | DBUG_RETURN(0); |
9001 | } |
9002 | |
9003 | |
9004 | /* |
9005 | Call extra on handler with HA_EXTRA_CACHE and cachesize |
9006 | |
9007 | SYNOPSIS |
9008 | prepare_extra_cache() |
9009 | cachesize Size of cache for full table scan |
9010 | |
9011 | RETURN VALUE |
9012 | NONE |
9013 | */ |
9014 | |
9015 | void ha_partition::(uint cachesize) |
9016 | { |
9017 | DBUG_ENTER("ha_partition::prepare_extra_cache()" ); |
9018 | DBUG_PRINT("enter" , ("cachesize %u" , cachesize)); |
9019 | |
9020 | m_extra_cache= TRUE; |
9021 | m_extra_cache_size= cachesize; |
9022 | if (m_part_spec.start_part != NO_CURRENT_PART_ID) |
9023 | { |
9024 | DBUG_ASSERT(bitmap_is_set(&m_partitions_to_reset, |
9025 | m_part_spec.start_part)); |
9026 | bitmap_set_bit(&m_partitions_to_reset, m_part_spec.start_part); |
9027 | late_extra_cache(m_part_spec.start_part); |
9028 | } |
9029 | DBUG_VOID_RETURN; |
9030 | } |
9031 | |
9032 | |
9033 | /** |
9034 | Prepares our new and reorged handlers for rename or delete. |
9035 | |
9036 | @param operation Operation to forward |
9037 | |
9038 | @return Operation status |
9039 | @retval 0 Success |
9040 | @retval !0 Error |
9041 | */ |
9042 | |
9043 | int ha_partition::(enum ha_extra_function operation) |
9044 | { |
9045 | int result= 0, tmp; |
9046 | handler **file; |
9047 | DBUG_ENTER("ha_partition::loop_extra_alter()" ); |
9048 | DBUG_ASSERT(operation == HA_EXTRA_PREPARE_FOR_RENAME || |
9049 | operation == HA_EXTRA_FORCE_REOPEN); |
9050 | |
9051 | if (m_new_file != NULL) |
9052 | { |
9053 | for (file= m_new_file; *file; file++) |
9054 | if ((tmp= (*file)->extra(operation))) |
9055 | result= tmp; |
9056 | } |
9057 | if (m_reorged_file != NULL) |
9058 | { |
9059 | for (file= m_reorged_file; *file; file++) |
9060 | if ((tmp= (*file)->extra(operation))) |
9061 | result= tmp; |
9062 | } |
9063 | if ((tmp= loop_extra(operation))) |
9064 | result= tmp; |
9065 | DBUG_RETURN(result); |
9066 | } |
9067 | |
9068 | /* |
9069 | Call extra on all partitions |
9070 | |
9071 | SYNOPSIS |
9072 | loop_extra() |
9073 | operation extra operation type |
9074 | |
9075 | RETURN VALUE |
9076 | >0 Error code |
9077 | 0 Success |
9078 | */ |
9079 | |
9080 | int ha_partition::(enum ha_extra_function operation) |
9081 | { |
9082 | int result= 0, tmp; |
9083 | uint i; |
9084 | DBUG_ENTER("ha_partition::loop_extra()" ); |
9085 | |
9086 | for (i= bitmap_get_first_set(&m_part_info->lock_partitions); |
9087 | i < m_tot_parts; |
9088 | i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) |
9089 | { |
9090 | /* |
9091 | This can be called after an error in ha_open. |
9092 | In this case calling 'extra' can crash. |
9093 | */ |
9094 | if (bitmap_is_set(&m_opened_partitions, i) && |
9095 | (tmp= m_file[i]->extra(operation))) |
9096 | result= tmp; |
9097 | } |
9098 | /* Add all used partitions to be called in reset(). */ |
9099 | bitmap_union(&m_partitions_to_reset, &m_part_info->lock_partitions); |
9100 | DBUG_RETURN(result); |
9101 | } |
9102 | |
9103 | |
9104 | /* |
9105 | Call extra(HA_EXTRA_CACHE) on next partition_id |
9106 | |
9107 | SYNOPSIS |
9108 | late_extra_cache() |
9109 | partition_id Partition id to call extra on |
9110 | |
9111 | RETURN VALUE |
9112 | NONE |
9113 | */ |
9114 | |
9115 | void ha_partition::(uint partition_id) |
9116 | { |
9117 | handler *file; |
9118 | DBUG_ENTER("ha_partition::late_extra_cache" ); |
9119 | DBUG_PRINT("enter" , ("extra_cache %u prepare %u partid %u size %u" , |
9120 | m_extra_cache, m_extra_prepare_for_update, |
9121 | partition_id, m_extra_cache_size)); |
9122 | |
9123 | if (!m_extra_cache && !m_extra_prepare_for_update) |
9124 | DBUG_VOID_RETURN; |
9125 | file= m_file[partition_id]; |
9126 | if (m_extra_cache) |
9127 | { |
9128 | if (m_extra_cache_size == 0) |
9129 | (void) file->extra(HA_EXTRA_CACHE); |
9130 | else |
9131 | (void) file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size); |
9132 | } |
9133 | if (m_extra_prepare_for_update) |
9134 | { |
9135 | DBUG_ASSERT(m_extra_cache); |
9136 | (void) file->extra(HA_EXTRA_PREPARE_FOR_UPDATE); |
9137 | } |
9138 | m_extra_cache_part_id= partition_id; |
9139 | DBUG_VOID_RETURN; |
9140 | } |
9141 | |
9142 | |
9143 | /* |
9144 | Call extra(HA_EXTRA_NO_CACHE) on next partition_id |
9145 | |
9146 | SYNOPSIS |
9147 | late_extra_no_cache() |
9148 | partition_id Partition id to call extra on |
9149 | |
9150 | RETURN VALUE |
9151 | NONE |
9152 | */ |
9153 | |
9154 | void ha_partition::(uint partition_id) |
9155 | { |
9156 | handler *file; |
9157 | DBUG_ENTER("ha_partition::late_extra_no_cache" ); |
9158 | |
9159 | if (!m_extra_cache && !m_extra_prepare_for_update) |
9160 | DBUG_VOID_RETURN; |
9161 | file= m_file[partition_id]; |
9162 | (void) file->extra(HA_EXTRA_NO_CACHE); |
9163 | DBUG_ASSERT(partition_id == m_extra_cache_part_id); |
9164 | m_extra_cache_part_id= NO_CURRENT_PART_ID; |
9165 | DBUG_VOID_RETURN; |
9166 | } |
9167 | |
9168 | |
9169 | /**************************************************************************** |
9170 | MODULE optimiser support |
9171 | ****************************************************************************/ |
9172 | |
9173 | /** |
9174 | Get keys to use for scanning. |
9175 | |
9176 | @return key_map of keys usable for scanning |
9177 | |
9178 | @note No need to use read_partitions here, since it does not depend on |
9179 | which partitions is used, only which storage engine used. |
9180 | */ |
9181 | |
9182 | const key_map *ha_partition::keys_to_use_for_scanning() |
9183 | { |
9184 | DBUG_ENTER("ha_partition::keys_to_use_for_scanning" ); |
9185 | DBUG_RETURN(get_open_file_sample()->keys_to_use_for_scanning()); |
9186 | } |
9187 | |
9188 | |
9189 | /** |
9190 | Minimum number of rows to base optimizer estimate on. |
9191 | */ |
9192 | |
9193 | ha_rows ha_partition::min_rows_for_estimate() |
9194 | { |
9195 | uint i, max_used_partitions, tot_used_partitions; |
9196 | DBUG_ENTER("ha_partition::min_rows_for_estimate" ); |
9197 | |
9198 | tot_used_partitions= bitmap_bits_set(&m_part_info->read_partitions); |
9199 | |
9200 | /* |
9201 | All partitions might have been left as unused during partition pruning |
9202 | due to, for example, an impossible WHERE condition. Nonetheless, the |
9203 | optimizer might still attempt to perform (e.g. range) analysis where an |
9204 | estimate of the the number of rows is calculated using records_in_range. |
9205 | Hence, to handle this and other possible cases, use zero as the minimum |
9206 | number of rows to base the estimate on if no partition is being used. |
9207 | */ |
9208 | if (!tot_used_partitions) |
9209 | DBUG_RETURN(0); |
9210 | |
9211 | /* |
9212 | Allow O(log2(tot_partitions)) increase in number of used partitions. |
9213 | This gives O(tot_rows/log2(tot_partitions)) rows to base the estimate on. |
9214 | I.e when the total number of partitions doubles, allow one more |
9215 | partition to be checked. |
9216 | */ |
9217 | i= 2; |
9218 | max_used_partitions= 1; |
9219 | while (i < m_tot_parts) |
9220 | { |
9221 | max_used_partitions++; |
9222 | i= i << 1; |
9223 | } |
9224 | if (max_used_partitions > tot_used_partitions) |
9225 | max_used_partitions= tot_used_partitions; |
9226 | |
9227 | /* stats.records is already updated by the info(HA_STATUS_VARIABLE) call. */ |
9228 | DBUG_PRINT("info" , ("max_used_partitions: %u tot_rows: %lu" , |
9229 | max_used_partitions, |
9230 | (ulong) stats.records)); |
9231 | DBUG_PRINT("info" , ("tot_used_partitions: %u min_rows_to_check: %lu" , |
9232 | tot_used_partitions, |
9233 | (ulong) stats.records * max_used_partitions |
9234 | / tot_used_partitions)); |
9235 | DBUG_RETURN(stats.records * max_used_partitions / tot_used_partitions); |
9236 | } |
9237 | |
9238 | |
9239 | /** |
9240 | Get the biggest used partition. |
9241 | |
9242 | Starting at the N:th biggest partition and skips all non used |
9243 | partitions, returning the biggest used partition found |
9244 | |
9245 | @param[in,out] part_index Skip the *part_index biggest partitions |
9246 | |
9247 | @return The biggest used partition with index not lower than *part_index. |
9248 | @retval NO_CURRENT_PART_ID No more partition used. |
9249 | @retval != NO_CURRENT_PART_ID partition id of biggest used partition with |
9250 | index >= *part_index supplied. Note that |
9251 | *part_index will be updated to the next |
9252 | partition index to use. |
9253 | */ |
9254 | |
9255 | uint ha_partition::get_biggest_used_partition(uint *part_index) |
9256 | { |
9257 | uint part_id; |
9258 | while ((*part_index) < m_tot_parts) |
9259 | { |
9260 | part_id= m_part_ids_sorted_by_num_of_records[(*part_index)++]; |
9261 | if (bitmap_is_set(&m_part_info->read_partitions, part_id)) |
9262 | return part_id; |
9263 | } |
9264 | return NO_CURRENT_PART_ID; |
9265 | } |
9266 | |
9267 | |
9268 | /* |
9269 | Return time for a scan of the table |
9270 | |
9271 | SYNOPSIS |
9272 | scan_time() |
9273 | |
9274 | RETURN VALUE |
9275 | time for scan |
9276 | */ |
9277 | |
9278 | double ha_partition::scan_time() |
9279 | { |
9280 | double scan_time= 0; |
9281 | uint i; |
9282 | DBUG_ENTER("ha_partition::scan_time" ); |
9283 | |
9284 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
9285 | i < m_tot_parts; |
9286 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
9287 | scan_time+= m_file[i]->scan_time(); |
9288 | DBUG_RETURN(scan_time); |
9289 | } |
9290 | |
9291 | |
9292 | /** |
9293 | Find number of records in a range. |
9294 | @param inx Index number |
9295 | @param min_key Start of range |
9296 | @param max_key End of range |
9297 | |
9298 | @return Number of rows in range. |
9299 | |
9300 | Given a starting key, and an ending key estimate the number of rows that |
9301 | will exist between the two. max_key may be empty which in case determine |
9302 | if start_key matches any rows. |
9303 | */ |
9304 | |
9305 | ha_rows ha_partition::records_in_range(uint inx, key_range *min_key, |
9306 | key_range *max_key) |
9307 | { |
9308 | ha_rows min_rows_to_check, rows, estimated_rows=0, checked_rows= 0; |
9309 | uint partition_index= 0, part_id; |
9310 | DBUG_ENTER("ha_partition::records_in_range" ); |
9311 | |
9312 | min_rows_to_check= min_rows_for_estimate(); |
9313 | |
9314 | while ((part_id= get_biggest_used_partition(&partition_index)) |
9315 | != NO_CURRENT_PART_ID) |
9316 | { |
9317 | rows= m_file[part_id]->records_in_range(inx, min_key, max_key); |
9318 | |
9319 | DBUG_PRINT("info" , ("part %u match %lu rows of %lu" , part_id, (ulong) rows, |
9320 | (ulong) m_file[part_id]->stats.records)); |
9321 | |
9322 | if (rows == HA_POS_ERROR) |
