| 1 | /* Copyright (c) 2000, 2011, Oracle and/or its affiliates. |
| 2 | Copyright (c) 2008, 2017, MariaDB Corporation. |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 16 | |
| 17 | |
| 18 | /** |
| 19 | @file |
| 20 | |
| 21 | Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause |
| 22 | by replacing the aggregate expression with a constant. |
| 23 | |
| 24 | Given a table with a compound key on columns (a,b,c), the following |
| 25 | types of queries are optimised (assuming the table handler supports |
| 26 | the required methods) |
| 27 | |
| 28 | @verbatim |
| 29 | SELECT COUNT(*) FROM t1[,t2,t3,...] |
| 30 | SELECT MIN(b) FROM t1 WHERE a=const |
| 31 | SELECT MAX(c) FROM t1 WHERE a=const AND b=const |
| 32 | SELECT MAX(b) FROM t1 WHERE a=const AND b<const |
| 33 | SELECT MIN(b) FROM t1 WHERE a=const AND b>const |
| 34 | SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const |
| 35 | SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const |
| 36 | @endverbatim |
| 37 | |
| 38 | Instead of '<' one can use '<=', '>', '>=' and '=' as well. |
| 39 | Instead of 'a=const' the condition 'a IS NULL' can be used. |
| 40 | |
| 41 | If all selected fields are replaced then we will also remove all |
| 42 | involved tables and return the answer without any join. Thus, the |
| 43 | following query will be replaced with a row of two constants: |
| 44 | @verbatim |
| 45 | SELECT MAX(b), MIN(d) FROM t1,t2 |
| 46 | WHERE a=const AND b<const AND d>const |
| 47 | @endverbatim |
| 48 | (assuming a index for column d of table t2 is defined) |
| 49 | */ |
| 50 | |
| 51 | #include "mariadb.h" |
| 52 | #include "sql_priv.h" |
| 53 | #include "key.h" // key_cmp_if_same |
| 54 | #include "sql_select.h" |
| 55 | |
| 56 | static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field, |
| 57 | COND *cond, uint *range_fl, |
| 58 | uint *key_prefix_length); |
| 59 | static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field, |
| 60 | COND *cond, uint range_fl, uint prefix_len); |
| 61 | static int maxmin_in_range(bool max_fl, Field* field, COND *cond); |
| 62 | |
| 63 | |
| 64 | /* |
| 65 | Get exact count of rows in all tables |
| 66 | |
| 67 | SYNOPSIS |
| 68 | get_exact_records() |
| 69 | tables List of tables |
| 70 | |
| 71 | NOTES |
| 72 | When this is called, we know all table handlers supports HA_HAS_RECORDS |
| 73 | or HA_STATS_RECORDS_IS_EXACT |
| 74 | |
| 75 | RETURN |
| 76 | ULONGLONG_MAX Error: Could not calculate number of rows |
| 77 | # Multiplication of number of rows in all tables |
| 78 | */ |
| 79 | |
| 80 | static ulonglong get_exact_record_count(List<TABLE_LIST> &tables) |
| 81 | { |
| 82 | ulonglong count= 1; |
| 83 | TABLE_LIST *tl; |
| 84 | List_iterator<TABLE_LIST> ti(tables); |
| 85 | while ((tl= ti++)) |
| 86 | { |
| 87 | ha_rows tmp= tl->table->file->records(); |
| 88 | if (tmp == HA_POS_ERROR) |
| 89 | return ULONGLONG_MAX; |
| 90 | count*= tmp; |
| 91 | } |
| 92 | return count; |
| 93 | } |
| 94 | |
| 95 | |
| 96 | /** |
| 97 | Use index to read MIN(field) value. |
| 98 | |
| 99 | @param table Table object |
| 100 | @param ref Reference to the structure where we store the key value |
| 101 | @item_field Field used in MIN() |
| 102 | @range_fl Whether range endpoint is strict less than |
| 103 | @prefix_len Length of common key part for the range |
| 104 | |
| 105 | @retval |
| 106 | 0 No errors |
| 107 | HA_ERR_... Otherwise |
| 108 | */ |
| 109 | |
| 110 | static int get_index_min_value(TABLE *table, TABLE_REF *ref, |
| 111 | Item_field *item_field, uint range_fl, |
| 112 | uint prefix_len) |
| 113 | { |
| 114 | int error; |
| 115 | |
| 116 | if (!ref->key_length) |
| 117 | error= table->file->ha_index_first(table->record[0]); |
| 118 | else |
| 119 | { |
| 120 | /* |
| 121 | Use index to replace MIN/MAX functions with their values |
| 122 | according to the following rules: |
| 123 | |
| 124 | 1) Insert the minimum non-null values where the WHERE clause still |
| 125 | matches, or |
| 126 | 2) a NULL value if there are only NULL values for key_part_k. |
| 127 | 3) Fail, producing a row of nulls |
| 128 | |
| 129 | Implementation: Read the smallest value using the search key. If |
| 130 | the interval is open, read the next value after the search |
| 131 | key. If read fails, and we're looking for a MIN() value for a |
| 132 | nullable column, test if there is an exact match for the key. |
| 133 | */ |
| 134 | if (!(range_fl & NEAR_MIN)) |
| 135 | /* |
| 136 | Closed interval: Either The MIN argument is non-nullable, or |
| 137 | we have a >= predicate for the MIN argument. |
| 138 | */ |
| 139 | error= table->file->ha_index_read_map(table->record[0], |
| 140 | ref->key_buff, |
| 141 | make_prev_keypart_map(ref->key_parts), |
| 142 | HA_READ_KEY_OR_NEXT); |
| 143 | else |
| 144 | { |
| 145 | /* |
| 146 | Open interval: There are two cases: |
| 147 | 1) We have only MIN() and the argument column is nullable, or |
