1 | /* Copyright (c) 2000, 2015, Oracle and/or its affiliates. |
2 | Copyright (c) 2010, 2018, MariaDB Corporation |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
16 | |
17 | /** |
18 | @defgroup Semantic_Analysis Semantic Analysis |
19 | */ |
20 | |
21 | #ifndef SQL_LEX_INCLUDED |
22 | #define SQL_LEX_INCLUDED |
23 | |
24 | #include "violite.h" /* SSL_type */ |
25 | #include "sql_trigger.h" |
26 | #include "thr_lock.h" /* thr_lock_type, TL_UNLOCK */ |
27 | #include "mem_root_array.h" |
28 | #include "sql_cmd.h" |
29 | #include "sql_alter.h" // Alter_info |
30 | #include "sql_window.h" |
31 | #include "sql_trigger.h" |
32 | #include "sp.h" // enum stored_procedure_type |
33 | #include "sql_tvc.h" |
34 | #include "item.h" |
35 | |
36 | /* YACC and LEX Definitions */ |
37 | |
38 | |
39 | /** |
40 | A string with metadata. Usually points to a string in the client |
41 | character set, but unlike Lex_ident_cli_st (see below) it does not |
42 | necessarily point to a query fragment. It can also point to memory |
43 | of other kinds (e.g. an additional THD allocated memory buffer |
44 | not overlapping with the current query text). |
45 | |
46 | We'll add more flags here eventually, to know if the string has, e.g.: |
47 | - multi-byte characters |
48 | - bad byte sequences |
49 | - backslash escapes: 'a\nb' |
50 | and reuse the original query fragments instead of making the string |
51 | copy too early, in Lex_input_stream::get_text(). |
52 | This will allow to avoid unnecessary copying, as well as |
53 | create more optimal Item types in sql_yacc.yy |
54 | */ |
55 | struct Lex_string_with_metadata_st: public LEX_CSTRING |
56 | { |
57 | private: |
58 | bool m_is_8bit; // True if the string has 8bit characters |
59 | char m_quote; // Quote character, or 0 if not quoted |
60 | public: |
61 | void set_8bit(bool is_8bit) { m_is_8bit= is_8bit; } |
62 | void set_metadata(bool is_8bit, char quote) |
63 | { |
64 | m_is_8bit= is_8bit; |
65 | m_quote= quote; |
66 | } |
67 | void set(const char *s, size_t len, bool is_8bit, char quote) |
68 | { |
69 | str= s; |
70 | length= len; |
71 | set_metadata(is_8bit, quote); |
72 | } |
73 | void set(const LEX_CSTRING *s, bool is_8bit, char quote) |
74 | { |
75 | ((LEX_CSTRING &)*this)= *s; |
76 | set_metadata(is_8bit, quote); |
77 | } |
78 | bool is_8bit() const { return m_is_8bit; } |
79 | bool is_quoted() const { return m_quote != '\0'; } |
80 | char quote() const { return m_quote; } |
81 | // Get string repertoire by the 8-bit flag and the character set |
82 | uint repertoire(CHARSET_INFO *cs) const |
83 | { |
84 | return !m_is_8bit && my_charset_is_ascii_based(cs) ? |
85 | MY_REPERTOIRE_ASCII : MY_REPERTOIRE_UNICODE30; |
86 | } |
87 | // Get string repertoire by the 8-bit flag, for ASCII-based character sets |
88 | uint repertoire() const |
89 | { |
90 | return !m_is_8bit ? MY_REPERTOIRE_ASCII : MY_REPERTOIRE_UNICODE30; |
91 | } |
92 | }; |
93 | |
94 | |
95 | /* |
96 | Used to store identifiers in the client character set. |
97 | Points to a query fragment. |
98 | */ |
99 | struct Lex_ident_cli_st: public Lex_string_with_metadata_st |
100 | { |
101 | public: |
102 | void set_keyword(const char *s, size_t len) |
103 | { |
104 | set(s, len, false, '\0'); |
105 | } |
106 | void set_ident(const char *s, size_t len, bool is_8bit) |
107 | { |
108 | set(s, len, is_8bit, '\0'); |
109 | } |
110 | void set_ident_quoted(const char *s, size_t len, bool is_8bit, char quote) |
111 | { |
112 | set(s, len, is_8bit, quote); |
113 | } |
114 | void set_unquoted(const LEX_CSTRING *s, bool is_8bit) |
115 | { |
116 | set(s, is_8bit, '\0'); |
117 | } |
118 | const char *pos() const { return str - is_quoted(); } |
119 | const char *end() const { return str + length + is_quoted(); } |
120 | }; |
121 | |
122 | |
123 | class Lex_ident_cli: public Lex_ident_cli_st |
124 | { |
125 | public: |
126 | Lex_ident_cli(const LEX_CSTRING *s, bool is_8bit) |
127 | { |
128 | set_unquoted(s, is_8bit); |
129 | } |
130 | Lex_ident_cli(const char *s, size_t len) |
131 | { |
132 | set_ident(s, len, false); |
133 | } |
134 | }; |
135 | |
136 | |
137 | struct Lex_ident_sys_st: public LEX_CSTRING |
138 | { |
139 | public: |
140 | bool copy_ident_cli(THD *thd, const Lex_ident_cli_st *str); |
141 | bool copy_keyword(THD *thd, const Lex_ident_cli_st *str); |
142 | bool copy_sys(THD *thd, const LEX_CSTRING *str); |
143 | bool convert(THD *thd, const LEX_CSTRING *str, CHARSET_INFO *cs); |
144 | bool copy_or_convert(THD *thd, const Lex_ident_cli_st *str, CHARSET_INFO *cs); |
145 | bool is_null() const { return str == NULL; } |
146 | bool to_size_number(ulonglong *to) const; |
147 | }; |
148 | |
149 | |
150 | class Lex_ident_sys: public Lex_ident_sys_st |
151 | { |
152 | public: |
153 | Lex_ident_sys(THD *thd, const Lex_ident_cli_st *str) |
154 | { |
155 | if (copy_ident_cli(thd, str)) |
156 | ((LEX_CSTRING &) *this)= null_clex_str; |
157 | } |
158 | Lex_ident_sys() |
159 | { |
160 | ((LEX_CSTRING &) *this)= null_clex_str; |
161 | } |
162 | }; |
163 | |
164 | |
165 | enum sub_select_type |
166 | { |
167 | UNSPECIFIED_TYPE, |
168 | /* following 3 enums should be as they are*/ |
169 | UNION_TYPE, INTERSECT_TYPE, EXCEPT_TYPE, |
170 | GLOBAL_OPTIONS_TYPE, DERIVED_TABLE_TYPE, OLAP_TYPE |
171 | }; |
172 | enum unit_common_op {OP_MIX, OP_UNION, OP_INTERSECT, OP_EXCEPT}; |
173 | |
174 | enum enum_view_suid |
175 | { |
176 | VIEW_SUID_INVOKER= 0, |
177 | VIEW_SUID_DEFINER= 1, |
178 | VIEW_SUID_DEFAULT= 2 |
179 | }; |
180 | |
181 | /* These may not be declared yet */ |
182 | class Table_ident; |
183 | class sql_exchange; |
184 | class LEX_COLUMN; |
185 | class sp_head; |
186 | class sp_name; |
187 | class sp_instr; |
188 | class sp_pcontext; |
189 | class sp_variable; |
190 | class sp_assignment_lex; |
191 | class st_alter_tablespace; |
192 | class partition_info; |
193 | class Event_parse_data; |
194 | class set_var_base; |
195 | class sys_var; |
196 | class Item_func_match; |
197 | class File_parser; |
198 | class Key_part_spec; |
199 | class Item_window_func; |
200 | struct sql_digest_state; |
201 | class With_clause; |
202 | class my_var; |
203 | |
204 | #define ALLOC_ROOT_SET 1024 |
205 | |
206 | #ifdef MYSQL_SERVER |
207 | /* |
208 | There are 8 different type of table access so there is no more than |
209 | combinations 2^8 = 256: |
210 | |
211 | . STMT_READS_TRANS_TABLE |
212 | |
213 | . STMT_READS_NON_TRANS_TABLE |
214 | |
215 | . STMT_READS_TEMP_TRANS_TABLE |
216 | |
217 | . STMT_READS_TEMP_NON_TRANS_TABLE |
218 | |
219 | . STMT_WRITES_TRANS_TABLE |
220 | |
221 | . STMT_WRITES_NON_TRANS_TABLE |
222 | |
223 | . STMT_WRITES_TEMP_TRANS_TABLE |
224 | |
225 | . STMT_WRITES_TEMP_NON_TRANS_TABLE |
226 | |
227 | The unsafe conditions for each combination is represented within a byte |
228 | and stores the status of the option --binlog-direct-non-trans-updates, |
229 | whether the trx-cache is empty or not, and whether the isolation level |
230 | is lower than ISO_REPEATABLE_READ: |
231 | |
232 | . option (OFF/ON) |
233 | . trx-cache (empty/not empty) |
234 | . isolation (>= ISO_REPEATABLE_READ / < ISO_REPEATABLE_READ) |
235 | |
236 | bits 0 : . OFF, . empty, . >= ISO_REPEATABLE_READ |
237 | bits 1 : . OFF, . empty, . < ISO_REPEATABLE_READ |
238 | bits 2 : . OFF, . not empty, . >= ISO_REPEATABLE_READ |
239 | bits 3 : . OFF, . not empty, . < ISO_REPEATABLE_READ |
240 | bits 4 : . ON, . empty, . >= ISO_REPEATABLE_READ |
241 | bits 5 : . ON, . empty, . < ISO_REPEATABLE_READ |
242 | bits 6 : . ON, . not empty, . >= ISO_REPEATABLE_READ |
243 | bits 7 : . ON, . not empty, . < ISO_REPEATABLE_READ |
244 | */ |
245 | extern uint binlog_unsafe_map[256]; |
246 | /* |
247 | Initializes the array with unsafe combinations and its respective |
248 | conditions. |
249 | */ |
250 | void binlog_unsafe_map_init(); |
251 | #endif |
252 | |
253 | struct LEX_TYPE |
254 | { |
255 | enum enum_field_types type; |
256 | char *length, *dec; |
257 | CHARSET_INFO *charset; |
258 | void set(int t, char *l, char *d, CHARSET_INFO *cs) |
259 | { type= (enum_field_types)t; length= l; dec= d; charset= cs; } |
260 | }; |
261 | |
262 | #ifdef MYSQL_SERVER |
263 | /* |
264 | The following hack is needed because mysql_yacc.cc does not define |
265 | YYSTYPE before including this file |
266 | */ |
267 | #ifdef MYSQL_YACC |
268 | #define LEX_YYSTYPE void * |
269 | #else |
270 | #include "lex_symbol.h" |
271 | #ifdef MYSQL_LEX |
272 | #include "item_func.h" /* Cast_target used in sql_yacc.h */ |
273 | #include "sql_get_diagnostics.h" /* Types used in sql_yacc.h */ |
274 | #include "sp_pcontext.h" |
275 | #include "sql_yacc.h" |
276 | #define LEX_YYSTYPE YYSTYPE * |
277 | #else |
278 | #define LEX_YYSTYPE void * |
279 | #endif |
280 | #endif |
281 | #endif |
282 | |
283 | // describe/explain types |
284 | #define DESCRIBE_NORMAL 1 |
285 | #define DESCRIBE_EXTENDED 2 |
286 | /* |
287 | This is not within #ifdef because we want "EXPLAIN PARTITIONS ..." to produce |
288 | additional "partitions" column even if partitioning is not compiled in. |
289 | */ |
290 | #define DESCRIBE_PARTITIONS 4 |
291 | |
292 | #ifdef MYSQL_SERVER |
293 | |
294 | extern const LEX_STRING empty_lex_str; |
295 | extern MYSQL_PLUGIN_IMPORT const LEX_CSTRING empty_clex_str; |
296 | extern const LEX_CSTRING star_clex_str; |
297 | extern const LEX_CSTRING param_clex_str; |
298 | |
299 | enum enum_sp_suid_behaviour |
300 | { |
301 | SP_IS_DEFAULT_SUID= 0, |
302 | SP_IS_NOT_SUID, |
303 | SP_IS_SUID |
304 | }; |
305 | |
306 | enum enum_sp_data_access |
307 | { |
308 | SP_DEFAULT_ACCESS= 0, |
309 | SP_CONTAINS_SQL, |
310 | SP_NO_SQL, |
311 | SP_READS_SQL_DATA, |
312 | SP_MODIFIES_SQL_DATA |
313 | }; |
314 | |
315 | enum enum_sp_aggregate_type |
316 | { |
317 | DEFAULT_AGGREGATE= 0, |
318 | NOT_AGGREGATE, |
319 | GROUP_AGGREGATE |
320 | }; |
321 | |
322 | const LEX_CSTRING sp_data_access_name[]= |
323 | { |
324 | { STRING_WITH_LEN("" ) }, |
325 | { STRING_WITH_LEN("CONTAINS SQL" ) }, |
326 | { STRING_WITH_LEN("NO SQL" ) }, |
327 | { STRING_WITH_LEN("READS SQL DATA" ) }, |
328 | { STRING_WITH_LEN("MODIFIES SQL DATA" ) } |
329 | }; |
330 | |
331 | #define DERIVED_SUBQUERY 1 |
332 | #define DERIVED_VIEW 2 |
333 | #define DERIVED_WITH 4 |
334 | |
335 | enum enum_view_create_mode |
336 | { |
337 | VIEW_CREATE_NEW, // check that there are not such VIEW/table |
338 | VIEW_ALTER, // check that VIEW .frm with such name exists |
339 | VIEW_CREATE_OR_REPLACE // check only that there are not such table |
340 | }; |
341 | |
342 | |
343 | class Create_view_info: public Sql_alloc |
344 | { |
345 | public: |
346 | LEX_CSTRING select; // The SELECT statement of CREATE VIEW |
347 | enum enum_view_create_mode mode; |
348 | uint16 algorithm; |
349 | uint8 check; |
350 | enum enum_view_suid suid; |
351 | Create_view_info(enum_view_create_mode mode_arg, |
352 | uint16 algorithm_arg, |
353 | enum_view_suid suid_arg) |
354 | :select(null_clex_str), |
355 | mode(mode_arg), |
356 | algorithm(algorithm_arg), |
357 | check(VIEW_CHECK_NONE), |
358 | suid(suid_arg) |
359 | { } |
360 | }; |
361 | |
362 | |
363 | enum enum_drop_mode |
364 | { |
365 | DROP_DEFAULT, // mode is not specified |
366 | DROP_CASCADE, // CASCADE option |
367 | DROP_RESTRICT // RESTRICT option |
368 | }; |
369 | |
370 | /* Options to add_table_to_list() */ |
371 | #define TL_OPTION_UPDATING 1 |
372 | #define TL_OPTION_FORCE_INDEX 2 |
373 | #define TL_OPTION_IGNORE_LEAVES 4 |
374 | #define TL_OPTION_ALIAS 8 |
375 | #define TL_OPTION_SEQUENCE 16 |
376 | |
377 | typedef List<Item> List_item; |
378 | typedef Mem_root_array<ORDER*, true> Group_list_ptrs; |
379 | |
380 | /* SERVERS CACHE CHANGES */ |
381 | typedef struct st_lex_server_options |
382 | { |
383 | long port; |
384 | LEX_CSTRING server_name, host, db, username, password, scheme, socket, owner; |
385 | void reset(LEX_CSTRING name) |
386 | { |
387 | server_name= name; |
388 | host= db= username= password= scheme= socket= owner= null_clex_str; |
389 | port= -1; |
390 | } |
391 | } LEX_SERVER_OPTIONS; |
392 | |
393 | |
394 | /** |
395 | Structure to hold parameters for CHANGE MASTER, START SLAVE, and STOP SLAVE. |
396 | |
397 | Remark: this should not be confused with Master_info (and perhaps |
398 | would better be renamed to st_lex_replication_info). Some fields, |
399 | e.g., delay, are saved in Relay_log_info, not in Master_info. |
400 | */ |
401 | struct LEX_MASTER_INFO |
402 | { |
403 | DYNAMIC_ARRAY repl_ignore_server_ids; |
404 | DYNAMIC_ARRAY repl_do_domain_ids; |
405 | DYNAMIC_ARRAY repl_ignore_domain_ids; |
406 | const char *host, *user, *password, *log_file_name; |
407 | const char *ssl_key, *ssl_cert, *ssl_ca, *ssl_capath, *ssl_cipher; |
408 | const char *ssl_crl, *ssl_crlpath; |
409 | const char *relay_log_name; |
410 | LEX_CSTRING connection_name; |
411 | /* Value in START SLAVE UNTIL master_gtid_pos=xxx */ |
412 | LEX_CSTRING gtid_pos_str; |
413 | ulonglong pos; |
414 | ulong relay_log_pos; |
415 | ulong server_id; |
416 | uint port, connect_retry; |
417 | float heartbeat_period; |
418 | int sql_delay; |
419 | /* |
420 | Enum is used for making it possible to detect if the user |
421 | changed variable or if it should be left at old value |
422 | */ |
423 | enum {LEX_MI_UNCHANGED= 0, LEX_MI_DISABLE, LEX_MI_ENABLE} |
424 | ssl, ssl_verify_server_cert, heartbeat_opt, repl_ignore_server_ids_opt, |
425 | repl_do_domain_ids_opt, repl_ignore_domain_ids_opt; |
426 | enum { |
427 | LEX_GTID_UNCHANGED, LEX_GTID_NO, LEX_GTID_CURRENT_POS, LEX_GTID_SLAVE_POS |
428 | } use_gtid_opt; |
429 | |
430 | void init() |
431 | { |
432 | bzero(this, sizeof(*this)); |
433 | my_init_dynamic_array(&repl_ignore_server_ids, |
434 | sizeof(::server_id), 0, 16, MYF(0)); |
435 | my_init_dynamic_array(&repl_do_domain_ids, |
436 | sizeof(ulong), 0, 16, MYF(0)); |
437 | my_init_dynamic_array(&repl_ignore_domain_ids, |
438 | sizeof(ulong), 0, 16, MYF(0)); |
439 | sql_delay= -1; |
440 | } |
441 | void reset(bool is_change_master) |
442 | { |
443 | if (unlikely(is_change_master)) |
444 | { |
445 | delete_dynamic(&repl_ignore_server_ids); |
446 | /* Free all the array elements. */ |
447 | delete_dynamic(&repl_do_domain_ids); |
448 | delete_dynamic(&repl_ignore_domain_ids); |
449 | } |
450 | |
451 | host= user= password= log_file_name= ssl_key= ssl_cert= ssl_ca= |
452 | ssl_capath= ssl_cipher= relay_log_name= 0; |
453 | pos= relay_log_pos= server_id= port= connect_retry= 0; |
454 | heartbeat_period= 0; |
455 | ssl= ssl_verify_server_cert= heartbeat_opt= |
456 | repl_ignore_server_ids_opt= repl_do_domain_ids_opt= |
457 | repl_ignore_domain_ids_opt= LEX_MI_UNCHANGED; |
458 | gtid_pos_str= null_clex_str; |
459 | use_gtid_opt= LEX_GTID_UNCHANGED; |
460 | sql_delay= -1; |
461 | } |
462 | }; |
463 | |
464 | typedef struct st_lex_reset_slave |
465 | { |
466 | bool all; |
467 | } LEX_RESET_SLAVE; |
468 | |
469 | enum olap_type |
470 | { |
471 | UNSPECIFIED_OLAP_TYPE, CUBE_TYPE, ROLLUP_TYPE |
472 | }; |
473 | |
474 | /* |
475 | String names used to print a statement with index hints. |
476 | Keep in sync with index_hint_type. |
477 | */ |
478 | extern const char * index_hint_type_name[]; |
479 | typedef uchar index_clause_map; |
480 | |
481 | /* |
482 | Bits in index_clause_map : one for each possible FOR clause in |
483 | USE/FORCE/IGNORE INDEX index hint specification |
484 | */ |
485 | #define INDEX_HINT_MASK_JOIN (1) |
486 | #define INDEX_HINT_MASK_GROUP (1 << 1) |
487 | #define INDEX_HINT_MASK_ORDER (1 << 2) |
488 | |
489 | #define INDEX_HINT_MASK_ALL (INDEX_HINT_MASK_JOIN | INDEX_HINT_MASK_GROUP | \ |
490 | INDEX_HINT_MASK_ORDER) |
491 | |
492 | class select_result_sink; |
493 | |
494 | /* Single element of an USE/FORCE/IGNORE INDEX list specified as a SQL hint */ |
495 | class Index_hint : public Sql_alloc |
496 | { |
497 | public: |
498 | /* The type of the hint : USE/FORCE/IGNORE */ |
499 | enum index_hint_type type; |
500 | /* Where the hit applies to. A bitmask of INDEX_HINT_MASK_<place> values */ |
501 | index_clause_map clause; |
502 | /* |
503 | The index name. Empty (str=NULL) name represents an empty list |
504 | USE INDEX () clause |
505 | */ |
506 | LEX_CSTRING key_name; |
507 | |
508 | Index_hint (enum index_hint_type type_arg, index_clause_map clause_arg, |
509 | const char *str, size_t length) : |
510 | type(type_arg), clause(clause_arg) |
511 | { |
512 | key_name.str= str; |
513 | key_name.length= length; |
514 | } |
515 | |
516 | void print(THD *thd, String *str); |
517 | }; |
518 | |
519 | /* |
520 | The state of the lex parsing for selects |
521 | |
522 | master and slaves are pointers to select_lex. |
523 | master is pointer to upper level node. |
524 | slave is pointer to lower level node |
525 | select_lex is a SELECT without union |
526 | unit is container of either |
527 | - One SELECT |
528 | - UNION of selects |
529 | select_lex and unit are both inherited form select_lex_node |
530 | neighbors are two select_lex or units on the same level |
531 | |
532 | All select describing structures linked with following pointers: |
533 | - list of neighbors (next/prev) (prev of first element point to slave |
534 | pointer of upper structure) |
535 | - For select this is a list of UNION's (or one element list) |
536 | - For units this is a list of sub queries for the upper level select |
537 | |
538 | - pointer to master (master), which is |
539 | If this is a unit |
540 | - pointer to outer select_lex |
541 | If this is a select_lex |
542 | - pointer to outer unit structure for select |
543 | |
544 | - pointer to slave (slave), which is either: |
545 | If this is a unit: |
546 | - first SELECT that belong to this unit |
547 | If this is a select_lex |
548 | - first unit that belong to this SELECT (subquries or derived tables) |
549 | |
550 | - list of all select_lex (link_next/link_prev) |
551 | This is to be used for things like derived tables creation, where we |
552 | go through this list and create the derived tables. |
553 | |
554 | If unit contain several selects (UNION now, INTERSECT etc later) |
555 | then it have special select_lex called fake_select_lex. It used for |
556 | storing global parameters (like ORDER BY, LIMIT) and executing union. |
557 | Subqueries used in global ORDER BY clause will be attached to this |
558 | fake_select_lex, which will allow them correctly resolve fields of |
559 | 'upper' UNION and outer selects. |
560 | |
561 | For example for following query: |
562 | |
563 | select * |
564 | from table1 |
565 | where table1.field IN (select * from table1_1_1 union |
566 | select * from table1_1_2) |
567 | union |
568 | select * |
569 | from table2 |
570 | where table2.field=(select (select f1 from table2_1_1_1_1 |
571 | where table2_1_1_1_1.f2=table2_1_1.f3) |
572 | from table2_1_1 |
573 | where table2_1_1.f1=table2.f2) |
574 | union |
575 | select * from table3; |
576 | |
577 | we will have following structure: |
578 | |
579 | select1: (select * from table1 ...) |
580 | select2: (select * from table2 ...) |
581 | select3: (select * from table3) |
582 | select1.1.1: (select * from table1_1_1) |
583 | ... |
584 | |
585 | main unit |
586 | fake0 |
587 | select1 select2 select3 |
588 | |^^ |^ |
589 | s||| ||master |
590 | l||| |+---------------------------------+ |
591 | a||| +---------------------------------+| |
592 | v|||master slave || |
593 | e||+-------------------------+ || |
594 | V| neighbor | V| |
595 | unit1.1<+==================>unit1.2 unit2.1 |