9323 | DBUG_RETURN(HA_POS_ERROR); |
9324 | estimated_rows+= rows; |
9325 | checked_rows+= m_file[part_id]->stats.records; |
9326 | /* |
9327 | Returning 0 means no rows can be found, so we must continue |
9328 | this loop as long as we have estimated_rows == 0. |
9329 | Also many engines return 1 to indicate that there may exist |
9330 | a matching row, we do not normalize this by dividing by number of |
9331 | used partitions, but leave it to be returned as a sum, which will |
9332 | reflect that we will need to scan each partition's index. |
9333 | |
9334 | Note that this statistics may not always be correct, so we must |
9335 | continue even if the current partition has 0 rows, since we might have |
9336 | deleted rows from the current partition, or inserted to the next |
9337 | partition. |
9338 | */ |
9339 | if (estimated_rows && checked_rows && |
9340 | checked_rows >= min_rows_to_check) |
9341 | { |
9342 | DBUG_PRINT("info" , |
9343 | ("records_in_range(inx %u): %lu (%lu * %lu / %lu)" , |
9344 | inx, |
9345 | (ulong) (estimated_rows * stats.records / checked_rows), |
9346 | (ulong) estimated_rows, |
9347 | (ulong) stats.records, |
9348 | (ulong) checked_rows)); |
9349 | DBUG_RETURN(estimated_rows * stats.records / checked_rows); |
9350 | } |
9351 | } |
9352 | DBUG_PRINT("info" , ("records_in_range(inx %u): %lu" , |
9353 | inx, |
9354 | (ulong) estimated_rows)); |
9355 | DBUG_RETURN(estimated_rows); |
9356 | } |
9357 | |
9358 | |
9359 | /** |
9360 | Estimate upper bound of number of rows. |
9361 | |
9362 | @return Number of rows. |
9363 | */ |
9364 | |
9365 | ha_rows ha_partition::estimate_rows_upper_bound() |
9366 | { |
9367 | ha_rows rows, tot_rows= 0; |
9368 | handler **file= m_file; |
9369 | DBUG_ENTER("ha_partition::estimate_rows_upper_bound" ); |
9370 | |
9371 | do |
9372 | { |
9373 | if (bitmap_is_set(&(m_part_info->read_partitions), (uint)(file - m_file))) |
9374 | { |
9375 | rows= (*file)->estimate_rows_upper_bound(); |
9376 | if (rows == HA_POS_ERROR) |
9377 | DBUG_RETURN(HA_POS_ERROR); |
9378 | tot_rows+= rows; |
9379 | } |
9380 | } while (*(++file)); |
9381 | DBUG_RETURN(tot_rows); |
9382 | } |
9383 | |
9384 | |
9385 | /* |
9386 | Get time to read |
9387 | |
9388 | SYNOPSIS |
9389 | read_time() |
9390 | index Index number used |
9391 | ranges Number of ranges |
9392 | rows Number of rows |
9393 | |
9394 | RETURN VALUE |
9395 | time for read |
9396 | |
9397 | DESCRIPTION |
9398 | This will be optimised later to include whether or not the index can |
9399 | be used with partitioning. To achieve we need to add another parameter |
9400 | that specifies how many of the index fields that are bound in the ranges. |
9401 | Possibly added as a new call to handlers. |
9402 | */ |
9403 | |
9404 | double ha_partition::read_time(uint index, uint ranges, ha_rows rows) |
9405 | { |
9406 | DBUG_ENTER("ha_partition::read_time" ); |
9407 | |
9408 | DBUG_RETURN(get_open_file_sample()->read_time(index, ranges, rows)); |
9409 | } |
9410 | |
9411 | |
9412 | /** |
9413 | Number of rows in table. see handler.h |
9414 | |
9415 | @return Number of records in the table (after pruning!) |
9416 | */ |
9417 | |
9418 | ha_rows ha_partition::records() |
9419 | { |
9420 | int error; |
9421 | ha_rows tot_rows= 0; |
9422 | uint i; |
9423 | DBUG_ENTER("ha_partition::records" ); |
9424 | |
9425 | for (i= bitmap_get_first_set(&m_part_info->read_partitions); |
9426 | i < m_tot_parts; |
9427 | i= bitmap_get_next_set(&m_part_info->read_partitions, i)) |
9428 | { |
9429 | ha_rows rows; |
9430 | if (unlikely((error= m_file[i]->pre_records()) || |
9431 | (rows= m_file[i]->records()) == HA_POS_ERROR)) |
9432 | DBUG_RETURN(HA_POS_ERROR); |
9433 | tot_rows+= rows; |
9434 | } |
9435 | DBUG_PRINT("exit" , ("records: %lld" , (longlong) tot_rows)); |
9436 | DBUG_RETURN(tot_rows); |
9437 | } |
9438 | |
9439 | |
9440 | /* |
9441 | Is it ok to switch to a new engine for this table |
9442 | |
9443 | SYNOPSIS |
9444 | can_switch_engine() |
9445 | |
9446 | RETURN VALUE |
9447 | TRUE Ok |
9448 | FALSE Not ok |
9449 | |
9450 | DESCRIPTION |
9451 | Used to ensure that tables with foreign key constraints are not moved |
9452 | to engines without foreign key support. |
9453 | */ |
9454 | |
9455 | bool ha_partition::can_switch_engines() |
9456 | { |
9457 | handler **file; |
9458 | DBUG_ENTER("ha_partition::can_switch_engines" ); |
9459 | |
9460 | file= m_file; |
9461 | do |
9462 | { |
9463 | if (!(*file)->can_switch_engines()) |
9464 | DBUG_RETURN(FALSE); |
9465 | } while (*(++file)); |
9466 | DBUG_RETURN(TRUE); |
9467 | } |
9468 | |
9469 | |
9470 | /* |
9471 | Is table cache supported |
9472 | |
9473 | SYNOPSIS |
9474 | table_cache_type() |
9475 | |
9476 | */ |
9477 | |
9478 | uint8 ha_partition::table_cache_type() |
9479 | { |
9480 | DBUG_ENTER("ha_partition::table_cache_type" ); |
9481 | |
9482 | DBUG_RETURN(m_file[0]->table_cache_type()); |
9483 | } |
9484 | |
9485 | |
9486 | /** |
9487 | Calculate hash value for KEY partitioning using an array of fields. |
9488 | |
9489 | @param field_array An array of the fields in KEY partitioning |
9490 | |
9491 | @return hash_value calculated |
9492 | |
9493 | @note Uses the hash function on the character set of the field. |
9494 | Integer and floating point fields use the binary character set by default. |
9495 | */ |
9496 | |
9497 | uint32 ha_partition::calculate_key_hash_value(Field **field_array) |
9498 | { |
9499 | ulong nr1= 1; |
9500 | ulong nr2= 4; |
9501 | bool use_51_hash; |
9502 | use_51_hash= MY_TEST((*field_array)->table->part_info->key_algorithm == |
9503 | partition_info::KEY_ALGORITHM_51); |
9504 | |
9505 | do |
9506 | { |
9507 | Field *field= *field_array; |
9508 | if (use_51_hash) |
9509 | { |
9510 | switch (field->real_type()) { |
9511 | case MYSQL_TYPE_TINY: |
9512 | case MYSQL_TYPE_SHORT: |
9513 | case MYSQL_TYPE_LONG: |
9514 | case MYSQL_TYPE_FLOAT: |
9515 | case MYSQL_TYPE_DOUBLE: |
9516 | case MYSQL_TYPE_NEWDECIMAL: |
9517 | case MYSQL_TYPE_TIMESTAMP: |
9518 | case MYSQL_TYPE_LONGLONG: |
9519 | case MYSQL_TYPE_INT24: |
9520 | case MYSQL_TYPE_TIME: |
9521 | case MYSQL_TYPE_DATETIME: |
9522 | case MYSQL_TYPE_YEAR: |
9523 | case MYSQL_TYPE_NEWDATE: |
9524 | { |
9525 | if (field->is_null()) |
9526 | { |
9527 | nr1^= (nr1 << 1) | 1; |
9528 | continue; |
9529 | } |
9530 | /* Force this to my_hash_sort_bin, which was used in 5.1! */ |
9531 | uint len= field->pack_length(); |
9532 | my_charset_bin.coll->hash_sort(&my_charset_bin, field->ptr, len, |
9533 | &nr1, &nr2); |
9534 | /* Done with this field, continue with next one. */ |
9535 | continue; |
9536 | } |
9537 | case MYSQL_TYPE_STRING: |
9538 | case MYSQL_TYPE_VARCHAR: |
9539 | case MYSQL_TYPE_BIT: |
9540 | /* Not affected, same in 5.1 and 5.5 */ |
9541 | break; |
9542 | /* |
9543 | ENUM/SET uses my_hash_sort_simple in 5.1 (i.e. my_charset_latin1) |
9544 | and my_hash_sort_bin in 5.5! |
9545 | */ |
9546 | case MYSQL_TYPE_ENUM: |
9547 | case MYSQL_TYPE_SET: |
9548 | { |
9549 | if (field->is_null()) |
9550 | { |
9551 | nr1^= (nr1 << 1) | 1; |
9552 | continue; |
9553 | } |
9554 | /* Force this to my_hash_sort_bin, which was used in 5.1! */ |
9555 | uint len= field->pack_length(); |
9556 | my_charset_latin1.coll->hash_sort(&my_charset_latin1, field->ptr, |
9557 | len, &nr1, &nr2); |
9558 | continue; |
9559 | } |
9560 | /* New types in mysql-5.6. */ |
9561 | case MYSQL_TYPE_DATETIME2: |
9562 | case MYSQL_TYPE_TIME2: |
9563 | case MYSQL_TYPE_TIMESTAMP2: |
9564 | /* Not affected, 5.6+ only! */ |
9565 | break; |
9566 | |
9567 | /* These types should not be allowed for partitioning! */ |
9568 | case MYSQL_TYPE_NULL: |
9569 | case MYSQL_TYPE_DECIMAL: |
9570 | case MYSQL_TYPE_DATE: |
9571 | case MYSQL_TYPE_TINY_BLOB: |
9572 | case MYSQL_TYPE_MEDIUM_BLOB: |
9573 | case MYSQL_TYPE_LONG_BLOB: |
9574 | case MYSQL_TYPE_BLOB: |
9575 | case MYSQL_TYPE_VAR_STRING: |
9576 | case MYSQL_TYPE_GEOMETRY: |
9577 | /* fall through */ |
9578 | default: |
9579 | DBUG_ASSERT(0); // New type? |
9580 | /* Fall through for default hashing (5.5). */ |
9581 | } |
9582 | /* fall through, use collation based hashing. */ |
9583 | } |
9584 | field->hash(&nr1, &nr2); |
9585 | } while (*(++field_array)); |
9586 | return (uint32) nr1; |
9587 | } |
9588 | |
9589 | |
9590 | /**************************************************************************** |
9591 | MODULE print messages |
9592 | ****************************************************************************/ |
9593 | |
9594 | const char *ha_partition::index_type(uint inx) |
9595 | { |
9596 | uint first_used_partition; |
9597 | DBUG_ENTER("ha_partition::index_type" ); |
9598 | |
9599 | first_used_partition= bitmap_get_first_set(&(m_part_info->read_partitions)); |
9600 | |
9601 | if (first_used_partition == MY_BIT_NONE) |
9602 | { |
9603 | DBUG_ASSERT(0); // How can this happen? |
9604 | DBUG_RETURN(handler::index_type(inx)); |
9605 | } |
9606 | |
9607 | DBUG_RETURN(m_file[first_used_partition]->index_type(inx)); |
9608 | } |
9609 | |
9610 | |
9611 | enum row_type ha_partition::get_row_type() const |
9612 | { |
9613 | uint i; |
9614 | enum row_type type; |
9615 | DBUG_ENTER("ha_partition::get_row_type" ); |
9616 | |
9617 | i= bitmap_get_first_set(&m_part_info->read_partitions); |
9618 | DBUG_ASSERT(i < m_tot_parts); |
9619 | if (i >= m_tot_parts) |
9620 | DBUG_RETURN(ROW_TYPE_NOT_USED); |
9621 | |
9622 | type= m_file[i]->get_row_type(); |
9623 | DBUG_PRINT("info" , ("partition %u, row_type: %d" , i, type)); |
9624 | |
9625 | for (i= bitmap_get_next_set(&m_part_info->lock_partitions, i); |
9626 | i < m_tot_parts; |
9627 | i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) |
9628 | { |
9629 | enum row_type part_type= m_file[i]->get_row_type(); |
9630 | DBUG_PRINT("info" , ("partition %u, row_type: %d" , i, type)); |
9631 | if (part_type != type) |
9632 | DBUG_RETURN(ROW_TYPE_NOT_USED); |
9633 | } |
9634 | |
9635 | DBUG_RETURN(type); |
9636 | } |
9637 | |
9638 | |
9639 | void ha_partition::append_row_to_str(String &str) |
9640 | { |
9641 | const uchar *rec; |
9642 | bool is_rec0= !m_err_rec || m_err_rec == table->record[0]; |
9643 | if (is_rec0) |
9644 | rec= table->record[0]; |
9645 | else |
9646 | rec= m_err_rec; |
9647 | // If PK, use full PK instead of full part field array! |
9648 | if (table->s->primary_key != MAX_KEY) |
9649 | { |
9650 | KEY *key= table->key_info + table->s->primary_key; |
9651 | KEY_PART_INFO *key_part= key->key_part; |
9652 | KEY_PART_INFO *key_part_end= key_part + key->user_defined_key_parts; |
9653 | if (!is_rec0) |