| 148 | 2) there is a > predicate on it, nullability is irrelevant. |
| 149 | We need to scan the next bigger record first. |
| 150 | Open interval is not used if the search key involves the last keypart, |
| 151 | and it would not work. |
| 152 | */ |
| 153 | DBUG_ASSERT(prefix_len < ref->key_length); |
| 154 | error= table->file->ha_index_read_map(table->record[0], |
| 155 | ref->key_buff, |
| 156 | make_prev_keypart_map(ref->key_parts), |
| 157 | HA_READ_AFTER_KEY); |
| 158 | /* |
| 159 | If the found record is outside the group formed by the search |
| 160 | prefix, or there is no such record at all, check if all |
| 161 | records in that group have NULL in the MIN argument |
| 162 | column. If that is the case return that NULL. |
| 163 | |
| 164 | Check if case 1 from above holds. If it does, we should read |
| 165 | the skipped tuple. |
| 166 | */ |
| 167 | if (item_field->field->real_maybe_null() && |
| 168 | ref->key_buff[prefix_len] == 1 && |
| 169 | /* |
| 170 | Last keypart (i.e. the argument to MIN) is set to NULL by |
| 171 | find_key_for_maxmin only if all other keyparts are bound |
| 172 | to constants in a conjunction of equalities. Hence, we |
| 173 | can detect this by checking only if the last keypart is |
| 174 | NULL. |
| 175 | */ |
| 176 | (error == HA_ERR_KEY_NOT_FOUND || |
| 177 | key_cmp_if_same(table, ref->key_buff, ref->key, prefix_len))) |
| 178 | { |
| 179 | DBUG_ASSERT(item_field->field->real_maybe_null()); |
| 180 | error= table->file->ha_index_read_map(table->record[0], |
| 181 | ref->key_buff, |
| 182 | make_prev_keypart_map(ref->key_parts), |
| 183 | HA_READ_KEY_EXACT); |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | return error; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | /** |
| 192 | Use index to read MAX(field) value. |
| 193 | |
| 194 | @param table Table object |
| 195 | @param ref Reference to the structure where we store the key value |
| 196 | @range_fl Whether range endpoint is strict greater than |
| 197 | |
| 198 | @retval |
| 199 | 0 No errors |
| 200 | HA_ERR_... Otherwise |
| 201 | */ |
| 202 | |
| 203 | static int get_index_max_value(TABLE *table, TABLE_REF *ref, uint range_fl) |
| 204 | { |
| 205 | return (ref->key_length ? |
| 206 | table->file->ha_index_read_map(table->record[0], ref->key_buff, |
| 207 | make_prev_keypart_map(ref->key_parts), |
| 208 | range_fl & NEAR_MAX ? |
| 209 | HA_READ_BEFORE_KEY : |
| 210 | HA_READ_PREFIX_LAST_OR_PREV) : |
| 211 | table->file->ha_index_last(table->record[0])); |
| 212 | } |
| 213 | |
| 214 | |
| 215 | |
| 216 | /** |
| 217 | Substitutes constants for some COUNT(), MIN() and MAX() functions. |
| 218 | |
| 219 | @param thd thread handler |
| 220 | @param tables list of leaves of join table tree |
| 221 | @param all_fields All fields to be returned |
| 222 | @param conds WHERE clause |
| 223 | |
| 224 | @note |
| 225 | This function is only called for queries with aggregate functions and no |
| 226 | GROUP BY part. This means that the result set shall contain a single |
| 227 | row only |
| 228 | |
| 229 | @retval |
| 230 | 0 no errors |
| 231 | @retval |
| 232 | 1 if all items were resolved |
| 233 | @retval |
| 234 | HA_ERR_KEY_NOT_FOUND on impossible conditions |
| 235 | @retval |
| 236 | HA_ERR_... if a deadlock or a lock wait timeout happens, for example |
| 237 | @retval |
| 238 | ER_... e.g. ER_SUBQUERY_NO_1_ROW |
| 239 | */ |
| 240 | |
| 241 | int opt_sum_query(THD *thd, |
| 242 | List<TABLE_LIST> &tables, List<Item> &all_fields, COND *conds) |
| 243 | { |
| 244 | List_iterator_fast<Item> it(all_fields); |
| 245 | List_iterator<TABLE_LIST> ti(tables); |
| 246 | TABLE_LIST *tl; |
| 247 | int const_result= 1; |
| 248 | bool recalc_const_item= 0; |
| 249 | ulonglong count= 1; |
| 250 | bool is_exact_count= TRUE, maybe_exact_count= TRUE; |
| 251 | table_map removed_tables= 0, outer_tables= 0, used_tables= 0; |
| 252 | table_map where_tables= 0; |
| 253 | Item *item; |
| 254 | int error= 0; |
| 255 | DBUG_ENTER("opt_sum_query" ); |
| 256 | |
| 257 | thd->lex->current_select->min_max_opt_list.empty(); |
| 258 | |
| 259 | if (conds) |
| 260 | where_tables= conds->used_tables(); |
| 261 | |
| 262 | /* |
| 263 | Analyze outer join dependencies, and, if possible, compute the number |
| 264 | of returned rows. |
| 265 | */ |
| 266 | while ((tl= ti++)) |
| 267 | { |
| 268 | TABLE_LIST *embedded; |
| 269 | for (embedded= tl ; embedded; embedded= embedded->embedding) |
| 270 | { |
| 271 | if (embedded->on_expr) |
| 272 | break; |
| 273 | } |
| 274 | if (embedded) |
| 275 | /* Don't replace expression on a table that is part of an outer join */ |
| 276 | { |
| 277 | outer_tables|= tl->table->map; |
| 278 | |
| 279 | /* |
| 280 | We can't optimise LEFT JOIN in cases where the WHERE condition |
| 281 | restricts the table that is used, like in: |
| 282 | SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition |
| 283 | WHERE t2.field IS NULL; |
| 284 | */ |