596 | fake1.1 |
597 | select1.1.1 select 1.1.2 select1.2.1 select2.1.1 |
598 | |^ |
599 | || |
600 | V| |
601 | unit2.1.1.1 |
602 | select2.1.1.1.1 |
603 | |
604 | |
605 | relation in main unit will be following: |
606 | (bigger picture for: |
607 | main unit |
608 | fake0 |
609 | select1 select2 select3 |
610 | in the above picture) |
611 | |
612 | main unit |
613 | |^^^^|fake_select_lex |
614 | |||||+--------------------------------------------+ |
615 | ||||+--------------------------------------------+| |
616 | |||+------------------------------+ || |
617 | ||+--------------+ | || |
618 | slave||master | | || |
619 | V| neighbor | neighbor | master|V |
620 | select1<========>select2<========>select3 fake0 |
621 | |
622 | list of all select_lex will be following (as it will be constructed by |
623 | parser): |
624 | |
625 | select1->select2->select3->select2.1.1->select 2.1.2->select2.1.1.1.1-+ |
626 | | |
627 | +---------------------------------------------------------------------+ |
628 | | |
629 | +->select1.1.1->select1.1.2 |
630 | |
631 | */ |
632 | |
633 | /* |
634 | Base class for st_select_lex (SELECT_LEX) & |
635 | st_select_lex_unit (SELECT_LEX_UNIT) |
636 | */ |
637 | struct LEX; |
638 | class st_select_lex; |
639 | class st_select_lex_unit; |
640 | |
641 | |
642 | class st_select_lex_node { |
643 | protected: |
644 | st_select_lex_node *next, **prev, /* neighbor list */ |
645 | *master, *slave, /* vertical links */ |
646 | *link_next, **link_prev; /* list of whole SELECT_LEX */ |
647 | |
648 | void init_query_common(); |
649 | public: |
650 | |
651 | ulonglong options; |
652 | |
653 | /* |
654 | In sql_cache we store SQL_CACHE flag as specified by user to be |
655 | able to restore SELECT statement from internal structures. |
656 | */ |
657 | enum e_sql_cache { SQL_CACHE_UNSPECIFIED, SQL_NO_CACHE, SQL_CACHE }; |
658 | e_sql_cache sql_cache; |
659 | |
660 | /* |
661 | result of this query can't be cached, bit field, can be : |
662 | UNCACHEABLE_DEPENDENT_GENERATED |
663 | UNCACHEABLE_DEPENDENT_INJECTED |
664 | UNCACHEABLE_RAND |
665 | UNCACHEABLE_SIDEEFFECT |
666 | UNCACHEABLE_EXPLAIN |
667 | UNCACHEABLE_PREPARE |
668 | */ |
669 | uint8 uncacheable; |
670 | enum sub_select_type linkage; |
671 | bool is_linkage_set() const |
672 | { |
673 | return linkage == UNION_TYPE || linkage == INTERSECT_TYPE || linkage == EXCEPT_TYPE; |
674 | } |
675 | bool no_table_names_allowed; /* used for global order by */ |
676 | |
677 | static void *operator new(size_t size, MEM_ROOT *mem_root) throw () |
678 | { return (void*) alloc_root(mem_root, (uint) size); } |
679 | static void operator delete(void *ptr,size_t size) { TRASH_FREE(ptr, size); } |
680 | static void operator delete(void *ptr, MEM_ROOT *mem_root) {} |
681 | |
682 | // Ensures that at least all members used during cleanup() are initialized. |
683 | st_select_lex_node() |
684 | : next(NULL), prev(NULL), |
685 | master(NULL), slave(NULL), |
686 | link_next(NULL), link_prev(NULL), |
687 | linkage(UNSPECIFIED_TYPE) |
688 | { |
689 | } |
690 | |
691 | inline st_select_lex_node* get_master() { return master; } |
692 | void include_down(st_select_lex_node *upper); |
693 | void add_slave(st_select_lex_node *slave_arg); |
694 | void include_neighbour(st_select_lex_node *before); |
695 | void include_standalone(st_select_lex_node *sel, st_select_lex_node **ref); |
696 | void include_global(st_select_lex_node **plink); |
697 | void exclude(); |
698 | void exclude_from_tree(); |
699 | |
700 | void set_slave(st_select_lex_node *slave_arg) { slave= slave_arg; } |
701 | void move_node(st_select_lex_node *where_to_move) |
702 | { |
703 | if (where_to_move == this) |
704 | return; |
705 | if (next) |
706 | next->prev= prev; |
707 | *prev= next; |
708 | *where_to_move->prev= this; |
709 | next= where_to_move; |
710 | } |
711 | st_select_lex_node *insert_chain_before(st_select_lex_node **ptr_pos_to_insert, |
712 | st_select_lex_node *end_chain_node); |
713 | void move_as_slave(st_select_lex_node *new_master); |
714 | friend class st_select_lex_unit; |
715 | friend bool mysql_new_select(LEX *lex, bool move_down, SELECT_LEX *sel); |
716 | friend bool mysql_make_view(THD *thd, TABLE_SHARE *share, TABLE_LIST *table, |
717 | bool open_view_no_parse); |
718 | friend bool mysql_derived_prepare(THD *thd, LEX *lex, |
719 | TABLE_LIST *orig_table_list); |
720 | friend bool mysql_derived_merge(THD *thd, LEX *lex, |
721 | TABLE_LIST *orig_table_list); |
722 | friend bool TABLE_LIST::init_derived(THD *thd, bool init_view); |
723 | private: |
724 | void fast_exclude(); |
725 | }; |
726 | typedef class st_select_lex_node SELECT_LEX_NODE; |
727 | |
728 | /* |
729 | SELECT_LEX_UNIT - unit of selects (UNION, INTERSECT, ...) group |
730 | SELECT_LEXs |
731 | */ |
732 | class THD; |
733 | class select_result; |
734 | class JOIN; |
735 | class select_unit; |
736 | class Procedure; |
737 | class Explain_query; |
738 | |
739 | void delete_explain_query(LEX *lex); |
740 | void create_explain_query(LEX *lex, MEM_ROOT *mem_root); |
741 | void create_explain_query_if_not_exists(LEX *lex, MEM_ROOT *mem_root); |
742 | bool print_explain_for_slow_log(LEX *lex, THD *thd, String *str); |
743 | |
744 | class st_select_lex_unit: public st_select_lex_node { |
745 | protected: |
746 | TABLE_LIST result_table_list; |
747 | select_unit *union_result; |
748 | ulonglong found_rows_for_union; |
749 | bool saved_error; |
750 | |
751 | bool prepare_join(THD *thd, SELECT_LEX *sl, select_result *result, |
752 | ulong additional_options, |
753 | bool is_union_select); |
754 | bool join_union_item_types(THD *thd, List<Item> &types, uint count); |
755 | bool join_union_type_handlers(THD *thd, |
756 | class Type_holder *holders, uint count); |
757 | bool join_union_type_attributes(THD *thd, |
758 | class Type_holder *holders, uint count); |
759 | public: |
760 | // Ensures that at least all members used during cleanup() are initialized. |
761 | st_select_lex_unit() |
762 | : union_result(NULL), table(NULL), result(NULL), |
763 | cleaned(false), |
764 | fake_select_lex(NULL) |
765 | { |
766 | } |
767 | |
768 | |
769 | TABLE *table; /* temporary table using for appending UNION results */ |
770 | select_result *result; |
771 | bool prepared, // prepare phase already performed for UNION (unit) |
772 | optimized, // optimize phase already performed for UNION (unit) |
773 | optimized_2, |
774 | executed, // already executed |
775 | cleaned; |
776 | |
777 | bool optimize_started; |
778 | |
779 | // list of fields which points to temporary table for union |
780 | List<Item> item_list; |
781 | /* |
782 | list of types of items inside union (used for union & derived tables) |
783 | |
784 | Item_type_holders from which this list consist may have pointers to Field, |
785 | pointers is valid only after preparing SELECTS of this unit and before |
786 | any SELECT of this unit execution |
787 | */ |
788 | List<Item> types; |
789 | /** |
790 | There is INTERSECT and it is item used in creating temporary |
791 | table for it |
792 | */ |
793 | Item_int *intersect_mark; |
794 | /** |
795 | Pointer to 'last' select, or pointer to select where we stored |
796 | global parameters for union. |
797 | |
798 | If this is a union of multiple selects, the parser puts the global |
799 | parameters in fake_select_lex. If the union doesn't use a |
800 | temporary table, st_select_lex_unit::prepare() nulls out |
801 | fake_select_lex, but saves a copy in saved_fake_select_lex in |
802 | order to preserve the global parameters. |
803 | |
804 | If it is not a union, first_select() is the last select. |
805 | |
806 | @return select containing the global parameters |
807 | */ |
808 | inline st_select_lex *global_parameters() |
809 | { |
810 | if (fake_select_lex != NULL) |
811 | return fake_select_lex; |
812 | else if (saved_fake_select_lex != NULL) |
813 | return saved_fake_select_lex; |
814 | return first_select(); |
815 | }; |
816 | //node on which we should return current_select pointer after parsing subquery |
817 | st_select_lex *return_to; |
818 | /* LIMIT clause runtime counters */ |
819 | ha_rows select_limit_cnt, offset_limit_cnt; |
820 | /* not NULL if unit used in subselect, point to subselect item */ |
821 | Item_subselect *item; |
822 | /* |
823 | TABLE_LIST representing this union in the embedding select. Used for |
824 | derived tables/views handling. |
825 | */ |
826 | TABLE_LIST *derived; |
827 | bool is_view; |
828 | /* With clause attached to this unit (if any) */ |
829 | With_clause *with_clause; |
830 | /* With element where this unit is used as the specification (if any) */ |
831 | With_element *with_element; |
832 | /* thread handler */ |
833 | THD *thd; |
834 | /* |
835 | SELECT_LEX for hidden SELECT in union which process global |
836 | ORDER BY and LIMIT |
837 | */ |
838 | st_select_lex *fake_select_lex; |
839 | /** |
840 | SELECT_LEX that stores LIMIT and OFFSET for UNION ALL when noq |
841 | fake_select_lex is used. |
842 | */ |
843 | st_select_lex *saved_fake_select_lex; |
844 | |
845 | st_select_lex *union_distinct; /* pointer to the last UNION DISTINCT */ |
846 | bool describe; /* union exec() called for EXPLAIN */ |
847 | Procedure *last_procedure; /* Pointer to procedure, if such exists */ |
848 | |
849 | bool columns_are_renamed; |
850 | |
851 | void init_query(); |
852 | st_select_lex* outer_select(); |
853 | st_select_lex* first_select() |
854 | { |
855 | return reinterpret_cast<st_select_lex*>(slave); |
856 | } |
857 | inline void set_with_clause(With_clause *with_cl); |
858 | st_select_lex_unit* next_unit() |
859 | { |
860 | return reinterpret_cast<st_select_lex_unit*>(next); |
861 | } |
862 | st_select_lex* return_after_parsing() { return return_to; } |
863 | void exclude_level(); |
864 | // void exclude_tree(); // it is not used for long time |
865 | bool is_excluded() { return prev == NULL; } |
866 | |
867 | /* UNION methods */ |
868 | bool prepare(TABLE_LIST *derived_arg, select_result *sel_result, |
869 | ulong additional_options); |
870 | bool optimize(); |
871 | bool exec(); |
872 | bool exec_recursive(); |
873 | bool cleanup(); |
874 | inline void unclean() { cleaned= 0; } |
875 | void reinit_exec_mechanism(); |
876 | |
877 | void print(String *str, enum_query_type query_type); |
878 | |
879 | bool add_fake_select_lex(THD *thd); |
880 | void init_prepare_fake_select_lex(THD *thd, bool first_execution); |
881 | inline bool is_prepared() { return prepared; } |
882 | bool change_result(select_result_interceptor *result, |
883 | select_result_interceptor *old_result); |
884 | void set_limit(st_select_lex *values); |
885 | void set_thd(THD *thd_arg) { thd= thd_arg; } |
886 | inline bool is_unit_op (); |
887 | bool union_needs_tmp_table(); |
888 | |
889 | void set_unique_exclude(); |
890 | |
891 | friend struct LEX; |
892 | friend int subselect_union_engine::exec(); |
893 | |
894 | List<Item> *get_column_types(bool for_cursor); |
895 | |
896 | select_unit *get_union_result() { return union_result; } |
897 | int save_union_explain(Explain_query *output); |
898 | int save_union_explain_part2(Explain_query *output); |
899 | unit_common_op common_op(); |
900 | }; |
901 | |
902 | typedef class st_select_lex_unit SELECT_LEX_UNIT; |
903 | typedef Bounds_checked_array<Item*> Ref_ptr_array; |
904 | |
905 | |
906 | /* |
907 | Structure which consists of the field and the item which |
908 | produces this field. |
909 | */ |
910 | |
911 | class Grouping_tmp_field :public Sql_alloc |
912 | { |
913 | public: |
914 | Field *tmp_field; |
915 | Item *producing_item; |
916 | Grouping_tmp_field(Field *fld, Item *item) |
917 | :tmp_field(fld), producing_item(item) {} |
918 | }; |
919 | |
920 | /* |
921 | SELECT_LEX - store information of parsed SELECT statment |
922 | */ |
923 | class st_select_lex: public st_select_lex_node |
924 | { |
925 | public: |
926 | Name_resolution_context context; |
927 | LEX_CSTRING db; |
928 | Item *where, *having; /* WHERE & HAVING clauses */ |
929 | Item *prep_where; /* saved WHERE clause for prepared statement processing */ |
930 | Item *prep_having;/* saved HAVING clause for prepared statement processing */ |
931 | Item *cond_pushed_into_where; /* condition pushed into the select's WHERE */ |
932 | Item *cond_pushed_into_having; /* condition pushed into the select's HAVING */ |
933 | /* Saved values of the WHERE and HAVING clauses*/ |
934 | Item::cond_result cond_value, having_value; |
935 | /* |
936 | Point to the LEX in which it was created, used in view subquery detection. |
937 | |
938 | TODO: make also st_select_lex::parent_stmt_lex (see LEX::stmt_lex) |
939 | and use st_select_lex::parent_lex & st_select_lex::parent_stmt_lex |
940 | instead of global (from THD) references where it is possible. |
941 | */ |
942 | LEX *parent_lex; |
943 | enum olap_type olap; |
944 | /* FROM clause - points to the beginning of the TABLE_LIST::next_local list. */ |
945 | SQL_I_List<TABLE_LIST> table_list; |
946 | |
947 | /* |
948 | GROUP BY clause. |
949 | This list may be mutated during optimization (by remove_const()), |
950 | so for prepared statements, we keep a copy of the ORDER.next pointers in |
951 | group_list_ptrs, and re-establish the original list before each execution. |
952 | */ |
953 | SQL_I_List<ORDER> group_list; |
954 | Group_list_ptrs *group_list_ptrs; |
955 | |
956 | List<Item> item_list; /* list of fields & expressions */ |
957 | List<Item> pre_fix; /* above list before fix_fields */ |
958 | bool is_item_list_lookup; |
959 | /* |
960 | Usualy it is pointer to ftfunc_list_alloc, but in union used to create fake |
961 | select_lex for calling mysql_select under results of union |
962 | */ |
963 | List<Item_func_match> *ftfunc_list; |
964 | List<Item_func_match> ftfunc_list_alloc; |
965 | /* |
966 | The list of items to which MIN/MAX optimizations of opt_sum_query() |
967 | have been applied. Used to rollback those optimizations if it's needed. |
968 | */ |
969 | List<Item_sum> min_max_opt_list; |
970 | JOIN *join; /* after JOIN::prepare it is pointer to corresponding JOIN */ |
971 | List<TABLE_LIST> top_join_list; /* join list of the top level */ |
972 | List<TABLE_LIST> *join_list; /* list for the currently parsed join */ |
973 | TABLE_LIST *embedding; /* table embedding to the above list */ |
974 | List<TABLE_LIST> sj_nests; /* Semi-join nests within this join */ |
975 | /* |
976 | Beginning of the list of leaves in a FROM clause, where the leaves |
977 | inlcude all base tables including view tables. The tables are connected |
978 | by TABLE_LIST::next_leaf, so leaf_tables points to the left-most leaf. |
979 | |
980 | List of all base tables local to a subquery including all view |
981 | tables. Unlike 'next_local', this in this list views are *not* |
982 | leaves. Created in setup_tables() -> make_leaves_list(). |
983 | */ |
984 | /* |
985 | Subqueries that will need to be converted to semi-join nests, including |
986 | those converted to jtbm nests. The list is emptied when conversion is done. |
987 | */ |
988 | List<Item_in_subselect> sj_subselects; |
989 | /* |
990 | List of IN-predicates in this st_select_lex that |
991 | can be transformed into IN-subselect defined with TVC. |
992 | */ |
993 | List<Item_func_in> in_funcs; |
994 | /* |
995 | Number of current derived table made with TVC during the |
996 | transformation of IN-predicate into IN-subquery for this |
997 | st_select_lex. |
998 | */ |
999 | uint curr_tvc_name; |
1000 | |
1001 | /* |
1002 | Needed to correctly generate 'PRIMARY' or 'SIMPLE' for select_type column |
1003 | of EXPLAIN |
1004 | */ |
1005 | bool have_merged_subqueries; |
1006 | |
1007 | List<TABLE_LIST> leaf_tables; |
1008 | List<TABLE_LIST> leaf_tables_exec; |
1009 | List<TABLE_LIST> leaf_tables_prep; |
1010 | enum leaf_list_state {UNINIT, READY, SAVED}; |
1011 | enum leaf_list_state prep_leaf_list_state; |
1012 | uint insert_tables; |
1013 | st_select_lex *merged_into; /* select which this select is merged into */ |
1014 | /* (not 0 only for views/derived tables) */ |
1015 | |
1016 | const char *type; /* type of select for EXPLAIN */ |
1017 | |
1018 | SQL_I_List<ORDER> order_list; /* ORDER clause */ |
1019 | SQL_I_List<ORDER> gorder_list; |
1020 | Item *select_limit, *offset_limit; /* LIMIT clause parameters */ |
1021 | |
1022 | /// Array of pointers to top elements of all_fields list |
1023 | Ref_ptr_array ref_pointer_array; |
1024 | |
1025 | /* |
1026 | number of items in select_list and HAVING clause used to get number |
1027 | bigger then can be number of entries that will be added to all item |
1028 | list during split_sum_func |
1029 | */ |
1030 | uint select_n_having_items; |
1031 | uint cond_count; /* number of sargable Items in where/having/on */ |
1032 | uint between_count; /* number of between predicates in where/having/on */ |
1033 | uint max_equal_elems; /* maximal number of elements in multiple equalities */ |
1034 | /* |
1035 | Number of fields used in select list or where clause of current select |
1036 | and all inner subselects. |
1037 | */ |
1038 | uint select_n_where_fields; |
1039 | /* reserved for exists 2 in */ |
1040 | uint select_n_reserved; |
1041 | /* |
1042 | it counts the number of bit fields in the SELECT list. These are used when DISTINCT is |
1043 | converted to a GROUP BY involving BIT fields. |
1044 | */ |
1045 | uint hidden_bit_fields; |
1046 | enum_parsing_place parsing_place; /* where we are parsing expression */ |
1047 | enum_parsing_place context_analysis_place; /* where we are in prepare */ |
1048 | bool with_sum_func; /* sum function indicator */ |
1049 | |
1050 | ulong table_join_options; |
1051 | uint in_sum_expr; |
1052 | uint select_number; /* number of select (used for EXPLAIN) */ |
1053 | |
1054 | /* |
1055 | nest_levels are local to the query or VIEW, |
1056 | and that view merge procedure does not re-calculate them. |
1057 | So we also have to remember unit against which we count levels. |
1058 | */ |
1059 | SELECT_LEX_UNIT *nest_level_base; |
1060 | int nest_level; /* nesting level of select */ |
1061 | Item_sum *inner_sum_func_list; /* list of sum func in nested selects */ |
1062 | uint with_wild; /* item list contain '*' */ |
1063 | bool braces; /* SELECT ... UNION (SELECT ... ) <- this braces */ |
1064 | bool automatic_brackets; /* dummy select for INTERSECT precedence */ |
1065 | /* TRUE when having fix field called in processing of this SELECT */ |
1066 | bool having_fix_field; |
1067 | /* List of references to fields referenced from inner selects */ |
1068 | List<Item_outer_ref> inner_refs_list; |
1069 | /* Number of Item_sum-derived objects in this SELECT */ |
1070 | uint n_sum_items; |
1071 | /* Number of Item_sum-derived objects in children and descendant SELECTs */ |
1072 | uint n_child_sum_items; |
1073 | |
1074 | /* explicit LIMIT clause was used */ |
1075 | bool explicit_limit; |
1076 | /* |
1077 | This array is used to note whether we have any candidates for |
1078 | expression caching in the corresponding clauses |
1079 | */ |
1080 | bool expr_cache_may_be_used[PARSING_PLACE_SIZE]; |
1081 | /* |
1082 | there are subquery in HAVING clause => we can't close tables before |
1083 | query processing end even if we use temporary table |
1084 | */ |
1085 | bool subquery_in_having; |
1086 | /* TRUE <=> this SELECT is correlated w.r.t. some ancestor select */ |
1087 | bool with_all_modifier; /* used for selects in union */ |