9654 | set_key_field_ptr(key, rec, table->record[0]); |
9655 | for (; key_part != key_part_end; key_part++) |
9656 | { |
9657 | Field *field= key_part->field; |
9658 | str.append(" " ); |
9659 | str.append(&field->field_name); |
9660 | str.append(":" ); |
9661 | field_unpack(&str, field, rec, 0, false); |
9662 | } |
9663 | if (!is_rec0) |
9664 | set_key_field_ptr(key, table->record[0], rec); |
9665 | } |
9666 | else |
9667 | { |
9668 | Field **field_ptr; |
9669 | if (!is_rec0) |
9670 | table->move_fields(m_part_info->full_part_field_array, rec, |
9671 | table->record[0]); |
9672 | /* No primary key, use full partition field array. */ |
9673 | for (field_ptr= m_part_info->full_part_field_array; |
9674 | *field_ptr; |
9675 | field_ptr++) |
9676 | { |
9677 | Field *field= *field_ptr; |
9678 | str.append(" " ); |
9679 | str.append(&field->field_name); |
9680 | str.append(":" ); |
9681 | field_unpack(&str, field, rec, 0, false); |
9682 | } |
9683 | if (!is_rec0) |
9684 | table->move_fields(m_part_info->full_part_field_array, table->record[0], |
9685 | rec); |
9686 | } |
9687 | } |
9688 | |
9689 | |
9690 | void ha_partition::print_error(int error, myf errflag) |
9691 | { |
9692 | THD *thd= ha_thd(); |
9693 | DBUG_ENTER("ha_partition::print_error" ); |
9694 | DBUG_PRINT("enter" , ("error: %d" , error)); |
9695 | |
9696 | /* Should probably look for my own errors first */ |
9697 | if ((error == HA_ERR_NO_PARTITION_FOUND) && |
9698 | ! (thd->lex->alter_info.partition_flags & ALTER_PARTITION_TRUNCATE)) |
9699 | { |
9700 | m_part_info->print_no_partition_found(table, errflag); |
9701 | DBUG_VOID_RETURN; |
9702 | } |
9703 | else if (error == HA_ERR_ROW_IN_WRONG_PARTITION) |
9704 | { |
9705 | /* Should only happen on DELETE or UPDATE! */ |
9706 | DBUG_ASSERT(thd_sql_command(thd) == SQLCOM_DELETE || |
9707 | thd_sql_command(thd) == SQLCOM_DELETE_MULTI || |
9708 | thd_sql_command(thd) == SQLCOM_UPDATE || |
9709 | thd_sql_command(thd) == SQLCOM_UPDATE_MULTI); |
9710 | DBUG_ASSERT(m_err_rec); |
9711 | if (m_err_rec) |
9712 | { |
9713 | uint max_length; |
9714 | char buf[MAX_KEY_LENGTH]; |
9715 | String str(buf,sizeof(buf),system_charset_info); |
9716 | uint32 part_id; |
9717 | str.length(0); |
9718 | str.append("(" ); |
9719 | str.append_ulonglong(m_last_part); |
9720 | str.append(" != " ); |
9721 | if (get_part_for_buf(m_err_rec, m_rec0, m_part_info, &part_id)) |
9722 | str.append("?" ); |
9723 | else |
9724 | str.append_ulonglong(part_id); |
9725 | str.append(")" ); |
9726 | append_row_to_str(str); |
9727 | |
9728 | /* Log this error, so the DBA can notice it and fix it! */ |
9729 | sql_print_error("Table '%-192s' corrupted: row in wrong partition: %s\n" |
9730 | "Please REPAIR the table!" , |
9731 | table->s->table_name.str, |
9732 | str.c_ptr_safe()); |
9733 | |
9734 | max_length= (MYSQL_ERRMSG_SIZE - |
9735 | (uint) strlen(ER_THD(thd, ER_ROW_IN_WRONG_PARTITION))); |
9736 | if (str.length() >= max_length) |
9737 | { |
9738 | str.length(max_length-4); |
9739 | str.append(STRING_WITH_LEN("..." )); |
9740 | } |
9741 | my_error(ER_ROW_IN_WRONG_PARTITION, MYF(0), str.c_ptr_safe()); |
9742 | m_err_rec= NULL; |
9743 | DBUG_VOID_RETURN; |
9744 | } |
9745 | /* fall through to generic error handling. */ |
9746 | } |
9747 | |
9748 | /* In case m_file has not been initialized, like in bug#42438 */ |
9749 | if (m_file) |
9750 | { |
9751 | if (m_last_part >= m_tot_parts) |
9752 | { |
9753 | DBUG_ASSERT(0); |
9754 | m_last_part= 0; |
9755 | } |
9756 | m_file[m_last_part]->print_error(error, errflag); |
9757 | } |
9758 | else |
9759 | handler::print_error(error, errflag); |
9760 | DBUG_VOID_RETURN; |
9761 | } |
9762 | |
9763 | |
9764 | bool ha_partition::get_error_message(int error, String *buf) |
9765 | { |
9766 | DBUG_ENTER("ha_partition::get_error_message" ); |
9767 | |
9768 | /* Should probably look for my own errors first */ |
9769 | |
9770 | /* In case m_file has not been initialized, like in bug#42438 */ |
9771 | if (m_file) |
9772 | DBUG_RETURN(m_file[m_last_part]->get_error_message(error, buf)); |
9773 | DBUG_RETURN(handler::get_error_message(error, buf)); |
9774 | |
9775 | } |
9776 | |
9777 | |
9778 | /**************************************************************************** |
9779 | MODULE in-place ALTER |
9780 | ****************************************************************************/ |
9781 | /** |
9782 | Get table flags. |
9783 | */ |
9784 | |
9785 | handler::Table_flags ha_partition::table_flags() const |
9786 | { |
9787 | uint first_used_partition= 0; |
9788 | DBUG_ENTER("ha_partition::table_flags" ); |
9789 | if (m_handler_status < handler_initialized || |
9790 | m_handler_status >= handler_closed) |
9791 | DBUG_RETURN(PARTITION_ENABLED_TABLE_FLAGS); |
9792 | |
9793 | if (get_lock_type() != F_UNLCK) |
9794 | { |
9795 | /* |
9796 | The flags are cached after external_lock, and may depend on isolation |
9797 | level. So we should use a locked partition to get the correct flags. |
9798 | */ |
9799 | first_used_partition= bitmap_get_first_set(&m_part_info->lock_partitions); |
9800 | if (first_used_partition == MY_BIT_NONE) |
9801 | first_used_partition= 0; |
9802 | } |
9803 | DBUG_RETURN((m_file[first_used_partition]->ha_table_flags() & |
9804 | ~(PARTITION_DISABLED_TABLE_FLAGS)) | |
9805 | (PARTITION_ENABLED_TABLE_FLAGS)); |
9806 | } |
9807 | |
9808 | |
9809 | /** |
9810 | alter_table_flags must be on handler/table level, not on hton level |
9811 | due to the ha_partition hton does not know what the underlying hton is. |
9812 | */ |
9813 | |
9814 | alter_table_operations ha_partition::alter_table_flags(alter_table_operations flags) |
9815 | { |
9816 | alter_table_operations flags_to_return; |
9817 | DBUG_ENTER("ha_partition::alter_table_flags" ); |
9818 | |
9819 | flags_to_return= ht->alter_table_flags(flags); |
9820 | flags_to_return|= m_file[0]->alter_table_flags(flags); |
9821 | |
9822 | DBUG_RETURN(flags_to_return); |
9823 | } |
9824 | |
9825 | |
9826 | /** |
9827 | check if copy of data is needed in alter table. |
9828 | */ |
9829 | bool ha_partition::check_if_incompatible_data(HA_CREATE_INFO *create_info, |
9830 | uint table_changes) |
9831 | { |
9832 | /* |
9833 | The check for any partitioning related changes have already been done |
9834 | in mysql_alter_table (by fix_partition_func), so it is only up to |
9835 | the underlying handlers. |
9836 | */ |
9837 | List_iterator<partition_element> part_it(m_part_info->partitions); |
9838 | HA_CREATE_INFO dummy_info= *create_info; |
9839 | uint i=0; |
9840 | while (partition_element *part_elem= part_it++) |
9841 | { |
9842 | if (m_is_sub_partitioned) |
9843 | { |
9844 | List_iterator<partition_element> subpart_it(part_elem->subpartitions); |
9845 | while (partition_element *sub_elem= subpart_it++) |
9846 | { |
9847 | dummy_info.data_file_name= sub_elem->data_file_name; |
9848 | dummy_info.index_file_name= sub_elem->index_file_name; |
9849 | if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes)) |
9850 | return COMPATIBLE_DATA_NO; |
9851 | } |
9852 | } |
9853 | else |
9854 | { |
9855 | dummy_info.data_file_name= part_elem->data_file_name; |
9856 | dummy_info.index_file_name= part_elem->index_file_name; |
9857 | if (m_file[i++]->check_if_incompatible_data(&dummy_info, table_changes)) |
9858 | return COMPATIBLE_DATA_NO; |
9859 | } |
9860 | } |
9861 | return COMPATIBLE_DATA_YES; |
9862 | } |
9863 | |
9864 | |
9865 | /** |
9866 | Support of in-place alter table. |
9867 | */ |
9868 | |
9869 | /** |
9870 | Helper class for in-place alter, see handler.h |
9871 | */ |
9872 | |
9873 | class ha_partition_inplace_ctx : public inplace_alter_handler_ctx |
9874 | { |
9875 | public: |
9876 | inplace_alter_handler_ctx **handler_ctx_array; |
9877 | private: |
9878 | uint m_tot_parts; |
9879 | |
9880 | public: |
9881 | ha_partition_inplace_ctx(THD *thd, uint tot_parts) |
9882 | : inplace_alter_handler_ctx(), |
9883 | handler_ctx_array(NULL), |
9884 | m_tot_parts(tot_parts) |
9885 | {} |
9886 | |
9887 | ~ha_partition_inplace_ctx() |
9888 | { |
9889 | if (handler_ctx_array) |
9890 | { |
9891 | for (uint index= 0; index < m_tot_parts; index++) |
9892 | delete handler_ctx_array[index]; |
9893 | } |
9894 | } |
9895 | }; |
9896 | |
9897 | |
9898 | enum_alter_inplace_result |
9899 | ha_partition::check_if_supported_inplace_alter(TABLE *altered_table, |
9900 | Alter_inplace_info *ha_alter_info) |
9901 | { |
9902 | uint index= 0; |
9903 | enum_alter_inplace_result result= HA_ALTER_INPLACE_NO_LOCK; |
9904 | ha_partition_inplace_ctx *part_inplace_ctx; |
9905 | bool first_is_set= false; |
9906 | THD *thd= ha_thd(); |
9907 | |
9908 | DBUG_ENTER("ha_partition::check_if_supported_inplace_alter" ); |
9909 | /* |
9910 | Support inplace change of KEY () -> KEY ALGORITHM = N (). |
9911 | Any other change would set partition_changed in |
9912 | prep_alter_part_table() in mysql_alter_table(). |
9913 | */ |
9914 | if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO) |
9915 | { |
9916 | DBUG_ASSERT(ha_alter_info->alter_info->flags == 0); |
9917 | DBUG_RETURN(HA_ALTER_INPLACE_NO_LOCK); |
9918 | } |
9919 | |
9920 | part_inplace_ctx= |
9921 | new (thd->mem_root) ha_partition_inplace_ctx(thd, m_tot_parts); |
9922 | if (!part_inplace_ctx) |
9923 | DBUG_RETURN(HA_ALTER_ERROR); |
9924 | |
9925 | part_inplace_ctx->handler_ctx_array= (inplace_alter_handler_ctx **) |
9926 | thd->alloc(sizeof(inplace_alter_handler_ctx *) * (m_tot_parts + 1)); |
9927 | if (!part_inplace_ctx->handler_ctx_array) |
9928 | DBUG_RETURN(HA_ALTER_ERROR); |
9929 | |
9930 | /* Set all to NULL, including the terminating one. */ |
9931 | for (index= 0; index <= m_tot_parts; index++) |
9932 | part_inplace_ctx->handler_ctx_array[index]= NULL; |
9933 | |
9934 | ha_alter_info->handler_flags |= ALTER_PARTITIONED; |
9935 | for (index= 0; index < m_tot_parts; index++) |
9936 | { |
9937 | enum_alter_inplace_result p_result= |
9938 | m_file[index]->check_if_supported_inplace_alter(altered_table, |
9939 | ha_alter_info); |
9940 | part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; |
9941 | |
9942 | if (index == 0) |
9943 | { |
9944 | first_is_set= (ha_alter_info->handler_ctx != NULL); |
9945 | } |
9946 | else if (first_is_set != (ha_alter_info->handler_ctx != NULL)) |
9947 | { |
9948 | /* Either none or all partitions must set handler_ctx! */ |
9949 | DBUG_ASSERT(0); |
9950 | DBUG_RETURN(HA_ALTER_ERROR); |
9951 | } |
9952 | if (p_result < result) |
9953 | result= p_result; |
9954 | if (result == HA_ALTER_ERROR) |
9955 | break; |
9956 | } |
9957 | |