| 285 | if (tl->table->map & where_tables) |
| 286 | DBUG_RETURN(0); |
| 287 | } |
| 288 | else |
| 289 | used_tables|= tl->table->map; |
| 290 | |
| 291 | /* |
| 292 | If the storage manager of 'tl' gives exact row count as part of |
| 293 | statistics (cheap), compute the total number of rows. If there are |
| 294 | no outer table dependencies, this count may be used as the real count. |
| 295 | Schema tables are filled after this function is invoked, so we can't |
| 296 | get row count |
| 297 | */ |
| 298 | if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) || |
| 299 | tl->schema_table) |
| 300 | { |
| 301 | maybe_exact_count&= MY_TEST(!tl->schema_table && |
| 302 | (tl->table->file->ha_table_flags() & |
| 303 | HA_HAS_RECORDS)); |
| 304 | is_exact_count= FALSE; |
| 305 | count= 1; // ensure count != 0 |
| 306 | } |
| 307 | else if (tl->is_materialized_derived() || |
| 308 | tl->jtbm_subselect) |
| 309 | { |
| 310 | /* |
| 311 | Can't remove a derived table as it's number of rows is just an |
| 312 | estimate. |
| 313 | */ |
| 314 | DBUG_RETURN(0); |
| 315 | } |
| 316 | else |
| 317 | { |
| 318 | error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK); |
| 319 | if (unlikely(error)) |
| 320 | { |
| 321 | tl->table->file->print_error(error, MYF(ME_FATALERROR)); |
| 322 | DBUG_RETURN(error); |
| 323 | } |
| 324 | count*= tl->table->file->stats.records; |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | Iterate through all items in the SELECT clause and replace |
| 330 | COUNT(), MIN() and MAX() with constants (if possible). |
| 331 | */ |
| 332 | |
| 333 | while ((item= it++)) |
| 334 | { |
| 335 | if (item->type() == Item::SUM_FUNC_ITEM) |
| 336 | { |
| 337 | Item_sum *item_sum= (((Item_sum*) item)); |
| 338 | switch (item_sum->sum_func()) { |
| 339 | case Item_sum::COUNT_FUNC: |
| 340 | /* |
| 341 | If the expr in COUNT(expr) can never be null we can change this |
| 342 | to the number of rows in the tables if this number is exact and |
| 343 | there are no outer joins. |
| 344 | */ |
| 345 | if (!conds && !((Item_sum_count*) item)->get_arg(0)->maybe_null && |
| 346 | !outer_tables && maybe_exact_count && |
| 347 | ((item->used_tables() & OUTER_REF_TABLE_BIT) == 0)) |
| 348 | { |
| 349 | if (!is_exact_count) |
| 350 | { |
| 351 | if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX) |
| 352 | { |
| 353 | /* Error from handler in counting rows. Don't optimize count() */ |
| 354 | const_result= 0; |
| 355 | continue; |
| 356 | } |
| 357 | is_exact_count= 1; // count is now exact |
| 358 | } |
| 359 | ((Item_sum_count*) item)->make_const((longlong) count); |
| 360 | recalc_const_item= 1; |
| 361 | } |
| 362 | else |
| 363 | const_result= 0; |
| 364 | break; |
| 365 | case Item_sum::MIN_FUNC: |
| 366 | case Item_sum::MAX_FUNC: |
| 367 | { |
| 368 | int is_max= MY_TEST(item_sum->sum_func() == Item_sum::MAX_FUNC); |
| 369 | /* |
| 370 | If MIN/MAX(expr) is the first part of a key or if all previous |
| 371 | parts of the key is found in the COND, then we can use |
| 372 | indexes to find the key. |
| 373 | */ |
| 374 | Item *expr=item_sum->get_arg(0); |
| 375 | if (((expr->used_tables() & OUTER_REF_TABLE_BIT) == 0) && |
| 376 | expr->real_item()->type() == Item::FIELD_ITEM) |
| 377 | { |
| 378 | uchar key_buff[MAX_KEY_LENGTH]; |
| 379 | TABLE_REF ref; |
| 380 | uint range_fl, prefix_len; |
| 381 | |
| 382 | ref.key_buff= key_buff; |
| 383 | Item_field *item_field= (Item_field*) (expr->real_item()); |
| 384 | TABLE *table= item_field->field->table; |
| 385 | |
| 386 | /* |
| 387 | Look for a partial key that can be used for optimization. |
| 388 | If we succeed, ref.key_length will contain the length of |
| 389 | this key, while prefix_len will contain the length of |
| 390 | the beginning of this key without field used in MIN/MAX(). |
| 391 | Type of range for the key part for this field will be |
| 392 | returned in range_fl. |
| 393 | */ |
| 394 | if (table->file->inited || (outer_tables & table->map) || |
| 395 | !find_key_for_maxmin(is_max, &ref, item_field->field, conds, |
| 396 | &range_fl, &prefix_len)) |
| 397 | { |
| 398 | const_result= 0; |
| 399 | break; |
| 400 | } |
| 401 | longlong info_limit= 1; |
| 402 | table->file->info_push(INFO_KIND_FORCE_LIMIT_BEGIN, &info_limit); |
| 403 | if (likely(!(error= table->file->ha_index_init((uint) ref.key, 1)))) |
| 404 | error= (is_max ? |
| 405 | get_index_max_value(table, &ref, range_fl) : |
| 406 | get_index_min_value(table, &ref, item_field, range_fl, |
| 407 | prefix_len)); |
| 408 | |
| 409 | /* Verify that the read tuple indeed matches the search key */ |
| 410 | if (!error && |
| 411 | reckey_in_range(is_max, &ref, item_field->field, |
| 412 | conds, range_fl, prefix_len)) |
| 413 | error= HA_ERR_KEY_NOT_FOUND; |
| 414 | table->file->ha_end_keyread(); |
| 415 | table->file->ha_index_end(); |
| 416 | table->file->info_push(INFO_KIND_FORCE_LIMIT_END, NULL); |
| 417 | if (error) |
| 418 | { |
