| 1 | /* Copyright (c) 2000, 2014, Oracle and/or its affiliates. |
| 2 | Copyright (c) 2009, 2018, MariaDB Corporation |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 16 | |
| 17 | |
| 18 | /* A lexical scanner on a temporary buffer with a yacc interface */ |
| 19 | |
| 20 | #define MYSQL_LEX 1 |
| 21 | #include "mariadb.h" |
| 22 | #include "sql_priv.h" |
| 23 | #include "sql_class.h" // sql_lex.h: SQLCOM_END |
| 24 | #include "sql_lex.h" |
| 25 | #include "sql_parse.h" // add_to_list |
| 26 | #include "item_create.h" |
| 27 | #include <m_ctype.h> |
| 28 | #include <hash.h> |
| 29 | #include "sp_head.h" |
| 30 | #include "sp.h" |
| 31 | #include "sql_select.h" |
| 32 | #include "sql_cte.h" |
| 33 | #include "sql_signal.h" |
| 34 | #include "sql_partition.h" |
| 35 | |
| 36 | |
| 37 | void LEX::parse_error(uint err_number) |
| 38 | { |
| 39 | thd->parse_error(err_number); |
| 40 | } |
| 41 | |
| 42 | |
| 43 | /** |
| 44 | LEX_STRING constant for null-string to be used in parser and other places. |
| 45 | */ |
| 46 | const LEX_STRING empty_lex_str= {(char *) "" , 0}; |
| 47 | const LEX_CSTRING null_clex_str= {NULL, 0}; |
| 48 | const LEX_CSTRING empty_clex_str= {"" , 0}; |
| 49 | const LEX_CSTRING star_clex_str= {"*" , 1}; |
| 50 | const LEX_CSTRING param_clex_str= {"?" , 1}; |
| 51 | |
| 52 | /** |
| 53 | @note The order of the elements of this array must correspond to |
| 54 | the order of elements in enum_binlog_stmt_unsafe. |
| 55 | */ |
| 56 | const int |
| 57 | Query_tables_list::binlog_stmt_unsafe_errcode[BINLOG_STMT_UNSAFE_COUNT] = |
| 58 | { |
| 59 | ER_BINLOG_UNSAFE_LIMIT, |
| 60 | ER_BINLOG_UNSAFE_INSERT_DELAYED, |
| 61 | ER_BINLOG_UNSAFE_SYSTEM_TABLE, |
| 62 | ER_BINLOG_UNSAFE_AUTOINC_COLUMNS, |
| 63 | ER_BINLOG_UNSAFE_UDF, |
| 64 | ER_BINLOG_UNSAFE_SYSTEM_VARIABLE, |
| 65 | ER_BINLOG_UNSAFE_SYSTEM_FUNCTION, |
| 66 | ER_BINLOG_UNSAFE_NONTRANS_AFTER_TRANS, |
| 67 | ER_BINLOG_UNSAFE_MULTIPLE_ENGINES_AND_SELF_LOGGING_ENGINE, |
| 68 | ER_BINLOG_UNSAFE_MIXED_STATEMENT, |
| 69 | ER_BINLOG_UNSAFE_INSERT_IGNORE_SELECT, |
| 70 | ER_BINLOG_UNSAFE_INSERT_SELECT_UPDATE, |
| 71 | ER_BINLOG_UNSAFE_WRITE_AUTOINC_SELECT, |
| 72 | ER_BINLOG_UNSAFE_REPLACE_SELECT, |
| 73 | ER_BINLOG_UNSAFE_CREATE_IGNORE_SELECT, |
| 74 | ER_BINLOG_UNSAFE_CREATE_REPLACE_SELECT, |
| 75 | ER_BINLOG_UNSAFE_CREATE_SELECT_AUTOINC, |
| 76 | ER_BINLOG_UNSAFE_UPDATE_IGNORE, |
| 77 | ER_BINLOG_UNSAFE_INSERT_TWO_KEYS, |
| 78 | ER_BINLOG_UNSAFE_AUTOINC_NOT_FIRST |
| 79 | }; |
| 80 | |
| 81 | |
| 82 | /* Longest standard keyword name */ |
| 83 | |
| 84 | #define TOCK_NAME_LENGTH 24 |
| 85 | |
| 86 | /* |
| 87 | The following data is based on the latin1 character set, and is only |
| 88 | used when comparing keywords |
| 89 | */ |
| 90 | |
| 91 | static uchar to_upper_lex[]= |
| 92 | { |
| 93 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 94 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 95 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 96 | 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, |
| 97 | 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 98 | 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, |
| 99 | 96, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, |
| 100 | 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,123,124,125,126,127, |
| 101 | 128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, |
| 102 | 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, |
| 103 | 160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175, |
| 104 | 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, |
| 105 | 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, |
| 106 | 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223, |
| 107 | 192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207, |
| 108 | 208,209,210,211,212,213,214,247,216,217,218,219,220,221,222,255 |
| 109 | }; |
| 110 | |
| 111 | /* |
| 112 | Names of the index hints (for error messages). Keep in sync with |
| 113 | index_hint_type |
| 114 | */ |
| 115 | |
| 116 | const char * index_hint_type_name[] = |
| 117 | { |
| 118 | "IGNORE INDEX" , |
| 119 | "USE INDEX" , |
| 120 | "FORCE INDEX" |
| 121 | }; |
| 122 | |
| 123 | inline int lex_casecmp(const char *s, const char *t, uint len) |
| 124 | { |
| 125 | while (len-- != 0 && |
| 126 | to_upper_lex[(uchar) *s++] == to_upper_lex[(uchar) *t++]) ; |
| 127 | return (int) len+1; |
| 128 | } |
| 129 | |
| 130 | #include <lex_hash.h> |
| 131 | |
| 132 | |
| 133 | void lex_init(void) |
| 134 | { |
| 135 | uint i; |
| 136 | DBUG_ENTER("lex_init" ); |
| 137 | for (i=0 ; i < array_elements(symbols) ; i++) |
| 138 | symbols[i].length=(uchar) strlen(symbols[i].name); |
| 139 | for (i=0 ; i < array_elements(sql_functions) ; i++) |
| 140 | sql_functions[i].length=(uchar) strlen(sql_functions[i].name); |
| 141 | |
| 142 | DBUG_VOID_RETURN; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | void lex_free(void) |
| 147 | { // Call this when daemon ends |
| 148 | DBUG_ENTER("lex_free" ); |
| 149 | DBUG_VOID_RETURN; |
| 150 | } |
| 151 | |
| 152 | /** |
| 153 | Initialize lex object for use in fix_fields and parsing. |
| 154 | |
| 155 | SYNOPSIS |
| 156 | init_lex_with_single_table() |
| 157 | @param thd The thread object |
| 158 | @param table The table object |
| 159 | @return Operation status |
| 160 | @retval TRUE An error occurred, memory allocation error |
| 161 | @retval FALSE Ok |
| 162 | |
| 163 | DESCRIPTION |
| 164 | This function is used to initialize a lex object on the |
| 165 | stack for use by fix_fields and for parsing. In order to |
| 166 | work properly it also needs to initialize the |
| 167 | Name_resolution_context object of the lexer. |
| 168 | Finally it needs to set a couple of variables to ensure |
| 169 | proper functioning of fix_fields. |
| 170 | */ |
| 171 | |
| 172 | int |
| 173 | init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex) |
| 174 | { |
| 175 | TABLE_LIST *table_list; |
| 176 | Table_ident *table_ident; |
| 177 | SELECT_LEX *select_lex= &lex->select_lex; |
| 178 | Name_resolution_context *context= &select_lex->context; |
| 179 | /* |
| 180 | We will call the parser to create a part_info struct based on the |
| 181 | partition string stored in the frm file. |
| 182 | We will use a local lex object for this purpose. However we also |
| 183 | need to set the Name_resolution_object for this lex object. We |
| 184 | do this by using add_table_to_list where we add the table that |
| 185 | we're working with to the Name_resolution_context. |
| 186 | */ |
| 187 | thd->lex= lex; |
| 188 | lex_start(thd); |
| 189 | context->init(); |
| 190 | if (unlikely((!(table_ident= new Table_ident(thd, |
| 191 | &table->s->db, |
| 192 | &table->s->table_name, |
| 193 | TRUE)))) || |
| 194 | (unlikely(!(table_list= select_lex->add_table_to_list(thd, |
| 195 | table_ident, |
| 196 | NULL, |
| 197 | 0))))) |
| 198 | return TRUE; |
| 199 | context->resolve_in_table_list_only(table_list); |
| 200 | lex->use_only_table_context= TRUE; |
| 201 | lex->context_analysis_only|= CONTEXT_ANALYSIS_ONLY_VCOL_EXPR; |
| 202 | select_lex->cur_pos_in_select_list= UNDEF_POS; |
| 203 | table->map= 1; //To ensure correct calculation of const item |
| 204 | table_list->table= table; |
| 205 | table_list->cacheable_table= false; |
| 206 | return FALSE; |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | End use of local lex with single table |
| 211 | |
| 212 | SYNOPSIS |
| 213 | end_lex_with_single_table() |
| 214 | @param thd The thread object |
| 215 | @param table The table object |
| 216 | @param old_lex The real lex object connected to THD |
| 217 | |
| 218 | DESCRIPTION |
| 219 | This function restores the real lex object after calling |
| 220 | init_lex_with_single_table and also restores some table |
| 221 | variables temporarily set. |
| 222 | */ |
| 223 | |
| 224 | void |
| 225 | end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex) |
| 226 | { |
| 227 | LEX *lex= thd->lex; |
| 228 | table->map= 0; |
| 229 | table->get_fields_in_item_tree= FALSE; |
| 230 | lex_end(lex); |
| 231 | thd->lex= old_lex; |
| 232 | } |
| 233 | |
| 234 | |
| 235 | void |
| 236 | st_parsing_options::reset() |
| 237 | { |
| 238 | allows_variable= TRUE; |
| 239 | } |
| 240 | |
| 241 | |
| 242 | /** |
| 243 | Perform initialization of Lex_input_stream instance. |
| 244 | |
| 245 | Basically, a buffer for pre-processed query. This buffer should be large |
| 246 | enough to keep multi-statement query. The allocation is done once in |
| 247 | Lex_input_stream::init() in order to prevent memory pollution when |
| 248 | the server is processing large multi-statement queries. |
| 249 | */ |
| 250 | |
| 251 | bool Lex_input_stream::init(THD *thd, |
| 252 | char* buff, |
| 253 | size_t length) |
| 254 | { |
| 255 | DBUG_EXECUTE_IF("bug42064_simulate_oom" , |
| 256 | DBUG_SET("+d,simulate_out_of_memory" );); |
| 257 | |
| 258 | m_cpp_buf= (char*) thd->alloc(length + 1); |
| 259 | |
| 260 | DBUG_EXECUTE_IF("bug42064_simulate_oom" , |
| 261 | DBUG_SET("-d,bug42064_simulate_oom" );); |
| 262 | |
| 263 | if (m_cpp_buf == NULL) |
| 264 | return true; |
| 265 | |
| 266 | m_thd= thd; |
| 267 | reset(buff, length); |
| 268 | |
| 269 | return false; |
| 270 | } |
| 271 | |
| 272 | |
| 273 | /** |
| 274 | Prepare Lex_input_stream instance state for use for handling next SQL statement. |
| 275 | |
| 276 | It should be called between two statements in a multi-statement query. |
| 277 | The operation resets the input stream to the beginning-of-parse state, |
| 278 | but does not reallocate m_cpp_buf. |
| 279 | */ |
| 280 | |
| 281 | void |
| 282 | Lex_input_stream::reset(char *buffer, size_t length) |
| 283 | { |
| 284 | yylineno= 1; |
| 285 | lookahead_token= -1; |
| 286 | lookahead_yylval= NULL; |
| 287 | m_ptr= buffer; |
| 288 | m_tok_start= NULL; |
| 289 | m_tok_end= NULL; |
| 290 | m_end_of_query= buffer + length; |
| 291 | m_tok_start_prev= NULL; |
| 292 | m_buf= buffer; |
| 293 | m_buf_length= length; |
| 294 | m_echo= TRUE; |
| 295 | m_cpp_tok_start= NULL; |
| 296 | m_cpp_tok_start_prev= NULL; |
| 297 | m_cpp_tok_end= NULL; |
| 298 | m_body_utf8= NULL; |
| 299 | m_cpp_utf8_processed_ptr= NULL; |
| 300 | next_state= MY_LEX_START; |
| 301 | found_semicolon= NULL; |
| 302 | ignore_space= MY_TEST(m_thd->variables.sql_mode & MODE_IGNORE_SPACE); |
| 303 | stmt_prepare_mode= FALSE; |
| 304 | multi_statements= TRUE; |
| 305 | in_comment=NO_COMMENT; |
| 306 | m_underscore_cs= NULL; |
| 307 | m_cpp_ptr= m_cpp_buf; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | /** |
| 312 | The operation is called from the parser in order to |
| 313 | 1) designate the intention to have utf8 body; |
| 314 | 1) Indicate to the lexer that we will need a utf8 representation of this |
| 315 | statement; |
| 316 | 2) Determine the beginning of the body. |
| 317 | |
| 318 | @param thd Thread context. |
| 319 | @param begin_ptr Pointer to the start of the body in the pre-processed |
| 320 | buffer. |
| 321 | */ |
| 322 | |
| 323 | void Lex_input_stream::body_utf8_start(THD *thd, const char *begin_ptr) |
| 324 | { |
| 325 | DBUG_ASSERT(begin_ptr); |
| 326 | DBUG_ASSERT(m_cpp_buf <= begin_ptr && begin_ptr <= m_cpp_buf + m_buf_length); |
| 327 | |
| 328 | size_t body_utf8_length= get_body_utf8_maximum_length(thd); |
| 329 | |
| 330 | m_body_utf8= (char *) thd->alloc(body_utf8_length + 1); |
| 331 | m_body_utf8_ptr= m_body_utf8; |
| 332 | *m_body_utf8_ptr= 0; |
| 333 | |
| 334 | m_cpp_utf8_processed_ptr= begin_ptr; |
| 335 | } |
| 336 | |
| 337 | |
| 338 | size_t Lex_input_stream::get_body_utf8_maximum_length(THD *thd) |
| 339 | { |
| 340 | /* |
| 341 | String literals can grow during escaping: |
| 342 | 1a. Character string '<TAB>' can grow to '\t', 3 bytes to 4 bytes growth. |
| 343 | 1b. Character string '1000 times <TAB>' grows from |
| 344 | 1002 to 2002 bytes (including quotes), which gives a little bit |
| 345 | less than 2 times growth. |
| 346 | "2" should be a reasonable multiplier that safely covers escaping needs. |
| 347 | */ |
| 348 | return (m_buf_length / thd->variables.character_set_client->mbminlen) * |
| 349 | my_charset_utf8_bin.mbmaxlen * 2/*for escaping*/; |
| 350 | } |
| 351 | |
| 352 | |
| 353 | /** |
| 354 | @brief The operation appends unprocessed part of pre-processed buffer till |
| 355 | the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to end_ptr. |
| 356 | |
| 357 | The idea is that some tokens in the pre-processed buffer (like character |
| 358 | set introducers) should be skipped. |
| 359 | |
| 360 | Example: |
| 361 | CPP buffer: SELECT 'str1', _latin1 'str2'; |
| 362 | m_cpp_utf8_processed_ptr -- points at the "SELECT ..."; |
| 363 | In order to skip "_latin1", the following call should be made: |
| 364 | body_utf8_append(<pointer to "_latin1 ...">, <pointer to " 'str2'...">) |
| 365 | |
| 366 | @param ptr Pointer in the pre-processed buffer, which specifies the |
| 367 | end of the chunk, which should be appended to the utf8 |
| 368 | body. |
| 369 | @param end_ptr Pointer in the pre-processed buffer, to which |
| 370 | m_cpp_utf8_processed_ptr will be set in the end of the |
| 371 | operation. |
| 372 | */ |
| 373 | |
| 374 | void Lex_input_stream::body_utf8_append(const char *ptr, |
| 375 | const char *end_ptr) |
| 376 | { |
| 377 | DBUG_ASSERT(m_cpp_buf <= ptr && ptr <= m_cpp_buf + m_buf_length); |
| 378 | DBUG_ASSERT(m_cpp_buf <= end_ptr && end_ptr <= m_cpp_buf + m_buf_length); |
| 379 | |
| 380 | if (!m_body_utf8) |
| 381 | return; |
| 382 | |
| 383 | if (m_cpp_utf8_processed_ptr >= ptr) |
| 384 | return; |
| 385 | |
| 386 | size_t bytes_to_copy= ptr - m_cpp_utf8_processed_ptr; |
| 387 | |
| 388 | memcpy(m_body_utf8_ptr, m_cpp_utf8_processed_ptr, bytes_to_copy); |
| 389 | m_body_utf8_ptr += bytes_to_copy; |
| 390 | *m_body_utf8_ptr= 0; |
| 391 | |
| 392 | m_cpp_utf8_processed_ptr= end_ptr; |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | The operation appends unprocessed part of the pre-processed buffer till |
| 397 | the given pointer (ptr) and sets m_cpp_utf8_processed_ptr to ptr. |
| 398 | |
| 399 | @param ptr Pointer in the pre-processed buffer, which specifies the end |
| 400 | of the chunk, which should be appended to the utf8 body. |
| 401 | */ |
| 402 | |
| 403 | void Lex_input_stream::body_utf8_append(const char *ptr) |
| 404 | { |
| 405 | body_utf8_append(ptr, ptr); |
| 406 | } |
| 407 | |
| 408 | /** |
| 409 | The operation converts the specified text literal to the utf8 and appends |
| 410 | the result to the utf8-body. |
| 411 | |
| 412 | @param thd Thread context. |
| 413 | @param txt Text literal. |
| 414 | @param txt_cs Character set of the text literal. |
| 415 | @param end_ptr Pointer in the pre-processed buffer, to which |
| 416 | m_cpp_utf8_processed_ptr will be set in the end of the |
| 417 | operation. |
| 418 | */ |
| 419 | |
| 420 | void |
| 421 | Lex_input_stream::body_utf8_append_ident(THD *thd, |
| 422 | const Lex_string_with_metadata_st *txt, |
| 423 | const char *end_ptr) |
| 424 | { |
| 425 | if (!m_cpp_utf8_processed_ptr) |
| 426 | return; |
| 427 | |
| 428 | LEX_CSTRING utf_txt; |
| 429 | thd->make_text_string_sys(&utf_txt, txt); // QQ: check return value? |
| 430 | |
| 431 | /* NOTE: utf_txt.length is in bytes, not in symbols. */ |
| 432 | memcpy(m_body_utf8_ptr, utf_txt.str, utf_txt.length); |
| 433 | m_body_utf8_ptr += utf_txt.length; |
| 434 | *m_body_utf8_ptr= 0; |
| 435 | |
| 436 | m_cpp_utf8_processed_ptr= end_ptr; |
| 437 | } |
| 438 | |
| 439 | |
| 440 | |
| 441 | |
| 442 | extern "C" { |
| 443 | |
| 444 | /** |
| 445 | Escape a character. Consequently puts "escape" and "wc" characters into |
| 446 | the destination utf8 string. |
| 447 | @param cs - the character set (utf8) |
| 448 | @param escape - the escape character (backslash, single quote, double quote) |
| 449 | @param wc - the character to be escaped |
| 450 | @param str - the destination string |
| 451 | @param end - the end of the destination string |
| 452 | @returns - a code according to the wc_mb() convension. |
| 453 | */ |
| 454 | int my_wc_mb_utf8_with_escape(CHARSET_INFO *cs, my_wc_t escape, my_wc_t wc, |
| 455 | uchar *str, uchar *end) |
| 456 | { |
| 457 | DBUG_ASSERT(escape > 0); |
| 458 | if (str + 1 >= end) |
| 459 | return MY_CS_TOOSMALL2; // Not enough space, need at least two bytes. |
| 460 | *str= (uchar)escape; |