1088 | bool is_correlated; |
1089 | /* |
1090 | This variable is required to ensure proper work of subqueries and |
1091 | stored procedures. Generally, one should use the states of |
1092 | Query_arena to determine if it's a statement prepare or first |
1093 | execution of a stored procedure. However, in case when there was an |
1094 | error during the first execution of a stored procedure, the SP body |
1095 | is not expelled from the SP cache. Therefore, a deeply nested |
1096 | subquery might be left unoptimized. So we need this per-subquery |
1097 | variable to inidicate the optimization/execution state of every |
1098 | subquery. Prepared statements work OK in that regard, as in |
1099 | case of an error during prepare the PS is not created. |
1100 | */ |
1101 | bool first_execution; |
1102 | bool first_natural_join_processing; |
1103 | bool first_cond_optimization; |
1104 | /* do not wrap view fields with Item_ref */ |
1105 | bool no_wrap_view_item; |
1106 | /* exclude this select from check of unique_table() */ |
1107 | bool exclude_from_table_unique_test; |
1108 | /* index in the select list of the expression currently being fixed */ |
1109 | int cur_pos_in_select_list; |
1110 | |
1111 | List<udf_func> udf_list; /* udf function calls stack */ |
1112 | |
1113 | /* |
1114 | This is a copy of the original JOIN USING list that comes from |
1115 | the parser. The parser : |
1116 | 1. Sets the natural_join of the second TABLE_LIST in the join |
1117 | and the st_select_lex::prev_join_using. |
1118 | 2. Makes a parent TABLE_LIST and sets its is_natural_join/ |
1119 | join_using_fields members. |
1120 | 3. Uses the wrapper TABLE_LIST as a table in the upper level. |
1121 | We cannot assign directly to join_using_fields in the parser because |
1122 | at stage (1.) the parent TABLE_LIST is not constructed yet and |
1123 | the assignment will override the JOIN USING fields of the lower level |
1124 | joins on the right. |
1125 | */ |
1126 | List<String> *prev_join_using; |
1127 | |
1128 | /** |
1129 | The set of those tables whose fields are referenced in the select list of |
1130 | this select level. |
1131 | */ |
1132 | table_map select_list_tables; |
1133 | |
1134 | /* namp of nesting SELECT visibility (for aggregate functions check) */ |
1135 | nesting_map name_visibility_map; |
1136 | |
1137 | table_map with_dep; |
1138 | List<Grouping_tmp_field> grouping_tmp_fields; |
1139 | |
1140 | /* it is for correct printing SELECT options */ |
1141 | thr_lock_type lock_type; |
1142 | |
1143 | table_value_constr *tvc; |
1144 | bool in_tvc; |
1145 | |
1146 | /** System Versioning */ |
1147 | public: |
1148 | uint versioned_tables; |
1149 | int vers_setup_conds(THD *thd, TABLE_LIST *tables); |
1150 | /* push new Item_field into item_list */ |
1151 | bool vers_push_field(THD *thd, TABLE_LIST *table, const LEX_CSTRING field_name); |
1152 | |
1153 | void init_query(); |
1154 | void init_select(); |
1155 | st_select_lex_unit* master_unit() { return (st_select_lex_unit*) master; } |
1156 | st_select_lex_unit* first_inner_unit() |
1157 | { |
1158 | return (st_select_lex_unit*) slave; |
1159 | } |
1160 | st_select_lex* outer_select(); |
1161 | st_select_lex* next_select() { return (st_select_lex*) next; } |
1162 | st_select_lex* next_select_in_list() |
1163 | { |
1164 | return (st_select_lex*) link_next; |
1165 | } |
1166 | st_select_lex_node** next_select_in_list_addr() |
1167 | { |
1168 | return &link_next; |
1169 | } |
1170 | st_select_lex* return_after_parsing() |
1171 | { |
1172 | return master_unit()->return_after_parsing(); |
1173 | } |
1174 | inline bool is_subquery_function() { return master_unit()->item != 0; } |
1175 | |
1176 | bool mark_as_dependent(THD *thd, st_select_lex *last, Item *dependency); |
1177 | |
1178 | void set_braces(bool value) |
1179 | { |
1180 | braces= value; |
1181 | } |
1182 | bool inc_in_sum_expr(); |
1183 | uint get_in_sum_expr(); |
1184 | |
1185 | bool add_item_to_list(THD *thd, Item *item); |
1186 | bool add_group_to_list(THD *thd, Item *item, bool asc); |
1187 | bool add_ftfunc_to_list(THD *thd, Item_func_match *func); |
1188 | bool add_order_to_list(THD *thd, Item *item, bool asc); |
1189 | bool add_gorder_to_list(THD *thd, Item *item, bool asc); |
1190 | TABLE_LIST* add_table_to_list(THD *thd, Table_ident *table, |
1191 | LEX_CSTRING *alias, |
1192 | ulong table_options, |
1193 | thr_lock_type flags= TL_UNLOCK, |
1194 | enum_mdl_type mdl_type= MDL_SHARED_READ, |
1195 | List<Index_hint> *hints= 0, |
1196 | List<String> *partition_names= 0, |
1197 | LEX_STRING *option= 0); |
1198 | TABLE_LIST* get_table_list(); |
1199 | bool init_nested_join(THD *thd); |
1200 | TABLE_LIST *end_nested_join(THD *thd); |
1201 | TABLE_LIST *nest_last_join(THD *thd); |
1202 | void add_joined_table(TABLE_LIST *table); |
1203 | TABLE_LIST *convert_right_join(); |
1204 | List<Item>* get_item_list(); |
1205 | ulong get_table_join_options(); |
1206 | void set_lock_for_tables(thr_lock_type lock_type); |
1207 | inline void init_order() |
1208 | { |
1209 | order_list.elements= 0; |
1210 | order_list.first= 0; |
1211 | order_list.next= &order_list.first; |
1212 | } |
1213 | /* |
1214 | This method created for reiniting LEX in mysql_admin_table() and can be |
1215 | used only if you are going remove all SELECT_LEX & units except belonger |
1216 | to LEX (LEX::unit & LEX::select, for other purposes there are |
1217 | SELECT_LEX_UNIT::exclude_level & SELECT_LEX_UNIT::exclude_tree |
1218 | */ |
1219 | void cut_subtree() { slave= 0; } |
1220 | bool test_limit(); |
1221 | /** |
1222 | Get offset for LIMIT. |
1223 | |
1224 | Evaluate offset item if necessary. |
1225 | |
1226 | @return Number of rows to skip. |
1227 | */ |
1228 | ha_rows get_offset(); |
1229 | /** |
1230 | Get limit. |
1231 | |
1232 | Evaluate limit item if necessary. |
1233 | |
1234 | @return Limit of rows in result. |
1235 | */ |
1236 | ha_rows get_limit(); |
1237 | |
1238 | friend struct LEX; |
1239 | st_select_lex() : group_list_ptrs(NULL), braces(0), automatic_brackets(0), |
1240 | n_sum_items(0), n_child_sum_items(0) |
1241 | {} |
1242 | void make_empty_select() |
1243 | { |
1244 | init_query(); |
1245 | init_select(); |
1246 | } |
1247 | bool setup_ref_array(THD *thd, uint order_group_num); |
1248 | void print(THD *thd, String *str, enum_query_type query_type); |
1249 | static void print_order(String *str, |
1250 | ORDER *order, |
1251 | enum_query_type query_type); |
1252 | void print_limit(THD *thd, String *str, enum_query_type query_type); |
1253 | void fix_prepare_information(THD *thd, Item **conds, Item **having_conds); |
1254 | /* |
1255 | Destroy the used execution plan (JOIN) of this subtree (this |
1256 | SELECT_LEX and all nested SELECT_LEXes and SELECT_LEX_UNITs). |
1257 | */ |
1258 | bool cleanup(); |
1259 | /* |
1260 | Recursively cleanup the join of this select lex and of all nested |
1261 | select lexes. |
1262 | */ |
1263 | void cleanup_all_joins(bool full); |
1264 | |
1265 | void set_index_hint_type(enum index_hint_type type, index_clause_map clause); |
1266 | |
1267 | /* |
1268 | Add a index hint to the tagged list of hints. The type and clause of the |
1269 | hint will be the current ones (set by set_index_hint()) |
1270 | */ |
1271 | bool add_index_hint (THD *thd, const char *str, size_t length); |
1272 | |
1273 | /* make a list to hold index hints */ |
1274 | void alloc_index_hints (THD *thd); |
1275 | /* read and clear the index hints */ |
1276 | List<Index_hint>* pop_index_hints(void) |
1277 | { |
1278 | List<Index_hint> *hints= index_hints; |
1279 | index_hints= NULL; |
1280 | return hints; |
1281 | } |
1282 | |
1283 | void clear_index_hints(void) { index_hints= NULL; } |
1284 | bool is_part_of_union() { return master_unit()->is_unit_op(); } |
1285 | bool is_top_level_node() |
1286 | { |
1287 | return (select_number == 1) && !is_part_of_union(); |
1288 | } |
1289 | bool optimize_unflattened_subqueries(bool const_only); |
1290 | /* Set the EXPLAIN type for this subquery. */ |
1291 | void set_explain_type(bool on_the_fly); |
1292 | bool handle_derived(LEX *lex, uint phases); |
1293 | void append_table_to_list(TABLE_LIST *TABLE_LIST::*link, TABLE_LIST *table); |
1294 | bool get_free_table_map(table_map *map, uint *tablenr); |
1295 | void replace_leaf_table(TABLE_LIST *table, List<TABLE_LIST> &tbl_list); |
1296 | void remap_tables(TABLE_LIST *derived, table_map map, |
1297 | uint tablenr, st_select_lex *parent_lex); |
1298 | bool merge_subquery(THD *thd, TABLE_LIST *derived, st_select_lex *subq_lex, |
1299 | uint tablenr, table_map map); |
1300 | inline bool is_mergeable() |
1301 | { |
1302 | return (next_select() == 0 && group_list.elements == 0 && |
1303 | having == 0 && with_sum_func == 0 && |
1304 | table_list.elements >= 1 && !(options & SELECT_DISTINCT) && |
1305 | select_limit == 0); |
1306 | } |
1307 | void mark_as_belong_to_derived(TABLE_LIST *derived); |
1308 | void increase_derived_records(ha_rows records); |
1309 | void update_used_tables(); |
1310 | void update_correlated_cache(); |
1311 | void mark_const_derived(bool empty); |
1312 | |
1313 | bool save_leaf_tables(THD *thd); |
1314 | bool save_prep_leaf_tables(THD *thd); |
1315 | |
1316 | bool is_merged_child_of(st_select_lex *ancestor); |
1317 | |
1318 | /* |
1319 | For MODE_ONLY_FULL_GROUP_BY we need to maintain two flags: |
1320 | - Non-aggregated fields are used in this select. |
1321 | - Aggregate functions are used in this select. |
1322 | In MODE_ONLY_FULL_GROUP_BY only one of these may be true. |
1323 | */ |
1324 | bool non_agg_field_used() const { return m_non_agg_field_used; } |
1325 | bool agg_func_used() const { return m_agg_func_used; } |
1326 | bool custom_agg_func_used() const { return m_custom_agg_func_used; } |
1327 | |
1328 | void set_non_agg_field_used(bool val) { m_non_agg_field_used= val; } |
1329 | void set_agg_func_used(bool val) { m_agg_func_used= val; } |
1330 | void set_custom_agg_func_used(bool val) { m_custom_agg_func_used= val; } |
1331 | inline void set_with_clause(With_clause *with_clause); |
1332 | With_clause *get_with_clause() |
1333 | { |
1334 | return master_unit()->with_clause; |
1335 | } |
1336 | With_element *get_with_element() |
1337 | { |
1338 | return master_unit()->with_element; |
1339 | } |
1340 | With_element *find_table_def_in_with_clauses(TABLE_LIST *table); |
1341 | bool check_unrestricted_recursive(bool only_standard_compliant); |
1342 | bool check_subqueries_with_recursive_references(); |
1343 | void collect_grouping_fields(THD *thd, ORDER *grouping_list); |
1344 | void (Item *cond, |
1345 | TABLE_LIST *derived); |
1346 | Item *build_cond_for_grouping_fields(THD *thd, Item *cond, |
1347 | bool no_to_clones); |
1348 | |
1349 | List<Window_spec> window_specs; |
1350 | void prepare_add_window_spec(THD *thd); |
1351 | bool add_window_def(THD *thd, LEX_CSTRING *win_name, LEX_CSTRING *win_ref, |
1352 | SQL_I_List<ORDER> win_partition_list, |
1353 | SQL_I_List<ORDER> win_order_list, |
1354 | Window_frame *win_frame); |
1355 | bool add_window_spec(THD *thd, LEX_CSTRING *win_ref, |
1356 | SQL_I_List<ORDER> win_partition_list, |
1357 | SQL_I_List<ORDER> win_order_list, |
1358 | Window_frame *win_frame); |
1359 | List<Item_window_func> window_funcs; |
1360 | bool add_window_func(Item_window_func *win_func) |
1361 | { |
1362 | return window_funcs.push_back(win_func); |
1363 | } |
1364 | |
1365 | bool have_window_funcs() const { return (window_funcs.elements !=0); } |
1366 | ORDER *find_common_window_func_partition_fields(THD *thd); |
1367 | |
1368 | bool cond_pushdown_is_allowed() const |
1369 | { return !olap && !explicit_limit && !tvc; } |
1370 | |
1371 | private: |
1372 | bool m_non_agg_field_used; |
1373 | bool m_agg_func_used; |
1374 | bool m_custom_agg_func_used; |
1375 | |
1376 | /* current index hint kind. used in filling up index_hints */ |
1377 | enum index_hint_type current_index_hint_type; |
1378 | index_clause_map current_index_hint_clause; |
1379 | /* a list of USE/FORCE/IGNORE INDEX */ |
1380 | List<Index_hint> *index_hints; |
1381 | |
1382 | public: |
1383 | inline void add_where_field(st_select_lex *sel) |
1384 | { |
1385 | DBUG_ASSERT(this != sel); |
1386 | select_n_where_fields+= sel->select_n_where_fields; |
1387 | } |
1388 | }; |
1389 | typedef class st_select_lex SELECT_LEX; |
1390 | |
1391 | inline bool st_select_lex_unit::is_unit_op () |
1392 | { |
1393 | if (!first_select()->next_select()) |
1394 | { |
1395 | if (first_select()->tvc) |
1396 | return 1; |
1397 | else |
1398 | return 0; |
1399 | } |
1400 | |
1401 | enum sub_select_type linkage= first_select()->next_select()->linkage; |
1402 | return linkage == UNION_TYPE || linkage == INTERSECT_TYPE || |
1403 | linkage == EXCEPT_TYPE; |
1404 | } |
1405 | |
1406 | |
1407 | struct st_sp_chistics |
1408 | { |
1409 | LEX_CSTRING ; |
1410 | enum enum_sp_suid_behaviour suid; |
1411 | bool detistic; |
1412 | enum enum_sp_data_access daccess; |
1413 | enum enum_sp_aggregate_type agg_type; |
1414 | void init() { bzero(this, sizeof(*this)); } |
1415 | void set(const st_sp_chistics &other) { *this= other; } |
1416 | bool read_from_mysql_proc_row(THD *thd, TABLE *table); |
1417 | }; |
1418 | |
1419 | |
1420 | class Sp_chistics: public st_sp_chistics |
1421 | { |
1422 | public: |
1423 | Sp_chistics() { init(); } |
1424 | }; |
1425 | |
1426 | |
1427 | struct st_trg_chistics: public st_trg_execution_order |
1428 | { |
1429 | enum trg_action_time_type action_time; |
1430 | enum trg_event_type event; |
1431 | |
1432 | const char *ordering_clause_begin; |
1433 | const char *ordering_clause_end; |
1434 | |
1435 | }; |
1436 | |
1437 | enum xa_option_words {XA_NONE, XA_JOIN, XA_RESUME, XA_ONE_PHASE, |
1438 | XA_SUSPEND, XA_FOR_MIGRATE}; |
1439 | |
1440 | class Sroutine_hash_entry; |
1441 | |
1442 | /* |
1443 | Class representing list of all tables used by statement and other |
1444 | information which is necessary for opening and locking its tables, |
1445 | like SQL command for this statement. |
1446 | |
1447 | Also contains information about stored functions used by statement |
1448 | since during its execution we may have to add all tables used by its |
1449 | stored functions/triggers to this list in order to pre-open and lock |
1450 | them. |
1451 | |
1452 | Also used by LEX::reset_n_backup/restore_backup_query_tables_list() |
1453 | methods to save and restore this information. |
1454 | */ |
1455 | |
1456 | class Query_tables_list |
1457 | { |
1458 | public: |
1459 | /** |
1460 | SQL command for this statement. Part of this class since the |
1461 | process of opening and locking tables for the statement needs |
1462 | this information to determine correct type of lock for some of |
1463 | the tables. |
1464 | */ |
1465 | enum_sql_command sql_command; |
1466 | /* Global list of all tables used by this statement */ |
1467 | TABLE_LIST *query_tables; |
1468 | /* Pointer to next_global member of last element in the previous list. */ |
1469 | TABLE_LIST **query_tables_last; |
1470 | /* |
1471 | If non-0 then indicates that query requires prelocking and points to |
1472 | next_global member of last own element in query table list (i.e. last |
1473 | table which was not added to it as part of preparation to prelocking). |
1474 | 0 - indicates that this query does not need prelocking. |
1475 | */ |
1476 | TABLE_LIST **query_tables_own_last; |
1477 | /* |
1478 | Set of stored routines called by statement. |
1479 | (Note that we use lazy-initialization for this hash). |
1480 | */ |
1481 | enum { START_SROUTINES_HASH_SIZE= 16 }; |
1482 | HASH sroutines; |
1483 | /* |
1484 | List linking elements of 'sroutines' set. Allows you to add new elements |
1485 | to this set as you iterate through the list of existing elements. |
1486 | 'sroutines_list_own_last' is pointer to ::next member of last element of |
1487 | this list which represents routine which is explicitly used by query. |
1488 | 'sroutines_list_own_elements' number of explicitly used routines. |
1489 | We use these two members for restoring of 'sroutines_list' to the state |
1490 | in which it was right after query parsing. |
1491 | */ |
1492 | SQL_I_List<Sroutine_hash_entry> sroutines_list; |
1493 | Sroutine_hash_entry **sroutines_list_own_last; |
1494 | uint sroutines_list_own_elements; |
1495 | |
1496 | /** |
1497 | Locking state of tables in this particular statement. |
1498 | |
1499 | If we under LOCK TABLES or in prelocked mode we consider tables |
1500 | for the statement to be "locked" if there was a call to lock_tables() |
1501 | (which called handler::start_stmt()) for tables of this statement |
1502 | and there was no matching close_thread_tables() call. |
1503 | |
1504 | As result this state may differ significantly from one represented |
1505 | by Open_tables_state::lock/locked_tables_mode more, which are always |
1506 | "on" under LOCK TABLES or in prelocked mode. |
1507 | */ |
1508 | enum enum_lock_tables_state { |
1509 | LTS_NOT_LOCKED = 0, |
1510 | LTS_LOCKED |
1511 | }; |
1512 | enum_lock_tables_state lock_tables_state; |
1513 | bool is_query_tables_locked() |
1514 | { |
1515 | return (lock_tables_state == LTS_LOCKED); |
1516 | } |
1517 | |
1518 | /** |
1519 | Number of tables which were open by open_tables() and to be locked |
1520 | by lock_tables(). |
1521 | Note that we set this member only in some cases, when this value |
1522 | needs to be passed from open_tables() to lock_tables() which are |
1523 | separated by some amount of code. |
1524 | */ |
1525 | uint table_count; |
1526 | |
1527 | /* |
1528 | These constructor and destructor serve for creation/destruction |
1529 | of Query_tables_list instances which are used as backup storage. |
1530 | */ |
1531 | Query_tables_list() {} |
1532 | ~Query_tables_list() {} |
1533 | |
1534 | /* Initializes (or resets) Query_tables_list object for "real" use. */ |
1535 | void reset_query_tables_list(bool init); |
1536 | void destroy_query_tables_list(); |
1537 | void set_query_tables_list(Query_tables_list *state) |
1538 | { |
1539 | *this= *state; |
1540 | } |
1541 | |
1542 | /* |
1543 | Direct addition to the list of query tables. |
1544 | If you are using this function, you must ensure that the table |
1545 | object, in particular table->db member, is initialized. |
1546 | */ |
1547 | void add_to_query_tables(TABLE_LIST *table) |
1548 | { |
1549 | *(table->prev_global= query_tables_last)= table; |
1550 | query_tables_last= &table->next_global; |
1551 | } |
1552 | bool requires_prelocking() |
1553 | { |
1554 | return MY_TEST(query_tables_own_last); |
1555 | } |
1556 | void mark_as_requiring_prelocking(TABLE_LIST **tables_own_last) |
1557 | { |
1558 | query_tables_own_last= tables_own_last; |
1559 | } |
1560 | /* Return pointer to first not-own table in query-tables or 0 */ |
1561 | TABLE_LIST* first_not_own_table() |
1562 | { |
1563 | return ( query_tables_own_last ? *query_tables_own_last : 0); |
1564 | } |
1565 | void chop_off_not_own_tables() |
1566 | { |
1567 | if (query_tables_own_last) |
1568 | { |
1569 | *query_tables_own_last= 0; |
1570 | query_tables_last= query_tables_own_last; |
1571 | query_tables_own_last= 0; |
1572 | } |
1573 | } |
1574 | |
1575 | /** Return a pointer to the last element in query table list. */ |
1576 | TABLE_LIST *last_table() |
1577 | { |
1578 | /* Don't use offsetof() macro in order to avoid warnings. */ |
1579 | return query_tables ? |
1580 | (TABLE_LIST*) ((char*) query_tables_last - |