9958 | ha_alter_info->handler_ctx= part_inplace_ctx; |
9959 | /* |
9960 | To indicate for future inplace calls that there are several |
9961 | partitions/handlers that need to be committed together, |
9962 | we set group_commit_ctx to the NULL terminated array of |
9963 | the partitions handlers. |
9964 | */ |
9965 | ha_alter_info->group_commit_ctx= part_inplace_ctx->handler_ctx_array; |
9966 | |
9967 | DBUG_RETURN(result); |
9968 | } |
9969 | |
9970 | |
9971 | bool ha_partition::prepare_inplace_alter_table(TABLE *altered_table, |
9972 | Alter_inplace_info *ha_alter_info) |
9973 | { |
9974 | uint index= 0; |
9975 | bool error= false; |
9976 | ha_partition_inplace_ctx *part_inplace_ctx; |
9977 | |
9978 | DBUG_ENTER("ha_partition::prepare_inplace_alter_table" ); |
9979 | |
9980 | /* |
9981 | Changing to similar partitioning, only update metadata. |
9982 | Non allowed changes would be catched in prep_alter_part_table(). |
9983 | */ |
9984 | if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO) |
9985 | { |
9986 | DBUG_ASSERT(ha_alter_info->alter_info->flags == 0); |
9987 | DBUG_RETURN(false); |
9988 | } |
9989 | |
9990 | part_inplace_ctx= |
9991 | static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); |
9992 | |
9993 | for (index= 0; index < m_tot_parts && !error; index++) |
9994 | { |
9995 | ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index]; |
9996 | if (m_file[index]->ha_prepare_inplace_alter_table(altered_table, |
9997 | ha_alter_info)) |
9998 | error= true; |
9999 | part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; |
10000 | } |
10001 | ha_alter_info->handler_ctx= part_inplace_ctx; |
10002 | |
10003 | DBUG_RETURN(error); |
10004 | } |
10005 | |
10006 | |
10007 | bool ha_partition::inplace_alter_table(TABLE *altered_table, |
10008 | Alter_inplace_info *ha_alter_info) |
10009 | { |
10010 | uint index= 0; |
10011 | bool error= false; |
10012 | ha_partition_inplace_ctx *part_inplace_ctx; |
10013 | |
10014 | DBUG_ENTER("ha_partition::inplace_alter_table" ); |
10015 | |
10016 | /* |
10017 | Changing to similar partitioning, only update metadata. |
10018 | Non allowed changes would be catched in prep_alter_part_table(). |
10019 | */ |
10020 | if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO) |
10021 | { |
10022 | DBUG_ASSERT(ha_alter_info->alter_info->flags == 0); |
10023 | DBUG_RETURN(false); |
10024 | } |
10025 | |
10026 | part_inplace_ctx= |
10027 | static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); |
10028 | |
10029 | for (index= 0; index < m_tot_parts && !error; index++) |
10030 | { |
10031 | ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[index]; |
10032 | if (m_file[index]->ha_inplace_alter_table(altered_table, |
10033 | ha_alter_info)) |
10034 | error= true; |
10035 | part_inplace_ctx->handler_ctx_array[index]= ha_alter_info->handler_ctx; |
10036 | } |
10037 | ha_alter_info->handler_ctx= part_inplace_ctx; |
10038 | |
10039 | DBUG_RETURN(error); |
10040 | } |
10041 | |
10042 | |
10043 | /* |
10044 | Note that this function will try rollback failed ADD INDEX by |
10045 | executing DROP INDEX for the indexes that were committed (if any) |
10046 | before the error occurred. This means that the underlying storage |
10047 | engine must be able to drop index in-place with X-lock held. |
10048 | (As X-lock will be held here if new indexes are to be committed) |
10049 | */ |
10050 | bool ha_partition::commit_inplace_alter_table(TABLE *altered_table, |
10051 | Alter_inplace_info *ha_alter_info, |
10052 | bool commit) |
10053 | { |
10054 | ha_partition_inplace_ctx *part_inplace_ctx; |
10055 | bool error= false; |
10056 | |
10057 | DBUG_ENTER("ha_partition::commit_inplace_alter_table" ); |
10058 | |
10059 | /* |
10060 | Changing to similar partitioning, only update metadata. |
10061 | Non allowed changes would be catched in prep_alter_part_table(). |
10062 | */ |
10063 | if (ha_alter_info->alter_info->partition_flags == ALTER_PARTITION_INFO) |
10064 | { |
10065 | DBUG_ASSERT(ha_alter_info->alter_info->flags == 0); |
10066 | DBUG_RETURN(false); |
10067 | } |
10068 | |
10069 | part_inplace_ctx= |
10070 | static_cast<class ha_partition_inplace_ctx*>(ha_alter_info->handler_ctx); |
10071 | |
10072 | if (commit) |
10073 | { |
10074 | DBUG_ASSERT(ha_alter_info->group_commit_ctx == |
10075 | part_inplace_ctx->handler_ctx_array); |
10076 | ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[0]; |
10077 | error= m_file[0]->ha_commit_inplace_alter_table(altered_table, |
10078 | ha_alter_info, commit); |
10079 | if (unlikely(error)) |
10080 | goto end; |
10081 | if (ha_alter_info->group_commit_ctx) |
10082 | { |
10083 | /* |
10084 | If ha_alter_info->group_commit_ctx is not set to NULL, |
10085 | then the engine did only commit the first partition! |
10086 | The engine is probably new, since both innodb and the default |
10087 | implementation of handler::commit_inplace_alter_table sets it to NULL |
10088 | and simply return false, since it allows metadata changes only. |
10089 | Loop over all other partitions as to follow the protocol! |
10090 | */ |
10091 | uint i; |
10092 | DBUG_ASSERT(0); |
10093 | for (i= 1; i < m_tot_parts; i++) |
10094 | { |
10095 | ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i]; |
10096 | error|= m_file[i]->ha_commit_inplace_alter_table(altered_table, |
10097 | ha_alter_info, |
10098 | true); |
10099 | } |
10100 | } |
10101 | } |
10102 | else |
10103 | { |
10104 | uint i; |
10105 | for (i= 0; i < m_tot_parts; i++) |
10106 | { |
10107 | /* Rollback, commit == false, is done for each partition! */ |
10108 | ha_alter_info->handler_ctx= part_inplace_ctx->handler_ctx_array[i]; |
10109 | if (m_file[i]->ha_commit_inplace_alter_table(altered_table, |
10110 | ha_alter_info, false)) |
10111 | error= true; |
10112 | } |
10113 | } |
10114 | end: |
10115 | ha_alter_info->handler_ctx= part_inplace_ctx; |
10116 | |
10117 | DBUG_RETURN(error); |
10118 | } |
10119 | |
10120 | |
10121 | void ha_partition::notify_table_changed() |
10122 | { |
10123 | handler **file; |
10124 | |
10125 | DBUG_ENTER("ha_partition::notify_table_changed" ); |
10126 | |
10127 | for (file= m_file; *file; file++) |
10128 | (*file)->ha_notify_table_changed(); |
10129 | |
10130 | DBUG_VOID_RETURN; |
10131 | } |
10132 | |
10133 | |
10134 | uint ha_partition::min_of_the_max_uint( |
10135 | uint (handler::*operator_func)(void) const) const |
10136 | { |
10137 | handler **file; |
10138 | uint min_of_the_max= ((*m_file)->*operator_func)(); |
10139 | |
10140 | for (file= m_file+1; *file; file++) |
10141 | { |
10142 | uint tmp= ((*file)->*operator_func)(); |
10143 | set_if_smaller(min_of_the_max, tmp); |
10144 | } |
10145 | return min_of_the_max; |
10146 | } |
10147 | |
10148 | |
10149 | uint ha_partition::max_supported_key_parts() const |
10150 | { |
10151 | return min_of_the_max_uint(&handler::max_supported_key_parts); |
10152 | } |
10153 | |
10154 | |
10155 | uint ha_partition::max_supported_key_length() const |
10156 | { |
10157 | return min_of_the_max_uint(&handler::max_supported_key_length); |
10158 | } |
10159 | |
10160 | |
10161 | uint ha_partition::max_supported_key_part_length() const |
10162 | { |
10163 | return min_of_the_max_uint(&handler::max_supported_key_part_length); |
10164 | } |
10165 | |
10166 | |
10167 | uint ha_partition::max_supported_record_length() const |
10168 | { |
10169 | return min_of_the_max_uint(&handler::max_supported_record_length); |
10170 | } |
10171 | |
10172 | |
10173 | uint ha_partition::max_supported_keys() const |
10174 | { |
10175 | return min_of_the_max_uint(&handler::max_supported_keys); |
10176 | } |
10177 | |
10178 | |
10179 | uint ha_partition::min_record_length(uint options) const |
10180 | { |
10181 | handler **file; |
10182 | uint max= (*m_file)->min_record_length(options); |
10183 | |
10184 | for (file= m_file, file++; *file; file++) |
10185 | if (max < (*file)->min_record_length(options)) |
10186 | max= (*file)->min_record_length(options); |
10187 | return max; |
10188 | } |
10189 | |
10190 | /**************************************************************************** |
10191 | MODULE compare records |
10192 | ****************************************************************************/ |
10193 | /* |
10194 | Compare two positions |
10195 | |
10196 | SYNOPSIS |
10197 | cmp_ref() |
10198 | ref1 First position |
10199 | ref2 Second position |
10200 | |
10201 | RETURN VALUE |
10202 | <0 ref1 < ref2 |
10203 | 0 Equal |
10204 | >0 ref1 > ref2 |
10205 | |
10206 | DESCRIPTION |
10207 | We get two references and need to check if those records are the same. |
10208 | If they belong to different partitions we decide that they are not |
10209 | the same record. Otherwise we use the particular handler to decide if |
10210 | they are the same. Sort in partition id order if not equal. |
10211 | |
10212 | MariaDB note: |
10213 | Please don't merge the code from MySQL that does this: |
10214 | |
10215 | We get two references and need to check if those records are the same. |
10216 | If they belong to different partitions we decide that they are not |
10217 | the same record. Otherwise we use the particular handler to decide if |
10218 | they are the same. Sort in partition id order if not equal. |
10219 | |
10220 | It is incorrect, MariaDB has an alternative fix. |
10221 | */ |
10222 | |
10223 | int ha_partition::cmp_ref(const uchar *ref1, const uchar *ref2) |
10224 | { |
10225 | int cmp; |
10226 | uint32 diff1, diff2; |
10227 | DBUG_ENTER("ha_partition::cmp_ref" ); |
10228 | |
10229 | cmp= get_open_file_sample()->cmp_ref((ref1 + PARTITION_BYTES_IN_POS), |
10230 | (ref2 + PARTITION_BYTES_IN_POS)); |
10231 | if (cmp) |
10232 | DBUG_RETURN(cmp); |
10233 | |
10234 | diff2= uint2korr(ref2); |
10235 | diff1= uint2korr(ref1); |
10236 | |
10237 | if (diff1 == diff2) |
10238 | { |
10239 | /* This means that the references are same and are in same partition.*/ |
10240 | DBUG_RETURN(0); |
10241 | } |
10242 | |
10243 | /* |
10244 | In Innodb we compare with either primary key value or global DB_ROW_ID so |
10245 | it is not possible that the two references are equal and are in different |
10246 | partitions, but in myisam it is possible since we are comparing offsets. |
10247 | Remove this assert if DB_ROW_ID is changed to be per partition. |
10248 | */ |
10249 | DBUG_ASSERT(!m_innodb); |
10250 | DBUG_RETURN(diff2 > diff1 ? -1 : 1); |
10251 | } |
10252 | |
10253 | |
10254 | /**************************************************************************** |
10255 | MODULE auto increment |