| 461 | int cnvres= my_charset_utf8_handler.wc_mb(cs, wc, str + 1, end); |
| 462 | if (cnvres > 0) |
| 463 | return cnvres + 1; // The character was normally put |
| 464 | if (cnvres == MY_CS_ILUNI) |
| 465 | return MY_CS_ILUNI; // Could not encode "wc" (e.g. non-BMP character) |
| 466 | DBUG_ASSERT(cnvres <= MY_CS_TOOSMALL); |
| 467 | return cnvres - 1; // Not enough space |
| 468 | } |
| 469 | |
| 470 | |
| 471 | /** |
| 472 | Optionally escape a character. |
| 473 | If "escape" is non-zero, then both "escape" and "wc" are put to |
| 474 | the destination string. Otherwise, only "wc" is put. |
| 475 | @param cs - the character set (utf8) |
| 476 | @param wc - the character to be optionally escaped |
| 477 | @param escape - the escape character, or 0 |
| 478 | @param ewc - the escaped replacement of "wc" (e.g. 't' for '\t') |
| 479 | @param str - the destination string |
| 480 | @param end - the end of the destination string |
| 481 | @returns - a code according to the wc_mb() conversion. |
| 482 | */ |
| 483 | int my_wc_mb_utf8_opt_escape(CHARSET_INFO *cs, |
| 484 | my_wc_t wc, my_wc_t escape, my_wc_t ewc, |
| 485 | uchar *str, uchar *end) |
| 486 | { |
| 487 | return escape ? my_wc_mb_utf8_with_escape(cs, escape, ewc, str, end) : |
| 488 | my_charset_utf8_handler.wc_mb(cs, wc, str, end); |
| 489 | } |
| 490 | |
| 491 | /** |
| 492 | Encode a character with optional backlash escaping and quote escaping. |
| 493 | Quote marks are escaped using another quote mark. |
| 494 | Additionally, if "escape" is non-zero, then special characters are |
| 495 | also escaped using "escape". |
| 496 | Otherwise (if "escape" is zero, e.g. in case of MODE_NO_BACKSLASH_ESCAPES), |
| 497 | then special characters are not escaped and handled as normal characters. |
| 498 | |
| 499 | @param cs - the character set (utf8) |
| 500 | @param wc - the character to be encoded |
| 501 | @param str - the destination string |
| 502 | @param end - the end of the destination string |
| 503 | @param sep - the string delimiter (e.g. ' or ") |
| 504 | @param escape - the escape character (backslash, or 0) |
| 505 | @returns - a code according to the wc_mb() convension. |
| 506 | */ |
| 507 | int my_wc_mb_utf8_escape(CHARSET_INFO *cs, my_wc_t wc, uchar *str, uchar *end, |
| 508 | my_wc_t sep, my_wc_t escape) |
| 509 | { |
| 510 | DBUG_ASSERT(escape == 0 || escape == '\\'); |
| 511 | DBUG_ASSERT(sep == '"' || sep == '\''); |
| 512 | switch (wc) { |
| 513 | case 0: return my_wc_mb_utf8_opt_escape(cs, wc, escape, '0', str, end); |
| 514 | case '\t': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 't', str, end); |
| 515 | case '\r': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'r', str, end); |
| 516 | case '\n': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'n', str, end); |
| 517 | case '\032': return my_wc_mb_utf8_opt_escape(cs, wc, escape, 'Z', str, end); |
| 518 | case '\'': |
| 519 | case '\"': |
| 520 | if (wc == sep) |
| 521 | return my_wc_mb_utf8_with_escape(cs, wc, wc, str, end); |
| 522 | } |
| 523 | return my_charset_utf8_handler.wc_mb(cs, wc, str, end); // No escaping needed |
| 524 | } |
| 525 | |
| 526 | |
| 527 | /** wc_mb() compatible routines for all sql_mode and delimiter combinations */ |
| 528 | int my_wc_mb_utf8_escape_single_quote_and_backslash(CHARSET_INFO *cs, |
| 529 | my_wc_t wc, |
| 530 | uchar *str, uchar *end) |
| 531 | { |
| 532 | return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', '\\'); |
| 533 | } |
| 534 | |
| 535 | |
| 536 | int my_wc_mb_utf8_escape_double_quote_and_backslash(CHARSET_INFO *cs, |
| 537 | my_wc_t wc, |
| 538 | uchar *str, uchar *end) |
| 539 | { |
| 540 | return my_wc_mb_utf8_escape(cs, wc, str, end, '"', '\\'); |
| 541 | } |
| 542 | |
| 543 | |
| 544 | int my_wc_mb_utf8_escape_single_quote(CHARSET_INFO *cs, my_wc_t wc, |
| 545 | uchar *str, uchar *end) |
| 546 | { |
| 547 | return my_wc_mb_utf8_escape(cs, wc, str, end, '\'', 0); |
| 548 | } |
| 549 | |
| 550 | |
| 551 | int my_wc_mb_utf8_escape_double_quote(CHARSET_INFO *cs, my_wc_t wc, |
| 552 | uchar *str, uchar *end) |
| 553 | { |
| 554 | return my_wc_mb_utf8_escape(cs, wc, str, end, '"', 0); |
| 555 | } |
| 556 | |
| 557 | }; // End of extern "C" |
| 558 | |
| 559 | |
| 560 | /** |
| 561 | Get an escaping function, depending on the current sql_mode and the |
| 562 | string separator. |
| 563 | */ |
| 564 | my_charset_conv_wc_mb |
| 565 | Lex_input_stream::get_escape_func(THD *thd, my_wc_t sep) const |
| 566 | { |
| 567 | return thd->backslash_escapes() ? |
| 568 | (sep == '"' ? my_wc_mb_utf8_escape_double_quote_and_backslash: |
| 569 | my_wc_mb_utf8_escape_single_quote_and_backslash) : |
| 570 | (sep == '"' ? my_wc_mb_utf8_escape_double_quote: |
| 571 | my_wc_mb_utf8_escape_single_quote); |
| 572 | } |
| 573 | |
| 574 | |
| 575 | /** |
| 576 | Append a text literal to the end of m_body_utf8. |
| 577 | The string is escaped according to the current sql_mode and the |
| 578 | string delimiter (e.g. ' or "). |
| 579 | |
| 580 | @param thd - current THD |
| 581 | @param txt - the string to be appended to m_body_utf8. |
| 582 | Note, the string must be already unescaped. |
| 583 | @param cs - the character set of the string |
| 584 | @param end_ptr - m_cpp_utf8_processed_ptr will be set to this value |
| 585 | (see body_utf8_append_ident for details) |
| 586 | @param sep - the string delimiter (single or double quote) |
| 587 | */ |
| 588 | void Lex_input_stream::body_utf8_append_escape(THD *thd, |
| 589 | const LEX_CSTRING *txt, |
| 590 | CHARSET_INFO *cs, |
| 591 | const char *end_ptr, |
| 592 | my_wc_t sep) |
| 593 | { |
| 594 | DBUG_ASSERT(sep == '\'' || sep == '"'); |
| 595 | if (!m_cpp_utf8_processed_ptr) |
| 596 | return; |
| 597 | uint errors; |
| 598 | /** |
| 599 | We previously alloced m_body_utf8 to be able to store the query with all |
| 600 | strings properly escaped. See get_body_utf8_maximum_length(). |
| 601 | So here we have guaranteedly enough space to append any string literal |
| 602 | with escaping. Passing txt->length*2 as "available space" is always safe. |
| 603 | For better safety purposes we could calculate get_body_utf8_maximum_length() |
| 604 | every time we append a string, but this would affect performance negatively, |
| 605 | so let's check that we don't get beyond the allocated buffer in |
| 606 | debug build only. |
| 607 | */ |
| 608 | DBUG_ASSERT(m_body_utf8 + get_body_utf8_maximum_length(thd) >= |
| 609 | m_body_utf8_ptr + txt->length * 2); |
| 610 | uint32 cnv_length= my_convert_using_func(m_body_utf8_ptr, txt->length * 2, |
| 611 | &my_charset_utf8_general_ci, |
| 612 | get_escape_func(thd, sep), |
| 613 | txt->str, txt->length, |
| 614 | cs, cs->cset->mb_wc, |
| 615 | &errors); |
| 616 | m_body_utf8_ptr+= cnv_length; |
| 617 | *m_body_utf8_ptr= 0; |
| 618 | m_cpp_utf8_processed_ptr= end_ptr; |
| 619 | } |
| 620 | |
| 621 | |
| 622 | void Lex_input_stream::add_digest_token(uint token, LEX_YYSTYPE yylval) |
| 623 | { |
| 624 | if (m_digest != NULL) |
| 625 | { |
| 626 | m_digest= digest_add_token(m_digest, token, yylval); |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | void Lex_input_stream::reduce_digest_token(uint token_left, uint token_right) |
| 631 | { |
| 632 | if (m_digest != NULL) |
| 633 | { |
| 634 | m_digest= digest_reduce_token(m_digest, token_left, token_right); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | void lex_start(THD *thd) |
| 639 | { |
| 640 | DBUG_ENTER("lex_start" ); |
| 641 | thd->lex->start(thd); |
| 642 | DBUG_VOID_RETURN; |
| 643 | } |
| 644 | |
| 645 | |
| 646 | /* |
| 647 | This is called before every query that is to be parsed. |
| 648 | Because of this, it's critical to not do too much things here. |
| 649 | (We already do too much here) |
| 650 | */ |
| 651 | |
| 652 | void LEX::start(THD *thd_arg) |
| 653 | { |
| 654 | DBUG_ENTER("LEX::start" ); |
| 655 | DBUG_PRINT("info" , ("This: %p thd_arg->lex: %p" , this, thd_arg->lex)); |
| 656 | |
| 657 | thd= unit.thd= thd_arg; |
| 658 | stmt_lex= this; // default, should be rewritten for VIEWs And CTEs |
| 659 | |
| 660 | DBUG_ASSERT(!explain); |
| 661 | |
| 662 | context_stack.empty(); |
| 663 | unit.init_query(); |
| 664 | current_select_number= 1; |
| 665 | select_lex.linkage= UNSPECIFIED_TYPE; |
| 666 | /* 'parent_lex' is used in init_query() so it must be before it. */ |
| 667 | select_lex.parent_lex= this; |
| 668 | select_lex.init_query(); |
| 669 | curr_with_clause= 0; |
| 670 | with_clauses_list= 0; |
| 671 | with_clauses_list_last_next= &with_clauses_list; |
| 672 | create_view= NULL; |
| 673 | value_list.empty(); |
| 674 | update_list.empty(); |
| 675 | set_var_list.empty(); |
| 676 | param_list.empty(); |
| 677 | view_list.empty(); |
| 678 | with_column_list.empty(); |
| 679 | with_persistent_for_clause= FALSE; |
| 680 | column_list= NULL; |
| 681 | index_list= NULL; |
| 682 | prepared_stmt_params.empty(); |
| 683 | auxiliary_table_list.empty(); |
| 684 | unit.next= unit.master= unit.link_next= unit.return_to= 0; |
| 685 | unit.prev= unit.link_prev= 0; |
| 686 | unit.slave= current_select= all_selects_list= &select_lex; |
| 687 | select_lex.master= &unit; |
| 688 | select_lex.prev= &unit.slave; |
| 689 | select_lex.link_next= select_lex.slave= select_lex.next= 0; |
| 690 | select_lex.link_prev= (st_select_lex_node**)&(all_selects_list); |
| 691 | select_lex.options= 0; |
| 692 | select_lex.sql_cache= SELECT_LEX::SQL_CACHE_UNSPECIFIED; |
| 693 | select_lex.init_order(); |
| 694 | select_lex.group_list.empty(); |
| 695 | if (select_lex.group_list_ptrs) |
| 696 | select_lex.group_list_ptrs->clear(); |
| 697 | describe= 0; |
| 698 | analyze_stmt= 0; |
| 699 | explain_json= false; |
| 700 | subqueries= FALSE; |
| 701 | context_analysis_only= 0; |
| 702 | derived_tables= 0; |
| 703 | safe_to_cache_query= 1; |
| 704 | parsing_options.reset(); |
| 705 | empty_field_list_on_rset= 0; |
| 706 | select_lex.select_number= 1; |
| 707 | part_info= 0; |
| 708 | select_lex.in_sum_expr=0; |
| 709 | select_lex.ftfunc_list_alloc.empty(); |
| 710 | select_lex.ftfunc_list= &select_lex.ftfunc_list_alloc; |
| 711 | select_lex.group_list.empty(); |
| 712 | select_lex.order_list.empty(); |
| 713 | select_lex.gorder_list.empty(); |
| 714 | m_sql_cmd= NULL; |
| 715 | duplicates= DUP_ERROR; |
| 716 | ignore= 0; |
| 717 | spname= NULL; |
| 718 | spcont= NULL; |
| 719 | proc_list.first= 0; |
| 720 | escape_used= FALSE; |
| 721 | default_used= FALSE; |
| 722 | query_tables= 0; |
| 723 | reset_query_tables_list(FALSE); |
| 724 | expr_allows_subselect= TRUE; |
| 725 | use_only_table_context= FALSE; |
| 726 | parse_vcol_expr= FALSE; |
| 727 | check_exists= FALSE; |
| 728 | create_info.lex_start(); |
| 729 | verbose= 0; |
| 730 | |
| 731 | name= null_clex_str; |
| 732 | event_parse_data= NULL; |
| 733 | profile_options= PROFILE_NONE; |
| 734 | nest_level=0 ; |
| 735 | select_lex.nest_level_base= &unit; |
| 736 | allow_sum_func= 0; |
| 737 | in_sum_func= NULL; |
| 738 | |
| 739 | used_tables= 0; |
| 740 | table_type= TABLE_TYPE_UNKNOWN; |
| 741 | reset_slave_info.all= false; |
| 742 | limit_rows_examined= 0; |
| 743 | limit_rows_examined_cnt= ULONGLONG_MAX; |
| 744 | var_list.empty(); |
| 745 | stmt_var_list.empty(); |
| 746 | proc_list.elements=0; |
| 747 | |
| 748 | save_group_list.empty(); |
| 749 | save_order_list.empty(); |
| 750 | win_ref= NULL; |
| 751 | win_frame= NULL; |
| 752 | frame_top_bound= NULL; |
| 753 | frame_bottom_bound= NULL; |
| 754 | win_spec= NULL; |
| 755 | |
| 756 | vers_conditions.empty(); |
| 757 | |
| 758 | is_lex_started= TRUE; |
| 759 | DBUG_VOID_RETURN; |
| 760 | } |
| 761 | |
| 762 | void lex_end(LEX *lex) |
| 763 | { |
| 764 | DBUG_ENTER("lex_end" ); |
| 765 | DBUG_PRINT("enter" , ("lex: %p" , lex)); |
| 766 | |
| 767 | lex_end_stage1(lex); |
| 768 | lex_end_stage2(lex); |
| 769 | |
| 770 | DBUG_VOID_RETURN; |
| 771 | } |
| 772 | |
| 773 | void lex_end_stage1(LEX *lex) |
| 774 | { |
| 775 | DBUG_ENTER("lex_end_stage1" ); |
| 776 | |
| 777 | /* release used plugins */ |
| 778 | if (lex->plugins.elements) /* No function call and no mutex if no plugins. */ |
| 779 | { |
| 780 | plugin_unlock_list(0, (plugin_ref*)lex->plugins.buffer, |
| 781 | lex->plugins.elements); |
| 782 | } |
| 783 | reset_dynamic(&lex->plugins); |
| 784 | |
| 785 | if (lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_PREPARE) |
| 786 | { |
| 787 | /* |
| 788 | Don't delete lex->sphead, it'll be needed for EXECUTE. |
| 789 | Note that of all statements that populate lex->sphead |
| 790 | only SQLCOM_COMPOUND can be PREPAREd |
| 791 | */ |
| 792 | DBUG_ASSERT(lex->sphead == 0 || lex->sql_command == SQLCOM_COMPOUND); |
| 793 | } |
| 794 | else |
| 795 | { |
| 796 | delete lex->sphead; |
| 797 | lex->sphead= NULL; |
| 798 | } |
| 799 | |
| 800 | DBUG_VOID_RETURN; |
| 801 | } |
| 802 | |
| 803 | /* |
| 804 | MASTER INFO parameters (or state) is normally cleared towards the end |
| 805 | of a statement. But in case of PS, the state needs to be preserved during |
| 806 | its lifetime and should only be cleared on PS close or deallocation. |
| 807 | */ |
| 808 | void lex_end_stage2(LEX *lex) |
| 809 | { |
| 810 | DBUG_ENTER("lex_end_stage2" ); |
| 811 | |
| 812 | /* Reset LEX_MASTER_INFO */ |
| 813 | lex->mi.reset(lex->sql_command == SQLCOM_CHANGE_MASTER); |
| 814 | delete_dynamic(&lex->delete_gtid_domain); |
| 815 | |
| 816 | DBUG_VOID_RETURN; |
| 817 | } |
| 818 | |
| 819 | Yacc_state::~Yacc_state() |
| 820 | { |
| 821 | if (yacc_yyss) |
| 822 | { |
| 823 | my_free(yacc_yyss); |
| 824 | my_free(yacc_yyvs); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | int Lex_input_stream::find_keyword(Lex_ident_cli_st *kwd, |
| 829 | uint len, bool function) |
| 830 | { |
| 831 | const char *tok= m_tok_start; |
| 832 | |
| 833 | SYMBOL *symbol= get_hash_symbol(tok, len, function); |
| 834 | if (symbol) |
| 835 | { |
| 836 | kwd->set_keyword(tok, len); |
| 837 | DBUG_ASSERT(tok >= get_buf()); |
| 838 | DBUG_ASSERT(tok < get_end_of_query()); |
| 839 | |
| 840 | if ((symbol->tok == NOT_SYM) && |
| 841 | (m_thd->variables.sql_mode & MODE_HIGH_NOT_PRECEDENCE)) |
| 842 | return NOT2_SYM; |
| 843 | if ((symbol->tok == OR2_SYM) && |
| 844 | (m_thd->variables.sql_mode & MODE_PIPES_AS_CONCAT)) |
| 845 | { |
| 846 | return (m_thd->variables.sql_mode & MODE_ORACLE) ? |
| 847 | ORACLE_CONCAT_SYM : MYSQL_CONCAT_SYM; |
| 848 | } |
| 849 | |
| 850 | return symbol->tok; |
| 851 | } |
| 852 | return 0; |
| 853 | } |
| 854 | |
| 855 | /* |
| 856 | Check if name is a keyword |
| 857 | |
| 858 | SYNOPSIS |
| 859 | is_keyword() |
| 860 | name checked name (must not be empty) |
| 861 | len length of checked name |
| 862 | |
| 863 | RETURN VALUES |
| 864 | 0 name is a keyword |
| 865 | 1 name isn't a keyword |
| 866 | */ |
| 867 | |
| 868 | bool is_keyword(const char *name, uint len) |
| 869 | { |
| 870 | DBUG_ASSERT(len != 0); |
| 871 | return get_hash_symbol(name,len,0)!=0; |
| 872 | } |
| 873 | |
| 874 | /** |
| 875 | Check if name is a sql function |
| 876 | |
| 877 | @param name checked name |
| 878 | |
| 879 | @return is this a native function or not |
| 880 | @retval 0 name is a function |
| 881 | @retval 1 name isn't a function |
| 882 | */ |
| 883 | |
| 884 | bool is_lex_native_function(const LEX_CSTRING *name) |
| 885 | { |
| 886 | DBUG_ASSERT(name != NULL); |
| 887 | return (get_hash_symbol(name->str, (uint) name->length, 1) != 0); |
| 888 | } |
| 889 | |
| 890 | |
| 891 | bool is_native_function(THD *thd, const LEX_CSTRING *name) |
| 892 | { |
| 893 | if (find_native_function_builder(thd, name)) |
| 894 | return true; |
| 895 | |
| 896 | if (is_lex_native_function(name)) |
| 897 | return true; |
| 898 | |
| 899 | return false; |
| 900 | } |
| 901 | |
| 902 | |
| 903 | bool is_native_function_with_warn(THD *thd, const LEX_CSTRING *name) |
| 904 | { |
| 905 | if (!is_native_function(thd, name)) |
| 906 | return false; |
| 907 | /* |
| 908 | This warning will be printed when |
| 909 | [1] A client query is parsed, |
| 910 | [2] A stored function is loaded by db_load_routine. |
| 911 | Printing the warning for [2] is intentional, to cover the |
| 912 | following scenario: |
| 913 | - A user define a SF 'foo' using MySQL 5.N |
| 914 | - An application uses select foo(), and works. |
| 915 | - MySQL 5.{N+1} defines a new native function 'foo', as |
| 916 | part of a new feature. |