| 419 | if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE) |
| 420 | DBUG_RETURN(HA_ERR_KEY_NOT_FOUND); // No rows matching WHERE |
| 421 | /* HA_ERR_LOCK_DEADLOCK or some other error */ |
| 422 | table->file->print_error(error, MYF(0)); |
| 423 | DBUG_RETURN(error); |
| 424 | } |
| 425 | removed_tables|= table->map; |
| 426 | } |
| 427 | else if (!expr->const_item() || !is_exact_count || conds) |
| 428 | { |
| 429 | /* |
| 430 | The optimization is not applicable in both cases: |
| 431 | (a) 'expr' is a non-constant expression. Then we can't |
| 432 | replace 'expr' by a constant. |
| 433 | (b) 'expr' is a costant. According to ANSI, MIN/MAX must return |
| 434 | NULL if the query does not return any rows. Thus, if we are not |
| 435 | able to determine if the query returns any rows, we can't apply |
| 436 | the optimization and replace MIN/MAX with a constant. |
| 437 | (c) there is a WHERE clause. The WHERE conditions may result in |
| 438 | an empty result, but the clause cannot be taken into account here. |
| 439 | */ |
| 440 | const_result= 0; |
| 441 | break; |
| 442 | } |
| 443 | item_sum->set_aggregator(item_sum->has_with_distinct() ? |
| 444 | Aggregator::DISTINCT_AGGREGATOR : |
| 445 | Aggregator::SIMPLE_AGGREGATOR); |
| 446 | /* |
| 447 | If count == 0 (so is_exact_count == TRUE) and |
| 448 | there're no outer joins, set to NULL, |
| 449 | otherwise set to the constant value. |
| 450 | */ |
| 451 | if (!count && !outer_tables) |
| 452 | { |
| 453 | item_sum->aggregator_clear(); |
| 454 | } |
| 455 | else |
| 456 | { |
| 457 | item_sum->reset_and_add(); |
| 458 | /* |
| 459 | Save a reference to the item for possible rollback |
| 460 | of the min/max optimizations for this select |
| 461 | */ |
| 462 | thd->lex->current_select->min_max_opt_list.push_back(item_sum); |
| 463 | } |
| 464 | item_sum->make_const(); |
| 465 | recalc_const_item= 1; |
| 466 | break; |
| 467 | } |
| 468 | default: |
| 469 | const_result= 0; |
| 470 | break; |
| 471 | } |
| 472 | } |
| 473 | else if (const_result) |
| 474 | { |
| 475 | if (recalc_const_item) |
| 476 | item->update_used_tables(); |
| 477 | if (!item->const_item() && item->type() != Item::WINDOW_FUNC_ITEM) |
| 478 | const_result= 0; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | if (unlikely(thd->is_error())) |
| 483 | DBUG_RETURN(thd->get_stmt_da()->sql_errno()); |
| 484 | |
| 485 | /* |
| 486 | If we have a where clause, we can only ignore searching in the |
| 487 | tables if MIN/MAX optimisation replaced all used tables |
| 488 | We do not use replaced values in case of: |
| 489 | SELECT MIN(key) FROM table_1, empty_table |
| 490 | removed_tables is != 0 if we have used MIN() or MAX(). |
| 491 | */ |
| 492 | if (removed_tables && used_tables != removed_tables) |
| 493 | const_result= 0; // We didn't remove all tables |
| 494 | DBUG_RETURN(const_result); |
| 495 | } |
| 496 | |
| 497 | |
| 498 | /* |
| 499 | Check if both item1 and item2 are strings, and item1 has fewer characters |
| 500 | than item2. |
| 501 | */ |
| 502 | |
| 503 | static bool check_item1_shorter_item2(Item *item1, Item *item2) |
| 504 | { |
| 505 | if (item1->cmp_type() == STRING_RESULT && |
| 506 | item2->cmp_type() == STRING_RESULT) |
| 507 | { |
| 508 | int len1= item1->max_length / item1->collation.collation->mbmaxlen; |
| 509 | int len2= item2->max_length / item2->collation.collation->mbmaxlen; |
| 510 | return len1 < len2; |
| 511 | } |
| 512 | return false; /* When the check is not applicable, it means "not bigger" */ |
| 513 | } |
| 514 | |
| 515 | |
| 516 | /** |
| 517 | Test if the predicate compares a field with constants. |
| 518 | |
| 519 | @param func_item Predicate item |
| 520 | @param[out] args Here we store the field followed by constants |
| 521 | @param[out] inv_order Is set to 1 if the predicate is of the form |
| 522 | 'const op field' |
| 523 | |
| 524 | @retval |
| 525 | 0 func_item is a simple predicate: a field is compared with a constant |
| 526 | whose length does not exceed the max length of the field values |
| 527 | @retval |
| 528 | 1 Otherwise |
| 529 | */ |
| 530 | |
| 531 | bool simple_pred(Item_func *func_item, Item **args, bool *inv_order) |
| 532 | { |
| 533 | Item *item; |
| 534 | *inv_order= 0; |
| 535 | switch (func_item->argument_count()) { |
| 536 | case 0: |
| 537 | /* MULT_EQUAL_FUNC */ |
| 538 | { |
| 539 | Item_equal *item_equal= (Item_equal *) func_item; |
| 540 | if (!(args[1]= item_equal->get_const())) |
| 541 | return 0; |
| 542 | Item_equal_fields_iterator it(*item_equal); |
| 543 | if (!(item= it++)) |
| 544 | return 0; |
| 545 | args[0]= item->real_item(); |
| 546 | if (check_item1_shorter_item2(args[0], args[1])) |
| 547 | return 0; |
| 548 | if (it++) |
| 549 | return 0; |
| 550 | } |
| 551 | break; |
| 552 | case 1: |
| 553 | /* field IS NULL */ |
| 554 | item= func_item->arguments()[0]->real_item(); |
| 555 | if (item->type() != Item::FIELD_ITEM) |
| 556 | return 0; |