10256 | ****************************************************************************/ |
10257 | |
10258 | |
10259 | /** |
10260 | Retreive new values for part_share->next_auto_inc_val if needed |
10261 | |
10262 | This is needed if the value has not been initialized or if one of |
10263 | the underlying partitions require that the value should be re-calculated |
10264 | */ |
10265 | |
10266 | void ha_partition::update_next_auto_inc_val() |
10267 | { |
10268 | if (!part_share->auto_inc_initialized || |
10269 | need_info_for_auto_inc()) |
10270 | info(HA_STATUS_AUTO); |
10271 | } |
10272 | |
10273 | |
10274 | /** |
10275 | Determine whether a partition needs auto-increment initialization. |
10276 | |
10277 | @return |
10278 | TRUE A partition needs auto-increment initialization |
10279 | FALSE No partition needs auto-increment initialization |
10280 | |
10281 | Resets part_share->auto_inc_initialized if next auto_increment needs to be |
10282 | recalculated. |
10283 | */ |
10284 | |
10285 | bool ha_partition::need_info_for_auto_inc() |
10286 | { |
10287 | handler **file= m_file; |
10288 | DBUG_ENTER("ha_partition::need_info_for_auto_inc" ); |
10289 | |
10290 | do |
10291 | { |
10292 | if ((*file)->need_info_for_auto_inc()) |
10293 | { |
10294 | /* We have to get new auto_increment values from handler */ |
10295 | part_share->auto_inc_initialized= FALSE; |
10296 | DBUG_RETURN(TRUE); |
10297 | } |
10298 | } while (*(++file)); |
10299 | DBUG_RETURN(FALSE); |
10300 | } |
10301 | |
10302 | |
10303 | /** |
10304 | Determine if all partitions can use the current auto-increment value for |
10305 | auto-increment initialization. |
10306 | |
10307 | @return |
10308 | TRUE All partitions can use the current auto-increment |
10309 | value for auto-increment initialization |
10310 | FALSE All partitions cannot use the current |
10311 | auto-increment value for auto-increment |
10312 | initialization |
10313 | |
10314 | Notes |
10315 | This function is only called for ::info(HA_STATUS_AUTO) and is |
10316 | mainly used by the Spider engine, which returns false |
10317 | except in the case of DROP TABLE or ALTER TABLE when it returns TRUE. |
10318 | Other engines always returns TRUE for this call. |
10319 | */ |
10320 | |
10321 | bool ha_partition::can_use_for_auto_inc_init() |
10322 | { |
10323 | handler **file= m_file; |
10324 | DBUG_ENTER("ha_partition::can_use_for_auto_inc_init" ); |
10325 | |
10326 | do |
10327 | { |
10328 | if (!(*file)->can_use_for_auto_inc_init()) |
10329 | DBUG_RETURN(FALSE); |
10330 | } while (*(++file)); |
10331 | DBUG_RETURN(TRUE); |
10332 | } |
10333 | |
10334 | |
10335 | int ha_partition::reset_auto_increment(ulonglong value) |
10336 | { |
10337 | handler **file= m_file; |
10338 | int res; |
10339 | DBUG_ENTER("ha_partition::reset_auto_increment" ); |
10340 | lock_auto_increment(); |
10341 | part_share->auto_inc_initialized= false; |
10342 | part_share->next_auto_inc_val= 0; |
10343 | do |
10344 | { |
10345 | if ((res= (*file)->ha_reset_auto_increment(value)) != 0) |
10346 | break; |
10347 | } while (*(++file)); |
10348 | unlock_auto_increment(); |
10349 | DBUG_RETURN(res); |
10350 | } |
10351 | |
10352 | |
10353 | /** |
10354 | This method is called by update_auto_increment which in turn is called |
10355 | by the individual handlers as part of write_row. We use the |
10356 | part_share->next_auto_inc_val, or search all |
10357 | partitions for the highest auto_increment_value if not initialized or |
10358 | if auto_increment field is a secondary part of a key, we must search |
10359 | every partition when holding a mutex to be sure of correctness. |
10360 | */ |
10361 | |
10362 | void ha_partition::get_auto_increment(ulonglong offset, ulonglong increment, |
10363 | ulonglong nb_desired_values, |
10364 | ulonglong *first_value, |
10365 | ulonglong *nb_reserved_values) |
10366 | { |
10367 | DBUG_ENTER("ha_partition::get_auto_increment" ); |
10368 | DBUG_PRINT("enter" , ("offset: %lu inc: %lu desired_values: %lu " |
10369 | "first_value: %lu" , (ulong) offset, (ulong) increment, |
10370 | (ulong) nb_desired_values, (ulong) *first_value)); |
10371 | DBUG_ASSERT(increment && nb_desired_values); |
10372 | *first_value= 0; |
10373 | if (table->s->next_number_keypart) |
10374 | { |
10375 | /* |
10376 | next_number_keypart is != 0 if the auto_increment column is a secondary |
10377 | column in the index (it is allowed in MyISAM) |
10378 | */ |
10379 | DBUG_PRINT("info" , ("next_number_keypart != 0" )); |
10380 | ulonglong nb_reserved_values_part; |
10381 | ulonglong first_value_part, max_first_value; |
10382 | handler **file= m_file; |
10383 | first_value_part= max_first_value= *first_value; |
10384 | /* Must find highest value among all partitions. */ |
10385 | do |
10386 | { |
10387 | /* Only nb_desired_values = 1 makes sense */ |
10388 | (*file)->get_auto_increment(offset, increment, 1, |
10389 | &first_value_part, &nb_reserved_values_part); |
10390 | if (unlikely(first_value_part == ULONGLONG_MAX)) // error in one partition |
10391 | { |
10392 | *first_value= first_value_part; |
10393 | /* log that the error was between table/partition handler */ |
10394 | sql_print_error("Partition failed to reserve auto_increment value" ); |
10395 | DBUG_VOID_RETURN; |
10396 | } |
10397 | DBUG_PRINT("info" , ("first_value_part: %lu" , (ulong) first_value_part)); |
10398 | set_if_bigger(max_first_value, first_value_part); |
10399 | } while (*(++file)); |
10400 | *first_value= max_first_value; |
10401 | *nb_reserved_values= 1; |
10402 | } |
10403 | else |
10404 | { |
10405 | THD *thd= ha_thd(); |
10406 | /* |
10407 | This is initialized in the beginning of the first write_row call. |
10408 | */ |
10409 | DBUG_ASSERT(part_share->auto_inc_initialized); |
10410 | /* |
10411 | Get a lock for handling the auto_increment in part_share |
10412 | for avoiding two concurrent statements getting the same number. |
10413 | */ |
10414 | |
10415 | lock_auto_increment(); |
10416 | |
10417 | /* |
10418 | In a multi-row insert statement like INSERT SELECT and LOAD DATA |
10419 | where the number of candidate rows to insert is not known in advance |
10420 | we must hold a lock/mutex for the whole statement if we have statement |
10421 | based replication. Because the statement-based binary log contains |
10422 | only the first generated value used by the statement, and slaves assumes |
10423 | all other generated values used by this statement were consecutive to |
10424 | this first one, we must exclusively lock the generator until the |
10425 | statement is done. |
10426 | */ |
10427 | if (!auto_increment_safe_stmt_log_lock && |
10428 | thd->lex->sql_command != SQLCOM_INSERT && |
10429 | mysql_bin_log.is_open() && |
10430 | !thd->is_current_stmt_binlog_format_row() && |
10431 | (thd->variables.option_bits & OPTION_BIN_LOG)) |
10432 | { |
10433 | DBUG_PRINT("info" , ("locking auto_increment_safe_stmt_log_lock" )); |
10434 | auto_increment_safe_stmt_log_lock= TRUE; |
10435 | } |
10436 | |
10437 | /* this gets corrected (for offset/increment) in update_auto_increment */ |
10438 | *first_value= part_share->next_auto_inc_val; |
10439 | part_share->next_auto_inc_val+= nb_desired_values * increment; |
10440 | |
10441 | unlock_auto_increment(); |
10442 | DBUG_PRINT("info" , ("*first_value: %lu" , (ulong) *first_value)); |
10443 | *nb_reserved_values= nb_desired_values; |
10444 | } |
10445 | DBUG_VOID_RETURN; |
10446 | } |
10447 | |
10448 | void ha_partition::release_auto_increment() |
10449 | { |
10450 | DBUG_ENTER("ha_partition::release_auto_increment" ); |
10451 | |
10452 | if (table->s->next_number_keypart) |
10453 | { |
10454 | uint i; |
10455 | for (i= bitmap_get_first_set(&m_part_info->lock_partitions); |
10456 | i < m_tot_parts; |
10457 | i= bitmap_get_next_set(&m_part_info->lock_partitions, i)) |
10458 | { |
10459 | m_file[i]->ha_release_auto_increment(); |
10460 | } |
10461 | } |
10462 | else if (next_insert_id) |
10463 | { |
10464 | ulonglong next_auto_inc_val; |
10465 | lock_auto_increment(); |
10466 | next_auto_inc_val= part_share->next_auto_inc_val; |
10467 | /* |
10468 | If the current auto_increment values is lower than the reserved |
10469 | value, and the reserved value was reserved by this thread, |
10470 | we can lower the reserved value. |
10471 | */ |
10472 | if (next_insert_id < next_auto_inc_val && |
10473 | auto_inc_interval_for_cur_row.maximum() >= next_auto_inc_val) |
10474 | { |
10475 | THD *thd= ha_thd(); |
10476 | /* |
10477 | Check that we do not lower the value because of a failed insert |
10478 | with SET INSERT_ID, i.e. forced/non generated values. |
10479 | */ |
10480 | if (thd->auto_inc_intervals_forced.maximum() < next_insert_id) |
10481 | part_share->next_auto_inc_val= next_insert_id; |
10482 | } |
10483 | DBUG_PRINT("info" , ("part_share->next_auto_inc_val: %lu" , |
10484 | (ulong) part_share->next_auto_inc_val)); |
10485 | |
10486 | /* Unlock the multi row statement lock taken in get_auto_increment */ |
10487 | if (auto_increment_safe_stmt_log_lock) |
10488 | { |
10489 | auto_increment_safe_stmt_log_lock= FALSE; |
10490 | DBUG_PRINT("info" , ("unlocking auto_increment_safe_stmt_log_lock" )); |
10491 | } |
10492 | |
10493 | unlock_auto_increment(); |
10494 | } |
10495 | DBUG_VOID_RETURN; |
10496 | } |
10497 | |
10498 | /**************************************************************************** |
10499 | MODULE initialize handler for HANDLER call |
10500 | ****************************************************************************/ |
10501 | |
10502 | void ha_partition::init_table_handle_for_HANDLER() |
10503 | { |
10504 | return; |
10505 | } |
10506 | |
10507 | |
10508 | /** |
10509 | Return the checksum of the table (all partitions) |
10510 | */ |
10511 | |
10512 | uint ha_partition::checksum() const |
10513 | { |
10514 | ha_checksum sum= 0; |
10515 | |
10516 | DBUG_ENTER("ha_partition::checksum" ); |
10517 | if ((table_flags() & (HA_HAS_OLD_CHECKSUM | HA_HAS_NEW_CHECKSUM))) |
10518 | { |
10519 | handler **file= m_file; |
10520 | do |
10521 | { |
10522 | sum+= (*file)->checksum(); |
10523 | } while (*(++file)); |
10524 | } |
10525 | DBUG_RETURN(sum); |
10526 | } |
10527 | |
10528 | |
10529 | /**************************************************************************** |
10530 | MODULE enable/disable indexes |
10531 | ****************************************************************************/ |
10532 | |
10533 | /* |
10534 | Disable indexes for a while |
10535 | SYNOPSIS |
10536 | disable_indexes() |
10537 | mode Mode |
10538 | RETURN VALUES |
10539 | 0 Success |