| 917 | - MySQL 5.{N+1} documentation is updated, and should mention |
| 918 | that there is a potential incompatible change in case of |
| 919 | existing stored function named 'foo'. |
| 920 | - The user deploys 5.{N+1}. At this point, 'select foo()' |
| 921 | means something different, and the user code is most likely |
| 922 | broken (it's only safe if the code is 'select db.foo()'). |
| 923 | With a warning printed when the SF is loaded (which has to |
| 924 | occur before the call), the warning will provide a hint |
| 925 | explaining the root cause of a later failure of 'select foo()'. |
| 926 | With no warning printed, the user code will fail with no |
| 927 | apparent reason. |
| 928 | Printing a warning each time db_load_routine is executed for |
| 929 | an ambiguous function is annoying, since that can happen a lot, |
| 930 | but in practice should not happen unless there *are* name |
| 931 | collisions. |
| 932 | If a collision exists, it should not be silenced but fixed. |
| 933 | */ |
| 934 | push_warning_printf(thd, |
| 935 | Sql_condition::WARN_LEVEL_NOTE, |
| 936 | ER_NATIVE_FCT_NAME_COLLISION, |
| 937 | ER_THD(thd, ER_NATIVE_FCT_NAME_COLLISION), |
| 938 | name->str); |
| 939 | return true; |
| 940 | } |
| 941 | |
| 942 | |
| 943 | /* make a copy of token before ptr and set yytoklen */ |
| 944 | |
| 945 | LEX_CSTRING Lex_input_stream::get_token(uint skip, uint length) |
| 946 | { |
| 947 | LEX_CSTRING tmp; |
| 948 | yyUnget(); // ptr points now after last token char |
| 949 | tmp.length= length; |
| 950 | tmp.str= m_thd->strmake(m_tok_start + skip, tmp.length); |
| 951 | |
| 952 | m_cpp_text_start= m_cpp_tok_start + skip; |
| 953 | m_cpp_text_end= m_cpp_text_start + tmp.length; |
| 954 | |
| 955 | return tmp; |
| 956 | } |
| 957 | |
| 958 | |
| 959 | static size_t |
| 960 | my_unescape(CHARSET_INFO *cs, char *to, const char *str, const char *end, |
| 961 | int sep, bool backslash_escapes) |
| 962 | { |
| 963 | char *start= to; |
| 964 | for ( ; str != end ; str++) |
| 965 | { |
| 966 | #ifdef USE_MB |
| 967 | int l; |
| 968 | if (use_mb(cs) && (l= my_ismbchar(cs, str, end))) |
| 969 | { |
| 970 | while (l--) |
| 971 | *to++ = *str++; |
| 972 | str--; |
| 973 | continue; |
| 974 | } |
| 975 | #endif |
| 976 | if (backslash_escapes && *str == '\\' && str + 1 != end) |
| 977 | { |
| 978 | switch(*++str) { |
| 979 | case 'n': |
| 980 | *to++='\n'; |
| 981 | break; |
| 982 | case 't': |
| 983 | *to++= '\t'; |
| 984 | break; |
| 985 | case 'r': |
| 986 | *to++ = '\r'; |
| 987 | break; |
| 988 | case 'b': |
| 989 | *to++ = '\b'; |
| 990 | break; |
| 991 | case '0': |
| 992 | *to++= 0; // Ascii null |
| 993 | break; |
| 994 | case 'Z': // ^Z must be escaped on Win32 |
| 995 | *to++='\032'; |
| 996 | break; |
| 997 | case '_': |
| 998 | case '%': |
| 999 | *to++= '\\'; // remember prefix for wildcard |
| 1000 | /* Fall through */ |
| 1001 | default: |
| 1002 | *to++= *str; |
| 1003 | break; |
| 1004 | } |
| 1005 | } |
| 1006 | else if (*str == sep) |
| 1007 | *to++= *str++; // Two ' or " |
| 1008 | else |
| 1009 | *to++ = *str; |
| 1010 | } |
| 1011 | *to= 0; |
| 1012 | return to - start; |
| 1013 | } |
| 1014 | |
| 1015 | |
| 1016 | size_t |
| 1017 | Lex_input_stream::unescape(CHARSET_INFO *cs, char *to, |
| 1018 | const char *str, const char *end, |
| 1019 | int sep) |
| 1020 | { |
| 1021 | return my_unescape(cs, to, str, end, sep, m_thd->backslash_escapes()); |
| 1022 | } |
| 1023 | |
| 1024 | |
| 1025 | /* |
| 1026 | Return an unescaped text literal without quotes |
| 1027 | Fix sometimes to do only one scan of the string |
| 1028 | */ |
| 1029 | |
| 1030 | bool Lex_input_stream::get_text(Lex_string_with_metadata_st *dst, uint sep, |
| 1031 | int pre_skip, int post_skip) |
| 1032 | { |
| 1033 | uchar c; |
| 1034 | uint found_escape=0; |
| 1035 | CHARSET_INFO *cs= m_thd->charset(); |
| 1036 | bool is_8bit= false; |
| 1037 | |
| 1038 | while (! eof()) |
| 1039 | { |
| 1040 | c= yyGet(); |
| 1041 | if (c & 0x80) |
| 1042 | is_8bit= true; |
| 1043 | #ifdef USE_MB |
| 1044 | { |
| 1045 | int l; |
| 1046 | if (use_mb(cs) && |
| 1047 | (l = my_ismbchar(cs, |
| 1048 | get_ptr() -1, |
| 1049 | get_end_of_query()))) { |
| 1050 | skip_binary(l-1); |
| 1051 | continue; |
| 1052 | } |
| 1053 | } |
| 1054 | #endif |
| 1055 | if (c == '\\' && |
| 1056 | !(m_thd->variables.sql_mode & MODE_NO_BACKSLASH_ESCAPES)) |
| 1057 | { // Escaped character |
| 1058 | found_escape=1; |
| 1059 | if (eof()) |
| 1060 | return true; |
| 1061 | yySkip(); |
| 1062 | } |
| 1063 | else if (c == sep) |
| 1064 | { |
| 1065 | if (c == yyGet()) // Check if two separators in a row |
| 1066 | { |
| 1067 | found_escape=1; // duplicate. Remember for delete |
| 1068 | continue; |
| 1069 | } |
| 1070 | else |
| 1071 | yyUnget(); |
| 1072 | |
| 1073 | /* Found end. Unescape and return string */ |
| 1074 | const char *str, *end; |
| 1075 | char *to; |
| 1076 | |
| 1077 | str= m_tok_start; |
| 1078 | end= get_ptr(); |
| 1079 | /* Extract the text from the token */ |
| 1080 | str += pre_skip; |
| 1081 | end -= post_skip; |
| 1082 | DBUG_ASSERT(end >= str); |
| 1083 | |
| 1084 | if (!(to= (char*) m_thd->alloc((uint) (end - str) + 1))) |
| 1085 | { |
| 1086 | dst->set(&empty_clex_str, 0, '\0'); |
| 1087 | return true; // Sql_alloc has set error flag |
| 1088 | } |
| 1089 | |
| 1090 | m_cpp_text_start= m_cpp_tok_start + pre_skip; |
| 1091 | m_cpp_text_end= get_cpp_ptr() - post_skip; |
| 1092 | |
| 1093 | if (!found_escape) |
| 1094 | { |
| 1095 | size_t len= (end - str); |
| 1096 | memcpy(to, str, len); |
| 1097 | to[len]= '\0'; |
| 1098 | dst->set(to, len, is_8bit, '\0'); |
| 1099 | } |
| 1100 | else |
| 1101 | { |
| 1102 | size_t len= unescape(cs, to, str, end, sep); |
| 1103 | dst->set(to, len, is_8bit, '\0'); |
| 1104 | } |
| 1105 | return false; |
| 1106 | } |
| 1107 | } |
| 1108 | return true; // unexpected end of query |
| 1109 | } |
| 1110 | |
| 1111 | |
| 1112 | /* |
| 1113 | ** Calc type of integer; long integer, longlong integer or real. |
| 1114 | ** Returns smallest type that match the string. |
| 1115 | ** When using unsigned long long values the result is converted to a real |
| 1116 | ** because else they will be unexpected sign changes because all calculation |
| 1117 | ** is done with longlong or double. |
| 1118 | */ |
| 1119 | |
| 1120 | static const char *long_str="2147483647" ; |
| 1121 | static const uint long_len=10; |
| 1122 | static const char *signed_long_str="-2147483648" ; |
| 1123 | static const char *longlong_str="9223372036854775807" ; |
| 1124 | static const uint longlong_len=19; |
| 1125 | static const char *signed_longlong_str="-9223372036854775808" ; |
| 1126 | static const uint signed_longlong_len=19; |
| 1127 | static const char *unsigned_longlong_str="18446744073709551615" ; |
| 1128 | static const uint unsigned_longlong_len=20; |
| 1129 | |
| 1130 | static inline uint int_token(const char *str,uint length) |
| 1131 | { |
| 1132 | if (length < long_len) // quick normal case |
| 1133 | return NUM; |
| 1134 | bool neg=0; |
| 1135 | |
| 1136 | if (*str == '+') // Remove sign and pre-zeros |
| 1137 | { |
| 1138 | str++; length--; |
| 1139 | } |
| 1140 | else if (*str == '-') |
| 1141 | { |
| 1142 | str++; length--; |
| 1143 | neg=1; |
| 1144 | } |
| 1145 | while (*str == '0' && length) |
| 1146 | { |
| 1147 | str++; length --; |
| 1148 | } |
| 1149 | if (length < long_len) |
| 1150 | return NUM; |
| 1151 | |
| 1152 | uint smaller,bigger; |
| 1153 | const char *cmp; |
| 1154 | if (neg) |
| 1155 | { |
| 1156 | if (length == long_len) |
| 1157 | { |
| 1158 | cmp= signed_long_str + 1; |
| 1159 | smaller= NUM; // If <= signed_long_str |
| 1160 | bigger= LONG_NUM; // If >= signed_long_str |
| 1161 | } |
| 1162 | else if (length < signed_longlong_len) |
| 1163 | return LONG_NUM; |
| 1164 | else if (length > signed_longlong_len) |
| 1165 | return DECIMAL_NUM; |
| 1166 | else |
| 1167 | { |
| 1168 | cmp= signed_longlong_str + 1; |
| 1169 | smaller= LONG_NUM; // If <= signed_longlong_str |
| 1170 | bigger=DECIMAL_NUM; |
| 1171 | } |
| 1172 | } |
| 1173 | else |
| 1174 | { |
| 1175 | if (length == long_len) |
| 1176 | { |
| 1177 | cmp= long_str; |
| 1178 | smaller=NUM; |
| 1179 | bigger=LONG_NUM; |
| 1180 | } |
| 1181 | else if (length < longlong_len) |
| 1182 | return LONG_NUM; |
| 1183 | else if (length > longlong_len) |
| 1184 | { |
| 1185 | if (length > unsigned_longlong_len) |
| 1186 | return DECIMAL_NUM; |
| 1187 | cmp=unsigned_longlong_str; |
| 1188 | smaller=ULONGLONG_NUM; |
| 1189 | bigger=DECIMAL_NUM; |
| 1190 | } |
| 1191 | else |
| 1192 | { |
| 1193 | cmp=longlong_str; |
| 1194 | smaller=LONG_NUM; |
| 1195 | bigger= ULONGLONG_NUM; |
| 1196 | } |
| 1197 | } |
| 1198 | while (*cmp && *cmp++ == *str++) ; |
| 1199 | return ((uchar) str[-1] <= (uchar) cmp[-1]) ? smaller : bigger; |
| 1200 | } |
| 1201 | |
| 1202 | |
| 1203 | /** |
| 1204 | Given a stream that is advanced to the first contained character in |
| 1205 | an open comment, consume the comment. Optionally, if we are allowed, |
| 1206 | recurse so that we understand comments within this current comment. |
| 1207 | |
| 1208 | At this level, we do not support version-condition comments. We might |
| 1209 | have been called with having just passed one in the stream, though. In |
| 1210 | that case, we probably want to tolerate mundane comments inside. Thus, |
| 1211 | the case for recursion. |
| 1212 | |
| 1213 | @retval Whether EOF reached before comment is closed. |
| 1214 | */ |
| 1215 | bool Lex_input_stream::(int remaining_recursions_permitted) |
| 1216 | { |
| 1217 | uchar c; |
| 1218 | while (!eof()) |
| 1219 | { |
| 1220 | c= yyGet(); |
| 1221 | |
| 1222 | if (remaining_recursions_permitted > 0) |
| 1223 | { |
| 1224 | if ((c == '/') && (yyPeek() == '*')) |
| 1225 | { |
| 1226 | yySkip(); // Eat asterisk |
| 1227 | consume_comment(remaining_recursions_permitted - 1); |
| 1228 | continue; |
| 1229 | } |
| 1230 | } |
| 1231 | |
| 1232 | if (c == '*') |
| 1233 | { |
| 1234 | if (yyPeek() == '/') |
| 1235 | { |
| 1236 | yySkip(); // Eat slash |
| 1237 | return FALSE; |
| 1238 | } |
| 1239 | } |
| 1240 | |
| 1241 | if (c == '\n') |
| 1242 | yylineno++; |
| 1243 | } |
| 1244 | |
| 1245 | return TRUE; |
| 1246 | } |
| 1247 | |
| 1248 | |
| 1249 | /* |
| 1250 | MYSQLlex remember the following states from the following MYSQLlex() |
| 1251 | |
| 1252 | @param yylval [out] semantic value of the token being parsed (yylval) |
| 1253 | @param thd THD |
| 1254 | |
| 1255 | - MY_LEX_EOQ Found end of query |
| 1256 | - MY_LEX_OPERATOR_OR_IDENT Last state was an ident, text or number |
| 1257 | (which can't be followed by a signed number) |
| 1258 | */ |
| 1259 | |
| 1260 | int MYSQLlex(YYSTYPE *yylval, THD *thd) |
| 1261 | { |
| 1262 | return thd->m_parser_state->m_lip.lex_token(yylval, thd); |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | int ORAlex(YYSTYPE *yylval, THD *thd) |
| 1267 | { |
| 1268 | return thd->m_parser_state->m_lip.lex_token(yylval, thd); |
| 1269 | } |
| 1270 | |
| 1271 | |
| 1272 | int Lex_input_stream::lex_token(YYSTYPE *yylval, THD *thd) |
| 1273 | { |
| 1274 | int token; |
| 1275 | |
| 1276 | if (lookahead_token >= 0) |
| 1277 | { |
| 1278 | /* |
| 1279 | The next token was already parsed in advance, |
| 1280 | return it. |
| 1281 | */ |
| 1282 | token= lookahead_token; |
| 1283 | lookahead_token= -1; |
| 1284 | *yylval= *(lookahead_yylval); |
| 1285 | lookahead_yylval= NULL; |
| 1286 | return token; |
| 1287 | } |
| 1288 | |
| 1289 | token= lex_one_token(yylval, thd); |
| 1290 | add_digest_token(token, yylval); |
| 1291 | |
| 1292 | switch(token) { |
| 1293 | case WITH: |
| 1294 | /* |
| 1295 | Parsing 'WITH' 'ROLLUP' or 'WITH' 'CUBE' requires 2 look ups, |
| 1296 | which makes the grammar LALR(2). |
| 1297 | Replace by a single 'WITH_ROLLUP' or 'WITH_CUBE' token, |
| 1298 | to transform the grammar into a LALR(1) grammar, |
| 1299 | which sql_yacc.yy can process. |
| 1300 | */ |
| 1301 | token= lex_one_token(yylval, thd); |
| 1302 | add_digest_token(token, yylval); |
| 1303 | switch(token) { |
| 1304 | case CUBE_SYM: |
| 1305 | return WITH_CUBE_SYM; |
| 1306 | case ROLLUP_SYM: |
| 1307 | return WITH_ROLLUP_SYM; |
| 1308 | case SYSTEM: |
| 1309 | return WITH_SYSTEM_SYM; |
| 1310 | default: |
| 1311 | /* |
| 1312 | Save the token following 'WITH' |
| 1313 | */ |
| 1314 | lookahead_yylval= yylval; |
| 1315 | lookahead_token= token; |
| 1316 | return WITH; |
| 1317 | } |
| 1318 | break; |
| 1319 | case FOR_SYM: |
| 1320 | /* |
| 1321 | * Additional look-ahead to resolve doubtful cases like: |
| 1322 | * SELECT ... FOR UPDATE |
| 1323 | * SELECT ... FOR SYSTEM_TIME ... . |
| 1324 | */ |
| 1325 | token= lex_one_token(yylval, thd); |
| 1326 | add_digest_token(token, yylval); |
| 1327 | switch(token) { |
| 1328 | case SYSTEM_TIME_SYM: |
| 1329 | return FOR_SYSTEM_TIME_SYM; |
| 1330 | default: |
| 1331 | /* |
| 1332 | Save the token following 'FOR_SYM' |
| 1333 | */ |
| 1334 | lookahead_yylval= yylval; |
| 1335 | lookahead_token= token; |
| 1336 | return FOR_SYM; |
| 1337 | } |
| 1338 | break; |
| 1339 | case VALUES: |
| 1340 | if (thd->lex->current_select->parsing_place == IN_UPDATE_ON_DUP_KEY || |
| 1341 | thd->lex->current_select->parsing_place == IN_PART_FUNC) |
| 1342 | return VALUE_SYM; |
| 1343 | token= lex_one_token(yylval, thd); |
| 1344 | add_digest_token(token, yylval); |
| 1345 | switch(token) { |
| 1346 | case LESS_SYM: |
| 1347 | return VALUES_LESS_SYM; |
| 1348 | case IN_SYM: |
| 1349 | return VALUES_IN_SYM; |
| 1350 | default: |
| 1351 | lookahead_yylval= yylval; |
| 1352 | lookahead_token= token; |
| 1353 | return VALUES; |
| 1354 | } |
| 1355 | break; |
| 1356 | default: |
| 1357 | break; |
| 1358 | } |
| 1359 | return token; |
| 1360 | } |
| 1361 | |
| 1362 | |
| 1363 | int Lex_input_stream::lex_one_token(YYSTYPE *yylval, THD *thd) |
| 1364 | { |
| 1365 | uchar UNINIT_VAR(c); |
| 1366 | bool ; |
| 1367 | int tokval; |
| 1368 | uint length; |
| 1369 | enum my_lex_states state; |
| 1370 | LEX *lex= thd->lex; |
| 1371 | CHARSET_INFO *const cs= thd->charset(); |
| 1372 | const uchar *const state_map= cs->state_map; |
| 1373 | const uchar *const ident_map= cs->ident_map; |
| 1374 | |
| 1375 | start_token(); |
| 1376 | state= next_state; |
| 1377 | next_state= MY_LEX_OPERATOR_OR_IDENT; |
| 1378 | for (;;) |
| 1379 | { |
| 1380 | switch (state) { |
| 1381 | case MY_LEX_OPERATOR_OR_IDENT: // Next is operator or keyword |
| 1382 | case MY_LEX_START: // Start of token |
| 1383 | // Skip starting whitespace |
| 1384 | while(state_map[c= yyPeek()] == MY_LEX_SKIP) |
| 1385 | { |
| 1386 | if (c == '\n') |
| 1387 | yylineno++; |
| 1388 | |
| 1389 | yySkip(); |
| 1390 | } |
| 1391 | |
| 1392 | /* Start of real token */ |
| 1393 | restart_token(); |
| 1394 | c= yyGet(); |
| 1395 | state= (enum my_lex_states) state_map[c]; |
| 1396 | break; |
| 1397 | case MY_LEX_ESCAPE: |
| 1398 | if (!eof() && yyGet() == 'N') |
| 1399 | { // Allow \N as shortcut for NULL |
| 1400 | yylval->lex_str.str= (char*) "\\N" ; |
| 1401 | yylval->lex_str.length= 2; |
| 1402 | return NULL_SYM; |
| 1403 | } |
| 1404 | /* Fall through */ |
| 1405 | case MY_LEX_CHAR: // Unknown or single char token |
| 1406 | case MY_LEX_SKIP: // This should not happen |
| 1407 | if (c != ')') |
| 1408 | next_state= MY_LEX_START; // Allow signed numbers |
| 1409 | return((int) c); |
| 1410 | |
| 1411 | case MY_LEX_MINUS_OR_COMMENT: |
| 1412 | if (yyPeek() == '-' && |
| 1413 | (my_isspace(cs,yyPeekn(1)) || |
| 1414 | my_iscntrl(cs,yyPeekn(1)))) |
| 1415 | { |
| 1416 | state=MY_LEX_COMMENT; |
| 1417 | break; |
| 1418 | } |
| 1419 | next_state= MY_LEX_START; // Allow signed numbers |
| 1420 | return((int) c); |
| 1421 | |
| 1422 | case MY_LEX_PLACEHOLDER: |
| 1423 | /* |
| 1424 | Check for a placeholder: it should not precede a possible identifier |
| 1425 | because of binlogging: when a placeholder is replaced with |
| 1426 | its value in a query for the binlog, the query must stay |
| 1427 | grammatically correct. |
| 1428 | */ |
| 1429 | next_state= MY_LEX_START; // Allow signed numbers |
| 1430 | if (stmt_prepare_mode && !ident_map[(uchar) yyPeek()]) |
| 1431 | return(PARAM_MARKER); |
| 1432 | return((int) c); |
| 1433 | |
| 1434 | case MY_LEX_COMMA: |
| 1435 | next_state= MY_LEX_START; // Allow signed numbers |