| 557 | args[0]= item; |
| 558 | break; |
| 559 | case 2: |
| 560 | /* 'field op const' or 'const op field' */ |
| 561 | item= func_item->arguments()[0]->real_item(); |
| 562 | if (item->type() == Item::FIELD_ITEM) |
| 563 | { |
| 564 | args[0]= item; |
| 565 | item= func_item->arguments()[1]->real_item(); |
| 566 | if (!item->const_item()) |
| 567 | return 0; |
| 568 | args[1]= item; |
| 569 | } |
| 570 | else if (item->const_item()) |
| 571 | { |
| 572 | args[1]= item; |
| 573 | item= func_item->arguments()[1]->real_item(); |
| 574 | if (item->type() != Item::FIELD_ITEM) |
| 575 | return 0; |
| 576 | args[0]= item; |
| 577 | *inv_order= 1; |
| 578 | } |
| 579 | else |
| 580 | return 0; |
| 581 | if (check_item1_shorter_item2(args[0], args[1])) |
| 582 | return 0; |
| 583 | break; |
| 584 | case 3: |
| 585 | /* field BETWEEN const AND const */ |
| 586 | item= func_item->arguments()[0]->real_item(); |
| 587 | if (item->type() == Item::FIELD_ITEM) |
| 588 | { |
| 589 | args[0]= item; |
| 590 | for (int i= 1 ; i <= 2; i++) |
| 591 | { |
| 592 | item= func_item->arguments()[i]->real_item(); |
| 593 | if (!item->const_item()) |
| 594 | return 0; |
| 595 | args[i]= item; |
| 596 | if (check_item1_shorter_item2(args[0], args[i])) |
| 597 | return 0; |
| 598 | } |
| 599 | } |
| 600 | else |
| 601 | return 0; |
| 602 | } |
| 603 | return 1; |
| 604 | } |
| 605 | |
| 606 | |
| 607 | /** |
| 608 | Check whether a condition matches a key to get {MAX|MIN}(field):. |
| 609 | |
| 610 | For the index specified by the keyinfo parameter and an index that |
| 611 | contains the field as its component (field_part), the function |
| 612 | checks whether |
| 613 | |
| 614 | - the condition cond is a conjunction, |
| 615 | - all of its conjuncts refer to columns of the same table, and |
| 616 | - each conjunct is on one of the following forms: |
| 617 | - f_i = const_i or const_i = f_i or f_i IS NULL, |
| 618 | where f_i is part of the index |
| 619 | - field {<|<=|>=|>|=} const |
| 620 | - const {<|<=|>=|>|=} field |
| 621 | - field BETWEEN const_1 AND const_2 |
| 622 | |
| 623 | As a side-effect, the key value to be used for looking up the MIN/MAX value |
| 624 | is actually stored inside the Field object. An interesting feature is that |
| 625 | the function will find the most restrictive endpoint by over-eager |
| 626 | evaluation of the @c WHERE condition. It continually stores the current |
| 627 | endpoint inside the Field object. For a query such as |
| 628 | |
| 629 | @code |
| 630 | SELECT MIN(a) FROM t1 WHERE a > 3 AND a > 5; |
| 631 | @endcode |
| 632 | |
| 633 | the algorithm will recurse over the conjuction, storing first a 3 in the |
| 634 | field. In the next recursive invocation the expression a > 5 is evaluated |
| 635 | as 3 > 5 (Due to the dual nature of Field objects as value carriers and |
| 636 | field identifiers), which will obviously fail, leading to 5 being stored in |
| 637 | the Field object. |
| 638 | |
| 639 | @param[in] max_fl Set to true if we are optimizing MAX(), |
| 640 | false means we are optimizing %MIN() |
| 641 | @param[in, out] ref Reference to the structure where the function |
| 642 | stores the key value |
| 643 | @param[in] keyinfo Reference to the key info |
| 644 | @param[in] field_part Pointer to the key part for the field |
| 645 | @param[in] cond WHERE condition |
| 646 | @param[in,out] key_part_used Map of matchings parts. The function will output |
| 647 | the set of key parts actually being matched in |
| 648 | this set, yet it relies on the caller to |
| 649 | initialize the value to zero. This is due |
| 650 | to the fact that this value is passed |
| 651 | recursively. |
| 652 | @param[in,out] range_fl Says whether endpoints use strict greater/less |
| 653 | than. |
| 654 | @param[out] prefix_len Length of common key part for the range |
| 655 | where MAX/MIN is searched for |
| 656 | |
| 657 | @retval |
| 658 | false Index can't be used. |
| 659 | @retval |
| 660 | true We can use the index to get MIN/MAX value |
| 661 | */ |
| 662 | |
| 663 | static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo, |
| 664 | KEY_PART_INFO *field_part, COND *cond, |
| 665 | key_part_map *key_part_used, uint *range_fl, |
| 666 | uint *prefix_len) |
| 667 | { |
| 668 | DBUG_ENTER("matching_cond" ); |
| 669 | if (!cond) |
| 670 | DBUG_RETURN(TRUE); |
| 671 | Field *field= field_part->field; |
| 672 | table_map cond_used_tables= cond->used_tables(); |
| 673 | if (cond_used_tables & OUTER_REF_TABLE_BIT) |
| 674 | { |
| 675 | DBUG_RETURN(FALSE); |
| 676 | } |
| 677 | if (!(cond_used_tables & field->table->map) && |
| 678 | MY_TEST(cond_used_tables & ~PSEUDO_TABLE_BITS)) |
| 679 | { |
| 680 | /* Condition doesn't restrict the used table */ |
| 681 | DBUG_RETURN(!cond->const_item()); |
| 682 | } |
| 683 | else if (cond->is_expensive()) |
| 684 | DBUG_RETURN(FALSE); |
| 685 | if (cond->type() == Item::COND_ITEM) |
| 686 | { |