10540 | != 0 Error |
10541 | */ |
10542 | |
10543 | int ha_partition::disable_indexes(uint mode) |
10544 | { |
10545 | handler **file; |
10546 | int error= 0; |
10547 | |
10548 | DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions))); |
10549 | for (file= m_file; *file; file++) |
10550 | { |
10551 | if (unlikely((error= (*file)->ha_disable_indexes(mode)))) |
10552 | break; |
10553 | } |
10554 | return error; |
10555 | } |
10556 | |
10557 | |
10558 | /* |
10559 | Enable indexes again |
10560 | SYNOPSIS |
10561 | enable_indexes() |
10562 | mode Mode |
10563 | RETURN VALUES |
10564 | 0 Success |
10565 | != 0 Error |
10566 | */ |
10567 | |
10568 | int ha_partition::enable_indexes(uint mode) |
10569 | { |
10570 | handler **file; |
10571 | int error= 0; |
10572 | |
10573 | DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions))); |
10574 | for (file= m_file; *file; file++) |
10575 | { |
10576 | if (unlikely((error= (*file)->ha_enable_indexes(mode)))) |
10577 | break; |
10578 | } |
10579 | return error; |
10580 | } |
10581 | |
10582 | |
10583 | /* |
10584 | Check if indexes are disabled |
10585 | SYNOPSIS |
10586 | indexes_are_disabled() |
10587 | |
10588 | RETURN VALUES |
10589 | 0 Indexes are enabled |
10590 | != 0 Indexes are disabled |
10591 | */ |
10592 | |
10593 | int ha_partition::indexes_are_disabled(void) |
10594 | { |
10595 | handler **file; |
10596 | int error= 0; |
10597 | |
10598 | DBUG_ASSERT(bitmap_is_set_all(&(m_part_info->lock_partitions))); |
10599 | for (file= m_file; *file; file++) |
10600 | { |
10601 | if (unlikely((error= (*file)->indexes_are_disabled()))) |
10602 | break; |
10603 | } |
10604 | return error; |
10605 | } |
10606 | |
10607 | |
10608 | /** |
10609 | Check/fix misplaced rows. |
10610 | |
10611 | @param read_part_id Partition to check/fix. |
10612 | @param repair If true, move misplaced rows to correct partition. |
10613 | |
10614 | @return Operation status. |
10615 | @retval 0 Success |
10616 | @retval != 0 Error |
10617 | */ |
10618 | |
10619 | int ha_partition::check_misplaced_rows(uint read_part_id, bool do_repair) |
10620 | { |
10621 | int result= 0; |
10622 | uint32 correct_part_id; |
10623 | longlong func_value; |
10624 | longlong num_misplaced_rows= 0; |
10625 | |
10626 | DBUG_ENTER("ha_partition::check_misplaced_rows" ); |
10627 | |
10628 | DBUG_ASSERT(m_file); |
10629 | |
10630 | if (do_repair) |
10631 | { |
10632 | /* We must read the full row, if we need to move it! */ |
10633 | bitmap_set_all(table->read_set); |
10634 | bitmap_set_all(table->write_set); |
10635 | } |
10636 | else |
10637 | { |
10638 | /* Only need to read the partitioning fields. */ |
10639 | bitmap_union(table->read_set, &m_part_info->full_part_field_set); |
10640 | if (table->vcol_set) |
10641 | bitmap_union(table->vcol_set, &m_part_info->full_part_field_set); |
10642 | } |
10643 | |
10644 | if ((result= m_file[read_part_id]->ha_rnd_init(1))) |
10645 | DBUG_RETURN(result); |
10646 | |
10647 | while (true) |
10648 | { |
10649 | if ((result= m_file[read_part_id]->ha_rnd_next(m_rec0))) |
10650 | { |
10651 | if (result != HA_ERR_END_OF_FILE) |
10652 | break; |
10653 | |
10654 | if (num_misplaced_rows > 0) |
10655 | { |
10656 | print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "warning" , |
10657 | table_share->db.str, table->alias, |
10658 | opt_op_name[REPAIR_PARTS], |
10659 | "Moved %lld misplaced rows" , |
10660 | num_misplaced_rows); |
10661 | } |
10662 | /* End-of-file reached, all rows are now OK, reset result and break. */ |
10663 | result= 0; |
10664 | break; |
10665 | } |
10666 | |
10667 | result= m_part_info->get_partition_id(m_part_info, &correct_part_id, |
10668 | &func_value); |
10669 | if (result) |
10670 | break; |
10671 | |
10672 | if (correct_part_id != read_part_id) |
10673 | { |
10674 | num_misplaced_rows++; |
10675 | if (!do_repair) |
10676 | { |
10677 | /* Check. */ |
10678 | print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "error" , |
10679 | table_share->db.str, table->alias, |
10680 | opt_op_name[CHECK_PARTS], |
10681 | "Found a misplaced row" ); |
10682 | /* Break on first misplaced row! */ |
10683 | result= HA_ADMIN_NEEDS_UPGRADE; |
10684 | break; |
10685 | } |
10686 | else |
10687 | { |
10688 | DBUG_PRINT("info" , ("Moving row from partition %u to %u" , |
10689 | (uint) read_part_id, (uint) correct_part_id)); |
10690 | |
10691 | /* |
10692 | Insert row into correct partition. Notice that there are no commit |
10693 | for every N row, so the repair will be one large transaction! |
10694 | */ |
10695 | if ((result= m_file[correct_part_id]->ha_write_row(m_rec0))) |
10696 | { |
10697 | /* |
10698 | We have failed to insert a row, it might have been a duplicate! |
10699 | */ |
10700 | char buf[MAX_KEY_LENGTH]; |
10701 | String str(buf,sizeof(buf),system_charset_info); |
10702 | str.length(0); |
10703 | if (result == HA_ERR_FOUND_DUPP_KEY) |
10704 | { |
10705 | str.append("Duplicate key found, " |
10706 | "please update or delete the record:\n" ); |
10707 | result= HA_ADMIN_CORRUPT; |
10708 | } |
10709 | m_err_rec= NULL; |
10710 | append_row_to_str(str); |
10711 | |
10712 | /* |
10713 | If the engine supports transactions, the failure will be |
10714 | rollbacked. |
10715 | */ |
10716 | if (!m_file[correct_part_id]->has_transactions()) |
10717 | { |
10718 | /* Log this error, so the DBA can notice it and fix it! */ |
10719 | sql_print_error("Table '%-192s' failed to move/insert a row" |
10720 | " from part %u into part %u:\n%s" , |
10721 | table->s->table_name.str, |
10722 | (uint) read_part_id, |
10723 | (uint) correct_part_id, |
10724 | str.c_ptr_safe()); |
10725 | } |
10726 | print_admin_msg(ha_thd(), MYSQL_ERRMSG_SIZE, "error" , |
10727 | table_share->db.str, table->alias, |
10728 | opt_op_name[REPAIR_PARTS], |
10729 | "Failed to move/insert a row" |
10730 | " from part %u into part %u:\n%s" , |
10731 | (uint) read_part_id, |
10732 | (uint) correct_part_id, |
10733 | str.c_ptr_safe()); |
10734 | break; |
10735 | } |
10736 | |
10737 | /* Delete row from wrong partition. */ |
10738 | if ((result= m_file[read_part_id]->ha_delete_row(m_rec0))) |
10739 | { |
10740 | if (m_file[correct_part_id]->has_transactions()) |
10741 | break; |
10742 | /* |
10743 | We have introduced a duplicate, since we failed to remove it |
10744 | from the wrong partition. |
10745 | */ |
10746 | char buf[MAX_KEY_LENGTH]; |
10747 | String str(buf,sizeof(buf),system_charset_info); |
10748 | str.length(0); |
10749 | m_err_rec= NULL; |
10750 | append_row_to_str(str); |
10751 | |
10752 | /* Log this error, so the DBA can notice it and fix it! */ |
10753 | sql_print_error("Table '%-192s': Delete from part %u failed with" |
10754 | " error %d. But it was already inserted into" |
10755 | " part %u, when moving the misplaced row!" |
10756 | "\nPlease manually fix the duplicate row:\n%s" , |
10757 | table->s->table_name.str, |
10758 | (uint) read_part_id, |
10759 | result, |
10760 | (uint) correct_part_id, |
10761 | str.c_ptr_safe()); |
10762 | break; |
10763 | } |
10764 | } |
10765 | } |
10766 | } |
10767 | |
10768 | int tmp_result= m_file[read_part_id]->ha_rnd_end(); |
10769 | DBUG_RETURN(result ? result : tmp_result); |
10770 | } |
10771 | |
10772 | |
10773 | #define KEY_PARTITIONING_CHANGED_STR \ |
10774 | "KEY () partitioning changed, please run:\n" \ |
10775 | "ALTER TABLE %s.%s ALGORITHM = INPLACE %s" |
10776 | |
10777 | int ha_partition::check_for_upgrade(HA_CHECK_OPT *check_opt) |
10778 | { |
10779 | int error= HA_ADMIN_NEEDS_CHECK; |
10780 | DBUG_ENTER("ha_partition::check_for_upgrade" ); |
10781 | |
10782 | /* |
10783 | This is called even without FOR UPGRADE, |
10784 | if the .frm version is lower than the current version. |
10785 | In that case return that it needs checking! |
10786 | */ |
10787 | if (!(check_opt->sql_flags & TT_FOR_UPGRADE)) |
10788 | DBUG_RETURN(error); |
10789 | |
10790 | /* |
10791 | Partitions will be checked for during their ha_check! |
10792 | |
10793 | Check if KEY (sub)partitioning was used and any field's hash calculation |
10794 | differs from 5.1, see bug#14521864. |
10795 | */ |
10796 | if (table->s->mysql_version < 50503 && // 5.1 table (<5.5.3) |
10797 | ((m_part_info->part_type == HASH_PARTITION && // KEY partitioned |
10798 | m_part_info->list_of_part_fields) || |
10799 | (m_is_sub_partitioned && // KEY subpartitioned |
10800 | m_part_info->list_of_subpart_fields))) |
10801 | { |
10802 | Field **field; |
10803 | if (m_is_sub_partitioned) |
10804 | { |
10805 | field= m_part_info->subpart_field_array; |
10806 | } |
10807 | else |
10808 | { |
10809 | field= m_part_info->part_field_array; |
10810 | } |
10811 | for (; *field; field++) |
10812 | { |
10813 | switch ((*field)->real_type()) { |
10814 | case MYSQL_TYPE_TINY: |
10815 | case MYSQL_TYPE_SHORT: |
10816 | case MYSQL_TYPE_LONG: |
10817 | case MYSQL_TYPE_FLOAT: |
10818 | case MYSQL_TYPE_DOUBLE: |
10819 | case MYSQL_TYPE_NEWDECIMAL: |
10820 | case MYSQL_TYPE_TIMESTAMP: |
10821 | case MYSQL_TYPE_LONGLONG: |
10822 | case MYSQL_TYPE_INT24: |
10823 | case MYSQL_TYPE_TIME: |
10824 | case MYSQL_TYPE_DATETIME: |
10825 | case MYSQL_TYPE_YEAR: |
10826 | case MYSQL_TYPE_NEWDATE: |
10827 | case MYSQL_TYPE_ENUM: |
10828 | case MYSQL_TYPE_SET: |
10829 | { |
10830 | THD *thd= ha_thd(); |
10831 | char *part_buf; |
10832 | String db_name, table_name; |
10833 | uint part_buf_len; |
10834 | bool skip_generation= false; |
10835 | partition_info::enum_key_algorithm old_algorithm; |
10836 | old_algorithm= m_part_info->key_algorithm; |
10837 | error= HA_ADMIN_FAILED; |
10838 | append_identifier(ha_thd(), &db_name, &table_share->db); |
10839 | append_identifier(ha_thd(), &table_name, &table_share->table_name); |
10840 | if (m_part_info->key_algorithm != partition_info::KEY_ALGORITHM_NONE) |
10841 | { |
10842 | /* |
10843 | Only possible when someone tampered with .frm files, |
10844 | like during tests :) |
10845 | */ |
10846 | skip_generation= true; |
10847 | } |
10848 | m_part_info->key_algorithm= partition_info::KEY_ALGORITHM_51; |
10849 | if (skip_generation || |
10850 | !(part_buf= generate_partition_syntax(thd, m_part_info, |
10851 | &part_buf_len, |
10852 | true, |
10853 | NULL, |
10854 | NULL)) || |
10855 | print_admin_msg(thd, SQL_ADMIN_MSG_TEXT_SIZE + 1, "error" , |
10856 | table_share->db.str, |
10857 | table->alias, |
10858 | opt_op_name[CHECK_PARTS], |
10859 | KEY_PARTITIONING_CHANGED_STR, |
10860 | db_name.c_ptr_safe(), |
10861 | table_name.c_ptr_safe(), |
10862 | part_buf)) |
10863 | { |
10864 | /* Error creating admin message (too long string?). */ |