| 1436 | /* |
| 1437 | Warning: |
| 1438 | This is a work around, to make the "remember_name" rule in |
| 1439 | sql/sql_yacc.yy work properly. |
| 1440 | The problem is that, when parsing "select expr1, expr2", |
| 1441 | the code generated by bison executes the *pre* action |
| 1442 | remember_name (see select_item) *before* actually parsing the |
| 1443 | first token of expr2. |
| 1444 | */ |
| 1445 | restart_token(); |
| 1446 | return((int) c); |
| 1447 | |
| 1448 | case MY_LEX_IDENT_OR_NCHAR: |
| 1449 | { |
| 1450 | uint sep; |
| 1451 | if (yyPeek() != '\'') |
| 1452 | { |
| 1453 | state= MY_LEX_IDENT; |
| 1454 | break; |
| 1455 | } |
| 1456 | /* Found N'string' */ |
| 1457 | yySkip(); // Skip ' |
| 1458 | if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 2, 1)) |
| 1459 | { |
| 1460 | state= MY_LEX_CHAR; // Read char by char |
| 1461 | break; |
| 1462 | } |
| 1463 | |
| 1464 | body_utf8_append(m_cpp_text_start); |
| 1465 | body_utf8_append_escape(thd, &yylval->lex_string_with_metadata, |
| 1466 | national_charset_info, |
| 1467 | m_cpp_text_end, sep); |
| 1468 | return(NCHAR_STRING); |
| 1469 | } |
| 1470 | case MY_LEX_IDENT_OR_HEX: |
| 1471 | if (yyPeek() == '\'') |
| 1472 | { // Found x'hex-number' |
| 1473 | state= MY_LEX_HEX_NUMBER; |
| 1474 | break; |
| 1475 | } |
| 1476 | /* fall through */ |
| 1477 | case MY_LEX_IDENT_OR_BIN: |
| 1478 | if (yyPeek() == '\'') |
| 1479 | { // Found b'bin-number' |
| 1480 | state= MY_LEX_BIN_NUMBER; |
| 1481 | break; |
| 1482 | } |
| 1483 | /* fall through */ |
| 1484 | case MY_LEX_IDENT: |
| 1485 | { |
| 1486 | tokval= scan_ident_middle(thd, &yylval->ident_cli, |
| 1487 | &yylval->charset, &state); |
| 1488 | if (!tokval) |
| 1489 | continue; |
| 1490 | if (tokval == UNDERSCORE_CHARSET) |
| 1491 | m_underscore_cs= yylval->charset; |
| 1492 | return tokval; |
| 1493 | } |
| 1494 | |
| 1495 | case MY_LEX_IDENT_SEP: // Found ident and now '.' |
| 1496 | yylval->lex_str.str= (char*) get_ptr(); |
| 1497 | yylval->lex_str.length= 1; |
| 1498 | c= yyGet(); // should be '.' |
| 1499 | next_state= MY_LEX_IDENT_START; // Next is ident (not keyword) |
| 1500 | if (!ident_map[(uchar) yyPeek()]) // Probably ` or " |
| 1501 | next_state= MY_LEX_START; |
| 1502 | return((int) c); |
| 1503 | |
| 1504 | case MY_LEX_NUMBER_IDENT: // number or ident which num-start |
| 1505 | if (yyGetLast() == '0') |
| 1506 | { |
| 1507 | c= yyGet(); |
| 1508 | if (c == 'x') |
| 1509 | { |
| 1510 | while (my_isxdigit(cs, (c = yyGet()))) ; |
| 1511 | if ((yyLength() >= 3) && !ident_map[c]) |
| 1512 | { |
| 1513 | /* skip '0x' */ |
| 1514 | yylval->lex_str= get_token(2, yyLength() - 2); |
| 1515 | return (HEX_NUM); |
| 1516 | } |
| 1517 | yyUnget(); |
| 1518 | state= MY_LEX_IDENT_START; |
| 1519 | break; |
| 1520 | } |
| 1521 | else if (c == 'b') |
| 1522 | { |
| 1523 | while ((c= yyGet()) == '0' || c == '1') |
| 1524 | ; |
| 1525 | if ((yyLength() >= 3) && !ident_map[c]) |
| 1526 | { |
| 1527 | /* Skip '0b' */ |
| 1528 | yylval->lex_str= get_token(2, yyLength() - 2); |
| 1529 | return (BIN_NUM); |
| 1530 | } |
| 1531 | yyUnget(); |
| 1532 | state= MY_LEX_IDENT_START; |
| 1533 | break; |
| 1534 | } |
| 1535 | yyUnget(); |
| 1536 | } |
| 1537 | |
| 1538 | while (my_isdigit(cs, (c= yyGet()))) ; |
| 1539 | if (!ident_map[c]) |
| 1540 | { // Can't be identifier |
| 1541 | state=MY_LEX_INT_OR_REAL; |
| 1542 | break; |
| 1543 | } |
| 1544 | if (c == 'e' || c == 'E') |
| 1545 | { |
| 1546 | // The following test is written this way to allow numbers of type 1e1 |
| 1547 | if (my_isdigit(cs, yyPeek()) || |
| 1548 | (c=(yyGet())) == '+' || c == '-') |
| 1549 | { // Allow 1E+10 |
| 1550 | if (my_isdigit(cs, yyPeek())) // Number must have digit after sign |
| 1551 | { |
| 1552 | yySkip(); |
| 1553 | while (my_isdigit(cs, yyGet())) ; |
| 1554 | yylval->lex_str= get_token(0, yyLength()); |
| 1555 | return(FLOAT_NUM); |
| 1556 | } |
| 1557 | } |
| 1558 | yyUnget(); |
| 1559 | } |
| 1560 | // fall through |
| 1561 | case MY_LEX_IDENT_START: // We come here after '.' |
| 1562 | return scan_ident_start(thd, &yylval->ident_cli); |
| 1563 | |
| 1564 | case MY_LEX_USER_VARIABLE_DELIMITER: // Found quote char |
| 1565 | return scan_ident_delimited(thd, &yylval->ident_cli); |
| 1566 | |
| 1567 | case MY_LEX_INT_OR_REAL: // Complete int or incomplete real |
| 1568 | if (c != '.' || yyPeek() == '.') |
| 1569 | { |
| 1570 | /* |
| 1571 | Found a complete integer number: |
| 1572 | - the number is either not followed by a dot at all, or |
| 1573 | - the number is followed by a double dot as in: FOR i IN 1..10 |
| 1574 | */ |
| 1575 | yylval->lex_str= get_token(0, yyLength()); |
| 1576 | return int_token(yylval->lex_str.str, (uint) yylval->lex_str.length); |
| 1577 | } |
| 1578 | // fall through |
| 1579 | case MY_LEX_REAL: // Incomplete real number |
| 1580 | while (my_isdigit(cs, c= yyGet())) ; |
| 1581 | |
| 1582 | if (c == 'e' || c == 'E') |
| 1583 | { |
| 1584 | c= yyGet(); |
| 1585 | if (c == '-' || c == '+') |
| 1586 | c= yyGet(); // Skip sign |
| 1587 | if (!my_isdigit(cs, c)) |
| 1588 | { // No digit after sign |
| 1589 | state= MY_LEX_CHAR; |
| 1590 | break; |
| 1591 | } |
| 1592 | while (my_isdigit(cs, yyGet())) ; |
| 1593 | yylval->lex_str= get_token(0, yyLength()); |
| 1594 | return(FLOAT_NUM); |
| 1595 | } |
| 1596 | yylval->lex_str= get_token(0, yyLength()); |
| 1597 | return(DECIMAL_NUM); |
| 1598 | |
| 1599 | case MY_LEX_HEX_NUMBER: // Found x'hexstring' |
| 1600 | yySkip(); // Accept opening ' |
| 1601 | while (my_isxdigit(cs, (c= yyGet()))) ; |
| 1602 | if (c != '\'') |
| 1603 | return(ABORT_SYM); // Illegal hex constant |
| 1604 | yySkip(); // Accept closing ' |
| 1605 | length= yyLength(); // Length of hexnum+3 |
| 1606 | if ((length % 2) == 0) |
| 1607 | return(ABORT_SYM); // odd number of hex digits |
| 1608 | yylval->lex_str= get_token(2, // skip x' |
| 1609 | length - 3); // don't count x' and last ' |
| 1610 | return HEX_STRING; |
| 1611 | |
| 1612 | case MY_LEX_BIN_NUMBER: // Found b'bin-string' |
| 1613 | yySkip(); // Accept opening ' |
| 1614 | while ((c= yyGet()) == '0' || c == '1') |
| 1615 | ; |
| 1616 | if (c != '\'') |
| 1617 | return(ABORT_SYM); // Illegal hex constant |
| 1618 | yySkip(); // Accept closing ' |
| 1619 | length= yyLength(); // Length of bin-num + 3 |
| 1620 | yylval->lex_str= get_token(2, // skip b' |
| 1621 | length - 3); // don't count b' and last ' |
| 1622 | return (BIN_NUM); |
| 1623 | |
| 1624 | case MY_LEX_CMP_OP: // Incomplete comparison operator |
| 1625 | next_state= MY_LEX_START; // Allow signed numbers |
| 1626 | if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP || |
| 1627 | state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP) |
| 1628 | { |
| 1629 | yySkip(); |
| 1630 | if ((tokval= find_keyword(&yylval->kwd, 2, 0))) |
| 1631 | return(tokval); |
| 1632 | yyUnget(); |
| 1633 | } |
| 1634 | return(c); |
| 1635 | |
| 1636 | case MY_LEX_LONG_CMP_OP: // Incomplete comparison operator |
| 1637 | next_state= MY_LEX_START; |
| 1638 | if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP || |
| 1639 | state_map[(uchar) yyPeek()] == MY_LEX_LONG_CMP_OP) |
| 1640 | { |
| 1641 | yySkip(); |
| 1642 | if (state_map[(uchar) yyPeek()] == MY_LEX_CMP_OP) |
| 1643 | { |
| 1644 | yySkip(); |
| 1645 | if ((tokval= find_keyword(&yylval->kwd, 3, 0))) |
| 1646 | return(tokval); |
| 1647 | yyUnget(); |
| 1648 | } |
| 1649 | if ((tokval= find_keyword(&yylval->kwd, 2, 0))) |
| 1650 | return(tokval); |
| 1651 | yyUnget(); |
| 1652 | } |
| 1653 | return(c); |
| 1654 | |
| 1655 | case MY_LEX_BOOL: |
| 1656 | if (c != yyPeek()) |
| 1657 | { |
| 1658 | state= MY_LEX_CHAR; |
| 1659 | break; |
| 1660 | } |
| 1661 | yySkip(); |
| 1662 | tokval= find_keyword(&yylval->kwd, 2, 0); // Is a bool operator |
| 1663 | next_state= MY_LEX_START; // Allow signed numbers |
| 1664 | return(tokval); |
| 1665 | |
| 1666 | case MY_LEX_STRING_OR_DELIMITER: |
| 1667 | if (thd->variables.sql_mode & MODE_ANSI_QUOTES) |
| 1668 | { |
| 1669 | state= MY_LEX_USER_VARIABLE_DELIMITER; |
| 1670 | break; |
| 1671 | } |
| 1672 | /* " used for strings */ |
| 1673 | /* fall through */ |
| 1674 | case MY_LEX_STRING: // Incomplete text string |
| 1675 | { |
| 1676 | uint sep; |
| 1677 | if (get_text(&yylval->lex_string_with_metadata, (sep= yyGetLast()), 1, 1)) |
| 1678 | { |
| 1679 | state= MY_LEX_CHAR; // Read char by char |
| 1680 | break; |
| 1681 | } |
| 1682 | CHARSET_INFO *strcs= m_underscore_cs ? m_underscore_cs : cs; |
| 1683 | body_utf8_append(m_cpp_text_start); |
| 1684 | |
| 1685 | body_utf8_append_escape(thd, &yylval->lex_string_with_metadata, |
| 1686 | strcs, m_cpp_text_end, sep); |
| 1687 | m_underscore_cs= NULL; |
| 1688 | return(TEXT_STRING); |
| 1689 | } |
| 1690 | case MY_LEX_COMMENT: // Comment |
| 1691 | lex->select_lex.options|= OPTION_FOUND_COMMENT; |
| 1692 | while ((c= yyGet()) != '\n' && c) ; |
| 1693 | yyUnget(); // Safety against eof |
| 1694 | state= MY_LEX_START; // Try again |
| 1695 | break; |
| 1696 | case MY_LEX_LONG_COMMENT: // Long C comment? |
| 1697 | if (yyPeek() != '*') |
| 1698 | { |
| 1699 | state= MY_LEX_CHAR; // Probable division |
| 1700 | break; |
| 1701 | } |
| 1702 | lex->select_lex.options|= OPTION_FOUND_COMMENT; |
| 1703 | /* Reject '/' '*', since we might need to turn off the echo */ |
| 1704 | yyUnget(); |
| 1705 | |
| 1706 | save_in_comment_state(); |
| 1707 | |
| 1708 | if (yyPeekn(2) == '!' || |
| 1709 | (yyPeekn(2) == 'M' && yyPeekn(3) == '!')) |
| 1710 | { |
| 1711 | bool = yyPeekn(2) == 'M'; |
| 1712 | in_comment= DISCARD_COMMENT; |
| 1713 | /* Accept '/' '*' '!', but do not keep this marker. */ |
| 1714 | set_echo(FALSE); |
| 1715 | yySkipn(maria_comment_syntax ? 4 : 3); |
| 1716 | |
| 1717 | /* |
| 1718 | The special comment format is very strict: |
| 1719 | '/' '*' '!', followed by an optional 'M' and exactly |
| 1720 | 1-2 digits (major), 2 digits (minor), then 2 digits (dot). |
| 1721 | 32302 -> 3.23.02 |
| 1722 | 50032 -> 5.0.32 |
| 1723 | 50114 -> 5.1.14 |
| 1724 | 100000 -> 10.0.0 |
| 1725 | */ |
| 1726 | if ( my_isdigit(cs, yyPeekn(0)) |
| 1727 | && my_isdigit(cs, yyPeekn(1)) |
| 1728 | && my_isdigit(cs, yyPeekn(2)) |
| 1729 | && my_isdigit(cs, yyPeekn(3)) |
| 1730 | && my_isdigit(cs, yyPeekn(4)) |
| 1731 | ) |
| 1732 | { |
| 1733 | ulong version; |
| 1734 | uint length= 5; |
| 1735 | char *end_ptr= (char*) get_ptr() + length; |
| 1736 | int error; |
| 1737 | if (my_isdigit(cs, yyPeekn(5))) |
| 1738 | { |
| 1739 | end_ptr++; // 6 digit number |
| 1740 | length++; |
| 1741 | } |
| 1742 | |
| 1743 | version= (ulong) my_strtoll10(get_ptr(), &end_ptr, &error); |
| 1744 | |
| 1745 | /* |
| 1746 | MySQL-5.7 has new features and might have new SQL syntax that |
| 1747 | MariaDB-10.0 does not understand. Ignore all versioned comments |
| 1748 | with MySQL versions in the range 50700-999999, but |
| 1749 | do not ignore MariaDB specific comments for the same versions. |
| 1750 | */ |
| 1751 | if (version <= MYSQL_VERSION_ID && |
| 1752 | (version < 50700 || version > 99999 || maria_comment_syntax)) |
| 1753 | { |
| 1754 | /* Accept 'M' 'm' 'm' 'd' 'd' */ |
| 1755 | yySkipn(length); |
| 1756 | /* Expand the content of the special comment as real code */ |
| 1757 | set_echo(TRUE); |
| 1758 | state=MY_LEX_START; |
| 1759 | break; /* Do not treat contents as a comment. */ |
| 1760 | } |
| 1761 | else |
| 1762 | { |
| 1763 | #ifdef WITH_WSREP |
| 1764 | if (WSREP(thd) && version == 99997 && thd->wsrep_exec_mode == LOCAL_STATE) |
| 1765 | { |
| 1766 | WSREP_DEBUG("consistency check: %s" , thd->query()); |
| 1767 | thd->wsrep_consistency_check= CONSISTENCY_CHECK_DECLARED; |
| 1768 | yySkipn(5); |
| 1769 | set_echo(TRUE); |
| 1770 | state= MY_LEX_START; |
| 1771 | break; /* Do not treat contents as a comment. */ |
| 1772 | } |
| 1773 | #endif /* WITH_WSREP */ |
| 1774 | /* |
| 1775 | Patch and skip the conditional comment to avoid it |
| 1776 | being propagated infinitely (eg. to a slave). |
| 1777 | */ |
| 1778 | char *pcom= yyUnput(' '); |
| 1779 | comment_closed= ! consume_comment(1); |
| 1780 | if (! comment_closed) |
| 1781 | { |
| 1782 | *pcom= '!'; |
| 1783 | } |
| 1784 | /* version allowed to have one level of comment inside. */ |
| 1785 | } |
| 1786 | } |
| 1787 | else |
| 1788 | { |
| 1789 | /* Not a version comment. */ |
| 1790 | state=MY_LEX_START; |
| 1791 | set_echo(TRUE); |
| 1792 | break; |
| 1793 | } |
| 1794 | } |
| 1795 | else |
| 1796 | { |
| 1797 | in_comment= PRESERVE_COMMENT; |
| 1798 | yySkip(); // Accept / |
| 1799 | yySkip(); // Accept * |
| 1800 | comment_closed= ! consume_comment(0); |
| 1801 | /* regular comments can have zero comments inside. */ |
| 1802 | } |
| 1803 | /* |
| 1804 | Discard: |
| 1805 | - regular '/' '*' comments, |
| 1806 | - special comments '/' '*' '!' for a future version, |
| 1807 | by scanning until we find a closing '*' '/' marker. |
| 1808 | |
| 1809 | Nesting regular comments isn't allowed. The first |
| 1810 | '*' '/' returns the parser to the previous state. |
| 1811 | |
| 1812 | /#!VERSI oned containing /# regular #/ is allowed #/ |
| 1813 | |
| 1814 | Inside one versioned comment, another versioned comment |
| 1815 | is treated as a regular discardable comment. It gets |
| 1816 | no special parsing. |
| 1817 | */ |
| 1818 | |
| 1819 | /* Unbalanced comments with a missing '*' '/' are a syntax error */ |
| 1820 | if (! comment_closed) |
| 1821 | return (ABORT_SYM); |
| 1822 | state = MY_LEX_START; // Try again |
| 1823 | restore_in_comment_state(); |
| 1824 | break; |
| 1825 | case MY_LEX_END_LONG_COMMENT: |
| 1826 | if ((in_comment != NO_COMMENT) && yyPeek() == '/') |
| 1827 | { |
| 1828 | /* Reject '*' '/' */ |
| 1829 | yyUnget(); |
| 1830 | /* Accept '*' '/', with the proper echo */ |
| 1831 | set_echo(in_comment == PRESERVE_COMMENT); |
| 1832 | yySkipn(2); |
| 1833 | /* And start recording the tokens again */ |
| 1834 | set_echo(TRUE); |
| 1835 | in_comment= NO_COMMENT; |
| 1836 | state=MY_LEX_START; |
| 1837 | } |
| 1838 | else |
| 1839 | state= MY_LEX_CHAR; // Return '*' |
| 1840 | break; |
| 1841 | case MY_LEX_SET_VAR: // Check if ':=' |
| 1842 | if (yyPeek() != '=') |
| 1843 | { |
| 1844 | state= MY_LEX_CHAR; // Return ':' |
| 1845 | break; |
| 1846 | } |
| 1847 | yySkip(); |
| 1848 | return (SET_VAR); |
| 1849 | case MY_LEX_SEMICOLON: // optional line terminator |
| 1850 | state= MY_LEX_CHAR; // Return ';' |
| 1851 | break; |
| 1852 | case MY_LEX_EOL: |
| 1853 | if (eof()) |
| 1854 | { |
| 1855 | yyUnget(); // Reject the last '\0' |
| 1856 | set_echo(FALSE); |
| 1857 | yySkip(); |
| 1858 | set_echo(TRUE); |
| 1859 | /* Unbalanced comments with a missing '*' '/' are a syntax error */ |
| 1860 | if (in_comment != NO_COMMENT) |
| 1861 | return (ABORT_SYM); |
| 1862 | next_state= MY_LEX_END; // Mark for next loop |
| 1863 | return(END_OF_INPUT); |
| 1864 | } |
| 1865 | state=MY_LEX_CHAR; |
| 1866 | break; |
| 1867 | case MY_LEX_END: |
| 1868 | next_state= MY_LEX_END; |
| 1869 | return(0); // We found end of input last time |
| 1870 | |
| 1871 | /* Actually real shouldn't start with . but allow them anyhow */ |
| 1872 | case MY_LEX_REAL_OR_POINT: |
| 1873 | if (my_isdigit(cs, (c= yyPeek()))) |
| 1874 | state = MY_LEX_REAL; // Real |
| 1875 | else if (c == '.') |
| 1876 | { |
| 1877 | yySkip(); |
| 1878 | return DOT_DOT_SYM; |
| 1879 | } |
| 1880 | else |
| 1881 | { |
| 1882 | state= MY_LEX_IDENT_SEP; // return '.' |
| 1883 | yyUnget(); // Put back '.' |
| 1884 | } |
| 1885 | break; |
| 1886 | case MY_LEX_USER_END: // end '@' of user@hostname |
| 1887 | switch (state_map[(uchar) yyPeek()]) { |
| 1888 | case MY_LEX_STRING: |
| 1889 | case MY_LEX_USER_VARIABLE_DELIMITER: |
| 1890 | case MY_LEX_STRING_OR_DELIMITER: |
| 1891 | break; |
| 1892 | case MY_LEX_USER_END: |
| 1893 | next_state= MY_LEX_SYSTEM_VAR; |
| 1894 | break; |
| 1895 | default: |
| 1896 | next_state= MY_LEX_HOSTNAME; |
| 1897 | break; |
| 1898 | } |
| 1899 | yylval->lex_str.str= (char*) get_ptr(); |
| 1900 | yylval->lex_str.length= 1; |
| 1901 | return((int) '@'); |
| 1902 | case MY_LEX_HOSTNAME: // end '@' of user@hostname |
| 1903 | for (c= yyGet() ; |
| 1904 | my_isalnum(cs, c) || c == '.' || c == '_' || c == '$'; |
| 1905 | c= yyGet()) ; |
| 1906 | yylval->lex_str= get_token(0, yyLength()); |
| 1907 | return(LEX_HOSTNAME); |
| 1908 | case MY_LEX_SYSTEM_VAR: |