| 687 | if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC) |
| 688 | DBUG_RETURN(FALSE); |
| 689 | |
| 690 | /* AND */ |
| 691 | List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); |
| 692 | Item *item; |
| 693 | while ((item= li++)) |
| 694 | { |
| 695 | if (!matching_cond(max_fl, ref, keyinfo, field_part, item, |
| 696 | key_part_used, range_fl, prefix_len)) |
| 697 | DBUG_RETURN(FALSE); |
| 698 | } |
| 699 | DBUG_RETURN(TRUE); |
| 700 | } |
| 701 | |
| 702 | if (cond->type() != Item::FUNC_ITEM) |
| 703 | DBUG_RETURN(FALSE); // Not operator, can't optimize |
| 704 | |
| 705 | bool eq_type= 0; // =, <=> or IS NULL |
| 706 | bool is_null_safe_eq= FALSE; // The operator is NULL safe, e.g. <=> |
| 707 | bool noeq_type= 0; // < or > |
| 708 | bool less_fl= 0; // < or <= |
| 709 | bool is_null= 0; // IS NULL |
| 710 | bool between= 0; // BETWEEN ... AND ... |
| 711 | |
| 712 | switch (((Item_func*) cond)->functype()) { |
| 713 | case Item_func::ISNULL_FUNC: |
| 714 | is_null= 1; /* fall through */ |
| 715 | case Item_func::EQ_FUNC: |
| 716 | eq_type= TRUE; |
| 717 | break; |
| 718 | case Item_func::EQUAL_FUNC: |
| 719 | eq_type= is_null_safe_eq= TRUE; |
| 720 | break; |
| 721 | case Item_func::LT_FUNC: |
| 722 | noeq_type= 1; /* fall through */ |
| 723 | case Item_func::LE_FUNC: |
| 724 | less_fl= 1; |
| 725 | break; |
| 726 | case Item_func::GT_FUNC: |
| 727 | noeq_type= 1; /* fall through */ |
| 728 | case Item_func::GE_FUNC: |
| 729 | break; |
| 730 | case Item_func::BETWEEN: |
| 731 | if (((Item_func_between*) cond)->negated) |
| 732 | DBUG_RETURN(FALSE); |
| 733 | between= 1; |
| 734 | break; |
| 735 | case Item_func::MULT_EQUAL_FUNC: |
| 736 | eq_type= 1; |
| 737 | break; |
| 738 | default: |
| 739 | DBUG_RETURN(FALSE); // Can't optimize function |
| 740 | } |
| 741 | |
| 742 | Item *args[3]; |
| 743 | bool inv; |
| 744 | |
| 745 | /* Test if this is a comparison of a field and constant */ |
| 746 | if (!simple_pred((Item_func*) cond, args, &inv)) |
| 747 | DBUG_RETURN(FALSE); |
| 748 | |
| 749 | if (!is_null_safe_eq && !is_null && |
| 750 | (args[1]->is_null() || (between && args[2]->is_null()))) |
| 751 | DBUG_RETURN(FALSE); |
| 752 | |
| 753 | if (inv && !eq_type) |
| 754 | less_fl= 1-less_fl; // Convert '<' -> '>' (etc) |
| 755 | |
| 756 | /* Check if field is part of the tested partial key */ |
| 757 | uchar *key_ptr= ref->key_buff; |
| 758 | KEY_PART_INFO *part; |
| 759 | for (part= keyinfo->key_part; ; key_ptr+= part++->store_length) |
| 760 | |
| 761 | { |
| 762 | if (part > field_part) |
| 763 | DBUG_RETURN(FALSE); // Field is beyond the tested parts |
| 764 | if (part->field->eq(((Item_field*) args[0])->field)) |
| 765 | break; // Found a part of the key for the field |
| 766 | } |
| 767 | |
| 768 | bool is_field_part= part == field_part; |
| 769 | if (!(is_field_part || eq_type)) |
| 770 | DBUG_RETURN(FALSE); |
| 771 | |
| 772 | key_part_map org_key_part_used= *key_part_used; |
| 773 | if (eq_type || between || max_fl == less_fl) |
| 774 | { |
| 775 | uint length= (uint)(key_ptr-ref->key_buff)+part->store_length; |
| 776 | if (ref->key_length < length) |
| 777 | { |
| 778 | /* Ultimately ref->key_length will contain the length of the search key */ |
| 779 | ref->key_length= length; |
| 780 | ref->key_parts= (uint)(part - keyinfo->key_part) + 1; |
| 781 | } |
| 782 | if (!*prefix_len && part+1 == field_part) |
| 783 | *prefix_len= length; |
| 784 | if (is_field_part && eq_type) |
| 785 | *prefix_len= ref->key_length; |
| 786 | |
| 787 | *key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part); |
| 788 | } |
| 789 | |
| 790 | if (org_key_part_used == *key_part_used && |
| 791 | /* |
| 792 | The current search key is not being extended with a new key part. This |
| 793 | means that the a condition is added a key part for which there was a |
| 794 | previous condition. We can only overwrite such key parts in some special |
| 795 | cases, e.g. a > 2 AND a > 1 (here range_fl must be set to something). In |
| 796 | all other cases the WHERE condition is always false anyway. |
| 797 | */ |
| 798 | (eq_type || *range_fl == 0)) |
| 799 | DBUG_RETURN(FALSE); |
| 800 | |
| 801 | if (org_key_part_used != *key_part_used || |
| 802 | (is_field_part && |
| 803 | (between || eq_type || max_fl == less_fl) && !cond->val_int())) |
| 804 | { |
| 805 | /* |
| 806 | It's the first predicate for this part or a predicate of the |
| 807 | following form that moves upper/lower bounds for max/min values: |
| 808 | - field BETWEEN const AND const |
| 809 | - field = const |
| 810 | - field {<|<=} const, when searching for MAX |
| 811 | - field {>|>=} const, when searching for MIN |
| 812 | */ |
| 813 | |
| 814 | if (is_null || (is_null_safe_eq && args[1]->is_null())) |
| 815 | { |
| 816 | /* |
| 817 | If we have a non-nullable index, we cannot use it, |
| 818 | since set_null will be ignored, and we will compare uninitialized data. |
| 819 | */ |
| 820 | if (!part->field->real_maybe_null()) |