10865 | print_admin_msg(thd, MYSQL_ERRMSG_SIZE, "error" , |
10866 | table_share->db.str, table->alias, |
10867 | opt_op_name[CHECK_PARTS], |
10868 | KEY_PARTITIONING_CHANGED_STR, |
10869 | db_name.c_ptr_safe(), table_name.c_ptr_safe(), |
10870 | "<old partition clause>, but add ALGORITHM = 1" |
10871 | " between 'KEY' and '(' to change the metadata" |
10872 | " without the need of a full table rebuild." ); |
10873 | } |
10874 | m_part_info->key_algorithm= old_algorithm; |
10875 | DBUG_RETURN(error); |
10876 | } |
10877 | default: |
10878 | /* Not affected! */ |
10879 | ; |
10880 | } |
10881 | } |
10882 | } |
10883 | |
10884 | DBUG_RETURN(error); |
10885 | } |
10886 | |
10887 | |
10888 | TABLE_LIST *ha_partition::get_next_global_for_child() |
10889 | { |
10890 | handler **file; |
10891 | DBUG_ENTER("ha_partition::get_next_global_for_child" ); |
10892 | for (file= m_file; *file; file++) |
10893 | { |
10894 | TABLE_LIST *table_list; |
10895 | if ((table_list= (*file)->get_next_global_for_child())) |
10896 | DBUG_RETURN(table_list); |
10897 | } |
10898 | DBUG_RETURN(0); |
10899 | } |
10900 | |
10901 | |
10902 | const COND *ha_partition::cond_push(const COND *cond) |
10903 | { |
10904 | handler **file= m_file; |
10905 | COND *res_cond= NULL; |
10906 | DBUG_ENTER("ha_partition::cond_push" ); |
10907 | |
10908 | if (set_top_table_fields) |
10909 | { |
10910 | /* |
10911 | We want to do this in a separate loop to not come into a situation |
10912 | where we have only done cond_push() to some of the tables |
10913 | */ |
10914 | do |
10915 | { |
10916 | if (((*file)->set_top_table_and_fields(top_table, |
10917 | top_table_field, |
10918 | top_table_fields))) |
10919 | DBUG_RETURN(cond); // Abort cond push, no error |
10920 | } while (*(++file)); |
10921 | file= m_file; |
10922 | } |
10923 | |
10924 | do |
10925 | { |
10926 | if ((*file)->pushed_cond != cond) |
10927 | { |
10928 | if ((*file)->cond_push(cond)) |
10929 | res_cond= (COND *) cond; |
10930 | else |
10931 | (*file)->pushed_cond= cond; |
10932 | } |
10933 | } while (*(++file)); |
10934 | DBUG_RETURN(res_cond); |
10935 | } |
10936 | |
10937 | |
10938 | void ha_partition::cond_pop() |
10939 | { |
10940 | handler **file= m_file; |
10941 | DBUG_ENTER("ha_partition::cond_push" ); |
10942 | |
10943 | do |
10944 | { |
10945 | (*file)->cond_pop(); |
10946 | } while (*(++file)); |
10947 | DBUG_VOID_RETURN; |
10948 | } |
10949 | |
10950 | |
10951 | /** |
10952 | Perform bulk update preparation on each partition. |
10953 | |
10954 | SYNOPSIS |
10955 | start_bulk_update() |
10956 | |
10957 | RETURN VALUE |
10958 | TRUE Error |
10959 | FALSE Success |
10960 | */ |
10961 | |
10962 | bool ha_partition::start_bulk_update() |
10963 | { |
10964 | handler **file= m_file; |
10965 | DBUG_ENTER("ha_partition::start_bulk_update" ); |
10966 | |
10967 | if (bitmap_is_overlapping(&m_part_info->full_part_field_set, |
10968 | table->write_set)) |
10969 | DBUG_RETURN(TRUE); |
10970 | |
10971 | do |
10972 | { |
10973 | if ((*file)->start_bulk_update()) |
10974 | DBUG_RETURN(TRUE); |
10975 | } while (*(++file)); |
10976 | DBUG_RETURN(FALSE); |
10977 | } |
10978 | |
10979 | |
10980 | /** |
10981 | Perform bulk update execution on each partition. A bulk update allows |
10982 | a handler to batch the updated rows instead of performing the updates |
10983 | one row at a time. |
10984 | |
10985 | SYNOPSIS |
10986 | exec_bulk_update() |
10987 | |
10988 | RETURN VALUE |
10989 | TRUE Error |
10990 | FALSE Success |
10991 | */ |
10992 | |
10993 | int ha_partition::exec_bulk_update(ha_rows *dup_key_found) |
10994 | { |
10995 | int error; |
10996 | handler **file= m_file; |
10997 | DBUG_ENTER("ha_partition::exec_bulk_update" ); |
10998 | |
10999 | do |
11000 | { |
11001 | if (unlikely((error= (*file)->exec_bulk_update(dup_key_found)))) |
11002 | DBUG_RETURN(error); |
11003 | } while (*(++file)); |
11004 | DBUG_RETURN(0); |
11005 | } |
11006 | |
11007 | |
11008 | /** |
11009 | Perform bulk update cleanup on each partition. |
11010 | |
11011 | SYNOPSIS |
11012 | end_bulk_update() |
11013 | |
11014 | RETURN VALUE |
11015 | NONE |
11016 | */ |
11017 | |
11018 | int ha_partition::end_bulk_update() |
11019 | { |
11020 | int error= 0; |
11021 | handler **file= m_file; |
11022 | DBUG_ENTER("ha_partition::end_bulk_update" ); |
11023 | |
11024 | do |
11025 | { |
11026 | int tmp; |
11027 | if ((tmp= (*file)->end_bulk_update())) |
11028 | error= tmp; |
11029 | } while (*(++file)); |
11030 | DBUG_RETURN(error); |
11031 | } |
11032 | |
11033 | |
11034 | /** |
11035 | Add the row to the bulk update on the partition on which the row is stored. |
11036 | A bulk update allows a handler to batch the updated rows instead of |
11037 | performing the updates one row at a time. |
11038 | |
11039 | SYNOPSIS |
11040 | bulk_update_row() |
11041 | old_data Old record |
11042 | new_data New record |
11043 | dup_key_found Number of duplicate keys found |
11044 | |
11045 | RETURN VALUE |
11046 | >1 Error |
11047 | 1 Bulk update not used, normal operation used |
11048 | 0 Bulk update used by handler |
11049 | */ |
11050 | |
11051 | int ha_partition::bulk_update_row(const uchar *old_data, const uchar *new_data, |
11052 | ha_rows *dup_key_found) |
11053 | { |
11054 | int error= 0; |
11055 | uint32 part_id; |
11056 | longlong func_value; |
11057 | my_bitmap_map *old_map; |
11058 | DBUG_ENTER("ha_partition::bulk_update_row" ); |
11059 | |
11060 | old_map= dbug_tmp_use_all_columns(table, table->read_set); |
11061 | error= m_part_info->get_partition_id(m_part_info, &part_id, |
11062 | &func_value); |
11063 | dbug_tmp_restore_column_map(table->read_set, old_map); |
11064 | if (unlikely(error)) |
11065 | { |
11066 | m_part_info->err_value= func_value; |
11067 | goto end; |
11068 | } |
11069 | |
11070 | error= m_file[part_id]->ha_bulk_update_row(old_data, new_data, |
11071 | dup_key_found); |
11072 | |
11073 | end: |
11074 | DBUG_RETURN(error); |
11075 | } |
11076 | |
11077 | |
11078 | /** |
11079 | Perform bulk delete preparation on each partition. |
11080 | |
11081 | SYNOPSIS |
11082 | start_bulk_delete() |
11083 | |
11084 | RETURN VALUE |
11085 | TRUE Error |
11086 | FALSE Success |
11087 | */ |
11088 | |
11089 | bool ha_partition::start_bulk_delete() |
11090 | { |
11091 | handler **file= m_file; |
11092 | DBUG_ENTER("ha_partition::start_bulk_delete" ); |
11093 | |
11094 | do |
11095 | { |
11096 | if ((*file)->start_bulk_delete()) |
11097 | DBUG_RETURN(TRUE); |
11098 | } while (*(++file)); |
11099 | DBUG_RETURN(FALSE); |
11100 | } |
11101 | |
11102 | |
11103 | /** |
11104 | Perform bulk delete cleanup on each partition. |
11105 | |
11106 | SYNOPSIS |
11107 | end_bulk_delete() |
11108 | |
11109 | RETURN VALUE |
11110 | >0 Error |
11111 | 0 Success |
11112 | */ |
11113 | |
11114 | int ha_partition::end_bulk_delete() |
11115 | { |
11116 | int error= 0; |
11117 | handler **file= m_file; |
11118 | DBUG_ENTER("ha_partition::end_bulk_delete" ); |
11119 | |
11120 | do |
11121 | { |
11122 | int tmp; |
11123 | if ((tmp= (*file)->end_bulk_delete())) |
11124 | error= tmp; |
11125 | } while (*(++file)); |
11126 | DBUG_RETURN(error); |
11127 | } |
11128 | |
11129 | |
11130 | /** |
11131 | Perform initialization for a direct update request. |
11132 | |
11133 | SYNOPSIS |
11134 | direct_update_rows_init() |
11135 | |
11136 | RETURN VALUE |
11137 | >0 Error |
11138 | 0 Success |
11139 | */ |
11140 | |
11141 | int ha_partition::direct_update_rows_init() |
11142 | { |
11143 | int error; |
11144 | uint i, found; |
11145 | handler *file; |
11146 | DBUG_ENTER("ha_partition::direct_update_rows_init" ); |
11147 | |
11148 | if (bitmap_is_overlapping(&m_part_info->full_part_field_set, |
11149 | table->write_set)) |
11150 | { |
11151 | DBUG_PRINT("info" , ("partition FALSE by updating part_key" )); |
11152 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
11153 | } |
11154 | |
11155 | m_part_spec.start_part= 0; |
11156 | m_part_spec.end_part= m_tot_parts - 1; |
11157 | m_direct_update_part_spec= m_part_spec; |
11158 | |
11159 | found= 0; |
11160 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
11161 | { |
11162 | if (bitmap_is_set(&(m_part_info->read_partitions), i) && |
11163 | bitmap_is_set(&(m_part_info->lock_partitions), i)) |
11164 | { |
11165 | file= m_file[i]; |
11166 | if (unlikely((error= (m_pre_calling ? |
11167 | file->pre_direct_update_rows_init() : |
11168 | file->direct_update_rows_init())))) |
11169 | { |
11170 | DBUG_PRINT("info" , ("partition FALSE by storage engine" )); |
11171 | DBUG_RETURN(error); |
11172 | } |
11173 | found++; |
11174 | } |
11175 | } |
11176 | |
11177 | TABLE_LIST *table_list= table->pos_in_table_list; |
11178 | if (found != 1 && table_list) |
11179 | { |
11180 | while (table_list->parent_l) |
11181 | table_list= table_list->parent_l; |
11182 | st_select_lex *select_lex= table_list->select_lex; |
11183 | DBUG_PRINT("info" , ("partition select_lex: %p" , select_lex)); |
11184 | if (select_lex && select_lex->explicit_limit) |
11185 | { |
11186 | DBUG_PRINT("info" , ("partition explicit_limit=TRUE" )); |
11187 | DBUG_PRINT("info" , ("partition offset_limit: %p" , |
11188 | select_lex->offset_limit)); |
11189 | DBUG_PRINT("info" , ("partition select_limit: %p" , |
11190 | select_lex->select_limit)); |
11191 | DBUG_PRINT("info" , ("partition FALSE by select_lex" )); |
11192 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
11193 | } |
11194 | } |
11195 | DBUG_PRINT("info" , ("partition OK" )); |
11196 | DBUG_RETURN(0); |
11197 | } |
11198 | |
11199 | |
11200 | /** |
11201 | Do initialization for performing parallel direct update |
11202 | for a handlersocket update request. |
11203 | |
11204 | SYNOPSIS |
11205 | pre_direct_update_rows_init() |
11206 | |
11207 | RETURN VALUE |
11208 | >0 Error |
11209 | 0 Success |
11210 | */ |
11211 | |
11212 | int ha_partition::pre_direct_update_rows_init() |
11213 | { |
11214 | bool save_m_pre_calling; |
11215 | int error; |
11216 | DBUG_ENTER("ha_partition::pre_direct_update_rows_init" ); |
11217 | save_m_pre_calling= m_pre_calling; |
11218 | m_pre_calling= TRUE; |
11219 | error= direct_update_rows_init(); |
11220 | m_pre_calling= save_m_pre_calling; |
11221 | DBUG_RETURN(error); |
11222 | } |
11223 | |
11224 | |
11225 | /** |
11226 | Execute a direct update request. A direct update request updates all |
11227 | qualified rows in a single operation, rather than one row at a time. |
11228 | The direct update operation is pushed down to each individual |
11229 | partition. |
11230 | |
11231 | SYNOPSIS |