| 1909 | yylval->lex_str.str= (char*) get_ptr(); |
| 1910 | yylval->lex_str.length= 1; |
| 1911 | yySkip(); // Skip '@' |
| 1912 | next_state= (state_map[(uchar) yyPeek()] == |
| 1913 | MY_LEX_USER_VARIABLE_DELIMITER ? |
| 1914 | MY_LEX_OPERATOR_OR_IDENT : |
| 1915 | MY_LEX_IDENT_OR_KEYWORD); |
| 1916 | return((int) '@'); |
| 1917 | case MY_LEX_IDENT_OR_KEYWORD: |
| 1918 | /* |
| 1919 | We come here when we have found two '@' in a row. |
| 1920 | We should now be able to handle: |
| 1921 | [(global | local | session) .]variable_name |
| 1922 | */ |
| 1923 | return scan_ident_sysvar(thd, &yylval->ident_cli); |
| 1924 | } |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | |
| 1929 | bool Lex_input_stream::get_7bit_or_8bit_ident(THD *thd, uchar *last_char) |
| 1930 | { |
| 1931 | uchar c; |
| 1932 | CHARSET_INFO *const cs= thd->charset(); |
| 1933 | const uchar *const ident_map= cs->ident_map; |
| 1934 | bool is_8bit= false; |
| 1935 | for ( ; ident_map[c= yyGet()]; ) |
| 1936 | { |
| 1937 | if (c & 0x80) |
| 1938 | is_8bit= true; // will convert |
| 1939 | } |
| 1940 | *last_char= c; |
| 1941 | return is_8bit; |
| 1942 | } |
| 1943 | |
| 1944 | |
| 1945 | int Lex_input_stream::scan_ident_sysvar(THD *thd, Lex_ident_cli_st *str) |
| 1946 | { |
| 1947 | uchar last_char; |
| 1948 | uint length; |
| 1949 | int tokval; |
| 1950 | bool is_8bit; |
| 1951 | DBUG_ASSERT(m_tok_start == m_ptr); |
| 1952 | |
| 1953 | is_8bit= get_7bit_or_8bit_ident(thd, &last_char); |
| 1954 | |
| 1955 | if (last_char == '.') |
| 1956 | next_state= MY_LEX_IDENT_SEP; |
| 1957 | if (!(length= yyLength())) |
| 1958 | return ABORT_SYM; // Names must be nonempty. |
| 1959 | if ((tokval= find_keyword(str, length, 0))) |
| 1960 | { |
| 1961 | yyUnget(); // Put back 'c' |
| 1962 | return tokval; // Was keyword |
| 1963 | } |
| 1964 | |
| 1965 | yyUnget(); // ptr points now after last token char |
| 1966 | str->set_ident(m_tok_start, length, is_8bit); |
| 1967 | |
| 1968 | m_cpp_text_start= m_cpp_tok_start; |
| 1969 | m_cpp_text_end= m_cpp_text_start + length; |
| 1970 | body_utf8_append(m_cpp_text_start); |
| 1971 | body_utf8_append_ident(thd, str, m_cpp_text_end); |
| 1972 | |
| 1973 | return is_8bit ? IDENT_QUOTED : IDENT; |
| 1974 | } |
| 1975 | |
| 1976 | |
| 1977 | /* |
| 1978 | We can come here if different parsing stages: |
| 1979 | - In an identifier chain: |
| 1980 | SELECT t1.cccc FROM t1; |
| 1981 | (when the "cccc" part starts) |
| 1982 | In this case both m_tok_start and m_ptr point to "cccc". |
| 1983 | - When a sequence of digits has changed to something else, |
| 1984 | therefore the token becomes an identifier rather than a number: |
| 1985 | SELECT 12345_6 FROM t1; |
| 1986 | In this case m_tok_start points to the entire "12345_678", |
| 1987 | while m_ptr points to "678". |
| 1988 | */ |
| 1989 | int Lex_input_stream::scan_ident_start(THD *thd, Lex_ident_cli_st *str) |
| 1990 | { |
| 1991 | uchar c; |
| 1992 | bool is_8bit; |
| 1993 | CHARSET_INFO *const cs= thd->charset(); |
| 1994 | const uchar *const ident_map= cs->ident_map; |
| 1995 | DBUG_ASSERT(m_tok_start <= m_ptr); |
| 1996 | |
| 1997 | if (use_mb(cs)) |
| 1998 | { |
| 1999 | is_8bit= true; |
| 2000 | while (ident_map[c= yyGet()]) |
| 2001 | { |
| 2002 | int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); |
| 2003 | if (char_length <= 0) |
| 2004 | break; |
| 2005 | skip_binary(char_length - 1); |
| 2006 | } |
| 2007 | } |
| 2008 | else |
| 2009 | { |
| 2010 | is_8bit= get_7bit_or_8bit_ident(thd, &c); |
| 2011 | } |
| 2012 | if (c == '.' && ident_map[(uchar) yyPeek()]) |
| 2013 | next_state= MY_LEX_IDENT_SEP;// Next is '.' |
| 2014 | |
| 2015 | uint length= yyLength(); |
| 2016 | yyUnget(); // ptr points now after last token char |
| 2017 | str->set_ident(m_tok_start, length, is_8bit); |
| 2018 | m_cpp_text_start= m_cpp_tok_start; |
| 2019 | m_cpp_text_end= m_cpp_text_start + length; |
| 2020 | body_utf8_append(m_cpp_text_start); |
| 2021 | body_utf8_append_ident(thd, str, m_cpp_text_end); |
| 2022 | return is_8bit ? IDENT_QUOTED : IDENT; |
| 2023 | } |
| 2024 | |
| 2025 | |
| 2026 | int Lex_input_stream::scan_ident_middle(THD *thd, Lex_ident_cli_st *str, |
| 2027 | CHARSET_INFO **introducer, |
| 2028 | my_lex_states *st) |
| 2029 | { |
| 2030 | CHARSET_INFO *const cs= thd->charset(); |
| 2031 | const uchar *const ident_map= cs->ident_map; |
| 2032 | const uchar *const state_map= cs->state_map; |
| 2033 | const char *start; |
| 2034 | uint length; |
| 2035 | uchar c; |
| 2036 | bool is_8bit; |
| 2037 | bool resolve_introducer= true; |
| 2038 | DBUG_ASSERT(m_ptr == m_tok_start + 1); // m_ptr points to the second byte |
| 2039 | |
| 2040 | if (use_mb(cs)) |
| 2041 | { |
| 2042 | is_8bit= true; |
| 2043 | int char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); |
| 2044 | if (char_length <= 0) |
| 2045 | { |
| 2046 | *st= MY_LEX_CHAR; |
| 2047 | return 0; |
| 2048 | } |
| 2049 | skip_binary(char_length - 1); |
| 2050 | |
| 2051 | while (ident_map[c= yyGet()]) |
| 2052 | { |
| 2053 | char_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); |
| 2054 | if (char_length <= 0) |
| 2055 | break; |
| 2056 | if (char_length > 1 || (c & 0x80)) |
| 2057 | resolve_introducer= false; |
| 2058 | skip_binary(char_length - 1); |
| 2059 | } |
| 2060 | } |
| 2061 | else |
| 2062 | { |
| 2063 | is_8bit= get_7bit_or_8bit_ident(thd, &c) || (m_tok_start[0] & 0x80); |
| 2064 | resolve_introducer= !is_8bit; |
| 2065 | } |
| 2066 | length= yyLength(); |
| 2067 | start= get_ptr(); |
| 2068 | if (ignore_space) |
| 2069 | { |
| 2070 | /* |
| 2071 | If we find a space then this can't be an identifier. We notice this |
| 2072 | below by checking start != lex->ptr. |
| 2073 | */ |
| 2074 | for (; state_map[(uchar) c] == MY_LEX_SKIP ; c= yyGet()) |
| 2075 | { |
| 2076 | if (c == '\n') |
| 2077 | yylineno++; |
| 2078 | } |
| 2079 | } |
| 2080 | if (start == get_ptr() && c == '.' && ident_map[(uchar) yyPeek()]) |
| 2081 | next_state= MY_LEX_IDENT_SEP; |
| 2082 | else |
| 2083 | { // '(' must follow directly if function |
| 2084 | int tokval; |
| 2085 | yyUnget(); |
| 2086 | if ((tokval= find_keyword(str, length, c == '('))) |
| 2087 | { |
| 2088 | next_state= MY_LEX_START; // Allow signed numbers |
| 2089 | return(tokval); // Was keyword |
| 2090 | } |
| 2091 | yySkip(); // next state does a unget |
| 2092 | } |
| 2093 | |
| 2094 | /* |
| 2095 | Note: "SELECT _bla AS 'alias'" |
| 2096 | _bla should be considered as a IDENT if charset haven't been found. |
| 2097 | So we don't use MYF(MY_WME) with get_charset_by_csname to avoid |
| 2098 | producing an error. |
| 2099 | */ |
| 2100 | DBUG_ASSERT(length > 0); |
| 2101 | if (resolve_introducer && m_tok_start[0] == '_') |
| 2102 | { |
| 2103 | |
| 2104 | yyUnget(); // ptr points now after last token char |
| 2105 | str->set_ident(m_tok_start, length, false); |
| 2106 | |
| 2107 | m_cpp_text_start= m_cpp_tok_start; |
| 2108 | m_cpp_text_end= m_cpp_text_start + length; |
| 2109 | body_utf8_append(m_cpp_text_start, m_cpp_tok_start + length); |
| 2110 | ErrConvString csname(str->str + 1, str->length - 1, &my_charset_bin); |
| 2111 | CHARSET_INFO *cs= get_charset_by_csname(csname.ptr(), |
| 2112 | MY_CS_PRIMARY, MYF(0)); |
| 2113 | if (cs) |
| 2114 | { |
| 2115 | *introducer= cs; |
| 2116 | return UNDERSCORE_CHARSET; |
| 2117 | } |
| 2118 | return IDENT; |
| 2119 | } |
| 2120 | |
| 2121 | yyUnget(); // ptr points now after last token char |
| 2122 | str->set_ident(m_tok_start, length, is_8bit); |
| 2123 | m_cpp_text_start= m_cpp_tok_start; |
| 2124 | m_cpp_text_end= m_cpp_text_start + length; |
| 2125 | body_utf8_append(m_cpp_text_start); |
| 2126 | body_utf8_append_ident(thd, str, m_cpp_text_end); |
| 2127 | return is_8bit ? IDENT_QUOTED : IDENT; |
| 2128 | } |
| 2129 | |
| 2130 | |
| 2131 | int Lex_input_stream::scan_ident_delimited(THD *thd, |
| 2132 | Lex_ident_cli_st *str) |
| 2133 | { |
| 2134 | CHARSET_INFO *const cs= thd->charset(); |
| 2135 | uint double_quotes= 0; |
| 2136 | uchar c, quote_char= m_tok_start[0]; |
| 2137 | DBUG_ASSERT(m_ptr == m_tok_start + 1); |
| 2138 | |
| 2139 | while ((c= yyGet())) |
| 2140 | { |
| 2141 | int var_length= my_charlen(cs, get_ptr() - 1, get_end_of_query()); |
| 2142 | if (var_length == 1) |
| 2143 | { |
| 2144 | if (c == quote_char) |
| 2145 | { |
| 2146 | if (yyPeek() != quote_char) |
| 2147 | break; |
| 2148 | c= yyGet(); |
| 2149 | double_quotes++; |
| 2150 | continue; |
| 2151 | } |
| 2152 | } |
| 2153 | else if (var_length > 1) |
| 2154 | { |
| 2155 | skip_binary(var_length - 1); |
| 2156 | } |
| 2157 | } |
| 2158 | |
| 2159 | str->set_ident_quoted(m_tok_start + 1, yyLength() - 1, true, quote_char); |
| 2160 | yyUnget(); // ptr points now after last token char |
| 2161 | |
| 2162 | m_cpp_text_start= m_cpp_tok_start + 1; |
| 2163 | m_cpp_text_end= m_cpp_text_start + str->length; |
| 2164 | |
| 2165 | if (c == quote_char) |
| 2166 | yySkip(); // Skip end ` |
| 2167 | next_state= MY_LEX_START; |
| 2168 | body_utf8_append(m_cpp_text_start); |
| 2169 | // QQQ: shouldn't it add unescaped version ???? |
| 2170 | body_utf8_append_ident(thd, str, m_cpp_text_end); |
| 2171 | return IDENT_QUOTED; |
| 2172 | } |
| 2173 | |
| 2174 | |
| 2175 | void trim_whitespace(CHARSET_INFO *cs, LEX_CSTRING *str, size_t * prefix_length) |
| 2176 | { |
| 2177 | /* |
| 2178 | TODO: |
| 2179 | This code assumes that there are no multi-bytes characters |
| 2180 | that can be considered white-space. |
| 2181 | */ |
| 2182 | |
| 2183 | size_t plen= 0; |
| 2184 | while ((str->length > 0) && (my_isspace(cs, str->str[0]))) |
| 2185 | { |
| 2186 | plen++; |
| 2187 | str->length --; |
| 2188 | str->str ++; |
| 2189 | } |
| 2190 | if (prefix_length) |
| 2191 | *prefix_length= plen; |
| 2192 | /* |
| 2193 | FIXME: |
| 2194 | Also, parsing backward is not safe with multi bytes characters |
| 2195 | */ |
| 2196 | while ((str->length > 0) && (my_isspace(cs, str->str[str->length-1]))) |
| 2197 | { |
| 2198 | str->length --; |
| 2199 | } |
| 2200 | } |
| 2201 | |
| 2202 | |
| 2203 | /* |
| 2204 | st_select_lex structures initialisations |
| 2205 | */ |
| 2206 | |
| 2207 | void st_select_lex_node::init_query_common() |
| 2208 | { |
| 2209 | options= 0; |
| 2210 | sql_cache= SQL_CACHE_UNSPECIFIED; |
| 2211 | linkage= UNSPECIFIED_TYPE; |
| 2212 | no_table_names_allowed= 0; |
| 2213 | uncacheable= 0; |
| 2214 | } |
| 2215 | |
| 2216 | void st_select_lex_unit::init_query() |
| 2217 | { |
| 2218 | init_query_common(); |
| 2219 | linkage= GLOBAL_OPTIONS_TYPE; |
| 2220 | select_limit_cnt= HA_POS_ERROR; |
| 2221 | offset_limit_cnt= 0; |
| 2222 | union_distinct= 0; |
| 2223 | prepared= optimized= optimized_2= executed= 0; |
| 2224 | optimize_started= 0; |
| 2225 | item= 0; |
| 2226 | union_result= 0; |
| 2227 | table= 0; |
| 2228 | fake_select_lex= 0; |
| 2229 | saved_fake_select_lex= 0; |
| 2230 | cleaned= 0; |
| 2231 | item_list.empty(); |
| 2232 | describe= 0; |
| 2233 | found_rows_for_union= 0; |
| 2234 | derived= 0; |
| 2235 | is_view= false; |
| 2236 | with_clause= 0; |
| 2237 | with_element= 0; |
| 2238 | columns_are_renamed= false; |
| 2239 | intersect_mark= NULL; |
| 2240 | } |
| 2241 | |
| 2242 | void st_select_lex::init_query() |
| 2243 | { |
| 2244 | init_query_common(); |
| 2245 | table_list.empty(); |
| 2246 | top_join_list.empty(); |
| 2247 | join_list= &top_join_list; |
| 2248 | embedding= 0; |
| 2249 | leaf_tables_prep.empty(); |
| 2250 | leaf_tables.empty(); |
| 2251 | item_list.empty(); |
| 2252 | min_max_opt_list.empty(); |
| 2253 | join= 0; |
| 2254 | having= prep_having= where= prep_where= 0; |
| 2255 | cond_pushed_into_where= cond_pushed_into_having= 0; |
| 2256 | olap= UNSPECIFIED_OLAP_TYPE; |
| 2257 | having_fix_field= 0; |
| 2258 | context.select_lex= this; |
| 2259 | context.init(); |
| 2260 | /* |
| 2261 | Add the name resolution context of the current (sub)query to the |
| 2262 | stack of contexts for the whole query. |
| 2263 | TODO: |
| 2264 | push_context may return an error if there is no memory for a new |
| 2265 | element in the stack, however this method has no return value, |
| 2266 | thus push_context should be moved to a place where query |
| 2267 | initialization is checked for failure. |
| 2268 | */ |
| 2269 | parent_lex->push_context(&context, parent_lex->thd->mem_root); |
| 2270 | cond_count= between_count= with_wild= 0; |
| 2271 | max_equal_elems= 0; |
| 2272 | ref_pointer_array.reset(); |
| 2273 | select_n_where_fields= 0; |
| 2274 | select_n_reserved= 0; |
| 2275 | select_n_having_items= 0; |
| 2276 | n_sum_items= 0; |
| 2277 | n_child_sum_items= 0; |
| 2278 | hidden_bit_fields= 0; |
| 2279 | subquery_in_having= explicit_limit= 0; |
| 2280 | is_item_list_lookup= 0; |
| 2281 | first_execution= 1; |
| 2282 | first_natural_join_processing= 1; |
| 2283 | first_cond_optimization= 1; |
| 2284 | parsing_place= NO_MATTER; |
| 2285 | exclude_from_table_unique_test= no_wrap_view_item= FALSE; |
| 2286 | nest_level= 0; |
| 2287 | link_next= 0; |
| 2288 | prep_leaf_list_state= UNINIT; |
| 2289 | have_merged_subqueries= FALSE; |
| 2290 | bzero((char*) expr_cache_may_be_used, sizeof(expr_cache_may_be_used)); |
| 2291 | select_list_tables= 0; |
| 2292 | m_non_agg_field_used= false; |
| 2293 | m_agg_func_used= false; |
| 2294 | m_custom_agg_func_used= false; |
| 2295 | window_specs.empty(); |
| 2296 | window_funcs.empty(); |
| 2297 | tvc= 0; |
| 2298 | in_tvc= false; |
| 2299 | versioned_tables= 0; |
| 2300 | } |
| 2301 | |
| 2302 | void st_select_lex::init_select() |
| 2303 | { |
| 2304 | sj_nests.empty(); |
| 2305 | sj_subselects.empty(); |
| 2306 | group_list.empty(); |
| 2307 | if (group_list_ptrs) |
| 2308 | group_list_ptrs->clear(); |
| 2309 | type= 0; |
| 2310 | db= null_clex_str; |
| 2311 | having= 0; |
| 2312 | table_join_options= 0; |
| 2313 | in_sum_expr= with_wild= 0; |
| 2314 | options= 0; |
| 2315 | sql_cache= SQL_CACHE_UNSPECIFIED; |
| 2316 | ftfunc_list_alloc.empty(); |
| 2317 | inner_sum_func_list= 0; |
| 2318 | ftfunc_list= &ftfunc_list_alloc; |
| 2319 | order_list.elements= 0; |
| 2320 | order_list.first= 0; |
| 2321 | order_list.next= &order_list.first; |
| 2322 | /* Set limit and offset to default values */ |
| 2323 | select_limit= 0; /* denotes the default limit = HA_POS_ERROR */ |
| 2324 | offset_limit= 0; /* denotes the default offset = 0 */ |
| 2325 | with_sum_func= 0; |
| 2326 | with_all_modifier= 0; |
| 2327 | is_correlated= 0; |
| 2328 | cur_pos_in_select_list= UNDEF_POS; |
| 2329 | cond_value= having_value= Item::COND_UNDEF; |
| 2330 | inner_refs_list.empty(); |
| 2331 | insert_tables= 0; |
| 2332 | merged_into= 0; |
| 2333 | m_non_agg_field_used= false; |
| 2334 | m_agg_func_used= false; |
| 2335 | m_custom_agg_func_used= false; |
| 2336 | name_visibility_map= 0; |
| 2337 | with_dep= 0; |
| 2338 | join= 0; |
| 2339 | lock_type= TL_READ_DEFAULT; |
| 2340 | tvc= 0; |
| 2341 | in_funcs.empty(); |
| 2342 | curr_tvc_name= 0; |
| 2343 | in_tvc= false; |
| 2344 | versioned_tables= 0; |
| 2345 | } |
| 2346 | |
| 2347 | /* |
| 2348 | st_select_lex structures linking |
| 2349 | */ |
| 2350 | |
| 2351 | /* include on level down */ |
| 2352 | void st_select_lex_node::include_down(st_select_lex_node *upper) |
| 2353 | { |
| 2354 | if ((next= upper->slave)) |
| 2355 | next->prev= &next; |
| 2356 | prev= &upper->slave; |
| 2357 | upper->slave= this; |
| 2358 | master= upper; |
| 2359 | slave= 0; |
| 2360 | } |
| 2361 | |
| 2362 | |
| 2363 | void st_select_lex_node::add_slave(st_select_lex_node *slave_arg) |
| 2364 | { |
| 2365 | for (; slave; slave= slave->next) |
| 2366 | if (slave == slave_arg) |
| 2367 | return; |
| 2368 | |
| 2369 | if (slave) |
| 2370 | { |
| 2371 | st_select_lex_node *slave_arg_slave= slave_arg->slave; |
| 2372 | /* Insert in the front of list of slaves if any. */ |
| 2373 | slave_arg->include_neighbour(slave); |
| 2374 | /* include_neighbour() sets slave_arg->slave=0, restore it. */ |
| 2375 | slave_arg->slave= slave_arg_slave; |
| 2376 | /* Count on include_neighbour() setting the master. */ |
| 2377 | DBUG_ASSERT(slave_arg->master == this); |
| 2378 | } |
| 2379 | else |
| 2380 | { |
| 2381 | slave= slave_arg; |
| 2382 | slave_arg->master= this; |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | |
| 2387 | /* |
| 2388 | include on level down (but do not link) |
| 2389 | |
| 2390 | SYNOPSYS |
| 2391 | st_select_lex_node::include_standalone() |