| 821 | DBUG_RETURN(FALSE); |
| 822 | part->field->set_null(); |
| 823 | *key_ptr= (uchar) 1; |
| 824 | } |
| 825 | else |
| 826 | { |
| 827 | /* Update endpoints for MAX/MIN, see function comment. */ |
| 828 | Item *value= args[between && max_fl ? 2 : 1]; |
| 829 | value->save_in_field_no_warnings(part->field, 1); |
| 830 | if (part->null_bit) |
| 831 | *key_ptr++= (uchar) MY_TEST(part->field->is_null()); |
| 832 | part->field->get_key_image(key_ptr, part->length, Field::itRAW); |
| 833 | } |
| 834 | if (is_field_part) |
| 835 | { |
| 836 | if (between || eq_type) |
| 837 | *range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE); |
| 838 | else |
| 839 | { |
| 840 | *range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE); |
| 841 | if (noeq_type) |
| 842 | *range_fl|= (max_fl ? NEAR_MAX : NEAR_MIN); |
| 843 | else |
| 844 | *range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN); |
| 845 | } |
| 846 | } |
| 847 | } |
| 848 | else if (eq_type) |
| 849 | { |
| 850 | if ((!is_null && !cond->val_int()) || |
| 851 | (is_null && !MY_TEST(part->field->is_null()))) |
| 852 | DBUG_RETURN(FALSE); // Impossible test |
| 853 | } |
| 854 | else if (is_field_part) |
| 855 | *range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE); |
| 856 | DBUG_RETURN(TRUE); |
| 857 | } |
| 858 | |
| 859 | |
| 860 | /** |
| 861 | Check whether we can get value for {max|min}(field) by using a key. |
| 862 | |
| 863 | If where-condition is not a conjunction of 0 or more conjuct the |
| 864 | function returns false, otherwise it checks whether there is an |
| 865 | index including field as its k-th component/part such that: |
| 866 | |
| 867 | -# for each previous component f_i there is one and only one conjunct |
| 868 | of the form: f_i= const_i or const_i= f_i or f_i is null |
| 869 | -# references to field occur only in conjucts of the form: |
| 870 | field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or |
| 871 | field BETWEEN const1 AND const2 |
| 872 | -# all references to the columns from the same table as column field |
| 873 | occur only in conjucts mentioned above. |
| 874 | -# each of k first components the index is not partial, i.e. is not |
| 875 | defined on a fixed length proper prefix of the field. |
| 876 | |
| 877 | If such an index exists the function through the ref parameter |
| 878 | returns the key value to find max/min for the field using the index, |
| 879 | the length of first (k-1) components of the key and flags saying |
| 880 | how to apply the key for the search max/min value. |
| 881 | (if we have a condition field = const, prefix_len contains the length |
| 882 | of the whole search key) |
| 883 | |
| 884 | @param[in] max_fl 0 for MIN(field) / 1 for MAX(field) |
| 885 | @param[in,out] ref Reference to the structure we store the key value |
| 886 | @param[in] field Field used inside MIN() / MAX() |
| 887 | @param[in] cond WHERE condition |
| 888 | @param[out] range_fl Bit flags for how to search if key is ok |
| 889 | @param[out] prefix_len Length of prefix for the search range |
| 890 | |
| 891 | @note |
| 892 | This function may set field->table->key_read to true, |
| 893 | which must be reset after index is used! |
| 894 | (This can only happen when function returns 1) |
| 895 | |
| 896 | @retval |
| 897 | 0 Index can not be used to optimize MIN(field)/MAX(field) |
| 898 | @retval |
| 899 | 1 Can use key to optimize MIN()/MAX(). |
| 900 | In this case ref, range_fl and prefix_len are updated |
| 901 | */ |
| 902 | |
| 903 | static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, |
| 904 | Field* field, COND *cond, |
| 905 | uint *range_fl, uint *prefix_len) |
| 906 | { |
| 907 | if (!(field->flags & PART_KEY_FLAG)) |
| 908 | return FALSE; // Not key field |
| 909 | |
| 910 | DBUG_ENTER("find_key_for_maxmin" ); |
| 911 | |
| 912 | TABLE *table= field->table; |
| 913 | uint idx= 0; |
| 914 | |
| 915 | KEY *keyinfo,*keyinfo_end; |
| 916 | for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ; |
| 917 | keyinfo != keyinfo_end; |
| 918 | keyinfo++,idx++) |
| 919 | { |
| 920 | KEY_PART_INFO *part,*part_end; |
| 921 | key_part_map key_part_to_use= 0; |
| 922 | /* |
| 923 | Perform a check if index is not disabled by ALTER TABLE |
| 924 | or IGNORE INDEX. |
| 925 | */ |
| 926 | if (!table->keys_in_use_for_query.is_set(idx)) |
| 927 | continue; |
| 928 | uint jdx= 0; |
| 929 | *prefix_len= 0; |
| 930 | part_end= keyinfo->key_part+table->actual_n_key_parts(keyinfo); |
| 931 | for (part= keyinfo->key_part ; |
| 932 | part != part_end ; |
| 933 | part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1) |
| 934 | { |
| 935 | if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER)) |
| 936 | DBUG_RETURN(FALSE); |
| 937 | |
| 938 | /* Check whether the index component is partial */ |
| 939 | Field *part_field= table->field[part->fieldnr-1]; |
| 940 | if ((part_field->flags & BLOB_FLAG) || |
| 941 | part->length < part_field->key_length()) |