1581 | ((char*) &(query_tables->next_global) - |
1582 | (char*) query_tables)) : |
1583 | 0; |
1584 | } |
1585 | |
1586 | /** |
1587 | Enumeration listing of all types of unsafe statement. |
1588 | |
1589 | @note The order of elements of this enumeration type must |
1590 | correspond to the order of the elements of the @c explanations |
1591 | array defined in the body of @c THD::issue_unsafe_warnings. |
1592 | */ |
1593 | enum enum_binlog_stmt_unsafe { |
1594 | /** |
1595 | SELECT..LIMIT is unsafe because the set of rows returned cannot |
1596 | be predicted. |
1597 | */ |
1598 | BINLOG_STMT_UNSAFE_LIMIT= 0, |
1599 | /** |
1600 | INSERT DELAYED is unsafe because the time when rows are inserted |
1601 | cannot be predicted. |
1602 | */ |
1603 | BINLOG_STMT_UNSAFE_INSERT_DELAYED, |
1604 | /** |
1605 | Access to log tables is unsafe because slave and master probably |
1606 | log different things. |
1607 | */ |
1608 | BINLOG_STMT_UNSAFE_SYSTEM_TABLE, |
1609 | /** |
1610 | Inserting into an autoincrement column in a stored routine is unsafe. |
1611 | Even with just one autoincrement column, if the routine is invoked more than |
1612 | once slave is not guaranteed to execute the statement graph same way as |
1613 | the master. |
1614 | And since it's impossible to estimate how many times a routine can be invoked at |
1615 | the query pre-execution phase (see lock_tables), the statement is marked |
1616 | pessimistically unsafe. |
1617 | */ |
1618 | BINLOG_STMT_UNSAFE_AUTOINC_COLUMNS, |
1619 | /** |
1620 | Using a UDF (user-defined function) is unsafe. |
1621 | */ |
1622 | BINLOG_STMT_UNSAFE_UDF, |
1623 | /** |
1624 | Using most system variables is unsafe, because slave may run |
1625 | with different options than master. |
1626 | */ |
1627 | BINLOG_STMT_UNSAFE_SYSTEM_VARIABLE, |
1628 | /** |
1629 | Using some functions is unsafe (e.g., UUID). |
1630 | */ |
1631 | BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION, |
1632 | |
1633 | /** |
1634 | Mixing transactional and non-transactional statements are unsafe if |
1635 | non-transactional reads or writes are occur after transactional |
1636 | reads or writes inside a transaction. |
1637 | */ |
1638 | BINLOG_STMT_UNSAFE_NONTRANS_AFTER_TRANS, |
1639 | |
1640 | /** |
1641 | Mixing self-logging and non-self-logging engines in a statement |
1642 | is unsafe. |
1643 | */ |
1644 | BINLOG_STMT_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE, |
1645 | |
1646 | /** |
1647 | Statements that read from both transactional and non-transactional |
1648 | tables and write to any of them are unsafe. |
1649 | */ |
1650 | BINLOG_STMT_UNSAFE_MIXED_STATEMENT, |
1651 | |
1652 | /** |
1653 | INSERT...IGNORE SELECT is unsafe because which rows are ignored depends |
1654 | on the order that rows are retrieved by SELECT. This order cannot be |
1655 | predicted and may differ on master and the slave. |
1656 | */ |
1657 | BINLOG_STMT_UNSAFE_INSERT_IGNORE_SELECT, |
1658 | |
1659 | /** |
1660 | INSERT...SELECT...UPDATE is unsafe because which rows are updated depends |
1661 | on the order that rows are retrieved by SELECT. This order cannot be |
1662 | predicted and may differ on master and the slave. |
1663 | */ |
1664 | BINLOG_STMT_UNSAFE_INSERT_SELECT_UPDATE, |
1665 | |
1666 | /** |
1667 | Query that writes to a table with auto_inc column after selecting from |
1668 | other tables are unsafe as the order in which the rows are retrieved by |
1669 | select may differ on master and slave. |
1670 | */ |
1671 | BINLOG_STMT_UNSAFE_WRITE_AUTOINC_SELECT, |
1672 | |
1673 | /** |
1674 | INSERT...REPLACE SELECT is unsafe because which rows are replaced depends |
1675 | on the order that rows are retrieved by SELECT. This order cannot be |
1676 | predicted and may differ on master and the slave. |
1677 | */ |
1678 | BINLOG_STMT_UNSAFE_REPLACE_SELECT, |
1679 | |
1680 | /** |
1681 | CREATE TABLE... IGNORE... SELECT is unsafe because which rows are ignored |
1682 | depends on the order that rows are retrieved by SELECT. This order cannot |
1683 | be predicted and may differ on master and the slave. |
1684 | */ |
1685 | BINLOG_STMT_UNSAFE_CREATE_IGNORE_SELECT, |
1686 | |
1687 | /** |
1688 | CREATE TABLE...REPLACE... SELECT is unsafe because which rows are replaced |
1689 | depends on the order that rows are retrieved from SELECT. This order |
1690 | cannot be predicted and may differ on master and the slave |
1691 | */ |
1692 | BINLOG_STMT_UNSAFE_CREATE_REPLACE_SELECT, |
1693 | |
1694 | /** |
1695 | CREATE TABLE...SELECT on a table with auto-increment column is unsafe |
1696 | because which rows are replaced depends on the order that rows are |
1697 | retrieved from SELECT. This order cannot be predicted and may differ on |
1698 | master and the slave |
1699 | */ |
1700 | BINLOG_STMT_UNSAFE_CREATE_SELECT_AUTOINC, |
1701 | |
1702 | /** |
1703 | UPDATE...IGNORE is unsafe because which rows are ignored depends on the |
1704 | order that rows are updated. This order cannot be predicted and may differ |
1705 | on master and the slave. |
1706 | */ |
1707 | BINLOG_STMT_UNSAFE_UPDATE_IGNORE, |
1708 | |
1709 | /** |
1710 | INSERT... ON DUPLICATE KEY UPDATE on a table with more than one |
1711 | UNIQUE KEYS is unsafe. |
1712 | */ |
1713 | BINLOG_STMT_UNSAFE_INSERT_TWO_KEYS, |
1714 | |
1715 | /** |
1716 | INSERT into auto-inc field which is not the first part of composed |
1717 | primary key. |
1718 | */ |
1719 | BINLOG_STMT_UNSAFE_AUTOINC_NOT_FIRST, |
1720 | |
1721 | /* The last element of this enumeration type. */ |
1722 | BINLOG_STMT_UNSAFE_COUNT |
1723 | }; |
1724 | /** |
1725 | This has all flags from 0 (inclusive) to BINLOG_STMT_FLAG_COUNT |
1726 | (exclusive) set. |
1727 | */ |
1728 | static const uint32 BINLOG_STMT_UNSAFE_ALL_FLAGS= |
1729 | ((1U << BINLOG_STMT_UNSAFE_COUNT) - 1); |
1730 | |
1731 | /** |
1732 | Maps elements of enum_binlog_stmt_unsafe to error codes. |
1733 | */ |
1734 | static const int binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT]; |
1735 | |
1736 | /** |
1737 | Determine if this statement is marked as unsafe. |
1738 | |
1739 | @retval 0 if the statement is not marked as unsafe. |
1740 | @retval nonzero if the statement is marked as unsafe. |
1741 | */ |
1742 | inline bool is_stmt_unsafe() const { |
1743 | return get_stmt_unsafe_flags() != 0; |
1744 | } |
1745 | |
1746 | inline bool is_stmt_unsafe(enum_binlog_stmt_unsafe unsafe) |
1747 | { |
1748 | return binlog_stmt_flags & (1 << unsafe); |
1749 | } |
1750 | |
1751 | /** |
1752 | Flag the current (top-level) statement as unsafe. |
1753 | The flag will be reset after the statement has finished. |
1754 | |
1755 | @param unsafe_type The type of unsafety: one of the @c |
1756 | BINLOG_STMT_FLAG_UNSAFE_* flags in @c enum_binlog_stmt_flag. |
1757 | */ |
1758 | inline void set_stmt_unsafe(enum_binlog_stmt_unsafe unsafe_type) { |
1759 | DBUG_ENTER("set_stmt_unsafe" ); |
1760 | DBUG_ASSERT(unsafe_type >= 0 && unsafe_type < BINLOG_STMT_UNSAFE_COUNT); |
1761 | binlog_stmt_flags|= (1U << unsafe_type); |
1762 | DBUG_VOID_RETURN; |
1763 | } |
1764 | |
1765 | /** |
1766 | Set the bits of binlog_stmt_flags determining the type of |
1767 | unsafeness of the current statement. No existing bits will be |
1768 | cleared, but new bits may be set. |
1769 | |
1770 | @param flags A binary combination of zero or more bits, (1<<flag) |
1771 | where flag is a member of enum_binlog_stmt_unsafe. |
1772 | */ |
1773 | inline void set_stmt_unsafe_flags(uint32 flags) { |
1774 | DBUG_ENTER("set_stmt_unsafe_flags" ); |
1775 | DBUG_ASSERT((flags & ~BINLOG_STMT_UNSAFE_ALL_FLAGS) == 0); |
1776 | binlog_stmt_flags|= flags; |
1777 | DBUG_VOID_RETURN; |
1778 | } |
1779 | |
1780 | /** |
1781 | Return a binary combination of all unsafe warnings for the |
1782 | statement. If the statement has been marked as unsafe by the |
1783 | 'flag' member of enum_binlog_stmt_unsafe, then the return value |
1784 | from this function has bit (1<<flag) set to 1. |
1785 | */ |
1786 | inline uint32 get_stmt_unsafe_flags() const { |
1787 | DBUG_ENTER("get_stmt_unsafe_flags" ); |
1788 | DBUG_RETURN(binlog_stmt_flags & BINLOG_STMT_UNSAFE_ALL_FLAGS); |
1789 | } |
1790 | |
1791 | /** |
1792 | Mark the current statement as safe; i.e., clear all bits in |
1793 | binlog_stmt_flags that correspond to elements of |
1794 | enum_binlog_stmt_unsafe. |
1795 | */ |
1796 | inline void clear_stmt_unsafe() { |
1797 | DBUG_ENTER("clear_stmt_unsafe" ); |
1798 | binlog_stmt_flags&= ~BINLOG_STMT_UNSAFE_ALL_FLAGS; |
1799 | DBUG_VOID_RETURN; |
1800 | } |
1801 | |
1802 | /** |
1803 | Determine if this statement is a row injection. |
1804 | |
1805 | @retval 0 if the statement is not a row injection |
1806 | @retval nonzero if the statement is a row injection |
1807 | */ |
1808 | inline bool is_stmt_row_injection() const { |
1809 | return binlog_stmt_flags & |
1810 | (1U << (BINLOG_STMT_UNSAFE_COUNT + BINLOG_STMT_TYPE_ROW_INJECTION)); |
1811 | } |
1812 | |
1813 | /** |
1814 | Flag the statement as a row injection. A row injection is either |
1815 | a BINLOG statement, or a row event in the relay log executed by |
1816 | the slave SQL thread. |
1817 | */ |
1818 | inline void set_stmt_row_injection() { |
1819 | DBUG_ENTER("set_stmt_row_injection" ); |
1820 | binlog_stmt_flags|= |
1821 | (1U << (BINLOG_STMT_UNSAFE_COUNT + BINLOG_STMT_TYPE_ROW_INJECTION)); |
1822 | DBUG_VOID_RETURN; |
1823 | } |
1824 | |
1825 | enum enum_stmt_accessed_table |
1826 | { |
1827 | /* |
1828 | If a transactional table is about to be read. Note that |
1829 | a write implies a read. |
1830 | */ |
1831 | STMT_READS_TRANS_TABLE= 0, |
1832 | /* |
1833 | If a non-transactional table is about to be read. Note that |
1834 | a write implies a read. |
1835 | */ |
1836 | STMT_READS_NON_TRANS_TABLE, |
1837 | /* |
1838 | If a temporary transactional table is about to be read. Note |
1839 | that a write implies a read. |
1840 | */ |
1841 | STMT_READS_TEMP_TRANS_TABLE, |
1842 | /* |
1843 | If a temporary non-transactional table is about to be read. Note |
1844 | that a write implies a read. |
1845 | */ |
1846 | STMT_READS_TEMP_NON_TRANS_TABLE, |
1847 | /* |
1848 | If a transactional table is about to be updated. |
1849 | */ |
1850 | STMT_WRITES_TRANS_TABLE, |
1851 | /* |
1852 | If a non-transactional table is about to be updated. |
1853 | */ |
1854 | STMT_WRITES_NON_TRANS_TABLE, |
1855 | /* |
1856 | If a temporary transactional table is about to be updated. |
1857 | */ |
1858 | STMT_WRITES_TEMP_TRANS_TABLE, |
1859 | /* |
1860 | If a temporary non-transactional table is about to be updated. |
1861 | */ |
1862 | STMT_WRITES_TEMP_NON_TRANS_TABLE, |
1863 | /* |
1864 | The last element of the enumeration. Please, if necessary add |
1865 | anything before this. |
1866 | */ |
1867 | STMT_ACCESS_TABLE_COUNT |
1868 | }; |
1869 | |
1870 | #ifndef DBUG_OFF |
1871 | static inline const char *stmt_accessed_table_string(enum_stmt_accessed_table accessed_table) |
1872 | { |
1873 | switch (accessed_table) |
1874 | { |
1875 | case STMT_READS_TRANS_TABLE: |
1876 | return "STMT_READS_TRANS_TABLE" ; |
1877 | break; |
1878 | case STMT_READS_NON_TRANS_TABLE: |
1879 | return "STMT_READS_NON_TRANS_TABLE" ; |
1880 | break; |
1881 | case STMT_READS_TEMP_TRANS_TABLE: |
1882 | return "STMT_READS_TEMP_TRANS_TABLE" ; |
1883 | break; |
1884 | case STMT_READS_TEMP_NON_TRANS_TABLE: |
1885 | return "STMT_READS_TEMP_NON_TRANS_TABLE" ; |
1886 | break; |
1887 | case STMT_WRITES_TRANS_TABLE: |
1888 | return "STMT_WRITES_TRANS_TABLE" ; |
1889 | break; |
1890 | case STMT_WRITES_NON_TRANS_TABLE: |
1891 | return "STMT_WRITES_NON_TRANS_TABLE" ; |
1892 | break; |
1893 | case STMT_WRITES_TEMP_TRANS_TABLE: |
1894 | return "STMT_WRITES_TEMP_TRANS_TABLE" ; |
1895 | break; |
1896 | case STMT_WRITES_TEMP_NON_TRANS_TABLE: |
1897 | return "STMT_WRITES_TEMP_NON_TRANS_TABLE" ; |
1898 | break; |
1899 | case STMT_ACCESS_TABLE_COUNT: |
1900 | default: |
1901 | DBUG_ASSERT(0); |
1902 | break; |
1903 | } |
1904 | MY_ASSERT_UNREACHABLE(); |
1905 | return "" ; |
1906 | } |
1907 | #endif /* DBUG */ |
1908 | |
1909 | #define BINLOG_DIRECT_ON 0xF0 /* unsafe when |
1910 | --binlog-direct-non-trans-updates |
1911 | is ON */ |
1912 | |
1913 | #define BINLOG_DIRECT_OFF 0xF /* unsafe when |
1914 | --binlog-direct-non-trans-updates |
1915 | is OFF */ |
1916 | |
1917 | #define TRX_CACHE_EMPTY 0x33 /* unsafe when trx-cache is empty */ |
1918 | |
1919 | #define TRX_CACHE_NOT_EMPTY 0xCC /* unsafe when trx-cache is not empty */ |
1920 | |
1921 | #define IL_LT_REPEATABLE 0xAA /* unsafe when < ISO_REPEATABLE_READ */ |
1922 | |
1923 | #define IL_GTE_REPEATABLE 0x55 /* unsafe when >= ISO_REPEATABLE_READ */ |
1924 | |
1925 | /** |
1926 | Sets the type of table that is about to be accessed while executing a |
1927 | statement. |
1928 | |
1929 | @param accessed_table Enumeration type that defines the type of table, |
1930 | e.g. temporary, transactional, non-transactional. |
1931 | */ |
1932 | inline void set_stmt_accessed_table(enum_stmt_accessed_table accessed_table) |
1933 | { |
1934 | DBUG_ENTER("LEX::set_stmt_accessed_table" ); |
1935 | |
1936 | DBUG_ASSERT(accessed_table >= 0 && accessed_table < STMT_ACCESS_TABLE_COUNT); |
1937 | stmt_accessed_table_flag |= (1U << accessed_table); |
1938 | |
1939 | DBUG_VOID_RETURN; |
1940 | } |
1941 | |
1942 | /** |
1943 | Checks if a type of table is about to be accessed while executing a |
1944 | statement. |
1945 | |
1946 | @param accessed_table Enumeration type that defines the type of table, |
1947 | e.g. temporary, transactional, non-transactional. |
1948 | |
1949 | @return |
1950 | @retval TRUE if the type of the table is about to be accessed |
1951 | @retval FALSE otherwise |
1952 | */ |
1953 | inline bool stmt_accessed_table(enum_stmt_accessed_table accessed_table) |
1954 | { |
1955 | DBUG_ENTER("LEX::stmt_accessed_table" ); |
1956 | |
1957 | DBUG_ASSERT(accessed_table >= 0 && accessed_table < STMT_ACCESS_TABLE_COUNT); |
1958 | |
1959 | DBUG_RETURN((stmt_accessed_table_flag & (1U << accessed_table)) != 0); |
1960 | } |
1961 | |
1962 | /** |
1963 | Checks if a temporary non-transactional table is about to be accessed |
1964 | while executing a statement. |
1965 | |
1966 | @return |
1967 | @retval TRUE if a temporary non-transactional table is about to be |
1968 | accessed |
1969 | @retval FALSE otherwise |
1970 | */ |
1971 | inline bool stmt_accessed_non_trans_temp_table() |
1972 | { |
1973 | DBUG_ENTER("THD::stmt_accessed_non_trans_temp_table" ); |
1974 | |
1975 | DBUG_RETURN((stmt_accessed_table_flag & |
1976 | ((1U << STMT_READS_TEMP_NON_TRANS_TABLE) | |
1977 | (1U << STMT_WRITES_TEMP_NON_TRANS_TABLE))) != 0); |
1978 | } |
1979 | |
1980 | /* |
1981 | Checks if a mixed statement is unsafe. |
1982 | |
1983 | |
1984 | @param in_multi_stmt_transaction_mode defines if there is an on-going |
1985 | multi-transactional statement. |
1986 | @param binlog_direct defines if --binlog-direct-non-trans-updates is |
1987 | active. |
1988 | @param trx_cache_is_not_empty defines if the trx-cache is empty or not. |
1989 | @param trx_isolation defines the isolation level. |
1990 | |
1991 | @return |
1992 | @retval TRUE if the mixed statement is unsafe |
1993 | @retval FALSE otherwise |
1994 | */ |
1995 | inline bool is_mixed_stmt_unsafe(bool in_multi_stmt_transaction_mode, |
1996 | bool binlog_direct, |
1997 | bool trx_cache_is_not_empty, |
1998 | uint tx_isolation) |
1999 | { |
2000 | bool unsafe= FALSE; |
2001 | |
2002 | if (in_multi_stmt_transaction_mode) |
2003 | { |
2004 | uint condition= |
2005 | (binlog_direct ? BINLOG_DIRECT_ON : BINLOG_DIRECT_OFF) & |
2006 | (trx_cache_is_not_empty ? TRX_CACHE_NOT_EMPTY : TRX_CACHE_EMPTY) & |
2007 | (tx_isolation >= ISO_REPEATABLE_READ ? IL_GTE_REPEATABLE : IL_LT_REPEATABLE); |
2008 | |
2009 | unsafe= (binlog_unsafe_map[stmt_accessed_table_flag] & condition); |
2010 | |
2011 | #if !defined(DBUG_OFF) |
2012 | DBUG_PRINT("LEX::is_mixed_stmt_unsafe" , ("RESULT %02X %02X %02X\n" , condition, |
2013 | binlog_unsafe_map[stmt_accessed_table_flag], |
2014 | (binlog_unsafe_map[stmt_accessed_table_flag] & condition))); |
2015 | |
2016 | int type_in= 0; |
2017 | for (; type_in < STMT_ACCESS_TABLE_COUNT; type_in++) |
2018 | { |
2019 | if (stmt_accessed_table((enum_stmt_accessed_table) type_in)) |
2020 | DBUG_PRINT("LEX::is_mixed_stmt_unsafe" , ("ACCESSED %s " , |
2021 | stmt_accessed_table_string((enum_stmt_accessed_table) type_in))); |
2022 | } |
2023 | #endif |
2024 | } |
2025 | |
2026 | if (stmt_accessed_table(STMT_WRITES_NON_TRANS_TABLE) && |
2027 | stmt_accessed_table(STMT_READS_TRANS_TABLE) && |
2028 | tx_isolation < ISO_REPEATABLE_READ) |
2029 | unsafe= TRUE; |
2030 | else if (stmt_accessed_table(STMT_WRITES_TEMP_NON_TRANS_TABLE) && |
2031 | stmt_accessed_table(STMT_READS_TRANS_TABLE) && |
2032 | tx_isolation < ISO_REPEATABLE_READ) |
2033 | unsafe= TRUE; |
2034 | |
2035 | return(unsafe); |
2036 | } |
2037 | |
2038 | /** |
2039 | true if the parsed tree contains references to stored procedures |
2040 | or functions, false otherwise |
2041 | */ |
2042 | bool uses_stored_routines() const |
2043 | { return sroutines_list.elements != 0; } |
2044 | |
2045 | private: |
2046 | |
2047 | /** |
2048 | Enumeration listing special types of statements. |
2049 | |
2050 | Currently, the only possible type is ROW_INJECTION. |
2051 | */ |
2052 | enum enum_binlog_stmt_type { |
2053 | /** |
2054 | The statement is a row injection (i.e., either a BINLOG |
2055 | statement or a row event executed by the slave SQL thread). |
2056 | */ |
2057 | BINLOG_STMT_TYPE_ROW_INJECTION = 0, |
2058 | |
2059 | /** The last element of this enumeration type. */ |
2060 | BINLOG_STMT_TYPE_COUNT |
2061 | }; |
2062 | |
2063 | /** |
2064 | Bit field indicating the type of statement. |
2065 | |
2066 | There are two groups of bits: |
2067 | |
2068 | - The low BINLOG_STMT_UNSAFE_COUNT bits indicate the types of |
2069 | unsafeness that the current statement has. |
2070 | |
2071 | - The next BINLOG_STMT_TYPE_COUNT bits indicate if the statement |
2072 | is of some special type. |
2073 | |
2074 | This must be a member of LEX, not of THD: each stored procedure |
2075 | needs to remember its unsafeness state between calls and each |
2076 | stored procedure has its own LEX object (but no own THD object). |
2077 | */ |
2078 | uint32 binlog_stmt_flags; |
2079 | |
2080 | /** |
2081 | Bit field that determines the type of tables that are about to be |
2082 | be accessed while executing a statement. |
2083 | */ |
2084 | uint32 stmt_accessed_table_flag; |
2085 | }; |
2086 | |
2087 | |
2088 | /* |
2089 | st_parsing_options contains the flags for constructions that are |
2090 | allowed in the current statement. |
2091 | */ |
2092 | |
2093 | struct st_parsing_options |
2094 | { |
2095 | bool allows_variable; |
2096 | |
2097 | st_parsing_options() { reset(); } |
2098 | void reset(); |
2099 | }; |
2100 | |
2101 | |
2102 | /** |
2103 | The state of the lexical parser, when parsing comments. |
2104 | */ |
2105 | enum |
2106 | { |
2107 | /** |
2108 | Not parsing comments. |
2109 | */ |
2110 | , |
2111 | /** |
2112 | Parsing comments that need to be preserved. |
2113 | Typically, these are user comments '/' '*' ... '*' '/'. |
2114 | */ |
2115 | , |
2116 | /** |
2117 | Parsing comments that need to be discarded. |
2118 | Typically, these are special comments '/' '*' '!' ... '*' '/', |
2119 | or '/' '*' '!' 'M' 'M' 'm' 'm' 'm' ... '*' '/', where the comment |