| 2392 | upper - reference on node underr which this node should be included |
| 2393 | ref - references on reference on this node |
| 2394 | */ |
| 2395 | void st_select_lex_node::include_standalone(st_select_lex_node *upper, |
| 2396 | st_select_lex_node **ref) |
| 2397 | { |
| 2398 | next= 0; |
| 2399 | prev= ref; |
| 2400 | master= upper; |
| 2401 | slave= 0; |
| 2402 | } |
| 2403 | |
| 2404 | /* include neighbour (on same level) */ |
| 2405 | void st_select_lex_node::include_neighbour(st_select_lex_node *before) |
| 2406 | { |
| 2407 | if ((next= before->next)) |
| 2408 | next->prev= &next; |
| 2409 | prev= &before->next; |
| 2410 | before->next= this; |
| 2411 | master= before->master; |
| 2412 | slave= 0; |
| 2413 | } |
| 2414 | |
| 2415 | /* including in global SELECT_LEX list */ |
| 2416 | void st_select_lex_node::include_global(st_select_lex_node **plink) |
| 2417 | { |
| 2418 | if ((link_next= *plink)) |
| 2419 | link_next->link_prev= &link_next; |
| 2420 | link_prev= plink; |
| 2421 | *plink= this; |
| 2422 | } |
| 2423 | |
| 2424 | //excluding from global list (internal function) |
| 2425 | void st_select_lex_node::fast_exclude() |
| 2426 | { |
| 2427 | if (link_prev) |
| 2428 | { |
| 2429 | if ((*link_prev= link_next)) |
| 2430 | link_next->link_prev= link_prev; |
| 2431 | } |
| 2432 | // Remove slave structure |
| 2433 | for (; slave; slave= slave->next) |
| 2434 | slave->fast_exclude(); |
| 2435 | |
| 2436 | } |
| 2437 | |
| 2438 | |
| 2439 | /** |
| 2440 | @brief |
| 2441 | Insert a new chain of nodes into another chain before a particular link |
| 2442 | |
| 2443 | @param in/out |
| 2444 | ptr_pos_to_insert the address of the chain pointer pointing to the link |
| 2445 | before which the subchain has to be inserted |
| 2446 | @param |
| 2447 | end_chain_node the last link of the subchain to be inserted |
| 2448 | |
| 2449 | @details |
| 2450 | The method inserts the chain of nodes starting from this node and ending |
| 2451 | with the node nd_chain_node into another chain of nodes before the node |
| 2452 | pointed to by *ptr_pos_to_insert. |
| 2453 | It is assumed that ptr_pos_to_insert belongs to the chain where we insert. |
| 2454 | So it must be updated. |
| 2455 | |
| 2456 | @retval |
| 2457 | The method returns the pointer to the first link of the inserted chain |
| 2458 | */ |
| 2459 | |
| 2460 | st_select_lex_node *st_select_lex_node:: insert_chain_before( |
| 2461 | st_select_lex_node **ptr_pos_to_insert, |
| 2462 | st_select_lex_node *end_chain_node) |
| 2463 | { |
| 2464 | end_chain_node->link_next= *ptr_pos_to_insert; |
| 2465 | (*ptr_pos_to_insert)->link_prev= &end_chain_node->link_next; |
| 2466 | this->link_prev= ptr_pos_to_insert; |
| 2467 | return this; |
| 2468 | } |
| 2469 | |
| 2470 | |
| 2471 | /* |
| 2472 | Detach the node from its master and attach it to a new master |
| 2473 | */ |
| 2474 | |
| 2475 | void st_select_lex_node::move_as_slave(st_select_lex_node *new_master) |
| 2476 | { |
| 2477 | exclude_from_tree(); |
| 2478 | if (new_master->slave) |
| 2479 | { |
| 2480 | st_select_lex_node *curr= new_master->slave; |
| 2481 | for ( ; curr->next ; curr= curr->next) ; |
| 2482 | prev= &curr->next; |
| 2483 | } |
| 2484 | else |
| 2485 | prev= &new_master->slave; |
| 2486 | *prev= this; |
| 2487 | next= 0; |
| 2488 | master= new_master; |
| 2489 | } |
| 2490 | |
| 2491 | |
| 2492 | /* |
| 2493 | Exclude a node from the tree lex structure, but leave it in the global |
| 2494 | list of nodes. |
| 2495 | */ |
| 2496 | |
| 2497 | void st_select_lex_node::exclude_from_tree() |
| 2498 | { |
| 2499 | if ((*prev= next)) |
| 2500 | next->prev= prev; |
| 2501 | } |
| 2502 | |
| 2503 | |
| 2504 | /* |
| 2505 | Exclude select_lex structure (except first (first select can't be |
| 2506 | deleted, because it is most upper select)) |
| 2507 | */ |
| 2508 | void st_select_lex_node::exclude() |
| 2509 | { |
| 2510 | /* exclude from global list */ |
| 2511 | fast_exclude(); |
| 2512 | /* exclude from other structures */ |
| 2513 | exclude_from_tree(); |
| 2514 | /* |
| 2515 | We do not need following statements, because prev pointer of first |
| 2516 | list element point to master->slave |
| 2517 | if (master->slave == this) |
| 2518 | master->slave= next; |
| 2519 | */ |
| 2520 | } |
| 2521 | |
| 2522 | |
| 2523 | /* |
| 2524 | Exclude level of current unit from tree of SELECTs |
| 2525 | |
| 2526 | SYNOPSYS |
| 2527 | st_select_lex_unit::exclude_level() |
| 2528 | |
| 2529 | NOTE: units which belong to current will be brought up on level of |
| 2530 | currernt unit |
| 2531 | */ |
| 2532 | void st_select_lex_unit::exclude_level() |
| 2533 | { |
| 2534 | SELECT_LEX_UNIT *units= 0, **units_last= &units; |
| 2535 | for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) |
| 2536 | { |
| 2537 | // unlink current level from global SELECTs list |
| 2538 | if (sl->link_prev && (*sl->link_prev= sl->link_next)) |
| 2539 | sl->link_next->link_prev= sl->link_prev; |
| 2540 | |
| 2541 | // bring up underlay levels |
| 2542 | SELECT_LEX_UNIT **last= 0; |
| 2543 | for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit()) |
| 2544 | { |
| 2545 | u->master= master; |
| 2546 | last= (SELECT_LEX_UNIT**)&(u->next); |
| 2547 | } |
| 2548 | if (last) |
| 2549 | { |
| 2550 | (*units_last)= sl->first_inner_unit(); |
| 2551 | units_last= last; |
| 2552 | } |
| 2553 | } |
| 2554 | if (units) |
| 2555 | { |
| 2556 | // include brought up levels in place of current |
| 2557 | (*prev)= units; |
| 2558 | (*units_last)= (SELECT_LEX_UNIT*)next; |
| 2559 | if (next) |
| 2560 | next->prev= (SELECT_LEX_NODE**)units_last; |
| 2561 | units->prev= prev; |
| 2562 | } |
| 2563 | else |
| 2564 | { |
| 2565 | // exclude currect unit from list of nodes |
| 2566 | (*prev)= next; |
| 2567 | if (next) |
| 2568 | next->prev= prev; |
| 2569 | } |
| 2570 | // Mark it excluded |
| 2571 | prev= NULL; |
| 2572 | } |
| 2573 | |
| 2574 | |
| 2575 | #if 0 |
| 2576 | /* |
| 2577 | Exclude subtree of current unit from tree of SELECTs |
| 2578 | |
| 2579 | SYNOPSYS |
| 2580 | st_select_lex_unit::exclude_tree() |
| 2581 | */ |
| 2582 | void st_select_lex_unit::exclude_tree() |
| 2583 | { |
| 2584 | for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) |
| 2585 | { |
| 2586 | // unlink current level from global SELECTs list |
| 2587 | if (sl->link_prev && (*sl->link_prev= sl->link_next)) |
| 2588 | sl->link_next->link_prev= sl->link_prev; |
| 2589 | |
| 2590 | // unlink underlay levels |
| 2591 | for (SELECT_LEX_UNIT *u= sl->first_inner_unit(); u; u= u->next_unit()) |
| 2592 | { |
| 2593 | u->exclude_level(); |
| 2594 | } |
| 2595 | } |
| 2596 | // exclude currect unit from list of nodes |
| 2597 | (*prev)= next; |
| 2598 | if (next) |
| 2599 | next->prev= prev; |
| 2600 | } |
| 2601 | #endif |
| 2602 | |
| 2603 | |
| 2604 | /* |
| 2605 | st_select_lex_node::mark_as_dependent mark all st_select_lex struct from |
| 2606 | this to 'last' as dependent |
| 2607 | |
| 2608 | SYNOPSIS |
| 2609 | last - pointer to last st_select_lex struct, before which all |
| 2610 | st_select_lex have to be marked as dependent |
| 2611 | |
| 2612 | NOTE |
| 2613 | 'last' should be reachable from this st_select_lex_node |
| 2614 | */ |
| 2615 | |
| 2616 | bool st_select_lex::mark_as_dependent(THD *thd, st_select_lex *last, |
| 2617 | Item *dependency) |
| 2618 | { |
| 2619 | |
| 2620 | DBUG_ASSERT(this != last); |
| 2621 | |
| 2622 | /* |
| 2623 | Mark all selects from resolved to 1 before select where was |
| 2624 | found table as depended (of select where was found table) |
| 2625 | */ |
| 2626 | SELECT_LEX *s= this; |
| 2627 | do |
| 2628 | { |
| 2629 | if (!(s->uncacheable & UNCACHEABLE_DEPENDENT_GENERATED)) |
| 2630 | { |
| 2631 | // Select is dependent of outer select |
| 2632 | s->uncacheable= (s->uncacheable & ~UNCACHEABLE_UNITED) | |
| 2633 | UNCACHEABLE_DEPENDENT_GENERATED; |
| 2634 | SELECT_LEX_UNIT *munit= s->master_unit(); |
| 2635 | munit->uncacheable= (munit->uncacheable & ~UNCACHEABLE_UNITED) | |
| 2636 | UNCACHEABLE_DEPENDENT_GENERATED; |
| 2637 | for (SELECT_LEX *sl= munit->first_select(); sl ; sl= sl->next_select()) |
| 2638 | { |
| 2639 | if (sl != s && |
| 2640 | !(sl->uncacheable & (UNCACHEABLE_DEPENDENT_GENERATED | |
| 2641 | UNCACHEABLE_UNITED))) |
| 2642 | sl->uncacheable|= UNCACHEABLE_UNITED; |
| 2643 | } |
| 2644 | } |
| 2645 | |
| 2646 | Item_subselect *subquery_expr= s->master_unit()->item; |
| 2647 | if (subquery_expr && subquery_expr->mark_as_dependent(thd, last, |
| 2648 | dependency)) |
| 2649 | return TRUE; |
| 2650 | } while ((s= s->outer_select()) != last && s != 0); |
| 2651 | is_correlated= TRUE; |
| 2652 | this->master_unit()->item->is_correlated= TRUE; |
| 2653 | return FALSE; |
| 2654 | } |
| 2655 | |
| 2656 | /* |
| 2657 | prohibit using LIMIT clause |
| 2658 | */ |
| 2659 | bool st_select_lex::test_limit() |
| 2660 | { |
| 2661 | if (select_limit != 0) |
| 2662 | { |
| 2663 | my_error(ER_NOT_SUPPORTED_YET, MYF(0), |
| 2664 | "LIMIT & IN/ALL/ANY/SOME subquery" ); |
| 2665 | return(1); |
| 2666 | } |
| 2667 | return(0); |
| 2668 | } |
| 2669 | |
| 2670 | |
| 2671 | |
| 2672 | st_select_lex* st_select_lex_unit::outer_select() |
| 2673 | { |
| 2674 | return (st_select_lex*) master; |
| 2675 | } |
| 2676 | |
| 2677 | |
| 2678 | ha_rows st_select_lex::get_offset() |
| 2679 | { |
| 2680 | ulonglong val= 0; |
| 2681 | |
| 2682 | if (offset_limit) |
| 2683 | { |
| 2684 | // see comment for st_select_lex::get_limit() |
| 2685 | bool fix_fields_successful= true; |
| 2686 | if (!offset_limit->fixed) |
| 2687 | { |
| 2688 | fix_fields_successful= !offset_limit->fix_fields(master_unit()->thd, |
| 2689 | NULL); |
| 2690 | |
| 2691 | DBUG_ASSERT(fix_fields_successful); |
| 2692 | } |
| 2693 | val= fix_fields_successful ? offset_limit->val_uint() : HA_POS_ERROR; |
| 2694 | } |
| 2695 | |
| 2696 | return (ha_rows)val; |
| 2697 | } |
| 2698 | |
| 2699 | |
| 2700 | ha_rows st_select_lex::get_limit() |
| 2701 | { |
| 2702 | ulonglong val= HA_POS_ERROR; |
| 2703 | |
| 2704 | if (select_limit) |
| 2705 | { |
| 2706 | /* |
| 2707 | fix_fields() has not been called for select_limit. That's due to the |
| 2708 | historical reasons -- this item could be only of type Item_int, and |
| 2709 | Item_int does not require fix_fields(). Thus, fix_fields() was never |
| 2710 | called for select_limit. |
| 2711 | |
| 2712 | Some time ago, Item_splocal was also allowed for LIMIT / OFFSET clauses. |
| 2713 | However, the fix_fields() behavior was not updated, which led to a crash |
| 2714 | in some cases. |
| 2715 | |
| 2716 | There is no single place where to call fix_fields() for LIMIT / OFFSET |
| 2717 | items during the fix-fields-phase. Thus, for the sake of readability, |
| 2718 | it was decided to do it here, on the evaluation phase (which is a |
| 2719 | violation of design, but we chose the lesser of two evils). |
| 2720 | |
| 2721 | We can call fix_fields() here, because select_limit can be of two |
| 2722 | types only: Item_int and Item_splocal. Item_int::fix_fields() is trivial, |
| 2723 | and Item_splocal::fix_fields() (or rather Item_sp_variable::fix_fields()) |
| 2724 | has the following properties: |
| 2725 | 1) it does not affect other items; |
| 2726 | 2) it does not fail. |
| 2727 | |
| 2728 | Nevertheless DBUG_ASSERT was added to catch future changes in |
| 2729 | fix_fields() implementation. Also added runtime check against a result |
| 2730 | of fix_fields() in order to handle error condition in non-debug build. |
| 2731 | */ |
| 2732 | bool fix_fields_successful= true; |
| 2733 | if (!select_limit->fixed) |
| 2734 | { |
| 2735 | fix_fields_successful= !select_limit->fix_fields(master_unit()->thd, |
| 2736 | NULL); |
| 2737 | |
| 2738 | DBUG_ASSERT(fix_fields_successful); |
| 2739 | } |
| 2740 | val= fix_fields_successful ? select_limit->val_uint() : HA_POS_ERROR; |
| 2741 | } |
| 2742 | |
| 2743 | return (ha_rows)val; |
| 2744 | } |
| 2745 | |
| 2746 | |
| 2747 | bool st_select_lex::add_order_to_list(THD *thd, Item *item, bool asc) |
| 2748 | { |
| 2749 | return add_to_list(thd, order_list, item, asc); |
| 2750 | } |
| 2751 | |
| 2752 | |
| 2753 | bool st_select_lex::add_gorder_to_list(THD *thd, Item *item, bool asc) |
| 2754 | { |
| 2755 | return add_to_list(thd, gorder_list, item, asc); |
| 2756 | } |
| 2757 | |
| 2758 | |
| 2759 | bool st_select_lex::add_item_to_list(THD *thd, Item *item) |
| 2760 | { |
| 2761 | DBUG_ENTER("st_select_lex::add_item_to_list" ); |
| 2762 | DBUG_PRINT("info" , ("Item: %p" , item)); |
| 2763 | DBUG_RETURN(item_list.push_back(item, thd->mem_root)); |
| 2764 | } |
| 2765 | |
| 2766 | |
| 2767 | bool st_select_lex::add_group_to_list(THD *thd, Item *item, bool asc) |
| 2768 | { |
| 2769 | return add_to_list(thd, group_list, item, asc); |
| 2770 | } |
| 2771 | |
| 2772 | |
| 2773 | bool st_select_lex::add_ftfunc_to_list(THD *thd, Item_func_match *func) |
| 2774 | { |
| 2775 | return !func || ftfunc_list->push_back(func, thd->mem_root); // end of memory? |
| 2776 | } |
| 2777 | |
| 2778 | |
| 2779 | st_select_lex* st_select_lex::outer_select() |
| 2780 | { |
| 2781 | return (st_select_lex*) master->get_master(); |
| 2782 | } |
| 2783 | |
| 2784 | |
| 2785 | bool st_select_lex::inc_in_sum_expr() |
| 2786 | { |
| 2787 | in_sum_expr++; |
| 2788 | return 0; |
| 2789 | } |
| 2790 | |
| 2791 | |
| 2792 | uint st_select_lex::get_in_sum_expr() |
| 2793 | { |
| 2794 | return in_sum_expr; |
| 2795 | } |
| 2796 | |
| 2797 | |
| 2798 | TABLE_LIST* st_select_lex::get_table_list() |
| 2799 | { |
| 2800 | return table_list.first; |
| 2801 | } |
| 2802 | |
| 2803 | List<Item>* st_select_lex::get_item_list() |
| 2804 | { |
| 2805 | return &item_list; |
| 2806 | } |
| 2807 | |
| 2808 | ulong st_select_lex::get_table_join_options() |
| 2809 | { |
| 2810 | return table_join_options; |
| 2811 | } |
| 2812 | |
| 2813 | |
| 2814 | bool st_select_lex::setup_ref_array(THD *thd, uint order_group_num) |
| 2815 | { |
| 2816 | |
| 2817 | if (!((options & SELECT_DISTINCT) && !group_list.elements)) |
| 2818 | hidden_bit_fields= 0; |
| 2819 | |
| 2820 | // find_order_in_list() may need some extra space, so multiply by two. |
| 2821 | order_group_num*= 2; |
| 2822 | |
| 2823 | /* |
| 2824 | We have to create array in prepared statement memory if it is a |
| 2825 | prepared statement |
| 2826 | */ |
| 2827 | Query_arena *arena= thd->stmt_arena; |
| 2828 | const uint n_elems= (n_sum_items + |
| 2829 | n_child_sum_items + |
| 2830 | item_list.elements + |
| 2831 | select_n_reserved + |
| 2832 | select_n_having_items + |
| 2833 | select_n_where_fields + |
| 2834 | order_group_num + |
| 2835 | hidden_bit_fields) * 5; |
| 2836 | if (!ref_pointer_array.is_null()) |
| 2837 | { |
| 2838 | /* |
| 2839 | We need to take 'n_sum_items' into account when allocating the array, |
| 2840 | and this may actually increase during the optimization phase due to |
| 2841 | MIN/MAX rewrite in Item_in_subselect::single_value_transformer. |
| 2842 | In the usual case we can reuse the array from the prepare phase. |
| 2843 | If we need a bigger array, we must allocate a new one. |
| 2844 | */ |
| 2845 | if (ref_pointer_array.size() >= n_elems) |
| 2846 | return false; |
| 2847 | } |
| 2848 | Item **array= static_cast<Item**>(arena->alloc(sizeof(Item*) * n_elems)); |
| 2849 | if (likely(array != NULL)) |
| 2850 | ref_pointer_array= Ref_ptr_array(array, n_elems); |
| 2851 | |
| 2852 | return array == NULL; |
| 2853 | } |
| 2854 | |
| 2855 | |
| 2856 | void st_select_lex_unit::print(String *str, enum_query_type query_type) |
| 2857 | { |
| 2858 | bool union_all= !union_distinct; |
| 2859 | if (with_clause) |
| 2860 | with_clause->print(str, query_type); |
| 2861 | for (SELECT_LEX *sl= first_select(); sl; sl= sl->next_select()) |
| 2862 | { |
| 2863 | if (sl != first_select()) |
| 2864 | { |
| 2865 | switch (sl->linkage) |
| 2866 | { |
| 2867 | default: |
| 2868 | DBUG_ASSERT(0); |
| 2869 | case UNION_TYPE: |
| 2870 | str->append(STRING_WITH_LEN(" union " )); |
| 2871 | if (union_all) |
| 2872 | str->append(STRING_WITH_LEN("all " )); |
| 2873 | else if (union_distinct == sl) |
| 2874 | union_all= TRUE; |
| 2875 | break; |
| 2876 | case INTERSECT_TYPE: |
| 2877 | str->append(STRING_WITH_LEN(" intersect " )); |
| 2878 | break; |
| 2879 | case EXCEPT_TYPE: |
| 2880 | str->append(STRING_WITH_LEN(" except " )); |