| 942 | break; |
| 943 | |
| 944 | if (field->eq(part->field)) |
| 945 | { |
| 946 | ref->key= idx; |
| 947 | ref->key_length= 0; |
| 948 | ref->key_parts= 0; |
| 949 | key_part_map key_part_used= 0; |
| 950 | *range_fl= NO_MIN_RANGE | NO_MAX_RANGE; |
| 951 | if (matching_cond(max_fl, ref, keyinfo, part, cond, |
| 952 | &key_part_used, range_fl, prefix_len) && |
| 953 | !(key_part_to_use & ~key_part_used)) |
| 954 | { |
| 955 | if (!max_fl && key_part_used == key_part_to_use && part->null_bit) |
| 956 | { |
| 957 | /* |
| 958 | The query is on this form: |
| 959 | |
| 960 | SELECT MIN(key_part_k) |
| 961 | FROM t1 |
| 962 | WHERE key_part_1 = const and ... and key_part_k-1 = const |
| 963 | |
| 964 | If key_part_k is nullable, we want to find the first matching row |
| 965 | where key_part_k is not null. The key buffer is now {const, ..., |
| 966 | NULL}. This will be passed to the handler along with a flag |
| 967 | indicating open interval. If a tuple is read that does not match |
| 968 | these search criteria, an attempt will be made to read an exact |
| 969 | match for the key buffer. |
| 970 | */ |
| 971 | /* Set the first byte of key_part_k to 1, that means NULL */ |
| 972 | ref->key_buff[ref->key_length]= 1; |
| 973 | ref->key_length+= part->store_length; |
| 974 | ref->key_parts++; |
| 975 | DBUG_ASSERT(ref->key_parts == jdx+1); |
| 976 | *range_fl&= ~NO_MIN_RANGE; |
| 977 | *range_fl|= NEAR_MIN; // Open interval |
| 978 | } |
| 979 | /* |
| 980 | The following test is false when the key in the key tree is |
| 981 | converted (for example to upper case) |
| 982 | */ |
| 983 | if (field->part_of_key.is_set(idx)) |
| 984 | table->file->ha_start_keyread(idx); |
| 985 | DBUG_RETURN(TRUE); |
| 986 | } |
| 987 | } |
| 988 | } |
| 989 | } |
| 990 | DBUG_RETURN(FALSE); |
| 991 | } |
| 992 | |
| 993 | |
| 994 | /** |
| 995 | Check whether found key is in range specified by conditions. |
| 996 | |
| 997 | @param[in] max_fl 0 for MIN(field) / 1 for MAX(field) |
| 998 | @param[in] ref Reference to the key value and info |
| 999 | @param[in] field Field used the MIN/MAX expression |
| 1000 | @param[in] cond WHERE condition |
| 1001 | @param[in] range_fl Says whether there is a condition to to be checked |
| 1002 | @param[in] prefix_len Length of the constant part of the key |
| 1003 | |
| 1004 | @retval |
| 1005 | 0 ok |
| 1006 | @retval |
| 1007 | 1 WHERE was not true for the found row |
| 1008 | */ |
| 1009 | |
| 1010 | static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field, |
| 1011 | COND *cond, uint range_fl, uint prefix_len) |
| 1012 | { |
| 1013 | if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len)) |
| 1014 | return 1; |
| 1015 | if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE))) |
| 1016 | return 0; |
| 1017 | return maxmin_in_range(max_fl, field, cond); |
| 1018 | } |
| 1019 | |
| 1020 | |
| 1021 | /** |
| 1022 | Check whether {MAX|MIN}(field) is in range specified by conditions. |
| 1023 | |
| 1024 | @param[in] max_fl 0 for MIN(field) / 1 for MAX(field) |
| 1025 | @param[in] field Field used the MIN/MAX expression |
| 1026 | @param[in] cond WHERE condition |
| 1027 | |
| 1028 | @retval |
| 1029 | 0 ok |
| 1030 | @retval |
| 1031 | 1 WHERE was not true for the found row |
| 1032 | */ |
| 1033 | |
| 1034 | static int maxmin_in_range(bool max_fl, Field* field, COND *cond) |
| 1035 | { |
| 1036 | /* If AND/OR condition */ |
| 1037 | if (cond->type() == Item::COND_ITEM) |
| 1038 | { |
| 1039 | List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list()); |
| 1040 | Item *item; |
| 1041 | while ((item= li++)) |
| 1042 | { |
| 1043 | if (maxmin_in_range(max_fl, field, item)) |
| 1044 | return 1; |
| 1045 | } |
| 1046 | return 0; |
| 1047 | } |
| 1048 | |
| 1049 | if (cond->used_tables() != field->table->map) |
| 1050 | return 0; |
| 1051 | bool less_fl= 0; |
| 1052 | switch (((Item_func*) cond)->functype()) { |
| 1053 | case Item_func::BETWEEN: |
| 1054 | return cond->val_int() == 0; // Return 1 if WHERE is false |
| 1055 | case Item_func::LT_FUNC: |
| 1056 | case Item_func::LE_FUNC: |
| 1057 | less_fl= 1; |
| 1058 | /* fall through */ |
| 1059 | case Item_func::GT_FUNC: |
| 1060 | case Item_func::GE_FUNC: |
| 1061 | { |
| 1062 | Item *item= ((Item_func*) cond)->arguments()[1]; |
| 1063 | /* In case of 'const op item' we have to swap the operator */ |
| 1064 | if (!item->const_item()) |
| 1065 | less_fl= 1-less_fl; |
| 1066 | /* |
| 1067 | We only have to check the expression if we are using an expression like |
| 1068 | SELECT MAX(b) FROM t1 WHERE a=const AND b>const |
| 1069 | not for |
| 1070 | SELECT MAX(b) FROM t1 WHERE a=const AND b<const |
| 1071 | */ |
| 1072 | if (max_fl != less_fl) |
| 1073 | return cond->val_int() == 0; // Return 1 if WHERE is false |
| 1074 | return 0; |
| 1075 | } |
| 1076 | default: |
| 1077 | break; // Ignore |
| 1078 | } |
| 1079 | return 0; |
| 1080 | } |
| 1081 | |
| 1082 | |