2120 | markers should not be expanded. |
2121 | */ |
2122 | |
2123 | }; |
2124 | |
2125 | |
2126 | /** |
2127 | @brief This class represents the character input stream consumed during |
2128 | lexical analysis. |
2129 | |
2130 | In addition to consuming the input stream, this class performs some |
2131 | comment pre processing, by filtering out out of bound special text |
2132 | from the query input stream. |
2133 | Two buffers, with pointers inside each buffers, are maintained in |
2134 | parallel. The 'raw' buffer is the original query text, which may |
2135 | contain out-of-bound comments. The 'cpp' (for comments pre processor) |
2136 | is the pre-processed buffer that contains only the query text that |
2137 | should be seen once out-of-bound data is removed. |
2138 | */ |
2139 | |
2140 | class Lex_input_stream |
2141 | { |
2142 | size_t unescape(CHARSET_INFO *cs, char *to, |
2143 | const char *str, const char *end, int sep); |
2144 | my_charset_conv_wc_mb get_escape_func(THD *thd, my_wc_t sep) const; |
2145 | public: |
2146 | Lex_input_stream() |
2147 | { |
2148 | } |
2149 | |
2150 | ~Lex_input_stream() |
2151 | { |
2152 | } |
2153 | |
2154 | /** |
2155 | Object initializer. Must be called before usage. |
2156 | |
2157 | @retval FALSE OK |
2158 | @retval TRUE Error |
2159 | */ |
2160 | bool init(THD *thd, char *buff, size_t length); |
2161 | |
2162 | void reset(char *buff, size_t length); |
2163 | |
2164 | /** |
2165 | The main method to scan the next token, with token contraction processing |
2166 | for LALR(2) resolution, e.g. translate "WITH" followed by "ROLLUP" |
2167 | to a single token WITH_ROLLUP_SYM. |
2168 | */ |
2169 | int lex_token(union YYSTYPE *yylval, THD *thd); |
2170 | |
2171 | void reduce_digest_token(uint token_left, uint token_right); |
2172 | |
2173 | private: |
2174 | /** |
2175 | Set the echo mode. |
2176 | |
2177 | When echo is true, characters parsed from the raw input stream are |
2178 | preserved. When false, characters parsed are silently ignored. |
2179 | @param echo the echo mode. |
2180 | */ |
2181 | void set_echo(bool echo) |
2182 | { |
2183 | m_echo= echo; |
2184 | } |
2185 | |
2186 | void () |
2187 | { |
2188 | m_echo_saved= m_echo; |
2189 | in_comment_saved= in_comment; |
2190 | } |
2191 | |
2192 | void () |
2193 | { |
2194 | m_echo= m_echo_saved; |
2195 | in_comment= in_comment_saved; |
2196 | } |
2197 | |
2198 | /** |
2199 | Skip binary from the input stream. |
2200 | @param n number of bytes to accept. |
2201 | */ |
2202 | void skip_binary(int n) |
2203 | { |
2204 | if (m_echo) |
2205 | { |
2206 | memcpy(m_cpp_ptr, m_ptr, n); |
2207 | m_cpp_ptr += n; |
2208 | } |
2209 | m_ptr += n; |
2210 | } |
2211 | |
2212 | /** |
2213 | Get a character, and advance in the stream. |
2214 | @return the next character to parse. |
2215 | */ |
2216 | unsigned char yyGet() |
2217 | { |
2218 | char c= *m_ptr++; |
2219 | if (m_echo) |
2220 | *m_cpp_ptr++ = c; |
2221 | return c; |
2222 | } |
2223 | |
2224 | /** |
2225 | Get the last character accepted. |
2226 | @return the last character accepted. |
2227 | */ |
2228 | unsigned char yyGetLast() |
2229 | { |
2230 | return m_ptr[-1]; |
2231 | } |
2232 | |
2233 | /** |
2234 | Look at the next character to parse, but do not accept it. |
2235 | */ |
2236 | unsigned char yyPeek() |
2237 | { |
2238 | return m_ptr[0]; |
2239 | } |
2240 | |
2241 | /** |
2242 | Look ahead at some character to parse. |
2243 | @param n offset of the character to look up |
2244 | */ |
2245 | unsigned char yyPeekn(int n) |
2246 | { |
2247 | return m_ptr[n]; |
2248 | } |
2249 | |
2250 | /** |
2251 | Cancel the effect of the last yyGet() or yySkip(). |
2252 | Note that the echo mode should not change between calls to yyGet / yySkip |
2253 | and yyUnget. The caller is responsible for ensuring that. |
2254 | */ |
2255 | void yyUnget() |
2256 | { |
2257 | m_ptr--; |
2258 | if (m_echo) |
2259 | m_cpp_ptr--; |
2260 | } |
2261 | |
2262 | /** |
2263 | Accept a character, by advancing the input stream. |
2264 | */ |
2265 | void yySkip() |
2266 | { |
2267 | if (m_echo) |
2268 | *m_cpp_ptr++ = *m_ptr++; |
2269 | else |
2270 | m_ptr++; |
2271 | } |
2272 | |
2273 | /** |
2274 | Accept multiple characters at once. |
2275 | @param n the number of characters to accept. |
2276 | */ |
2277 | void yySkipn(int n) |
2278 | { |
2279 | if (m_echo) |
2280 | { |
2281 | memcpy(m_cpp_ptr, m_ptr, n); |
2282 | m_cpp_ptr += n; |
2283 | } |
2284 | m_ptr += n; |
2285 | } |
2286 | |
2287 | /** |
2288 | Puts a character back into the stream, canceling |
2289 | the effect of the last yyGet() or yySkip(). |
2290 | Note that the echo mode should not change between calls |
2291 | to unput, get, or skip from the stream. |
2292 | */ |
2293 | char *yyUnput(char ch) |
2294 | { |
2295 | *--m_ptr= ch; |
2296 | if (m_echo) |
2297 | m_cpp_ptr--; |
2298 | return m_ptr; |
2299 | } |
2300 | |
2301 | /** |
2302 | End of file indicator for the query text to parse. |
2303 | @param n number of characters expected |
2304 | @return true if there are less than n characters to parse |
2305 | */ |
2306 | bool eof(int n) |
2307 | { |
2308 | return ((m_ptr + n) >= m_end_of_query); |
2309 | } |
2310 | |
2311 | /** Mark the stream position as the start of a new token. */ |
2312 | void start_token() |
2313 | { |
2314 | m_tok_start_prev= m_tok_start; |
2315 | m_tok_start= m_ptr; |
2316 | m_tok_end= m_ptr; |
2317 | |
2318 | m_cpp_tok_start_prev= m_cpp_tok_start; |
2319 | m_cpp_tok_start= m_cpp_ptr; |
2320 | m_cpp_tok_end= m_cpp_ptr; |
2321 | } |
2322 | |
2323 | /** |
2324 | Adjust the starting position of the current token. |
2325 | This is used to compensate for starting whitespace. |
2326 | */ |
2327 | void restart_token() |
2328 | { |
2329 | m_tok_start= m_ptr; |
2330 | m_cpp_tok_start= m_cpp_ptr; |
2331 | } |
2332 | |
2333 | /** |
2334 | Get the maximum length of the utf8-body buffer. |
2335 | The utf8 body can grow because of the character set conversion and escaping. |
2336 | */ |
2337 | size_t get_body_utf8_maximum_length(THD *thd); |
2338 | |
2339 | /** Get the length of the current token, in the raw buffer. */ |
2340 | uint yyLength() |
2341 | { |
2342 | /* |
2343 | The assumption is that the lexical analyser is always 1 character ahead, |
2344 | which the -1 account for. |
2345 | */ |
2346 | DBUG_ASSERT(m_ptr > m_tok_start); |
2347 | return (uint) ((m_ptr - m_tok_start) - 1); |
2348 | } |
2349 | |
2350 | /** |
2351 | Test if a lookahead token was already scanned by lex_token(), |
2352 | for LALR(2) resolution. |
2353 | */ |
2354 | bool has_lookahead() const |
2355 | { |
2356 | return lookahead_token >= 0; |
2357 | } |
2358 | |
2359 | public: |
2360 | |
2361 | /** |
2362 | End of file indicator for the query text to parse. |
2363 | @return true if there are no more characters to parse |
2364 | */ |
2365 | bool eof() |
2366 | { |
2367 | return (m_ptr >= m_end_of_query); |
2368 | } |
2369 | |
2370 | /** Get the raw query buffer. */ |
2371 | const char *get_buf() |
2372 | { |
2373 | return m_buf; |
2374 | } |
2375 | |
2376 | /** Get the pre-processed query buffer. */ |
2377 | const char *get_cpp_buf() |
2378 | { |
2379 | return m_cpp_buf; |
2380 | } |
2381 | |
2382 | /** Get the end of the raw query buffer. */ |
2383 | const char *get_end_of_query() |
2384 | { |
2385 | return m_end_of_query; |
2386 | } |
2387 | |
2388 | /** Get the token start position, in the raw buffer. */ |
2389 | const char *get_tok_start() |
2390 | { |
2391 | return has_lookahead() ? m_tok_start_prev : m_tok_start; |
2392 | } |
2393 | |
2394 | void set_cpp_tok_start(const char *pos) |
2395 | { |
2396 | m_cpp_tok_start= pos; |
2397 | } |
2398 | |
2399 | /** Get the token end position, in the raw buffer. */ |
2400 | const char *get_tok_end() |
2401 | { |
2402 | return m_tok_end; |
2403 | } |
2404 | |
2405 | /** Get the current stream pointer, in the raw buffer. */ |
2406 | const char *get_ptr() |
2407 | { |
2408 | return m_ptr; |
2409 | } |
2410 | |
2411 | /** Get the token start position, in the pre-processed buffer. */ |
2412 | const char *get_cpp_tok_start() |
2413 | { |
2414 | return has_lookahead() ? m_cpp_tok_start_prev : m_cpp_tok_start; |
2415 | } |
2416 | |
2417 | /** Get the token end position, in the pre-processed buffer. */ |
2418 | const char *get_cpp_tok_end() |
2419 | { |
2420 | return m_cpp_tok_end; |
2421 | } |
2422 | |
2423 | /** |
2424 | Get the token end position in the pre-processed buffer, |
2425 | with trailing spaces removed. |
2426 | */ |
2427 | const char *get_cpp_tok_end_rtrim() |
2428 | { |
2429 | const char *p; |
2430 | for (p= m_cpp_tok_end; |
2431 | p > m_cpp_buf && my_isspace(system_charset_info, p[-1]); |
2432 | p--) |
2433 | { } |
2434 | return p; |
2435 | } |
2436 | |
2437 | /** Get the current stream pointer, in the pre-processed buffer. */ |
2438 | const char *get_cpp_ptr() |
2439 | { |
2440 | return m_cpp_ptr; |
2441 | } |
2442 | |
2443 | /** |
2444 | Get the current stream pointer, in the pre-processed buffer, |
2445 | with traling spaces removed. |
2446 | */ |
2447 | const char *get_cpp_ptr_rtrim() |
2448 | { |
2449 | const char *p; |
2450 | for (p= m_cpp_ptr; |
2451 | p > m_cpp_buf && my_isspace(system_charset_info, p[-1]); |
2452 | p--) |
2453 | { } |
2454 | return p; |
2455 | } |
2456 | /** Get the utf8-body string. */ |
2457 | const char *get_body_utf8_str() |
2458 | { |
2459 | return m_body_utf8; |
2460 | } |
2461 | |
2462 | /** Get the utf8-body length. */ |
2463 | size_t get_body_utf8_length() |
2464 | { |
2465 | return (size_t) (m_body_utf8_ptr - m_body_utf8); |
2466 | } |
2467 | |
2468 | void body_utf8_start(THD *thd, const char *begin_ptr); |
2469 | void body_utf8_append(const char *ptr); |
2470 | void body_utf8_append(const char *ptr, const char *end_ptr); |
2471 | void body_utf8_append_ident(THD *thd, |
2472 | const Lex_string_with_metadata_st *txt, |
2473 | const char *end_ptr); |
2474 | void body_utf8_append_escape(THD *thd, |
2475 | const LEX_CSTRING *txt, |
2476 | CHARSET_INFO *txt_cs, |
2477 | const char *end_ptr, |
2478 | my_wc_t sep); |
2479 | |
2480 | private: |
2481 | /** |
2482 | LALR(2) resolution, look ahead token. |
2483 | Value of the next token to return, if any, |
2484 | or -1, if no token was parsed in advance. |
2485 | Note: 0 is a legal token, and represents YYEOF. |
2486 | */ |
2487 | int lookahead_token; |
2488 | |
2489 | /** LALR(2) resolution, value of the look ahead token.*/ |
2490 | LEX_YYSTYPE lookahead_yylval; |
2491 | |
2492 | bool get_text(Lex_string_with_metadata_st *to, |
2493 | uint sep, int pre_skip, int post_skip); |
2494 | |
2495 | void add_digest_token(uint token, LEX_YYSTYPE yylval); |
2496 | |
2497 | bool (int remaining_recursions_permitted); |
2498 | int lex_one_token(union YYSTYPE *yylval, THD *thd); |
2499 | int find_keyword(Lex_ident_cli_st *str, uint len, bool function); |
2500 | LEX_CSTRING get_token(uint skip, uint length); |
2501 | int scan_ident_sysvar(THD *thd, Lex_ident_cli_st *str); |
2502 | int scan_ident_start(THD *thd, Lex_ident_cli_st *str); |
2503 | int scan_ident_middle(THD *thd, Lex_ident_cli_st *str, |
2504 | CHARSET_INFO **cs, my_lex_states *); |
2505 | int scan_ident_delimited(THD *thd, Lex_ident_cli_st *str); |
2506 | bool get_7bit_or_8bit_ident(THD *thd, uchar *last_char); |
2507 | |
2508 | /** Current thread. */ |
2509 | THD *m_thd; |
2510 | |
2511 | /** Pointer to the current position in the raw input stream. */ |
2512 | char *m_ptr; |
2513 | |
2514 | /** Starting position of the last token parsed, in the raw buffer. */ |
2515 | const char *m_tok_start; |
2516 | |
2517 | /** Ending position of the previous token parsed, in the raw buffer. */ |
2518 | const char *m_tok_end; |
2519 | |
2520 | /** End of the query text in the input stream, in the raw buffer. */ |
2521 | const char *m_end_of_query; |
2522 | |
2523 | /** Starting position of the previous token parsed, in the raw buffer. */ |
2524 | const char *m_tok_start_prev; |
2525 | |
2526 | /** Begining of the query text in the input stream, in the raw buffer. */ |
2527 | const char *m_buf; |
2528 | |
2529 | /** Length of the raw buffer. */ |
2530 | size_t m_buf_length; |
2531 | |
2532 | /** Echo the parsed stream to the pre-processed buffer. */ |
2533 | bool m_echo; |
2534 | bool m_echo_saved; |
2535 | |
2536 | /** Pre-processed buffer. */ |
2537 | char *m_cpp_buf; |
2538 | |
2539 | /** Pointer to the current position in the pre-processed input stream. */ |
2540 | char *m_cpp_ptr; |
2541 | |
2542 | /** |
2543 | Starting position of the last token parsed, |
2544 | in the pre-processed buffer. |
2545 | */ |
2546 | const char *m_cpp_tok_start; |
2547 | |
2548 | /** |
2549 | Starting position of the previous token parsed, |
2550 | in the pre-procedded buffer. |
2551 | */ |
2552 | const char *m_cpp_tok_start_prev; |
2553 | |
2554 | /** |
2555 | Ending position of the previous token parsed, |
2556 | in the pre-processed buffer. |
2557 | */ |
2558 | const char *m_cpp_tok_end; |
2559 | |
2560 | /** UTF8-body buffer created during parsing. */ |
2561 | char *m_body_utf8; |
2562 | |
2563 | /** Pointer to the current position in the UTF8-body buffer. */ |
2564 | char *m_body_utf8_ptr; |
2565 | |
2566 | /** |
2567 | Position in the pre-processed buffer. The query from m_cpp_buf to |
2568 | m_cpp_utf_processed_ptr is converted to UTF8-body. |
2569 | */ |
2570 | const char *m_cpp_utf8_processed_ptr; |
2571 | |
2572 | public: |
2573 | |
2574 | /** Current state of the lexical analyser. */ |
2575 | enum my_lex_states next_state; |
2576 | |
2577 | /** |
2578 | Position of ';' in the stream, to delimit multiple queries. |
2579 | This delimiter is in the raw buffer. |
2580 | */ |
2581 | const char *found_semicolon; |
2582 | |
2583 | /** SQL_MODE = IGNORE_SPACE. */ |
2584 | bool ignore_space; |
2585 | |
2586 | /** |
2587 | TRUE if we're parsing a prepared statement: in this mode |
2588 | we should allow placeholders. |
2589 | */ |
2590 | bool stmt_prepare_mode; |
2591 | /** |
2592 | TRUE if we should allow multi-statements. |
2593 | */ |
2594 | bool multi_statements; |
2595 | |
2596 | /** Current line number. */ |
2597 | uint yylineno; |
2598 | |
2599 | /** |
2600 | Current statement digest instrumentation. |
2601 | */ |
2602 | sql_digest_state* m_digest; |
2603 | |
2604 | private: |
2605 | /** State of the lexical analyser for comments. */ |
2606 | enum_comment_state ; |
2607 | enum_comment_state ; |
2608 | |
2609 | /** |
2610 | Starting position of the TEXT_STRING or IDENT in the pre-processed |
2611 | buffer. |
2612 | |
2613 | NOTE: this member must be used within MYSQLlex() function only. |
2614 | */ |
2615 | const char *m_cpp_text_start; |
2616 | |
2617 | /** |
2618 | Ending position of the TEXT_STRING or IDENT in the pre-processed |
2619 | buffer. |
2620 | |
2621 | NOTE: this member must be used within MYSQLlex() function only. |
2622 | */ |
2623 | const char *m_cpp_text_end; |
2624 | |
2625 | /** |
2626 | Character set specified by the character-set-introducer. |
2627 | |
2628 | NOTE: this member must be used within MYSQLlex() function only. |
2629 | */ |
2630 | CHARSET_INFO *m_underscore_cs; |
2631 | }; |
2632 | |
2633 | |
2634 | /** |
2635 | Abstract representation of a statement. |
2636 | This class is an interface between the parser and the runtime. |
2637 | The parser builds the appropriate sub classes of Sql_statement |
2638 | to represent a SQL statement in the parsed tree. |
2639 | The execute() method in the sub classes contain the runtime implementation. |
2640 | Note that this interface is used for SQL statement recently implemented, |
2641 | the code for older statements tend to load the LEX structure with more |
2642 | attributes instead. |
2643 | The recommended way to implement new statements is to sub-class |
2644 | Sql_statement, as this improves code modularity (see the 'big switch' in |
2645 | dispatch_command()), and decrease the total size of the LEX structure |
2646 | (therefore saving memory in stored programs). |
2647 | */ |
2648 | class Sql_statement : public Sql_alloc |
2649 | { |
2650 | public: |
2651 | /** |
2652 | Execute this SQL statement. |
2653 | @param thd the current thread. |
2654 | @return 0 on success. |
2655 | */ |
2656 | virtual bool execute(THD *thd) = 0; |
2657 | |
2658 | protected: |
2659 | /** |
2660 | Constructor. |
2661 | @param lex the LEX structure that represents parts of this statement. |
2662 | */ |
2663 | Sql_statement(LEX *lex) |
2664 | : m_lex(lex) |
2665 | {} |
2666 | |
2667 | /** Destructor. */ |
2668 | virtual ~Sql_statement() |
2669 | { |
2670 | /* |
2671 | Sql_statement objects are allocated in thd->mem_root. |
2672 | In MySQL, the C++ destructor is never called, the underlying MEM_ROOT is |
2673 | simply destroyed instead. |
2674 | Do not rely on the destructor for any cleanup. |
2675 | */ |
2676 | DBUG_ASSERT(FALSE); |
2677 | } |
2678 | |
2679 | protected: |
2680 | /** |
2681 | The legacy LEX structure for this statement. |
2682 | The LEX structure contains the existing properties of the parsed tree. |
2683 | TODO: with time, attributes from LEX should move to sub classes of |
2684 | Sql_statement, so that the parser only builds Sql_statement objects |
2685 | with the minimum set of attributes, instead of a LEX structure that |
2686 | contains the collection of every possible attribute. |
2687 | */ |
2688 | LEX *m_lex; |
2689 | }; |
2690 | |
2691 | |
2692 | class Delete_plan; |
2693 | class SQL_SELECT; |
2694 | |
2695 | class Explain_query; |
2696 | class Explain_update; |
2697 | class Explain_delete; |
2698 | |
2699 | /* |
2700 | Query plan of a single-table UPDATE. |
2701 | (This is actually a plan for single-table DELETE also) |
2702 | */ |
2703 | |
2704 | class Update_plan |
2705 | { |
2706 | protected: |
2707 | bool impossible_where; |
2708 | bool no_partitions; |
2709 | public: |
2710 | /* |
2711 | When single-table UPDATE updates a VIEW, that VIEW's select is still |
2712 | listed as the first child. When we print EXPLAIN, it looks like a |
2713 | subquery. |
2714 | In order to get rid of it, updating_a_view=TRUE means that first child |
2715 | select should not be shown when printing EXPLAIN. |
2716 | */ |
2717 | bool updating_a_view; |
2718 | |
2719 | /* Allocate things there */ |
2720 | MEM_ROOT *mem_root; |
2721 | |
2722 | TABLE *table; |
2723 | SQL_SELECT *select; |
2724 | uint index; |
2725 | ha_rows scanned_rows; |
2726 | /* |
2727 | Top-level select_lex. Most of its fields are not used, we need it only to |
2728 | get to the subqueries. |
2729 | */ |
2730 | SELECT_LEX *select_lex; |
2731 | |
2732 | key_map possible_keys; |
2733 | bool using_filesort; |
2734 | bool using_io_buffer; |
2735 | |
2736 | /* Set this plan to be a plan to do nothing because of impossible WHERE */ |
2737 | void set_impossible_where() { impossible_where= true; } |
2738 | void set_no_partitions() { no_partitions= true; } |
2739 | |
2740 | Explain_update* save_explain_update_data(MEM_ROOT *mem_root, THD *thd); |
2741 | protected: |
2742 | bool save_explain_data_intern(MEM_ROOT *mem_root, Explain_update *eu, bool is_analyze); |
2743 | public: |
2744 | virtual ~Update_plan() {} |
2745 | |
2746 | Update_plan(MEM_ROOT *mem_root_arg) : |
2747 | impossible_where(false), no_partitions(false), |
2748 | mem_root(mem_root_arg), |
2749 | using_filesort(false), using_io_buffer(false) |
2750 | {} |
2751 | }; |
2752 | |
2753 | |
2754 | /* Query plan of a single-table DELETE */ |
2755 | class Delete_plan : public Update_plan |