| 2881 | break; |
| 2882 | } |
| 2883 | } |
| 2884 | if (sl->braces) |
| 2885 | str->append('('); |
| 2886 | sl->print(thd, str, query_type); |
| 2887 | if (sl->braces) |
| 2888 | str->append(')'); |
| 2889 | } |
| 2890 | if (fake_select_lex) |
| 2891 | { |
| 2892 | if (fake_select_lex->order_list.elements) |
| 2893 | { |
| 2894 | str->append(STRING_WITH_LEN(" order by " )); |
| 2895 | fake_select_lex->print_order(str, |
| 2896 | fake_select_lex->order_list.first, |
| 2897 | query_type); |
| 2898 | } |
| 2899 | fake_select_lex->print_limit(thd, str, query_type); |
| 2900 | } |
| 2901 | else if (saved_fake_select_lex) |
| 2902 | saved_fake_select_lex->print_limit(thd, str, query_type); |
| 2903 | } |
| 2904 | |
| 2905 | |
| 2906 | void st_select_lex::print_order(String *str, |
| 2907 | ORDER *order, |
| 2908 | enum_query_type query_type) |
| 2909 | { |
| 2910 | for (; order; order= order->next) |
| 2911 | { |
| 2912 | if (order->counter_used) |
| 2913 | { |
| 2914 | char buffer[20]; |
| 2915 | size_t length= my_snprintf(buffer, 20, "%d" , order->counter); |
| 2916 | str->append(buffer, (uint) length); |
| 2917 | } |
| 2918 | else |
| 2919 | { |
| 2920 | /* replace numeric reference with equivalent for ORDER constant */ |
| 2921 | if (order->item[0]->type() == Item::INT_ITEM && |
| 2922 | order->item[0]->basic_const_item()) |
| 2923 | { |
| 2924 | /* make it expression instead of integer constant */ |
| 2925 | str->append(STRING_WITH_LEN("''" )); |
| 2926 | } |
| 2927 | else |
| 2928 | (*order->item)->print(str, query_type); |
| 2929 | } |
| 2930 | if (order->direction == ORDER::ORDER_DESC) |
| 2931 | str->append(STRING_WITH_LEN(" desc" )); |
| 2932 | if (order->next) |
| 2933 | str->append(','); |
| 2934 | } |
| 2935 | } |
| 2936 | |
| 2937 | |
| 2938 | void st_select_lex::print_limit(THD *thd, |
| 2939 | String *str, |
| 2940 | enum_query_type query_type) |
| 2941 | { |
| 2942 | SELECT_LEX_UNIT *unit= master_unit(); |
| 2943 | Item_subselect *item= unit->item; |
| 2944 | |
| 2945 | if (item && unit->global_parameters() == this) |
| 2946 | { |
| 2947 | Item_subselect::subs_type subs_type= item->substype(); |
| 2948 | if (subs_type == Item_subselect::EXISTS_SUBS || |
| 2949 | subs_type == Item_subselect::IN_SUBS || |
| 2950 | subs_type == Item_subselect::ALL_SUBS) |
| 2951 | { |
| 2952 | return; |
| 2953 | } |
| 2954 | } |
| 2955 | if (explicit_limit) |
| 2956 | { |
| 2957 | str->append(STRING_WITH_LEN(" limit " )); |
| 2958 | if (offset_limit) |
| 2959 | { |
| 2960 | offset_limit->print(str, query_type); |
| 2961 | str->append(','); |
| 2962 | } |
| 2963 | select_limit->print(str, query_type); |
| 2964 | } |
| 2965 | } |
| 2966 | |
| 2967 | |
| 2968 | /** |
| 2969 | @brief Restore the LEX and THD in case of a parse error. |
| 2970 | |
| 2971 | This is a clean up call that is invoked by the Bison generated |
| 2972 | parser before returning an error from MYSQLparse. If your |
| 2973 | semantic actions manipulate with the global thread state (which |
| 2974 | is a very bad practice and should not normally be employed) and |
| 2975 | need a clean-up in case of error, and you can not use %destructor |
| 2976 | rule in the grammar file itself, this function should be used |
| 2977 | to implement the clean up. |
| 2978 | */ |
| 2979 | |
| 2980 | void LEX::cleanup_lex_after_parse_error(THD *thd) |
| 2981 | { |
| 2982 | /* |
| 2983 | Delete sphead for the side effect of restoring of the original |
| 2984 | LEX state, thd->lex, thd->mem_root and thd->free_list if they |
| 2985 | were replaced when parsing stored procedure statements. We |
| 2986 | will never use sphead object after a parse error, so it's okay |
| 2987 | to delete it only for the sake of the side effect. |
| 2988 | TODO: make this functionality explicit in sp_head class. |
| 2989 | Sic: we must nullify the member of the main lex, not the |
| 2990 | current one that will be thrown away |
| 2991 | */ |
| 2992 | if (thd->lex->sphead) |
| 2993 | { |
| 2994 | sp_package *pkg; |
| 2995 | thd->lex->sphead->restore_thd_mem_root(thd); |
| 2996 | if ((pkg= thd->lex->sphead->m_parent)) |
| 2997 | { |
| 2998 | /* |
| 2999 | If a syntax error happened inside a package routine definition, |
| 3000 | then thd->lex points to the routine sublex. We need to restore to |
| 3001 | the top level LEX. |
| 3002 | */ |
| 3003 | DBUG_ASSERT(pkg->m_top_level_lex); |
| 3004 | DBUG_ASSERT(pkg == pkg->m_top_level_lex->sphead); |
| 3005 | pkg->restore_thd_mem_root(thd); |
| 3006 | LEX *top= pkg->m_top_level_lex; |
| 3007 | delete pkg; |
| 3008 | thd->lex= top; |
| 3009 | thd->lex->sphead= NULL; |
| 3010 | } |
| 3011 | else |
| 3012 | { |
| 3013 | delete thd->lex->sphead; |
| 3014 | thd->lex->sphead= NULL; |
| 3015 | } |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | /* |
| 3020 | Initialize (or reset) Query_tables_list object. |
| 3021 | |
| 3022 | SYNOPSIS |
| 3023 | reset_query_tables_list() |
| 3024 | init TRUE - we should perform full initialization of object with |
| 3025 | allocating needed memory |
| 3026 | FALSE - object is already initialized so we should only reset |
| 3027 | its state so it can be used for parsing/processing |
| 3028 | of new statement |
| 3029 | |
| 3030 | DESCRIPTION |
| 3031 | This method initializes Query_tables_list so it can be used as part |
| 3032 | of LEX object for parsing/processing of statement. One can also use |
| 3033 | this method to reset state of already initialized Query_tables_list |
| 3034 | so it can be used for processing of new statement. |
| 3035 | */ |
| 3036 | |
| 3037 | void Query_tables_list::reset_query_tables_list(bool init) |
| 3038 | { |
| 3039 | sql_command= SQLCOM_END; |
| 3040 | if (!init && query_tables) |
| 3041 | { |
| 3042 | TABLE_LIST *table= query_tables; |
| 3043 | for (;;) |
| 3044 | { |
| 3045 | delete table->view; |
| 3046 | if (query_tables_last == &table->next_global || |
| 3047 | !(table= table->next_global)) |
| 3048 | break; |
| 3049 | } |
| 3050 | } |
| 3051 | query_tables= 0; |
| 3052 | query_tables_last= &query_tables; |
| 3053 | query_tables_own_last= 0; |
| 3054 | if (init) |
| 3055 | { |
| 3056 | /* |
| 3057 | We delay real initialization of hash (and therefore related |
| 3058 | memory allocation) until first insertion into this hash. |
| 3059 | */ |
| 3060 | my_hash_clear(&sroutines); |
| 3061 | } |
| 3062 | else if (sroutines.records) |
| 3063 | { |
| 3064 | /* Non-zero sroutines.records means that hash was initialized. */ |
| 3065 | my_hash_reset(&sroutines); |
| 3066 | } |
| 3067 | sroutines_list.empty(); |
| 3068 | sroutines_list_own_last= sroutines_list.next; |
| 3069 | sroutines_list_own_elements= 0; |
| 3070 | binlog_stmt_flags= 0; |
| 3071 | stmt_accessed_table_flag= 0; |
| 3072 | } |
| 3073 | |
| 3074 | |
| 3075 | /* |
| 3076 | Destroy Query_tables_list object with freeing all resources used by it. |
| 3077 | |
| 3078 | SYNOPSIS |
| 3079 | destroy_query_tables_list() |
| 3080 | */ |
| 3081 | |
| 3082 | void Query_tables_list::destroy_query_tables_list() |
| 3083 | { |
| 3084 | my_hash_free(&sroutines); |
| 3085 | } |
| 3086 | |
| 3087 | |
| 3088 | /* |
| 3089 | Initialize LEX object. |
| 3090 | |
| 3091 | SYNOPSIS |
| 3092 | LEX::LEX() |
| 3093 | |
| 3094 | NOTE |
| 3095 | LEX object initialized with this constructor can be used as part of |
| 3096 | THD object for which one can safely call open_tables(), lock_tables() |
| 3097 | and close_thread_tables() functions. But it is not yet ready for |
| 3098 | statement parsing. On should use lex_start() function to prepare LEX |
| 3099 | for this. |
| 3100 | */ |
| 3101 | |
| 3102 | LEX::LEX() |
| 3103 | : explain(NULL), result(0), arena_for_set_stmt(0), mem_root_for_set_stmt(0), |
| 3104 | option_type(OPT_DEFAULT), context_analysis_only(0), sphead(0), |
| 3105 | default_used(0), is_lex_started(0), limit_rows_examined_cnt(ULONGLONG_MAX) |
| 3106 | { |
| 3107 | |
| 3108 | init_dynamic_array2(&plugins, sizeof(plugin_ref), plugins_static_buffer, |
| 3109 | INITIAL_LEX_PLUGIN_LIST_SIZE, |
| 3110 | INITIAL_LEX_PLUGIN_LIST_SIZE, 0); |
| 3111 | reset_query_tables_list(TRUE); |
| 3112 | mi.init(); |
| 3113 | init_dynamic_array2(&delete_gtid_domain, sizeof(ulong*), |
| 3114 | gtid_domain_static_buffer, |
| 3115 | initial_gtid_domain_buffer_size, |
| 3116 | initial_gtid_domain_buffer_size, 0); |
| 3117 | } |
| 3118 | |
| 3119 | |
| 3120 | /* |
| 3121 | Check whether the merging algorithm can be used on this VIEW |
| 3122 | |
| 3123 | SYNOPSIS |
| 3124 | LEX::can_be_merged() |
| 3125 | |
| 3126 | DESCRIPTION |
| 3127 | We can apply merge algorithm if it is single SELECT view with |
| 3128 | subqueries only in WHERE clause (we do not count SELECTs of underlying |
| 3129 | views, and second level subqueries) and we have not grpouping, ordering, |
| 3130 | HAVING clause, aggregate functions, DISTINCT clause, LIMIT clause and |
| 3131 | several underlying tables. |
| 3132 | |
| 3133 | RETURN |
| 3134 | FALSE - only temporary table algorithm can be used |
| 3135 | TRUE - merge algorithm can be used |
| 3136 | */ |
| 3137 | |
| 3138 | bool LEX::can_be_merged() |
| 3139 | { |
| 3140 | // TODO: do not forget implement case when select_lex.table_list.elements==0 |
| 3141 | |
| 3142 | /* find non VIEW subqueries/unions */ |
| 3143 | bool selects_allow_merge= (select_lex.next_select() == 0 && |
| 3144 | !(select_lex.uncacheable & |
| 3145 | UNCACHEABLE_RAND)); |
| 3146 | if (selects_allow_merge) |
| 3147 | { |
| 3148 | for (SELECT_LEX_UNIT *tmp_unit= select_lex.first_inner_unit(); |
| 3149 | tmp_unit; |
| 3150 | tmp_unit= tmp_unit->next_unit()) |
| 3151 | { |
| 3152 | if (tmp_unit->first_select()->parent_lex == this && |
| 3153 | (tmp_unit->item != 0 && |
| 3154 | (tmp_unit->item->place() != IN_WHERE && |
| 3155 | tmp_unit->item->place() != IN_ON && |
| 3156 | tmp_unit->item->place() != SELECT_LIST))) |
| 3157 | { |
| 3158 | selects_allow_merge= 0; |
| 3159 | break; |
| 3160 | } |
| 3161 | } |
| 3162 | } |
| 3163 | |
| 3164 | return (selects_allow_merge && |
| 3165 | select_lex.group_list.elements == 0 && |
| 3166 | select_lex.having == 0 && |
| 3167 | select_lex.with_sum_func == 0 && |
| 3168 | select_lex.table_list.elements >= 1 && |
| 3169 | !(select_lex.options & SELECT_DISTINCT) && |
| 3170 | select_lex.select_limit == 0); |
| 3171 | } |
| 3172 | |
| 3173 | |
| 3174 | /* |
| 3175 | check if command can use VIEW with MERGE algorithm (for top VIEWs) |
| 3176 | |
| 3177 | SYNOPSIS |
| 3178 | LEX::can_use_merged() |
| 3179 | |
| 3180 | DESCRIPTION |
| 3181 | Only listed here commands can use merge algorithm in top level |
| 3182 | SELECT_LEX (for subqueries will be used merge algorithm if |
| 3183 | LEX::can_not_use_merged() is not TRUE). |
| 3184 | |
| 3185 | RETURN |
| 3186 | FALSE - command can't use merged VIEWs |
| 3187 | TRUE - VIEWs with MERGE algorithms can be used |
| 3188 | */ |
| 3189 | |
| 3190 | bool LEX::can_use_merged() |
| 3191 | { |
| 3192 | switch (sql_command) |
| 3193 | { |
| 3194 | case SQLCOM_SELECT: |
| 3195 | case SQLCOM_CREATE_TABLE: |
| 3196 | case SQLCOM_UPDATE: |
| 3197 | case SQLCOM_UPDATE_MULTI: |
| 3198 | case SQLCOM_DELETE: |
| 3199 | case SQLCOM_DELETE_MULTI: |
| 3200 | case SQLCOM_INSERT: |
| 3201 | case SQLCOM_INSERT_SELECT: |
| 3202 | case SQLCOM_REPLACE: |
| 3203 | case SQLCOM_REPLACE_SELECT: |
| 3204 | case SQLCOM_LOAD: |
| 3205 | return TRUE; |
| 3206 | default: |
| 3207 | return FALSE; |
| 3208 | } |
| 3209 | } |
| 3210 | |
| 3211 | /* |
| 3212 | Check if command can't use merged views in any part of command |
| 3213 | |
| 3214 | SYNOPSIS |
| 3215 | LEX::can_not_use_merged() |
| 3216 | |
| 3217 | DESCRIPTION |
| 3218 | Temporary table algorithm will be used on all SELECT levels for queries |
| 3219 | listed here (see also LEX::can_use_merged()). |
| 3220 | |
| 3221 | RETURN |
| 3222 | FALSE - command can't use merged VIEWs |
| 3223 | TRUE - VIEWs with MERGE algorithms can be used |
| 3224 | */ |
| 3225 | |
| 3226 | bool LEX::can_not_use_merged() |
| 3227 | { |
| 3228 | switch (sql_command) |
| 3229 | { |
| 3230 | case SQLCOM_CREATE_VIEW: |
| 3231 | case SQLCOM_SHOW_CREATE: |
| 3232 | /* |
| 3233 | SQLCOM_SHOW_FIELDS is necessary to make |
| 3234 | information schema tables working correctly with views. |
| 3235 | see get_schema_tables_result function |
| 3236 | */ |
| 3237 | case SQLCOM_SHOW_FIELDS: |
| 3238 | return TRUE; |
| 3239 | default: |
| 3240 | return FALSE; |
| 3241 | } |
| 3242 | } |
| 3243 | |
| 3244 | /* |
| 3245 | Detect that we need only table structure of derived table/view |
| 3246 | |
| 3247 | SYNOPSIS |
| 3248 | only_view_structure() |
| 3249 | |
| 3250 | RETURN |
| 3251 | TRUE yes, we need only structure |
| 3252 | FALSE no, we need data |
| 3253 | */ |
| 3254 | |
| 3255 | bool LEX::only_view_structure() |
| 3256 | { |
| 3257 | switch (sql_command) { |
| 3258 | case SQLCOM_SHOW_CREATE: |
| 3259 | case SQLCOM_SHOW_TABLES: |
| 3260 | case SQLCOM_SHOW_FIELDS: |
| 3261 | case SQLCOM_REVOKE_ALL: |
| 3262 | case SQLCOM_REVOKE: |
| 3263 | case SQLCOM_GRANT: |
| 3264 | case SQLCOM_CREATE_VIEW: |
| 3265 | return TRUE; |
| 3266 | default: |
| 3267 | return FALSE; |
| 3268 | } |
| 3269 | } |
| 3270 | |
| 3271 | |
| 3272 | /* |
| 3273 | Should Items_ident be printed correctly |
| 3274 | |
| 3275 | SYNOPSIS |
| 3276 | need_correct_ident() |
| 3277 | |
| 3278 | RETURN |
| 3279 | TRUE yes, we need only structure |
| 3280 | FALSE no, we need data |
| 3281 | */ |
| 3282 | |
| 3283 | |
| 3284 | bool LEX::need_correct_ident() |
| 3285 | { |
| 3286 | switch(sql_command) |
| 3287 | { |
| 3288 | case SQLCOM_SHOW_CREATE: |
| 3289 | case SQLCOM_SHOW_TABLES: |
| 3290 | case SQLCOM_CREATE_VIEW: |
| 3291 | return TRUE; |
| 3292 | default: |
| 3293 | return FALSE; |
| 3294 | } |
| 3295 | } |
| 3296 | |
| 3297 | /* |
| 3298 | Get effective type of CHECK OPTION for given view |
| 3299 | |
| 3300 | SYNOPSIS |
| 3301 | get_effective_with_check() |
| 3302 | view given view |
| 3303 | |
| 3304 | NOTE |
| 3305 | It have not sense to set CHECK OPTION for SELECT satement or subqueries, |
| 3306 | so we do not. |
| 3307 | |
| 3308 | RETURN |
| 3309 | VIEW_CHECK_NONE no need CHECK OPTION |
| 3310 | VIEW_CHECK_LOCAL CHECK OPTION LOCAL |
| 3311 | VIEW_CHECK_CASCADED CHECK OPTION CASCADED |
| 3312 | */ |
| 3313 | |
| 3314 | uint8 LEX::get_effective_with_check(TABLE_LIST *view) |
| 3315 | { |
| 3316 | if (view->select_lex->master_unit() == &unit && |
| 3317 | which_check_option_applicable()) |
| 3318 | return (uint8)view->with_check; |
| 3319 | return VIEW_CHECK_NONE; |
| 3320 | } |
| 3321 | |
| 3322 | |
| 3323 | /** |
| 3324 | This method should be called only during parsing. |
| 3325 | It is aware of compound statements (stored routine bodies) |
| 3326 | and will initialize the destination with the default |
| 3327 | database of the stored routine, rather than the default |
| 3328 | database of the connection it is parsed in. |
| 3329 | E.g. if one has no current database selected, or current database |
| 3330 | set to 'bar' and then issues: |
| 3331 | |
| 3332 | CREATE PROCEDURE foo.p1() BEGIN SELECT * FROM t1 END// |
| 3333 | |
| 3334 | t1 is meant to refer to foo.t1, not to bar.t1. |
| 3335 | |
| 3336 | This method is needed to support this rule. |
| 3337 | |
| 3338 | @return TRUE in case of error (parsing should be aborted, FALSE in |
| 3339 | case of success |
| 3340 | */ |
| 3341 | |
| 3342 | bool LEX::copy_db_to(LEX_CSTRING *to) |
| 3343 | { |
| 3344 | if (sphead && sphead->m_name.str) |
| 3345 | { |
| 3346 | DBUG_ASSERT(sphead->m_db.str && sphead->m_db.length); |
| 3347 | /* |
| 3348 | It is safe to assign the string by-pointer, both sphead and |
| 3349 | its statements reside in the same memory root. |
| 3350 | */ |
| 3351 | *to= sphead->m_db; |
| 3352 | return FALSE; |
| 3353 | } |
| 3354 | return thd->copy_db_to(to); |
| 3355 | } |
| 3356 | |
| 3357 | /** |
| 3358 | Initialize offset and limit counters. |
| 3359 | |
| 3360 | @param sl SELECT_LEX to get offset and limit from. |
| 3361 | */ |
| 3362 | |
| 3363 | void st_select_lex_unit::set_limit(st_select_lex *sl) |
| 3364 | { |
| 3365 | DBUG_ASSERT(!thd->stmt_arena->is_stmt_prepare()); |
| 3366 | |
| 3367 | offset_limit_cnt= sl->get_offset(); |
| 3368 | select_limit_cnt= sl->get_limit(); |
| 3369 | if (select_limit_cnt + offset_limit_cnt >= select_limit_cnt) |
| 3370 | select_limit_cnt+= offset_limit_cnt; |