11232 | direct_update_rows() |
11233 | update_rows Number of updated rows |
11234 | |
11235 | RETURN VALUE |
11236 | >0 Error |
11237 | 0 Success |
11238 | */ |
11239 | |
11240 | int ha_partition::direct_update_rows(ha_rows *update_rows_result) |
11241 | { |
11242 | int error; |
11243 | bool rnd_seq= FALSE; |
11244 | ha_rows update_rows= 0; |
11245 | uint32 i; |
11246 | DBUG_ENTER("ha_partition::direct_update_rows" ); |
11247 | |
11248 | /* If first call to direct_update_rows with RND scan */ |
11249 | if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1) |
11250 | { |
11251 | rnd_seq= TRUE; |
11252 | m_scan_value= 2; |
11253 | } |
11254 | |
11255 | *update_rows_result= 0; |
11256 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
11257 | { |
11258 | handler *file= m_file[i]; |
11259 | if (bitmap_is_set(&(m_part_info->read_partitions), i) && |
11260 | bitmap_is_set(&(m_part_info->lock_partitions), i)) |
11261 | { |
11262 | if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE) |
11263 | { |
11264 | if (unlikely((error= (m_pre_calling ? |
11265 | file->ha_pre_rnd_init(TRUE) : |
11266 | file->ha_rnd_init(TRUE))))) |
11267 | DBUG_RETURN(error); |
11268 | } |
11269 | if (unlikely((error= (m_pre_calling ? |
11270 | (file)->pre_direct_update_rows() : |
11271 | (file)->ha_direct_update_rows(&update_rows))))) |
11272 | { |
11273 | if (rnd_seq) |
11274 | { |
11275 | if (m_pre_calling) |
11276 | file->ha_pre_rnd_end(); |
11277 | else |
11278 | file->ha_rnd_end(); |
11279 | } |
11280 | DBUG_RETURN(error); |
11281 | } |
11282 | *update_rows_result+= update_rows; |
11283 | } |
11284 | if (rnd_seq) |
11285 | { |
11286 | if (unlikely((error= (m_pre_calling ? |
11287 | file->ha_pre_index_or_rnd_end() : |
11288 | file->ha_index_or_rnd_end())))) |
11289 | DBUG_RETURN(error); |
11290 | } |
11291 | } |
11292 | DBUG_RETURN(0); |
11293 | } |
11294 | |
11295 | |
11296 | /** |
11297 | Start parallel execution of a direct update for a handlersocket update |
11298 | request. A direct update request updates all qualified rows in a single |
11299 | operation, rather than one row at a time. The direct update operation |
11300 | is pushed down to each individual partition. |
11301 | |
11302 | SYNOPSIS |
11303 | pre_direct_update_rows() |
11304 | |
11305 | RETURN VALUE |
11306 | >0 Error |
11307 | 0 Success |
11308 | */ |
11309 | |
11310 | int ha_partition::pre_direct_update_rows() |
11311 | { |
11312 | bool save_m_pre_calling; |
11313 | int error; |
11314 | ha_rows not_used= 0; |
11315 | DBUG_ENTER("ha_partition::pre_direct_update_rows" ); |
11316 | save_m_pre_calling= m_pre_calling; |
11317 | m_pre_calling= TRUE; |
11318 | error= direct_update_rows(¬_used); |
11319 | m_pre_calling= save_m_pre_calling; |
11320 | DBUG_RETURN(error); |
11321 | } |
11322 | |
11323 | |
11324 | /** |
11325 | Perform initialization for a direct delete request. |
11326 | |
11327 | SYNOPSIS |
11328 | direct_delete_rows_init() |
11329 | |
11330 | RETURN VALUE |
11331 | >0 Error |
11332 | 0 Success |
11333 | */ |
11334 | |
11335 | int ha_partition::direct_delete_rows_init() |
11336 | { |
11337 | int error; |
11338 | uint i, found; |
11339 | DBUG_ENTER("ha_partition::direct_delete_rows_init" ); |
11340 | |
11341 | m_part_spec.start_part= 0; |
11342 | m_part_spec.end_part= m_tot_parts - 1; |
11343 | m_direct_update_part_spec= m_part_spec; |
11344 | |
11345 | found= 0; |
11346 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
11347 | { |
11348 | if (bitmap_is_set(&(m_part_info->read_partitions), i) && |
11349 | bitmap_is_set(&(m_part_info->lock_partitions), i)) |
11350 | { |
11351 | handler *file= m_file[i]; |
11352 | if (unlikely((error= (m_pre_calling ? |
11353 | file->pre_direct_delete_rows_init() : |
11354 | file->direct_delete_rows_init())))) |
11355 | { |
11356 | DBUG_PRINT("exit" , ("error in direct_delete_rows_init" )); |
11357 | DBUG_RETURN(error); |
11358 | } |
11359 | found++; |
11360 | } |
11361 | } |
11362 | |
11363 | TABLE_LIST *table_list= table->pos_in_table_list; |
11364 | if (found != 1 && table_list) |
11365 | { |
11366 | while (table_list->parent_l) |
11367 | table_list= table_list->parent_l; |
11368 | st_select_lex *select_lex= table_list->select_lex; |
11369 | DBUG_PRINT("info" , ("partition select_lex: %p" , select_lex)); |
11370 | if (select_lex && select_lex->explicit_limit) |
11371 | { |
11372 | DBUG_PRINT("info" , ("partition explicit_limit: TRUE" )); |
11373 | DBUG_PRINT("info" , ("partition offset_limit: %p" , |
11374 | select_lex->offset_limit)); |
11375 | DBUG_PRINT("info" , ("partition select_limit: %p" , |
11376 | select_lex->select_limit)); |
11377 | DBUG_PRINT("info" , ("partition FALSE by select_lex" )); |
11378 | DBUG_RETURN(HA_ERR_WRONG_COMMAND); |
11379 | } |
11380 | } |
11381 | DBUG_PRINT("exit" , ("OK" )); |
11382 | DBUG_RETURN(0); |
11383 | } |
11384 | |
11385 | |
11386 | /** |
11387 | Do initialization for performing parallel direct delete |
11388 | for a handlersocket delete request. |
11389 | |
11390 | SYNOPSIS |
11391 | pre_direct_delete_rows_init() |
11392 | |
11393 | RETURN VALUE |
11394 | >0 Error |
11395 | 0 Success |
11396 | */ |
11397 | |
11398 | int ha_partition::pre_direct_delete_rows_init() |
11399 | { |
11400 | bool save_m_pre_calling; |
11401 | int error; |
11402 | DBUG_ENTER("ha_partition::pre_direct_delete_rows_init" ); |
11403 | save_m_pre_calling= m_pre_calling; |
11404 | m_pre_calling= TRUE; |
11405 | error= direct_delete_rows_init(); |
11406 | m_pre_calling= save_m_pre_calling; |
11407 | DBUG_RETURN(error); |
11408 | } |
11409 | |
11410 | |
11411 | /** |
11412 | Execute a direct delete request. A direct delete request deletes all |
11413 | qualified rows in a single operation, rather than one row at a time. |
11414 | The direct delete operation is pushed down to each individual |
11415 | partition. |
11416 | |
11417 | SYNOPSIS |
11418 | direct_delete_rows() |
11419 | delete_rows Number of deleted rows |
11420 | |
11421 | RETURN VALUE |
11422 | >0 Error |
11423 | 0 Success |
11424 | */ |
11425 | |
11426 | int ha_partition::direct_delete_rows(ha_rows *delete_rows_result) |
11427 | { |
11428 | int error; |
11429 | bool rnd_seq= FALSE; |
11430 | ha_rows delete_rows= 0; |
11431 | uint32 i; |
11432 | handler *file; |
11433 | DBUG_ENTER("ha_partition::direct_delete_rows" ); |
11434 | |
11435 | if ((m_pre_calling ? pre_inited : inited) == RND && m_scan_value == 1) |
11436 | { |
11437 | rnd_seq= TRUE; |
11438 | m_scan_value= 2; |
11439 | } |
11440 | |
11441 | *delete_rows_result= 0; |
11442 | m_part_spec= m_direct_update_part_spec; |
11443 | for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++) |
11444 | { |
11445 | file= m_file[i]; |
11446 | if (bitmap_is_set(&(m_part_info->read_partitions), i) && |
11447 | bitmap_is_set(&(m_part_info->lock_partitions), i)) |
11448 | { |
11449 | if (rnd_seq && (m_pre_calling ? file->pre_inited : file->inited) == NONE) |
11450 | { |
11451 | if (unlikely((error= (m_pre_calling ? |
11452 | file->ha_pre_rnd_init(TRUE) : |
11453 | file->ha_rnd_init(TRUE))))) |
11454 | DBUG_RETURN(error); |
11455 | } |
11456 | if ((error= (m_pre_calling ? |
11457 | file->pre_direct_delete_rows() : |
11458 | file->ha_direct_delete_rows(&delete_rows)))) |
11459 | { |
11460 | if (m_pre_calling) |
11461 | file->ha_pre_rnd_end(); |
11462 | else |
11463 | file->ha_rnd_end(); |
11464 | DBUG_RETURN(error); |
11465 | } |
11466 | delete_rows_result+= delete_rows; |
11467 | } |
11468 | if (rnd_seq) |
11469 | { |
11470 | if (unlikely((error= (m_pre_calling ? |
11471 | file->ha_pre_index_or_rnd_end() : |
11472 | file->ha_index_or_rnd_end())))) |
11473 | DBUG_RETURN(error); |
11474 | } |
11475 | } |
11476 | DBUG_RETURN(0); |
11477 | } |
11478 | |
11479 | |
11480 | /** |
11481 | Start parallel execution of a direct delete for a handlersocket delete |
11482 | request. A direct delete request deletes all qualified rows in a single |
11483 | operation, rather than one row at a time. The direct delete operation |
11484 | is pushed down to each individual partition. |
11485 | |
11486 | SYNOPSIS |
11487 | pre_direct_delete_rows() |
11488 | |
11489 | RETURN VALUE |
11490 | >0 Error |
11491 | 0 Success |
11492 | */ |
11493 | |
11494 | int ha_partition::pre_direct_delete_rows() |
11495 | { |
11496 | bool save_m_pre_calling; |
11497 | int error; |
11498 | ha_rows not_used; |
11499 | DBUG_ENTER("ha_partition::pre_direct_delete_rows" ); |
11500 | save_m_pre_calling= m_pre_calling; |
11501 | m_pre_calling= TRUE; |
11502 | error= direct_delete_rows(¬_used); |
11503 | m_pre_calling= save_m_pre_calling; |
11504 | DBUG_RETURN(error); |
11505 | } |
11506 | |
11507 | /** |
11508 | Push metadata for the current operation down to each partition. |
11509 | |
11510 | SYNOPSIS |
11511 | info_push() |
11512 | |
11513 | RETURN VALUE |
11514 | >0 Error |
11515 | 0 Success |
11516 | */ |
11517 | |
11518 | int ha_partition::info_push(uint info_type, void *info) |
11519 | { |
11520 | int error= 0; |
11521 | handler **file= m_file; |
11522 | DBUG_ENTER("ha_partition::info_push" ); |
11523 | |
11524 | do |
11525 | { |
11526 | int tmp; |
11527 | if ((tmp= (*file)->info_push(info_type, info))) |
11528 | error= tmp; |
11529 | } while (*(++file)); |
11530 | DBUG_RETURN(error); |
11531 | } |
11532 | |
11533 | |
11534 | void ha_partition::clear_top_table_fields() |
11535 | { |
11536 | handler **file; |
11537 | DBUG_ENTER("ha_partition::clear_top_table_fields" ); |
11538 | |
11539 | if (set_top_table_fields) |
11540 | { |
11541 | set_top_table_fields= FALSE; |
11542 | top_table= NULL; |
11543 | top_table_field= NULL; |
11544 | top_table_fields= 0; |
11545 | for (file= m_file; *file; file++) |
11546 | (*file)->clear_top_table_fields(); |
11547 | } |
11548 | DBUG_VOID_RETURN; |
11549 | } |
11550 | |
11551 | |
11552 | struct st_mysql_storage_engine partition_storage_engine= |
11553 | { MYSQL_HANDLERTON_INTERFACE_VERSION }; |
11554 | |
11555 | maria_declare_plugin(partition) |
11556 | { |
11557 | MYSQL_STORAGE_ENGINE_PLUGIN, |
11558 | &partition_storage_engine, |
11559 | "partition" , |
11560 | "Mikael Ronstrom, MySQL AB" , |
11561 | "Partition Storage Engine Helper" , |
11562 | PLUGIN_LICENSE_GPL, |
11563 | partition_initialize, /* Plugin Init */ |
11564 | NULL, /* Plugin Deinit */ |
11565 | 0x0100, /* 1.0 */ |
11566 | NULL, /* status variables */ |
11567 | NULL, /* system variables */ |
11568 | "1.0" , /* string version */ |
11569 | MariaDB_PLUGIN_MATURITY_STABLE /* maturity */ |
11570 | } |
11571 | maria_declare_plugin_end; |
11572 | |
11573 | #endif |
11574 | |