2756 | { |
2757 | bool deleting_all_rows; |
2758 | public: |
2759 | |
2760 | /* Construction functions */ |
2761 | Delete_plan(MEM_ROOT *mem_root_arg) : |
2762 | Update_plan(mem_root_arg), |
2763 | deleting_all_rows(false) |
2764 | {} |
2765 | |
2766 | /* Set this query plan to be a plan to make a call to h->delete_all_rows() */ |
2767 | void set_delete_all_rows(ha_rows rows_arg) |
2768 | { |
2769 | deleting_all_rows= true; |
2770 | scanned_rows= rows_arg; |
2771 | } |
2772 | void cancel_delete_all_rows() |
2773 | { |
2774 | deleting_all_rows= false; |
2775 | } |
2776 | |
2777 | Explain_delete* save_explain_delete_data(MEM_ROOT *mem_root, THD *thd); |
2778 | }; |
2779 | |
2780 | |
2781 | class Query_arena_memroot; |
2782 | /* The state of the lex parsing. This is saved in the THD struct */ |
2783 | |
2784 | struct LEX: public Query_tables_list |
2785 | { |
2786 | SELECT_LEX_UNIT unit; /* most upper unit */ |
2787 | SELECT_LEX select_lex; /* first SELECT_LEX */ |
2788 | /* current SELECT_LEX in parsing */ |
2789 | SELECT_LEX *current_select; |
2790 | /* list of all SELECT_LEX */ |
2791 | SELECT_LEX *all_selects_list; |
2792 | /* current with clause in parsing if any, otherwise 0*/ |
2793 | With_clause *curr_with_clause; |
2794 | /* pointer to the first with clause in the current statement */ |
2795 | With_clause *with_clauses_list; |
2796 | /* |
2797 | (*with_clauses_list_last_next) contains a pointer to the last |
2798 | with clause in the current statement |
2799 | */ |
2800 | With_clause **with_clauses_list_last_next; |
2801 | |
2802 | Create_view_info *create_view; |
2803 | |
2804 | /* Query Plan Footprint of a currently running select */ |
2805 | Explain_query *explain; |
2806 | |
2807 | // type information |
2808 | CHARSET_INFO *charset; |
2809 | /* |
2810 | LEX which represents current statement (conventional, SP or PS) |
2811 | |
2812 | For example during view parsing THD::lex will point to the views LEX and |
2813 | lex::stmt_lex will point to LEX of the statement where the view will be |
2814 | included |
2815 | |
2816 | Currently it is used to have always correct select numbering inside |
2817 | statement (LEX::current_select_number) without storing and restoring a |
2818 | global counter which was THD::select_number. |
2819 | |
2820 | TODO: make some unified statement representation (now SP has different) |
2821 | to store such data like LEX::current_select_number. |
2822 | */ |
2823 | LEX *stmt_lex; |
2824 | |
2825 | LEX_CSTRING name; |
2826 | const char *help_arg; |
2827 | const char *backup_dir; /* For RESTORE/BACKUP */ |
2828 | const char* to_log; /* For PURGE MASTER LOGS TO */ |
2829 | const char* x509_subject,*x509_issuer,*ssl_cipher; |
2830 | String *wild; /* Wildcard in SHOW {something} LIKE 'wild'*/ |
2831 | sql_exchange *exchange; |
2832 | select_result *result; |
2833 | LEX_CSTRING , ident; |
2834 | LEX_USER *grant_user; |
2835 | XID *xid; |
2836 | THD *thd; |
2837 | |
2838 | /* maintain a list of used plugins for this LEX */ |
2839 | DYNAMIC_ARRAY plugins; |
2840 | plugin_ref plugins_static_buffer[INITIAL_LEX_PLUGIN_LIST_SIZE]; |
2841 | |
2842 | /** SELECT of CREATE VIEW statement */ |
2843 | LEX_STRING create_view_select; |
2844 | |
2845 | uint current_select_number; // valid for statment LEX (not view) |
2846 | |
2847 | /** Start of 'ON table', in trigger statements. */ |
2848 | const char* raw_trg_on_table_name_begin; |
2849 | /** End of 'ON table', in trigger statements. */ |
2850 | const char* raw_trg_on_table_name_end; |
2851 | |
2852 | /* Partition info structure filled in by PARTITION BY parse part */ |
2853 | partition_info *part_info; |
2854 | |
2855 | /* |
2856 | The definer of the object being created (view, trigger, stored routine). |
2857 | I.e. the value of DEFINER clause. |
2858 | */ |
2859 | LEX_USER *definer; |
2860 | |
2861 | Table_type table_type; /* Used for SHOW CREATE */ |
2862 | List<Key_part_spec> ref_list; |
2863 | List<LEX_USER> users_list; |
2864 | List<LEX_COLUMN> columns; |
2865 | List<Item> *insert_list,field_list,value_list,update_list; |
2866 | List<List_item> many_values; |
2867 | List<set_var_base> var_list; |
2868 | List<set_var_base> stmt_var_list; //SET_STATEMENT values |
2869 | List<set_var_base> old_var_list; // SET STATEMENT old values |
2870 | private: |
2871 | Query_arena_memroot *arena_for_set_stmt; |
2872 | MEM_ROOT *mem_root_for_set_stmt; |
2873 | bool sp_block_finalize(THD *thd, const Lex_spblock_st spblock, |
2874 | class sp_label **splabel); |
2875 | bool sp_change_context(THD *thd, const sp_pcontext *ctx, bool exclusive); |
2876 | bool sp_exit_block(THD *thd, sp_label *lab); |
2877 | bool sp_exit_block(THD *thd, sp_label *lab, Item *when); |
2878 | |
2879 | bool sp_continue_loop(THD *thd, sp_label *lab); |
2880 | bool sp_continue_loop(THD *thd, sp_label *lab, Item *when); |
2881 | |
2882 | bool sp_for_loop_condition(THD *thd, const Lex_for_loop_st &loop); |
2883 | bool sp_for_loop_increment(THD *thd, const Lex_for_loop_st &loop); |
2884 | |
2885 | public: |
2886 | void parse_error(uint err_number= ER_SYNTAX_ERROR); |
2887 | inline bool is_arena_for_set_stmt() {return arena_for_set_stmt != 0;} |
2888 | bool set_arena_for_set_stmt(Query_arena *backup); |
2889 | void reset_arena_for_set_stmt(Query_arena *backup); |
2890 | void free_arena_for_set_stmt(); |
2891 | |
2892 | List<Item_func_set_user_var> set_var_list; // in-query assignment list |
2893 | List<Item_param> param_list; |
2894 | List<LEX_CSTRING> view_list; // view list (list of field names in view) |
2895 | List<LEX_CSTRING> with_column_list; // list of column names in with_list_element |
2896 | List<LEX_STRING> *column_list; // list of column names (in ANALYZE) |
2897 | List<LEX_STRING> *index_list; // list of index names (in ANALYZE) |
2898 | /* |
2899 | A stack of name resolution contexts for the query. This stack is used |
2900 | at parse time to set local name resolution contexts for various parts |
2901 | of a query. For example, in a JOIN ... ON (some_condition) clause the |
2902 | Items in 'some_condition' must be resolved only against the operands |
2903 | of the the join, and not against the whole clause. Similarly, Items in |
2904 | subqueries should be resolved against the subqueries (and outer queries). |
2905 | The stack is used in the following way: when the parser detects that |
2906 | all Items in some clause need a local context, it creates a new context |
2907 | and pushes it on the stack. All newly created Items always store the |
2908 | top-most context in the stack. Once the parser leaves the clause that |
2909 | required a local context, the parser pops the top-most context. |
2910 | */ |
2911 | List<Name_resolution_context> context_stack; |
2912 | |
2913 | SQL_I_List<ORDER> proc_list; |
2914 | SQL_I_List<TABLE_LIST> auxiliary_table_list, save_list; |
2915 | Column_definition *last_field; |
2916 | Item_sum *in_sum_func; |
2917 | udf_func udf; |
2918 | HA_CHECK_OPT check_opt; // check/repair options |
2919 | Table_specification_st create_info; |
2920 | Key *last_key; |
2921 | LEX_MASTER_INFO mi; // used by CHANGE MASTER |
2922 | LEX_SERVER_OPTIONS server_options; |
2923 | LEX_CSTRING relay_log_connection_name; |
2924 | USER_RESOURCES mqh; |
2925 | LEX_RESET_SLAVE reset_slave_info; |
2926 | ulonglong type; |
2927 | ulong next_binlog_file_number; |
2928 | /* The following is used by KILL */ |
2929 | killed_state kill_signal; |
2930 | killed_type kill_type; |
2931 | /* |
2932 | This variable is used in post-parse stage to declare that sum-functions, |
2933 | or functions which have sense only if GROUP BY is present, are allowed. |
2934 | For example in a query |
2935 | SELECT ... FROM ...WHERE MIN(i) == 1 GROUP BY ... HAVING MIN(i) > 2 |
2936 | MIN(i) in the WHERE clause is not allowed in the opposite to MIN(i) |
2937 | in the HAVING clause. Due to possible nesting of select construct |
2938 | the variable can contain 0 or 1 for each nest level. |
2939 | */ |
2940 | nesting_map allow_sum_func; |
2941 | |
2942 | Sql_cmd *m_sql_cmd; |
2943 | |
2944 | /* |
2945 | Usually `expr` rule of yacc is quite reused but some commands better |
2946 | not support subqueries which comes standard with this rule, like |
2947 | KILL, HA_READ, CREATE/ALTER EVENT etc. Set this to `false` to get |
2948 | syntax error back. |
2949 | */ |
2950 | bool expr_allows_subselect; |
2951 | /* |
2952 | A special command "PARSE_VCOL_EXPR" is defined for the parser |
2953 | to translate a defining expression of a virtual column into an |
2954 | Item object. |
2955 | The following flag is used to prevent other applications to use |
2956 | this command. |
2957 | */ |
2958 | bool parse_vcol_expr; |
2959 | |
2960 | enum SSL_type ssl_type; // defined in violite.h |
2961 | enum enum_duplicates duplicates; |
2962 | enum enum_tx_isolation tx_isolation; |
2963 | enum enum_ha_read_modes ha_read_mode; |
2964 | union { |
2965 | enum ha_rkey_function ha_rkey_mode; |
2966 | enum xa_option_words xa_opt; |
2967 | bool with_admin_option; // GRANT role |
2968 | bool with_persistent_for_clause; // uses PERSISTENT FOR clause (in ANALYZE) |
2969 | }; |
2970 | enum enum_var_type option_type; |
2971 | enum enum_drop_mode drop_mode; |
2972 | |
2973 | uint profile_query_id; |
2974 | uint profile_options; |
2975 | uint grant, grant_tot_col, which_columns; |
2976 | enum Foreign_key::fk_match_opt fk_match_option; |
2977 | enum_fk_option fk_update_opt; |
2978 | enum_fk_option fk_delete_opt; |
2979 | uint slave_thd_opt, start_transaction_opt; |
2980 | int nest_level; |
2981 | /* |
2982 | In LEX representing update which were transformed to multi-update |
2983 | stores total number of tables. For LEX representing multi-delete |
2984 | holds number of tables from which we will delete records. |
2985 | */ |
2986 | uint table_count; |
2987 | uint8 describe; |
2988 | bool analyze_stmt; /* TRUE<=> this is "ANALYZE $stmt" */ |
2989 | bool explain_json; |
2990 | /* |
2991 | A flag that indicates what kinds of derived tables are present in the |
2992 | query (0 if no derived tables, otherwise a combination of flags |
2993 | DERIVED_SUBQUERY and DERIVED_VIEW). |
2994 | */ |
2995 | uint8 derived_tables; |
2996 | uint8 context_analysis_only; |
2997 | bool local_file; |
2998 | bool check_exists; |
2999 | bool autocommit; |
3000 | bool verbose, no_write_to_binlog; |
3001 | |
3002 | enum enum_yes_no_unknown tx_chain, tx_release; |
3003 | bool safe_to_cache_query; |
3004 | bool subqueries, ignore; |
3005 | st_parsing_options parsing_options; |
3006 | Alter_info alter_info; |
3007 | /* |
3008 | For CREATE TABLE statement last element of table list which is not |
3009 | part of SELECT or LIKE part (i.e. either element for table we are |
3010 | creating or last of tables referenced by foreign keys). |
3011 | */ |
3012 | TABLE_LIST *create_last_non_select_table; |
3013 | /* Prepared statements SQL syntax:*/ |
3014 | LEX_CSTRING prepared_stmt_name; /* Statement name (in all queries) */ |
3015 | /* PREPARE or EXECUTE IMMEDIATE source expression */ |
3016 | Item *prepared_stmt_code; |
3017 | /* Names of user variables holding parameters (in EXECUTE) */ |
3018 | List<Item> prepared_stmt_params; |
3019 | sp_head *sphead; |
3020 | sp_name *spname; |
3021 | bool sp_lex_in_use; // Keep track on lex usage in SPs for error handling |
3022 | bool all_privileges; |
3023 | bool proxy_priv; |
3024 | |
3025 | sp_pcontext *spcont; |
3026 | |
3027 | st_sp_chistics sp_chistics; |
3028 | |
3029 | Event_parse_data *event_parse_data; |
3030 | |
3031 | /* |
3032 | field_list was created for view and should be removed before PS/SP |
3033 | rexecuton |
3034 | */ |
3035 | bool empty_field_list_on_rset; |
3036 | /* Characterstics of trigger being created */ |
3037 | st_trg_chistics trg_chistics; |
3038 | /* |
3039 | List of all items (Item_trigger_field objects) representing fields in |
3040 | old/new version of row in trigger. We use this list for checking whenever |
3041 | all such fields are valid at trigger creation time and for binding these |
3042 | fields to TABLE object at table open (altough for latter pointer to table |
3043 | being opened is probably enough). |
3044 | */ |
3045 | SQL_I_List<Item_trigger_field> trg_table_fields; |
3046 | |
3047 | /* |
3048 | stmt_definition_begin is intended to point to the next word after |
3049 | DEFINER-clause in the following statements: |
3050 | - CREATE TRIGGER (points to "TRIGGER"); |
3051 | - CREATE PROCEDURE (points to "PROCEDURE"); |
3052 | - CREATE FUNCTION (points to "FUNCTION" or "AGGREGATE"); |
3053 | - CREATE EVENT (points to "EVENT") |
3054 | |
3055 | This pointer is required to add possibly omitted DEFINER-clause to the |
3056 | DDL-statement before dumping it to the binlog. |
3057 | |
3058 | keyword_delayed_begin_offset is the offset to the beginning of the DELAYED |
3059 | keyword in INSERT DELAYED statement. keyword_delayed_end_offset is the |
3060 | offset to the character right after the DELAYED keyword. |
3061 | */ |
3062 | union { |
3063 | const char *stmt_definition_begin; |
3064 | uint keyword_delayed_begin_offset; |
3065 | }; |
3066 | |
3067 | union { |
3068 | const char *stmt_definition_end; |
3069 | uint keyword_delayed_end_offset; |
3070 | }; |
3071 | |
3072 | /** |
3073 | Collects create options for KEY |
3074 | */ |
3075 | engine_option_value *option_list; |
3076 | |
3077 | /** |
3078 | Helper pointer to the end of the list when parsing options for |
3079 | LEX::create_info.option_list (for table) |
3080 | LEX::last_field->option_list (for fields) |
3081 | LEX::option_list (for indexes) |
3082 | */ |
3083 | engine_option_value *option_list_last; |
3084 | |
3085 | /** |
3086 | During name resolution search only in the table list given by |
3087 | Name_resolution_context::first_name_resolution_table and |
3088 | Name_resolution_context::last_name_resolution_table |
3089 | (see Item_field::fix_fields()). |
3090 | */ |
3091 | bool use_only_table_context; |
3092 | |
3093 | /* |
3094 | Reference to a struct that contains information in various commands |
3095 | to add/create/drop/change table spaces. |
3096 | */ |
3097 | st_alter_tablespace *alter_tablespace_info; |
3098 | |
3099 | bool escape_used; |
3100 | bool default_used; /* using default() function */ |
3101 | bool is_lex_started; /* If lex_start() did run. For debugging. */ |
3102 | |
3103 | /* |
3104 | The set of those tables whose fields are referenced in all subqueries |
3105 | of the query. |
3106 | TODO: possibly this it is incorrect to have used tables in LEX because |
3107 | with subquery, it is not clear what does the field mean. To fix this |
3108 | we should aggregate used tables information for selected expressions |
3109 | into the select_lex. |
3110 | */ |
3111 | table_map used_tables; |
3112 | /** |
3113 | Maximum number of rows and/or keys examined by the query, both read, |
3114 | changed or written. This is the argument of LIMIT ROWS EXAMINED. |
3115 | The limit is represented by two variables - the Item is needed because |
3116 | in case of parameters we have to delay its evaluation until execution. |
3117 | Once evaluated, its value is stored in examined_rows_limit_cnt. |
3118 | */ |
3119 | Item *limit_rows_examined; |
3120 | ulonglong limit_rows_examined_cnt; |
3121 | /** |
3122 | Holds a set of domain_ids for deletion at FLUSH..DELETE_DOMAIN_ID |
3123 | */ |
3124 | DYNAMIC_ARRAY delete_gtid_domain; |
3125 | static const ulong initial_gtid_domain_buffer_size= 16; |
3126 | ulong gtid_domain_static_buffer[initial_gtid_domain_buffer_size]; |
3127 | |
3128 | inline void set_limit_rows_examined() |
3129 | { |
3130 | if (limit_rows_examined) |
3131 | limit_rows_examined_cnt= limit_rows_examined->val_uint(); |
3132 | else |
3133 | limit_rows_examined_cnt= ULONGLONG_MAX; |
3134 | } |
3135 | |
3136 | |
3137 | SQL_I_List<ORDER> save_group_list; |
3138 | SQL_I_List<ORDER> save_order_list; |
3139 | LEX_CSTRING *win_ref; |
3140 | Window_frame *win_frame; |
3141 | Window_frame_bound *frame_top_bound; |
3142 | Window_frame_bound *frame_bottom_bound; |
3143 | Window_spec *win_spec; |
3144 | |
3145 | /* System Versioning */ |
3146 | vers_select_conds_t vers_conditions; |
3147 | |
3148 | inline void free_set_stmt_mem_root() |
3149 | { |
3150 | DBUG_ASSERT(!is_arena_for_set_stmt()); |
3151 | if (mem_root_for_set_stmt) |
3152 | { |
3153 | free_root(mem_root_for_set_stmt, MYF(0)); |
3154 | delete mem_root_for_set_stmt; |
3155 | mem_root_for_set_stmt= 0; |
3156 | } |
3157 | } |
3158 | |
3159 | LEX(); |
3160 | |
3161 | virtual ~LEX() |
3162 | { |
3163 | free_set_stmt_mem_root(); |
3164 | destroy_query_tables_list(); |
3165 | plugin_unlock_list(NULL, (plugin_ref *)plugins.buffer, plugins.elements); |
3166 | delete_dynamic(&plugins); |
3167 | } |
3168 | |
3169 | virtual class Query_arena *query_arena() |
3170 | { |
3171 | DBUG_ASSERT(0); |
3172 | return NULL; |
3173 | } |
3174 | |
3175 | virtual const LEX_CSTRING *cursor_name() const { return &null_clex_str; } |
3176 | |
3177 | void start(THD *thd); |
3178 | |
3179 | inline bool is_ps_or_view_context_analysis() |
3180 | { |
3181 | return (context_analysis_only & |
3182 | (CONTEXT_ANALYSIS_ONLY_PREPARE | |
3183 | CONTEXT_ANALYSIS_ONLY_VCOL_EXPR | |
3184 | CONTEXT_ANALYSIS_ONLY_VIEW)); |
3185 | } |
3186 | |
3187 | inline bool is_view_context_analysis() |
3188 | { |
3189 | return (context_analysis_only & CONTEXT_ANALYSIS_ONLY_VIEW); |
3190 | } |
3191 | |
3192 | inline void uncacheable(uint8 cause) |
3193 | { |
3194 | safe_to_cache_query= 0; |
3195 | |
3196 | if (current_select) // initialisation SP variables has no SELECT |
3197 | { |
3198 | /* |
3199 | There are no sense to mark select_lex and union fields of LEX, |
3200 | but we should merk all subselects as uncacheable from current till |
3201 | most upper |
3202 | */ |
3203 | SELECT_LEX *sl; |
3204 | SELECT_LEX_UNIT *un; |
3205 | for (sl= current_select, un= sl->master_unit(); |
3206 | un != &unit; |
3207 | sl= sl->outer_select(), un= sl->master_unit()) |
3208 | { |
3209 | sl->uncacheable|= cause; |
3210 | un->uncacheable|= cause; |
3211 | } |
3212 | select_lex.uncacheable|= cause; |
3213 | } |
3214 | } |
3215 | void set_trg_event_type_for_tables(); |
3216 | |
3217 | TABLE_LIST *unlink_first_table(bool *link_to_local); |
3218 | void link_first_table_back(TABLE_LIST *first, bool link_to_local); |
3219 | void first_lists_tables_same(); |
3220 | |
3221 | bool can_be_merged(); |
3222 | bool can_use_merged(); |
3223 | bool can_not_use_merged(); |
3224 | bool only_view_structure(); |
3225 | bool need_correct_ident(); |
3226 | uint8 get_effective_with_check(TABLE_LIST *view); |
3227 | /* |
3228 | Is this update command where 'WHITH CHECK OPTION' clause is important |
3229 | |
3230 | SYNOPSIS |
3231 | LEX::which_check_option_applicable() |
3232 | |
3233 | RETURN |
3234 | TRUE have to take 'WHITH CHECK OPTION' clause into account |
3235 | FALSE 'WHITH CHECK OPTION' clause do not need |
3236 | */ |
3237 | inline bool which_check_option_applicable() |
3238 | { |
3239 | switch (sql_command) { |
3240 | case SQLCOM_UPDATE: |
3241 | case SQLCOM_UPDATE_MULTI: |
3242 | case SQLCOM_DELETE: |
3243 | case SQLCOM_DELETE_MULTI: |
3244 | case SQLCOM_INSERT: |
3245 | case SQLCOM_INSERT_SELECT: |
3246 | case SQLCOM_REPLACE: |
3247 | case SQLCOM_REPLACE_SELECT: |
3248 | case SQLCOM_LOAD: |
3249 | return TRUE; |
3250 | default: |
3251 | return FALSE; |
3252 | } |
3253 | } |
3254 | |
3255 | void cleanup_after_one_table_open(); |
3256 | |
3257 | bool push_context(Name_resolution_context *context, MEM_ROOT *mem_root) |
3258 | { |
3259 | return context_stack.push_front(context, mem_root); |
3260 | } |
3261 | |
3262 | void pop_context() |
3263 | { |
3264 | context_stack.pop(); |
3265 | } |
3266 | |
3267 | bool copy_db_to(LEX_CSTRING *to); |
3268 | |
3269 | Name_resolution_context *current_context() |
3270 | { |
3271 | return context_stack.head(); |
3272 | } |
3273 | /* |
3274 | Restore the LEX and THD in case of a parse error. |
3275 | */ |
3276 | static void cleanup_lex_after_parse_error(THD *thd); |
3277 | |
3278 | void reset_n_backup_query_tables_list(Query_tables_list *backup); |
3279 | void restore_backup_query_tables_list(Query_tables_list *backup); |
3280 | |
3281 | bool table_or_sp_used(); |
3282 | |
3283 | bool is_partition_management() const; |
3284 | bool part_values_current(THD *thd); |
3285 | bool part_values_history(THD *thd); |
3286 | |
3287 | /** |
3288 | @brief check if the statement is a single-level join |
3289 | @return result of the check |
3290 | @retval TRUE The statement doesn't contain subqueries, unions and |
3291 | stored procedure calls. |
3292 | @retval FALSE There are subqueries, UNIONs or stored procedure calls. |
3293 | */ |
3294 | bool is_single_level_stmt() |
3295 | { |
3296 | /* |
3297 | This check exploits the fact that the last added to all_select_list is |
3298 | on its top. So select_lex (as the first added) will be at the tail |
3299 | of the list. |
3300 | */ |
3301 | if (&select_lex == all_selects_list && !sroutines.records) |
3302 | { |
3303 | DBUG_ASSERT(!all_selects_list->next_select_in_list()); |
3304 | return TRUE; |
3305 | } |
3306 | return FALSE; |
3307 | } |
3308 | |
3309 | bool save_prep_leaf_tables(); |
3310 | |
3311 | int print_explain(select_result_sink *output, uint8 explain_flags, |
3312 | bool is_analyze, bool *printed_anything); |
3313 | void restore_set_statement_var(); |
3314 | |
3315 | void init_last_field(Column_definition *field, const LEX_CSTRING *name, |
3316 | const CHARSET_INFO *cs); |
3317 | bool last_field_generated_always_as_row_start_or_end(Lex_ident *p, |
3318 | const char *type, |
3319 | uint flags); |
3320 | bool last_field_generated_always_as_row_start(); |
3321 | bool last_field_generated_always_as_row_end(); |
3322 | bool set_bincmp(CHARSET_INFO *cs, bool bin); |
3323 | |
3324 | bool get_dynamic_sql_string(LEX_CSTRING *dst, String *buffer); |
3325 | bool prepared_stmt_params_fix_fields(THD *thd) |
3326 | { |
3327 | // Fix Items in the EXECUTE..USING list |
3328 | List_iterator_fast<Item> param_it(prepared_stmt_params); |
3329 | while (Item *param= param_it++) |
3330 | { |
3331 | if (param->fix_fields(thd, 0) || param->check_cols(1)) |
3332 | return true; |
3333 | } |
3334 | return false; |
3335 | } |
3336 | sp_variable *sp_param_init(LEX_CSTRING *name); |
3337 | bool sp_param_fill_definition(sp_variable *spvar); |
3338 | |
3339 | int case_stmt_action_expr(Item* expr); |
3340 | int case_stmt_action_when(Item *when, bool simple); |
3341 | int case_stmt_action_then(); |
3342 | bool add_select_to_union_list(bool is_union_distinct, |
3343 | enum sub_select_type type, |
3344 | bool is_top_level); |
3345 | bool setup_select_in_parentheses(); |
3346 | bool set_trigger_new_row(const LEX_CSTRING *name, Item *val); |
3347 | bool set_trigger_field(const LEX_CSTRING *name1, const LEX_CSTRING *name2, |
3348 | Item *val); |
3349 | bool set_system_variable(enum_var_type var_type, sys_var *var, |
3350 | const LEX_CSTRING *base_name, Item *val); |
3351 | bool set_system_variable(enum_var_type var_type, const LEX_CSTRING *name, |
3352 | Item *val); |
3353 | bool set_system_variable(THD *thd, enum_var_type var_type, |
3354 | const LEX_CSTRING *name1, |
3355 | const LEX_CSTRING *name2, |
3356 | Item *val); |
3357 | bool set_default_system_variable(enum_var_type var_type, |
3358 | const LEX_CSTRING *name, |
3359 | Item *val); |
3360 | bool set_user_variable(THD *thd, const LEX_CSTRING *name, Item *val); |
3361 | void set_stmt_init(); |
3362 | sp_name *make_sp_name(THD *thd, const LEX_CSTRING *name); |
3363 | sp_name *make_sp_name(THD *thd, const LEX_CSTRING *name1, |
3364 | const LEX_CSTRING *name2); |
3365 | sp_name *make_sp_name_package_routine(THD *thd, const LEX_CSTRING *name); |
3366 | sp_head *make_sp_head(THD *thd, const sp_name *name, const Sp_handler *sph); |
3367 | sp_head *make_sp_head_no_recursive(THD *thd, const sp_name *name, |
3368 | const Sp_handler *sph); |
3369 | sp_head *make_sp_head_no_recursive(THD *thd, |
3370 | DDL_options_st options, sp_name *name, |
3371 | const Sp_handler *sph) |
3372 | { |
3373 | if (add_create_options_with_check(options)) |
3374 | return NULL; |
3375 | return make_sp_head_no_recursive(thd, name, sph); |
3376 | } |
3377 | bool sp_body_finalize_function(THD *); |
3378 | bool sp_body_finalize_procedure(THD *); |
3379 | sp_package *create_package_start(THD *thd, |
3380 | enum_sql_command command, |
3381 | const Sp_handler *sph, |
3382 | const sp_name *name, |
3383 | DDL_options_st options); |
3384 | bool create_package_finalize(THD *thd, |
3385 | const sp_name *name, |
3386 | const sp_name *name2, |
3387 | const char *body_start, |
3388 | const char *body_end); |
3389 | bool call_statement_start(THD *thd, sp_name *name); |
3390 | bool call_statement_start(THD *thd, const LEX_CSTRING *name); |
3391 | bool call_statement_start(THD *thd, const LEX_CSTRING *name1, |
3392 | const LEX_CSTRING *name2); |
3393 | sp_variable *find_variable(const LEX_CSTRING *name, |
3394 | sp_pcontext **ctx, |
3395 | const Sp_rcontext_handler **rh) const; |
3396 | sp_variable *find_variable(const LEX_CSTRING *name, |
3397 | const Sp_rcontext_handler **rh) const |
3398 | { |
3399 | sp_pcontext *not_used_ctx; |
3400 | return find_variable(name, ¬_used_ctx, rh); |
3401 | } |
3402 | bool set_variable(const LEX_CSTRING *name, Item *item); |
3403 | bool set_variable(const LEX_CSTRING *name1, const LEX_CSTRING *name2, |
3404 | Item *item); |
3405 | void sp_variable_declarations_init(THD *thd, int nvars); |
3406 | bool sp_variable_declarations_finalize(THD *thd, int nvars, |
3407 | const Column_definition *cdef, |
3408 | Item *def); |
3409 | bool sp_variable_declarations_set_default(THD *thd, int nvars, Item *def); |
3410 | bool sp_variable_declarations_row_finalize(THD *thd, int nvars, |
3411 | Row_definition_list *row, |
3412 | Item *def); |
3413 | bool sp_variable_declarations_with_ref_finalize(THD *thd, int nvars, |
3414 | Qualified_column_ident *col, |
3415 | Item *def); |
3416 | bool sp_variable_declarations_rowtype_finalize(THD *thd, int nvars, |
3417 | Qualified_column_ident *, |
3418 | Item *def); |
3419 | bool sp_variable_declarations_cursor_rowtype_finalize(THD *thd, int nvars, |
3420 | uint offset, |
3421 | Item *def); |
3422 | bool sp_variable_declarations_table_rowtype_finalize(THD *thd, int nvars, |
3423 | const LEX_CSTRING &db, |
3424 | const LEX_CSTRING &table, |
3425 | Item *def); |
3426 | bool sp_variable_declarations_column_type_finalize(THD *thd, int nvars, |
3427 | Qualified_column_ident *ref, |
3428 | Item *def); |
3429 | bool sp_variable_declarations_vartype_finalize(THD *thd, int nvars, |
3430 | const LEX_CSTRING &name, |
3431 | Item *def); |
3432 | bool sp_variable_declarations_copy_type_finalize(THD *thd, int nvars, |
3433 | const Column_definition &ref, |
3434 | Row_definition_list *fields, |
3435 | Item *def); |
3436 | bool sp_handler_declaration_init(THD *thd, int type); |
3437 | bool sp_handler_declaration_finalize(THD *thd, int type); |
3438 | |
3439 | bool sp_declare_cursor(THD *thd, const LEX_CSTRING *name, |
3440 | class sp_lex_cursor *cursor_stmt, |
3441 | sp_pcontext *param_ctx, bool add_cpush_instr); |
3442 | |
3443 | bool sp_open_cursor(THD *thd, const LEX_CSTRING *name, |
3444 | List<sp_assignment_lex> *parameters); |
3445 | Item_splocal *create_item_for_sp_var(const Lex_ident_cli_st *name, |
3446 | sp_variable *spvar); |
3447 | |
3448 | Item *create_item_qualified_asterisk(THD *thd, const Lex_ident_sys_st *name); |
3449 | Item *create_item_qualified_asterisk(THD *thd, |
3450 | const Lex_ident_sys_st *a, |
3451 | const Lex_ident_sys_st *b); |
3452 | Item *create_item_qualified_asterisk(THD *thd, const Lex_ident_cli_st *cname) |
3453 | { |
3454 | Lex_ident_sys name(thd, cname); |
3455 | if (name.is_null()) |
3456 | return NULL; // EOM |
3457 | return create_item_qualified_asterisk(thd, &name); |
3458 | } |
3459 | Item *create_item_qualified_asterisk(THD *thd, |
3460 | const Lex_ident_cli_st *ca, |
3461 | const Lex_ident_cli_st *cb) |
3462 | { |
3463 | Lex_ident_sys a(thd, ca), b(thd, cb); |
3464 | if (a.is_null() || b.is_null()) |
3465 | return NULL; // EOM |
3466 | return create_item_qualified_asterisk(thd, &a, &b); |
3467 | } |
3468 | |
3469 | Item *create_item_ident_nosp(THD *thd, Lex_ident_sys_st *name); |
3470 | Item *create_item_ident_sp(THD *thd, Lex_ident_sys_st *name, |
3471 | const char *start, const char *end); |
3472 | Item *create_item_ident(THD *thd, Lex_ident_cli_st *cname) |
3473 | { |
3474 | Lex_ident_sys name(thd, cname); |
3475 | if (name.is_null()) |
3476 | return NULL; // EOM |
3477 | return sphead ? |
3478 | create_item_ident_sp(thd, &name, cname->pos(), cname->end()) : |
3479 | create_item_ident_nosp(thd, &name); |
3480 | } |
3481 | /* |
3482 | Create an Item corresponding to a qualified name: a.b |
3483 | when the parser is out of an SP context. |
3484 | @param THD - THD, for mem_root |
3485 | @param a - the first name |
3486 | @param b - the second name |
3487 | @retval - a pointer to a created item, or NULL on error. |
3488 | |
3489 | Possible Item types that can be created: |
3490 | - Item_trigger_field |
3491 | - Item_field |
3492 | - Item_ref |
3493 | */ |
3494 | Item *create_item_ident_nospvar(THD *thd, |
3495 | const Lex_ident_sys_st *a, |
3496 | const Lex_ident_sys_st *b); |
3497 | /* |
3498 | Create an Item corresponding to a ROW field valiable: var.field |
3499 | @param THD - THD, for mem_root |
3500 | @param rh [OUT] - the rcontext handler (local vs package variables) |
3501 | @param var - the ROW variable name |
3502 | @param field - the ROW variable field name |
3503 | @param spvar - the variable that was previously found by name |
3504 | using "var_name". |
3505 | @param start - position in the query (for binary log) |
3506 | @param end - end in the query (for binary log) |
3507 | */ |
3508 | Item_splocal *create_item_spvar_row_field(THD *thd, |
3509 | const Sp_rcontext_handler *rh, |
3510 | const Lex_ident_sys *var, |
3511 | const Lex_ident_sys *field, |
3512 | sp_variable *spvar, |
3513 | const char *start, |
3514 | const char *end); |
3515 | /* |
3516 | Create an item from its qualified name. |
3517 | Depending on context, it can be either a ROW variable field, |
3518 | or trigger, table field, table field reference. |
3519 | See comments to create_item_spvar_row_field() and |
3520 | create_item_ident_nospvar(). |
3521 | @param thd - THD, for mem_root |
3522 | @param a - the first name |
3523 | @param b - the second name |
3524 | @retval - NULL on error, or a pointer to a new Item. |
3525 | */ |
3526 | Item *create_item_ident(THD *thd, |
3527 | const Lex_ident_cli_st *a, |
3528 | const Lex_ident_cli_st *b); |
3529 | /* |
3530 | Create an item from its qualified name. |
3531 | Depending on context, it can be a table field, a table field reference, |
3532 | or a sequence NEXTVAL and CURRVAL. |
3533 | @param thd - THD, for mem_root |
3534 | @param a - the first name |
3535 | @param b - the second name |
3536 | @param c - the third name |
3537 | @retval - NULL on error, or a pointer to a new Item. |
3538 | */ |
3539 | Item *create_item_ident(THD *thd, |
3540 | const Lex_ident_sys_st *a, |
3541 | const Lex_ident_sys_st *b, |
3542 | const Lex_ident_sys_st *c); |
3543 | |
3544 | Item *create_item_ident(THD *thd, |
3545 | const Lex_ident_cli_st *ca, |
3546 | const Lex_ident_cli_st *cb, |
3547 | const Lex_ident_cli_st *cc) |
3548 | { |
3549 | Lex_ident_sys b(thd, cb), c(thd, cc); |
3550 | if (b.is_null() || c.is_null()) |
3551 | return NULL; |
3552 | if (ca->pos() == cb->pos()) // SELECT .t1.col1 |
3553 | { |
3554 | DBUG_ASSERT(ca->length == 0); |
3555 | Lex_ident_sys none; |
3556 | return create_item_ident(thd, &none, &b, &c); |
3557 | } |
3558 | Lex_ident_sys a(thd, ca); |
3559 | return a.is_null() ? NULL : create_item_ident(thd, &a, &b, &c); |
3560 | } |
3561 | |
3562 | /* |
3563 | Create an item for "NEXT VALUE FOR sequence_name" |
3564 | */ |
3565 | Item *create_item_func_nextval(THD *thd, Table_ident *ident); |
3566 | Item *create_item_func_nextval(THD *thd, const LEX_CSTRING *db, |
3567 | const LEX_CSTRING *name); |
3568 | /* |
3569 | Create an item for "PREVIOUS VALUE FOR sequence_name" |
3570 | */ |
3571 | Item *create_item_func_lastval(THD *thd, Table_ident *ident); |
3572 | Item *create_item_func_lastval(THD *thd, const LEX_CSTRING *db, |
3573 | const LEX_CSTRING *name); |
3574 | |
3575 | /* |
3576 | Create an item for "SETVAL(sequence_name, value [, is_used [, round]]) |
3577 | */ |
3578 | Item *create_item_func_setval(THD *thd, Table_ident *ident, longlong value, |
3579 | ulonglong round, bool is_used); |
3580 | |
3581 | /* |
3582 | Create an item for a name in LIMIT clause: LIMIT var |
3583 | @param THD - THD, for mem_root |
3584 | @param var_name - the variable name |
3585 | @retval - a new Item corresponding to the SP variable, |
3586 | or NULL on error |
3587 | (non in SP, unknown variable, wrong data type). |
3588 | */ |
3589 | Item *create_item_limit(THD *thd, const Lex_ident_cli_st *var_name); |
3590 | |
3591 | /* |
3592 | Create an item for a qualified name in LIMIT clause: LIMIT var.field |
3593 | @param THD - THD, for mem_root |
3594 | @param var_name - the variable name |
3595 | @param field_name - the variable field name |
3596 | @param start - start in the query (for binary log) |
3597 | @param end - end in the query (for binary log) |
3598 | @retval - a new Item corresponding to the SP variable, |
3599 | or NULL on error |
3600 | (non in SP, unknown variable, unknown ROW field, |
3601 | wrong data type). |
3602 | */ |
3603 | Item *create_item_limit(THD *thd, |
3604 | const Lex_ident_cli_st *var_name, |
3605 | const Lex_ident_cli_st *field_name); |
3606 | |
3607 | Item *make_item_func_replace(THD *thd, Item *org, Item *find, Item *replace); |
3608 | Item *make_item_func_substr(THD *thd, Item *a, Item *b, Item *c); |
3609 | Item *make_item_func_substr(THD *thd, Item *a, Item *b); |
3610 | Item *make_item_func_call_generic(THD *thd, Lex_ident_cli_st *db, |
3611 | Lex_ident_cli_st *name, List<Item> *args); |
3612 | my_var *create_outvar(THD *thd, const LEX_CSTRING *name); |
3613 | |
3614 | /* |
3615 | Create a my_var instance for a ROW field variable that was used |
3616 | as an OUT SP parameter: CALL p1(var.field); |
3617 | @param THD - THD, for mem_root |
3618 | @param var_name - the variable name |
3619 | @param field_name - the variable field name |
3620 | */ |
3621 | my_var *create_outvar(THD *thd, |
3622 | const LEX_CSTRING *var_name, |
3623 | const LEX_CSTRING *field_name); |
3624 | |
3625 | bool is_trigger_new_or_old_reference(const LEX_CSTRING *name) const; |
3626 | |
3627 | Item *create_and_link_Item_trigger_field(THD *thd, const LEX_CSTRING *name, |
3628 | bool new_row); |
3629 | // For syntax with colon, e.g. :NEW.a or :OLD.a |
3630 | Item *make_item_colon_ident_ident(THD *thd, |
3631 | const Lex_ident_cli_st *a, |
3632 | const Lex_ident_cli_st *b); |
3633 | // For "SELECT @@var", "SELECT @@var.field" |
3634 | Item *make_item_sysvar(THD *thd, |
3635 | enum_var_type type, |
3636 | const LEX_CSTRING *name) |
3637 | { |
3638 | return make_item_sysvar(thd, type, name, &null_clex_str); |
3639 | } |
3640 | Item *make_item_sysvar(THD *thd, |
3641 | enum_var_type type, |
3642 | const LEX_CSTRING *name, |
3643 | const LEX_CSTRING *component); |
3644 | void sp_block_init(THD *thd, const LEX_CSTRING *label); |
3645 | void sp_block_init(THD *thd) |
3646 | { |
3647 | // Unlabeled blocks get an empty label |
3648 | sp_block_init(thd, &empty_clex_str); |
3649 | } |
3650 | bool sp_block_finalize(THD *thd, const Lex_spblock_st spblock) |
3651 | { |
3652 | class sp_label *tmp; |
3653 | return sp_block_finalize(thd, spblock, &tmp); |
3654 | } |
3655 | bool sp_block_finalize(THD *thd) |
3656 | { |
3657 | return sp_block_finalize(thd, Lex_spblock()); |
3658 | } |
3659 | bool sp_block_finalize(THD *thd, const Lex_spblock_st spblock, |
3660 | const LEX_CSTRING *end_label); |
3661 | bool sp_block_finalize(THD *thd, const LEX_CSTRING *end_label) |
3662 | { |
3663 | return sp_block_finalize(thd, Lex_spblock(), end_label); |
3664 | } |
3665 | bool sp_declarations_join(Lex_spblock_st *res, |
3666 | const Lex_spblock_st b1, |
3667 | const Lex_spblock_st b2) const |
3668 | { |
3669 | if ((b2.vars || b2.conds) && (b1.curs || b1.hndlrs)) |
3670 | { |
3671 | my_error(ER_SP_VARCOND_AFTER_CURSHNDLR, MYF(0)); |
3672 | return true; |
3673 | } |
3674 | if (b2.curs && b1.hndlrs) |
3675 | { |
3676 | my_error(ER_SP_CURSOR_AFTER_HANDLER, MYF(0)); |
3677 | return true; |
3678 | } |
3679 | res->join(b1, b2); |
3680 | return false; |
3681 | } |
3682 | bool sp_block_with_exceptions_finalize_declarations(THD *thd); |
3683 | bool sp_block_with_exceptions_finalize_executable_section(THD *thd, |
3684 | uint executable_section_ip); |
3685 | bool sp_block_with_exceptions_finalize_exceptions(THD *thd, |
3686 | uint executable_section_ip, |
3687 | uint exception_count); |
3688 | bool sp_block_with_exceptions_add_empty(THD *thd); |
3689 | bool sp_exit_statement(THD *thd, Item *when); |
3690 | bool sp_exit_statement(THD *thd, const LEX_CSTRING *label_name, Item *item); |
3691 | bool sp_leave_statement(THD *thd, const LEX_CSTRING *label_name); |
3692 | bool sp_goto_statement(THD *thd, const LEX_CSTRING *label_name); |
3693 | |
3694 | bool sp_continue_statement(THD *thd, Item *when); |
3695 | bool sp_continue_statement(THD *thd, const LEX_CSTRING *label_name, Item *when); |
3696 | bool sp_iterate_statement(THD *thd, const LEX_CSTRING *label_name); |
3697 | |
3698 | bool maybe_start_compound_statement(THD *thd); |
3699 | bool sp_push_loop_label(THD *thd, const LEX_CSTRING *label_name); |
3700 | bool sp_push_loop_empty_label(THD *thd); |
3701 | bool sp_pop_loop_label(THD *thd, const LEX_CSTRING *label_name); |
3702 | void sp_pop_loop_empty_label(THD *thd); |
3703 | bool sp_while_loop_expression(THD *thd, Item *expr); |
3704 | bool sp_while_loop_finalize(THD *thd); |
3705 | bool sp_push_goto_label(THD *thd, const LEX_CSTRING *label_name); |
3706 | |
3707 | Item_param *add_placeholder(THD *thd, const LEX_CSTRING *name, |
3708 | const char *start, const char *end); |
3709 | |
3710 | /* Integer range FOR LOOP methods */ |
3711 | sp_variable *sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name, |
3712 | Item *value); |
3713 | sp_variable *sp_add_for_loop_upper_bound(THD *thd, Item *value) |
3714 | { |
3715 | LEX_CSTRING name= { STRING_WITH_LEN("[upper_bound]" ) }; |
3716 | return sp_add_for_loop_variable(thd, &name, value); |
3717 | } |
3718 | bool sp_for_loop_intrange_declarations(THD *thd, Lex_for_loop_st *loop, |
3719 | const LEX_CSTRING *index, |
3720 | const Lex_for_loop_bounds_st &bounds); |
3721 | bool sp_for_loop_intrange_condition_test(THD *thd, const Lex_for_loop_st &loop); |
3722 | bool sp_for_loop_intrange_finalize(THD *thd, const Lex_for_loop_st &loop); |
3723 | |
3724 | /* Cursor FOR LOOP methods */ |
3725 | bool sp_for_loop_cursor_declarations(THD *thd, Lex_for_loop_st *loop, |
3726 | const LEX_CSTRING *index, |
3727 | const Lex_for_loop_bounds_st &bounds); |
3728 | sp_variable *sp_add_for_loop_cursor_variable(THD *thd, |
3729 | const LEX_CSTRING *name, |
3730 | const class sp_pcursor *cur, |
3731 | uint coffset, |
3732 | sp_assignment_lex *param_lex, |
3733 | Item_args *parameters); |
3734 | bool sp_for_loop_implicit_cursor_statement(THD *thd, |
3735 | Lex_for_loop_bounds_st *bounds, |
3736 | sp_lex_cursor *cur); |
3737 | bool sp_for_loop_cursor_condition_test(THD *thd, const Lex_for_loop_st &loop); |
3738 | bool sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &); |
3739 | |
3740 | /* Generic FOR LOOP methods*/ |
3741 | |
3742 | /* |
3743 | Generate FOR loop declarations and |
3744 | initialize "loop" from "index" and "bounds". |
3745 | |
3746 | @param [IN] thd - current THD, for mem_root and error reporting |
3747 | @param [OUT] loop - the loop generated SP variables are stored here, |
3748 | together with additional loop characteristics. |
3749 | @param [IN] index - the loop index variable name |
3750 | @param [IN] bounds - the loop bounds (in sp_assignment_lex format) |
3751 | and additional loop characteristics, |
3752 | as created by the sp_for_loop_bounds rule. |
3753 | @retval true - on error |
3754 | @retval false - on success |
3755 | |
3756 | This methods adds declarations: |
3757 | - An explicit integer or cursor%ROWTYPE "index" variable |
3758 | - An implicit integer upper bound variable, in case of integer range loops |
3759 | - A CURSOR, in case of an implicit CURSOR loops |
3760 | The generated variables are stored into "loop". |
3761 | Additional loop characteristics are copied from "bounds" to "loop". |
3762 | */ |
3763 | bool sp_for_loop_declarations(THD *thd, Lex_for_loop_st *loop, |
3764 | const LEX_CSTRING *index, |
3765 | const Lex_for_loop_bounds_st &bounds) |
3766 | { |
3767 | return bounds.is_for_loop_cursor() ? |
3768 | sp_for_loop_cursor_declarations(thd, loop, index, bounds) : |
3769 | sp_for_loop_intrange_declarations(thd, loop, index, bounds); |
3770 | } |
3771 | |
3772 | /* |
3773 | Generate a conditional jump instruction to leave the loop, |
3774 | using a proper condition depending on the loop type: |
3775 | - Item_func_le -- integer range loops |
3776 | - Item_func_ge -- integer range reverse loops |
3777 | - Item_func_cursor_found -- cursor loops |
3778 | */ |
3779 | bool sp_for_loop_condition_test(THD *thd, const Lex_for_loop_st &loop) |
3780 | { |
3781 | return loop.is_for_loop_cursor() ? |
3782 | sp_for_loop_cursor_condition_test(thd, loop) : |
3783 | sp_for_loop_intrange_condition_test(thd, loop); |
3784 | } |
3785 | |
3786 | /* |
3787 | Generate "increment" instructions followed by a jump to the |
3788 | condition test in the beginnig of the loop. |
3789 | "Increment" depends on the loop type and can be: |
3790 | - index:= index + 1; -- integer range loops |
3791 | - index:= index - 1; -- integer range reverse loops |
3792 | - FETCH cursor INTO index; -- cursor loops |
3793 | */ |
3794 | bool sp_for_loop_finalize(THD *thd, const Lex_for_loop_st &loop) |
3795 | { |
3796 | return loop.is_for_loop_cursor() ? |
3797 | sp_for_loop_cursor_finalize(thd, loop) : |
3798 | sp_for_loop_intrange_finalize(thd, loop); |
3799 | } |
3800 | /* End of FOR LOOP methods */ |
3801 | |
3802 | bool add_signal_statement(THD *thd, const class sp_condition_value *value); |
3803 | bool add_resignal_statement(THD *thd, const class sp_condition_value *value); |
3804 | |
3805 | // Check if "KEY IF NOT EXISTS name" used outside of ALTER context |
3806 | bool check_add_key(DDL_options_st ddl) |
3807 | { |
3808 | if (ddl.if_not_exists() && sql_command != SQLCOM_ALTER_TABLE) |
3809 | { |
3810 | parse_error(); |
3811 | return true; |
3812 | } |
3813 | return false; |
3814 | } |
3815 | // Add a key as a part of CREATE TABLE or ALTER TABLE |
3816 | bool add_key(Key::Keytype key_type, const LEX_CSTRING *key_name, |
3817 | ha_key_alg algorithm, DDL_options_st ddl) |
3818 | { |
3819 | if (check_add_key(ddl) || |
3820 | !(last_key= new Key(key_type, key_name, algorithm, false, ddl))) |
3821 | return true; |
3822 | alter_info.key_list.push_back(last_key); |
3823 | return false; |
3824 | } |
3825 | // Add a key for a CREATE INDEX statement |
3826 | bool add_create_index(Key::Keytype key_type, const LEX_CSTRING *key_name, |
3827 | ha_key_alg algorithm, DDL_options_st ddl) |
3828 | { |
3829 | if (check_create_options(ddl) || |
3830 | !(last_key= new Key(key_type, key_name, algorithm, false, ddl))) |
3831 | return true; |
3832 | alter_info.key_list.push_back(last_key); |
3833 | return false; |
3834 | } |
3835 | bool add_create_index_prepare(Table_ident *table) |
3836 | { |
3837 | sql_command= SQLCOM_CREATE_INDEX; |
3838 | if (!current_select->add_table_to_list(thd, table, NULL, |
3839 | TL_OPTION_UPDATING, |
3840 | TL_READ_NO_INSERT, |
3841 | MDL_SHARED_UPGRADABLE)) |
3842 | return true; |
3843 | alter_info.reset(); |
3844 | alter_info.flags= ALTER_ADD_INDEX; |
3845 | option_list= NULL; |
3846 | return false; |
3847 | } |
3848 | /* |
3849 | Add an UNIQUE or PRIMARY key which is a part of a column definition: |
3850 | CREATE TABLE t1 (a INT PRIMARY KEY); |
3851 | */ |
3852 | void add_key_to_list(LEX_CSTRING *field_name, |
3853 | enum Key::Keytype type, bool check_exists); |
3854 | // Add a constraint as a part of CREATE TABLE or ALTER TABLE |
3855 | bool add_constraint(LEX_CSTRING *name, Virtual_column_info *constr, |
3856 | bool if_not_exists) |
3857 | { |
3858 | constr->name= *name; |
3859 | constr->flags= if_not_exists ? |
3860 | Alter_info::CHECK_CONSTRAINT_IF_NOT_EXISTS : 0; |
3861 | alter_info.check_constraint_list.push_back(constr); |
3862 | return false; |
3863 | } |
3864 | bool add_alter_list(const char *par_name, Virtual_column_info *expr, |
3865 | bool par_exists); |
3866 | void set_command(enum_sql_command command, |
3867 | DDL_options_st options) |
3868 | { |
3869 | sql_command= command; |
3870 | create_info.set(options); |
3871 | } |
3872 | void set_command(enum_sql_command command, |
3873 | uint scope, |
3874 | DDL_options_st options) |
3875 | { |
3876 | set_command(command, options); |
3877 | create_info.options|= scope; // HA_LEX_CREATE_TMP_TABLE or 0 |
3878 | } |
3879 | bool check_create_options(DDL_options_st options) |
3880 | { |
3881 | if (options.or_replace() && options.if_not_exists()) |
3882 | { |
3883 | my_error(ER_WRONG_USAGE, MYF(0), "OR REPLACE" , "IF NOT EXISTS" ); |
3884 | return true; |
3885 | } |
3886 | return false; |
3887 | } |
3888 | bool set_create_options_with_check(DDL_options_st options) |
3889 | { |
3890 | create_info.set(options); |
3891 | return check_create_options(create_info); |
3892 | } |
3893 | bool add_create_options_with_check(DDL_options_st options) |
3894 | { |
3895 | create_info.add(options); |
3896 | return check_create_options(create_info); |
3897 | } |
3898 | bool sp_add_cfetch(THD *thd, const LEX_CSTRING *name); |
3899 | |
3900 | bool set_command_with_check(enum_sql_command command, |
3901 | uint scope, |
3902 | DDL_options_st options) |
3903 | { |
3904 | set_command(command, scope, options); |
3905 | return check_create_options(options); |
3906 | } |
3907 | bool set_command_with_check(enum_sql_command command, DDL_options_st options) |
3908 | { |
3909 | set_command(command, options); |
3910 | return check_create_options(options); |
3911 | } |
3912 | /* |
3913 | DROP shares lex->create_info to store TEMPORARY and IF EXISTS options |
3914 | to save on extra initialization in lex_start(). |
3915 | Add some wrappers, to avoid direct use of lex->create_info in the |
3916 | caller code processing DROP statements (which might look confusing). |
3917 | */ |
3918 | bool tmp_table() const { return create_info.tmp_table(); } |
3919 | bool if_exists() const { return create_info.if_exists(); } |
3920 | |
3921 | SELECT_LEX *exclude_last_select(); |
3922 | bool add_unit_in_brackets(SELECT_LEX *nselect); |
3923 | void check_automatic_up(enum sub_select_type type); |
3924 | bool create_or_alter_view_finalize(THD *thd, Table_ident *table_ident); |
3925 | bool add_alter_view(THD *thd, uint16 algorithm, enum_view_suid suid, |
3926 | Table_ident *table_ident); |
3927 | bool add_create_view(THD *thd, DDL_options_st ddl, |
3928 | uint16 algorithm, enum_view_suid suid, |
3929 | Table_ident *table_ident); |
3930 | |
3931 | bool add_grant_command(THD *thd, enum_sql_command sql_command_arg, |
3932 | stored_procedure_type type_arg); |
3933 | |
3934 | Vers_parse_info &vers_get_info() |
3935 | { |
3936 | return create_info.vers_info; |
3937 | } |
3938 | sp_package *get_sp_package() const; |
3939 | |
3940 | /** |
3941 | Check if the select is a simple select (not an union). |
3942 | @retval |
3943 | 0 ok |
3944 | @retval |
3945 | 1 error ; In this case the error messege is sent to the client |
3946 | */ |
3947 | bool check_simple_select(const LEX_CSTRING *option) |
3948 | { |
3949 | if (current_select != &select_lex) |
3950 | { |
3951 | char command[80]; |
3952 | strmake(command, option->str, MY_MIN(option->length, sizeof(command)-1)); |
3953 | my_error(ER_CANT_USE_OPTION_HERE, MYF(0), command); |
3954 | return true; |
3955 | } |
3956 | return false; |
3957 | } |
3958 | |
3959 | void tvc_start() |
3960 | { |
3961 | field_list.empty(); |
3962 | many_values.empty(); |
3963 | insert_list= 0; |
3964 | } |
3965 | bool tvc_finalize(); |
3966 | bool tvc_finalize_derived(); |
3967 | }; |
3968 | |
3969 | |
3970 | /** |
3971 | Set_signal_information is a container used in the parsed tree to represent |
3972 | the collection of assignments to condition items in the SIGNAL and RESIGNAL |
3973 | statements. |
3974 | */ |
3975 | class Set_signal_information |
3976 | { |
3977 | public: |
3978 | /** Empty default constructor, use clear() */ |
3979 | Set_signal_information() {} |
3980 | |
3981 | /** Copy constructor. */ |
3982 | Set_signal_information(const Set_signal_information& set); |
3983 | |
3984 | /** Destructor. */ |
3985 | ~Set_signal_information() |
3986 | {} |
3987 | |
3988 | /** Clear all items. */ |
3989 | void clear(); |
3990 | |
3991 | /** |
3992 | For each condition item assignment, m_item[] contains the parsed tree |
3993 | that represents the expression assigned, if any. |
3994 | m_item[] is an array indexed by Diag_condition_item_name. |
3995 | */ |
3996 | Item *m_item[LAST_DIAG_SET_PROPERTY+1]; |
3997 | }; |
3998 | |
3999 | |
4000 | /** |
4001 | The internal state of the syntax parser. |
4002 | This object is only available during parsing, |
4003 | and is private to the syntax parser implementation (sql_yacc.yy). |
4004 | */ |
4005 | class Yacc_state |
4006 | { |
4007 | public: |
4008 | Yacc_state() |
4009 | { |
4010 | reset(); |
4011 | } |
4012 | |
4013 | void reset() |
4014 | { |
4015 | yacc_yyss= NULL; |
4016 | yacc_yyvs= NULL; |
4017 | m_set_signal_info.clear(); |
4018 | m_lock_type= TL_READ_DEFAULT; |
4019 | m_mdl_type= MDL_SHARED_READ; |
4020 | } |
4021 | |
4022 | ~Yacc_state(); |
4023 | |
4024 | /** |
4025 | Reset part of the state which needs resetting before parsing |
4026 | substatement. |
4027 | */ |
4028 | void reset_before_substatement() |
4029 | { |
4030 | m_lock_type= TL_READ_DEFAULT; |
4031 | m_mdl_type= MDL_SHARED_READ; |
4032 | } |
4033 | |
4034 | /** |
4035 | Bison internal state stack, yyss, when dynamically allocated using |
4036 | my_yyoverflow(). |
4037 | */ |
4038 | uchar *yacc_yyss; |
4039 | |
4040 | /** |
4041 | Bison internal semantic value stack, yyvs, when dynamically allocated using |
4042 | my_yyoverflow(). |
4043 | */ |
4044 | uchar *yacc_yyvs; |
4045 | |
4046 | /** |
4047 | Fragments of parsed tree, |
4048 | used during the parsing of SIGNAL and RESIGNAL. |
4049 | */ |
4050 | Set_signal_information m_set_signal_info; |
4051 | |
4052 | /** |
4053 | Type of lock to be used for tables being added to the statement's |
4054 | table list in table_factor, table_alias_ref, single_multi and |
4055 | table_wild_one rules. |
4056 | Statements which use these rules but require lock type different |
4057 | from one specified by this member have to override it by using |
4058 | st_select_lex::set_lock_for_tables() method. |
4059 | |
4060 | The default value of this member is TL_READ_DEFAULT. The only two |
4061 | cases in which we change it are: |
4062 | - When parsing SELECT HIGH_PRIORITY. |
4063 | - Rule for DELETE. In which we use this member to pass information |
4064 | about type of lock from delete to single_multi part of rule. |
4065 | |
4066 | We should try to avoid introducing new use cases as we would like |
4067 | to get rid of this member eventually. |
4068 | */ |
4069 | thr_lock_type m_lock_type; |
4070 | |
4071 | /** |
4072 | The type of requested metadata lock for tables added to |
4073 | the statement table list. |
4074 | */ |
4075 | enum_mdl_type m_mdl_type; |
4076 | |
4077 | /* |
4078 | TODO: move more attributes from the LEX structure here. |
4079 | */ |
4080 | }; |
4081 | |
4082 | /** |
4083 | Input parameters to the parser. |
4084 | */ |
4085 | struct Parser_input |
4086 | { |
4087 | bool m_compute_digest; |
4088 | |
4089 | Parser_input() |
4090 | : m_compute_digest(false) |
4091 | {} |
4092 | }; |
4093 | |
4094 | /** |
4095 | Internal state of the parser. |
4096 | The complete state consist of: |
4097 | - state data used during lexical parsing, |
4098 | - state data used during syntactic parsing. |
4099 | */ |
4100 | class Parser_state |
4101 | { |
4102 | public: |
4103 | Parser_state() |
4104 | : m_yacc() |
4105 | {} |
4106 | |
4107 | /** |
4108 | Object initializer. Must be called before usage. |
4109 | |
4110 | @retval FALSE OK |
4111 | @retval TRUE Error |
4112 | */ |
4113 | bool init(THD *thd, char *buff, size_t length) |
4114 | { |
4115 | return m_lip.init(thd, buff, length); |
4116 | } |
4117 | |
4118 | ~Parser_state() |
4119 | {} |
4120 | |
4121 | Parser_input m_input; |
4122 | Lex_input_stream m_lip; |
4123 | Yacc_state m_yacc; |
4124 | |
4125 | /** |
4126 | Current performance digest instrumentation. |
4127 | */ |
4128 | PSI_digest_locker* m_digest_psi; |
4129 | |
4130 | void reset(char *found_semicolon, unsigned int length) |
4131 | { |
4132 | m_lip.reset(found_semicolon, length); |
4133 | m_yacc.reset(); |
4134 | } |
4135 | }; |
4136 | |
4137 | |
4138 | extern sql_digest_state * |
4139 | digest_add_token(sql_digest_state *state, uint token, LEX_YYSTYPE yylval); |
4140 | |
4141 | extern sql_digest_state * |
4142 | digest_reduce_token(sql_digest_state *state, uint token_left, uint token_right); |
4143 | |
4144 | struct st_lex_local: public LEX, public Sql_alloc |
4145 | { |
4146 | }; |
4147 | |
4148 | |
4149 | /** |
4150 | An st_lex_local extension with automatic initialization for SP purposes. |
4151 | Used to parse sub-expressions and SP sub-statements. |
4152 | |
4153 | This class is reused for: |
4154 | 1. sp_head::reset_lex() based constructs |
4155 | - SP variable assignments (e.g. SET x=10;) |
4156 | - FOR loop conditions and index variable increments |
4157 | - Cursor statements |
4158 | - SP statements |
4159 | - SP function RETURN statements |
4160 | - CASE statements |
4161 | - REPEAT..UNTIL expressions |
4162 | - WHILE expressions |
4163 | - EXIT..WHEN and CONTINUE..WHEN statements |
4164 | 2. sp_assignment_lex based constructs: |
4165 | - CURSOR parameter assignments |
4166 | */ |
4167 | class sp_lex_local: public st_lex_local |
4168 | { |
4169 | public: |
4170 | sp_lex_local(THD *thd, const LEX *oldlex) |
4171 | { |
4172 | /* Reset most stuff. */ |
4173 | start(thd); |
4174 | /* Keep the parent SP stuff */ |
4175 | sphead= oldlex->sphead; |
4176 | spcont= oldlex->spcont; |
4177 | /* Keep the parent trigger stuff too */ |
4178 | trg_chistics= oldlex->trg_chistics; |
4179 | trg_table_fields.empty(); |
4180 | sp_lex_in_use= false; |
4181 | } |
4182 | }; |
4183 | |
4184 | |
4185 | /** |
4186 | An assignment specific LEX, which additionally has an Item (an expression) |
4187 | and an associated with the Item free_list, which is usually freed |
4188 | after the expression is calculated. |
4189 | |
4190 | Note, consider changing some of sp_lex_local to sp_assignment_lex, |
4191 | as the latter allows to use a simpler grammar in sql_yacc.yy (IMO). |
4192 | |
4193 | If the expression is simple (e.g. does not have function calls), |
4194 | then m_item and m_free_list point to the same Item. |
4195 | |
4196 | If the expressions is complex (e.g. have function calls), |
4197 | then m_item points to the leftmost Item, while m_free_list points |
4198 | to the rightmost item. |
4199 | For example: |
4200 | f1(COALESCE(f2(10), f2(20))) |
4201 | - m_item points to Item_func_sp for f1 (the leftmost Item) |
4202 | - m_free_list points to Item_int for 20 (the rightmost Item) |
4203 | |
4204 | Note, we could avoid storing m_item at all, as we can always reach |
4205 | the leftmost item from the rightmost item by iterating through m_free_list. |
4206 | But with a separate m_item the code should be faster. |
4207 | */ |
4208 | class sp_assignment_lex: public sp_lex_local |
4209 | { |
4210 | Item *m_item; // The expression |
4211 | Item *m_free_list; // The associated free_list (sub-expressions) |
4212 | public: |
4213 | sp_assignment_lex(THD *thd, LEX *oldlex) |
4214 | :sp_lex_local(thd, oldlex), |
4215 | m_item(NULL), |
4216 | m_free_list(NULL) |
4217 | { } |
4218 | void set_item_and_free_list(Item *item, Item *free_list) |
4219 | { |
4220 | m_item= item; |
4221 | m_free_list= free_list; |
4222 | } |
4223 | Item *get_item() const |
4224 | { |
4225 | return m_item; |
4226 | } |
4227 | Item *get_free_list() const |
4228 | { |
4229 | return m_free_list; |
4230 | } |
4231 | }; |
4232 | |
4233 | |
4234 | extern void lex_init(void); |
4235 | extern void lex_free(void); |
4236 | extern void lex_start(THD *thd); |
4237 | extern void lex_end(LEX *lex); |
4238 | extern void lex_end_stage1(LEX *lex); |
4239 | extern void lex_end_stage2(LEX *lex); |
4240 | void end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex); |
4241 | int init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex); |
4242 | extern int MYSQLlex(union YYSTYPE *yylval, THD *thd); |
4243 | extern int ORAlex(union YYSTYPE *yylval, THD *thd); |
4244 | |
4245 | extern void trim_whitespace(CHARSET_INFO *cs, LEX_CSTRING *str, size_t * prefix_length = 0); |
4246 | |
4247 | extern bool is_lex_native_function(const LEX_CSTRING *name); |
4248 | extern bool is_native_function(THD *thd, const LEX_CSTRING *name); |
4249 | extern bool is_native_function_with_warn(THD *thd, const LEX_CSTRING *name); |
4250 | |
4251 | /** |
4252 | @} (End of group Semantic_Analysis) |
4253 | */ |
4254 | |
4255 | void my_missing_function_error(const LEX_CSTRING &token, const char *name); |
4256 | bool is_keyword(const char *name, uint len); |
4257 | int set_statement_var_if_exists(THD *thd, const char *var_name, |
4258 | size_t var_name_length, ulonglong value); |
4259 | |
4260 | Virtual_column_info *add_virtual_expression(THD *thd, Item *expr); |
4261 | Item* handle_sql2003_note184_exception(THD *thd, Item* left, bool equal, |
4262 | Item *expr); |
4263 | |
4264 | void sp_create_assignment_lex(THD *thd, bool no_lookahead); |
4265 | bool sp_create_assignment_instr(THD *thd, bool no_lookahead); |
4266 | |
4267 | #endif /* MYSQL_SERVER */ |
4268 | #endif /* SQL_LEX_INCLUDED */ |
4269 | |