| 3371 | else |
| 3372 | select_limit_cnt= HA_POS_ERROR; |
| 3373 | } |
| 3374 | |
| 3375 | |
| 3376 | /** |
| 3377 | Decide if a temporary table is needed for the UNION. |
| 3378 | |
| 3379 | @retval true A temporary table is needed. |
| 3380 | @retval false A temporary table is not needed. |
| 3381 | */ |
| 3382 | |
| 3383 | bool st_select_lex_unit::union_needs_tmp_table() |
| 3384 | { |
| 3385 | if (with_element && with_element->is_recursive) |
| 3386 | return true; |
| 3387 | return union_distinct != NULL || |
| 3388 | global_parameters()->order_list.elements != 0 || |
| 3389 | thd->lex->sql_command == SQLCOM_INSERT_SELECT || |
| 3390 | thd->lex->sql_command == SQLCOM_REPLACE_SELECT; |
| 3391 | } |
| 3392 | |
| 3393 | /** |
| 3394 | @brief Set the initial purpose of this TABLE_LIST object in the list of used |
| 3395 | tables. |
| 3396 | |
| 3397 | We need to track this information on table-by-table basis, since when this |
| 3398 | table becomes an element of the pre-locked list, it's impossible to identify |
| 3399 | which SQL sub-statement it has been originally used in. |
| 3400 | |
| 3401 | E.g.: |
| 3402 | |
| 3403 | User request: SELECT * FROM t1 WHERE f1(); |
| 3404 | FUNCTION f1(): DELETE FROM t2; RETURN 1; |
| 3405 | BEFORE DELETE trigger on t2: INSERT INTO t3 VALUES (old.a); |
| 3406 | |
| 3407 | For this user request, the pre-locked list will contain t1, t2, t3 |
| 3408 | table elements, each needed for different DML. |
| 3409 | |
| 3410 | The trigger event map is updated to reflect INSERT, UPDATE, DELETE, |
| 3411 | REPLACE, LOAD DATA, CREATE TABLE .. SELECT, CREATE TABLE .. |
| 3412 | REPLACE SELECT statements, and additionally ON DUPLICATE KEY UPDATE |
| 3413 | clause. |
| 3414 | */ |
| 3415 | |
| 3416 | void LEX::set_trg_event_type_for_tables() |
| 3417 | { |
| 3418 | uint8 new_trg_event_map= 0; |
| 3419 | DBUG_ENTER("LEX::set_trg_event_type_for_tables" ); |
| 3420 | |
| 3421 | /* |
| 3422 | Some auxiliary operations |
| 3423 | (e.g. GRANT processing) create TABLE_LIST instances outside |
| 3424 | the parser. Additionally, some commands (e.g. OPTIMIZE) change |
| 3425 | the lock type for a table only after parsing is done. Luckily, |
| 3426 | these do not fire triggers and do not need to pre-load them. |
| 3427 | For these TABLE_LISTs set_trg_event_type is never called, and |
| 3428 | trg_event_map is always empty. That means that the pre-locking |
| 3429 | algorithm will ignore triggers defined on these tables, if |
| 3430 | any, and the execution will either fail with an assert in |
| 3431 | sql_trigger.cc or with an error that a used table was not |
| 3432 | pre-locked, in case of a production build. |
| 3433 | |
| 3434 | TODO: this usage pattern creates unnecessary module dependencies |
| 3435 | and should be rewritten to go through the parser. |
| 3436 | Table list instances created outside the parser in most cases |
| 3437 | refer to mysql.* system tables. It is not allowed to have |
| 3438 | a trigger on a system table, but keeping track of |
| 3439 | initialization provides extra safety in case this limitation |
| 3440 | is circumvented. |
| 3441 | */ |
| 3442 | |
| 3443 | switch (sql_command) { |
| 3444 | case SQLCOM_LOCK_TABLES: |
| 3445 | /* |
| 3446 | On a LOCK TABLE, all triggers must be pre-loaded for this TABLE_LIST |
| 3447 | when opening an associated TABLE. |
| 3448 | */ |
| 3449 | new_trg_event_map= static_cast<uint8> |
| 3450 | (1 << static_cast<int>(TRG_EVENT_INSERT)) | |
| 3451 | static_cast<uint8> |
| 3452 | (1 << static_cast<int>(TRG_EVENT_UPDATE)) | |
| 3453 | static_cast<uint8> |
| 3454 | (1 << static_cast<int>(TRG_EVENT_DELETE)); |
| 3455 | break; |
| 3456 | /* |
| 3457 | Basic INSERT. If there is an additional ON DUPLIATE KEY UPDATE |
| 3458 | clause, it will be handled later in this method. |
| 3459 | */ |
| 3460 | case SQLCOM_INSERT: /* fall through */ |
| 3461 | case SQLCOM_INSERT_SELECT: |
| 3462 | /* |
| 3463 | LOAD DATA ... INFILE is expected to fire BEFORE/AFTER INSERT |
| 3464 | triggers. |
| 3465 | If the statement also has REPLACE clause, it will be |
| 3466 | handled later in this method. |
| 3467 | */ |
| 3468 | case SQLCOM_LOAD: /* fall through */ |
| 3469 | /* |
| 3470 | REPLACE is semantically equivalent to INSERT. In case |
| 3471 | of a primary or unique key conflict, it deletes the old |
| 3472 | record and inserts a new one. So we also may need to |
| 3473 | fire ON DELETE triggers. This functionality is handled |
| 3474 | later in this method. |
| 3475 | */ |
| 3476 | case SQLCOM_REPLACE: /* fall through */ |
| 3477 | case SQLCOM_REPLACE_SELECT: |
| 3478 | /* |
| 3479 | CREATE TABLE ... SELECT defaults to INSERT if the table or |
| 3480 | view already exists. REPLACE option of CREATE TABLE ... |
| 3481 | REPLACE SELECT is handled later in this method. |
| 3482 | */ |
| 3483 | case SQLCOM_CREATE_TABLE: |
| 3484 | case SQLCOM_CREATE_SEQUENCE: |
| 3485 | new_trg_event_map|= static_cast<uint8> |
| 3486 | (1 << static_cast<int>(TRG_EVENT_INSERT)); |
| 3487 | break; |
| 3488 | /* Basic update and multi-update */ |
| 3489 | case SQLCOM_UPDATE: /* fall through */ |
| 3490 | case SQLCOM_UPDATE_MULTI: |
| 3491 | new_trg_event_map|= static_cast<uint8> |
| 3492 | (1 << static_cast<int>(TRG_EVENT_UPDATE)); |
| 3493 | break; |
| 3494 | /* Basic delete and multi-delete */ |
| 3495 | case SQLCOM_DELETE: /* fall through */ |
| 3496 | case SQLCOM_DELETE_MULTI: |
| 3497 | new_trg_event_map|= static_cast<uint8> |
| 3498 | (1 << static_cast<int>(TRG_EVENT_DELETE)); |
| 3499 | break; |
| 3500 | default: |
| 3501 | break; |
| 3502 | } |
| 3503 | |
| 3504 | switch (duplicates) { |
| 3505 | case DUP_UPDATE: |
| 3506 | new_trg_event_map|= static_cast<uint8> |
| 3507 | (1 << static_cast<int>(TRG_EVENT_UPDATE)); |
| 3508 | break; |
| 3509 | case DUP_REPLACE: |
| 3510 | new_trg_event_map|= static_cast<uint8> |
| 3511 | (1 << static_cast<int>(TRG_EVENT_DELETE)); |
| 3512 | break; |
| 3513 | case DUP_ERROR: |
| 3514 | default: |
| 3515 | break; |
| 3516 | } |
| 3517 | |
| 3518 | |
| 3519 | /* |
| 3520 | Do not iterate over sub-selects, only the tables in the outermost |
| 3521 | SELECT_LEX can be modified, if any. |
| 3522 | */ |
| 3523 | TABLE_LIST *tables= select_lex.get_table_list(); |
| 3524 | |
| 3525 | while (tables) |
| 3526 | { |
| 3527 | /* |
| 3528 | This is a fast check to filter out statements that do |
| 3529 | not change data, or tables on the right side, in case of |
| 3530 | INSERT .. SELECT, CREATE TABLE .. SELECT and so on. |
| 3531 | Here we also filter out OPTIMIZE statement and non-updateable |
| 3532 | views, for which lock_type is TL_UNLOCK or TL_READ after |
| 3533 | parsing. |
| 3534 | */ |
| 3535 | if (static_cast<int>(tables->lock_type) >= |
| 3536 | static_cast<int>(TL_WRITE_ALLOW_WRITE)) |
| 3537 | tables->trg_event_map= new_trg_event_map; |
| 3538 | tables= tables->next_local; |
| 3539 | } |
| 3540 | DBUG_VOID_RETURN; |
| 3541 | } |
| 3542 | |
| 3543 | |
| 3544 | /* |
| 3545 | Unlink the first table from the global table list and the first table from |
| 3546 | outer select (lex->select_lex) local list |
| 3547 | |
| 3548 | SYNOPSIS |
| 3549 | unlink_first_table() |
| 3550 | link_to_local Set to 1 if caller should link this table to local list |
| 3551 | |
| 3552 | NOTES |
| 3553 | We assume that first tables in both lists is the same table or the local |
| 3554 | list is empty. |
| 3555 | |
| 3556 | RETURN |
| 3557 | 0 If 'query_tables' == 0 |
| 3558 | unlinked table |
| 3559 | In this case link_to_local is set. |
| 3560 | |
| 3561 | */ |
| 3562 | TABLE_LIST *LEX::unlink_first_table(bool *link_to_local) |
| 3563 | { |
| 3564 | TABLE_LIST *first; |
| 3565 | if ((first= query_tables)) |
| 3566 | { |
| 3567 | /* |
| 3568 | Exclude from global table list |
| 3569 | */ |
| 3570 | if ((query_tables= query_tables->next_global)) |
| 3571 | query_tables->prev_global= &query_tables; |
| 3572 | else |
| 3573 | query_tables_last= &query_tables; |
| 3574 | first->next_global= 0; |
| 3575 | |
| 3576 | /* |
| 3577 | and from local list if it is not empty |
| 3578 | */ |
| 3579 | if ((*link_to_local= MY_TEST(select_lex.table_list.first))) |
| 3580 | { |
| 3581 | select_lex.context.table_list= |
| 3582 | select_lex.context.first_name_resolution_table= first->next_local; |
| 3583 | select_lex.table_list.first= first->next_local; |
| 3584 | select_lex.table_list.elements--; //safety |
| 3585 | first->next_local= 0; |
| 3586 | /* |
| 3587 | Ensure that the global list has the same first table as the local |
| 3588 | list. |
| 3589 | */ |
| 3590 | first_lists_tables_same(); |
| 3591 | } |
| 3592 | } |
| 3593 | return first; |
| 3594 | } |
| 3595 | |
| 3596 | |
| 3597 | /* |
| 3598 | Bring first local table of first most outer select to first place in global |
| 3599 | table list |
| 3600 | |
| 3601 | SYNOPSYS |
| 3602 | LEX::first_lists_tables_same() |
| 3603 | |
| 3604 | NOTES |
| 3605 | In many cases (for example, usual INSERT/DELETE/...) the first table of |
| 3606 | main SELECT_LEX have special meaning => check that it is the first table |
| 3607 | in global list and re-link to be first in the global list if it is |
| 3608 | necessary. We need such re-linking only for queries with sub-queries in |
| 3609 | the select list, as only in this case tables of sub-queries will go to |
| 3610 | the global list first. |
| 3611 | */ |
| 3612 | |
| 3613 | void LEX::first_lists_tables_same() |
| 3614 | { |
| 3615 | TABLE_LIST *first_table= select_lex.table_list.first; |
| 3616 | if (query_tables != first_table && first_table != 0) |
| 3617 | { |
| 3618 | TABLE_LIST *next; |
| 3619 | if (query_tables_last == &first_table->next_global) |
| 3620 | query_tables_last= first_table->prev_global; |
| 3621 | |
| 3622 | if (query_tables_own_last == &first_table->next_global) |
| 3623 | query_tables_own_last= first_table->prev_global; |
| 3624 | |
| 3625 | if ((next= *first_table->prev_global= first_table->next_global)) |
| 3626 | next->prev_global= first_table->prev_global; |
| 3627 | /* include in new place */ |
| 3628 | first_table->next_global= query_tables; |
| 3629 | /* |
| 3630 | We are sure that query_tables is not 0, because first_table was not |
| 3631 | first table in the global list => we can use |
| 3632 | query_tables->prev_global without check of query_tables |
| 3633 | */ |
| 3634 | query_tables->prev_global= &first_table->next_global; |
| 3635 | first_table->prev_global= &query_tables; |
| 3636 | query_tables= first_table; |
| 3637 | } |
| 3638 | } |
| 3639 | |
| 3640 | |
| 3641 | /* |
| 3642 | Link table back that was unlinked with unlink_first_table() |
| 3643 | |
| 3644 | SYNOPSIS |
| 3645 | link_first_table_back() |
| 3646 | link_to_local do we need link this table to local |
| 3647 | |
| 3648 | RETURN |
| 3649 | global list |
| 3650 | */ |
| 3651 | |
| 3652 | void LEX::link_first_table_back(TABLE_LIST *first, |
| 3653 | bool link_to_local) |
| 3654 | { |
| 3655 | if (first) |
| 3656 | { |
| 3657 | if ((first->next_global= query_tables)) |
| 3658 | query_tables->prev_global= &first->next_global; |
| 3659 | else |
| 3660 | query_tables_last= &first->next_global; |
| 3661 | query_tables= first; |
| 3662 | |
| 3663 | if (link_to_local) |
| 3664 | { |
| 3665 | first->next_local= select_lex.table_list.first; |
| 3666 | select_lex.context.table_list= first; |
| 3667 | select_lex.table_list.first= first; |
| 3668 | select_lex.table_list.elements++; //safety |
| 3669 | } |
| 3670 | } |
| 3671 | } |
| 3672 | |
| 3673 | |
| 3674 | |
| 3675 | /* |
| 3676 | cleanup lex for case when we open table by table for processing |
| 3677 | |
| 3678 | SYNOPSIS |
| 3679 | LEX::cleanup_after_one_table_open() |
| 3680 | |
| 3681 | NOTE |
| 3682 | This method is mostly responsible for cleaning up of selects lists and |
| 3683 | derived tables state. To rollback changes in Query_tables_list one has |
| 3684 | to call Query_tables_list::reset_query_tables_list(FALSE). |
| 3685 | */ |
| 3686 | |
| 3687 | void LEX::cleanup_after_one_table_open() |
| 3688 | { |
| 3689 | /* |
| 3690 | thd->lex->derived_tables & additional units may be set if we open |
| 3691 | a view. It is necessary to clear thd->lex->derived_tables flag |
| 3692 | to prevent processing of derived tables during next open_and_lock_tables |
| 3693 | if next table is a real table and cleanup & remove underlying units |
| 3694 | NOTE: all units will be connected to thd->lex->select_lex, because we |
| 3695 | have not UNION on most upper level. |
| 3696 | */ |
| 3697 | if (all_selects_list != &select_lex) |
| 3698 | { |
| 3699 | derived_tables= 0; |
| 3700 | select_lex.exclude_from_table_unique_test= false; |
| 3701 | /* cleunup underlying units (units of VIEW) */ |
| 3702 | for (SELECT_LEX_UNIT *un= select_lex.first_inner_unit(); |
| 3703 | un; |
| 3704 | un= un->next_unit()) |
| 3705 | un->cleanup(); |
| 3706 | /* reduce all selects list to default state */ |
| 3707 | all_selects_list= &select_lex; |
| 3708 | /* remove underlying units (units of VIEW) subtree */ |
| 3709 | select_lex.cut_subtree(); |
| 3710 | } |
| 3711 | } |
| 3712 | |
| 3713 | |
| 3714 | /* |
| 3715 | Save current state of Query_tables_list for this LEX, and prepare it |
| 3716 | for processing of new statemnt. |
| 3717 | |
| 3718 | SYNOPSIS |
| 3719 | reset_n_backup_query_tables_list() |
| 3720 | backup Pointer to Query_tables_list instance to be used for backup |
| 3721 | */ |
| 3722 | |
| 3723 | void LEX::reset_n_backup_query_tables_list(Query_tables_list *backup) |
| 3724 | { |
| 3725 | backup->set_query_tables_list(this); |
| 3726 | /* |
| 3727 | We have to perform full initialization here since otherwise we |
| 3728 | will damage backed up state. |
| 3729 | */ |
| 3730 | this->reset_query_tables_list(TRUE); |
| 3731 | } |
| 3732 | |
| 3733 | |
| 3734 | /* |
| 3735 | Restore state of Query_tables_list for this LEX from backup. |
| 3736 | |
| 3737 | SYNOPSIS |
| 3738 | restore_backup_query_tables_list() |
| 3739 | backup Pointer to Query_tables_list instance used for backup |
| 3740 | */ |
| 3741 | |
| 3742 | void LEX::restore_backup_query_tables_list(Query_tables_list *backup) |
| 3743 | { |
| 3744 | this->destroy_query_tables_list(); |
| 3745 | this->set_query_tables_list(backup); |
| 3746 | } |
| 3747 | |
| 3748 | |
| 3749 | /* |
| 3750 | Checks for usage of routines and/or tables in a parsed statement |
| 3751 | |
| 3752 | SYNOPSIS |
| 3753 | LEX:table_or_sp_used() |
| 3754 | |
| 3755 | RETURN |
| 3756 | FALSE No routines and tables used |
| 3757 | TRUE Either or both routines and tables are used. |
| 3758 | */ |
| 3759 | |
| 3760 | bool LEX::table_or_sp_used() |
| 3761 | { |
| 3762 | DBUG_ENTER("table_or_sp_used" ); |
| 3763 | |
| 3764 | if (sroutines.records || query_tables) |
| 3765 | DBUG_RETURN(TRUE); |
| 3766 | |
| 3767 | DBUG_RETURN(FALSE); |
| 3768 | } |
| 3769 | |
| 3770 | |
| 3771 | /* |
| 3772 | Do end-of-prepare fixup for list of tables and their merge-VIEWed tables |
| 3773 | |
| 3774 | SYNOPSIS |
| 3775 | fix_prepare_info_in_table_list() |
| 3776 | thd Thread handle |
| 3777 | tbl List of tables to process |
| 3778 | |
| 3779 | DESCRIPTION |
| 3780 | Perform end-end-of prepare fixup for list of tables, if any of the tables |
| 3781 | is a merge-algorithm VIEW, recursively fix up its underlying tables as |
| 3782 | well. |
| 3783 | |
| 3784 | */ |
| 3785 | |
| 3786 | static void fix_prepare_info_in_table_list(THD *thd, TABLE_LIST *tbl) |
| 3787 | { |
| 3788 | for (; tbl; tbl= tbl->next_local) |
| 3789 | { |
| 3790 | if (tbl->on_expr && !tbl->prep_on_expr) |
| 3791 | { |
| 3792 | thd->check_and_register_item_tree(&tbl->prep_on_expr, &tbl->on_expr); |
| 3793 | tbl->on_expr= tbl->on_expr->copy_andor_structure(thd); |
| 3794 | } |
| 3795 | if (tbl->is_view_or_derived() && tbl->is_merged_derived()) |
| 3796 | { |
| 3797 | SELECT_LEX *sel= tbl->get_single_select(); |
| 3798 | fix_prepare_info_in_table_list(thd, sel->get_table_list()); |
| 3799 | } |
| 3800 | } |
| 3801 | } |
| 3802 | |
| 3803 | |
| 3804 | /* |
| 3805 | Save WHERE/HAVING/ON clauses and replace them with disposable copies |
| 3806 | |
| 3807 | SYNOPSIS |
| 3808 | st_select_lex::fix_prepare_information |
| 3809 | thd thread handler |
| 3810 | conds in/out pointer to WHERE condition to be met at execution |
| 3811 | having_conds in/out pointer to HAVING condition to be met at execution |
| 3812 | |
| 3813 | DESCRIPTION |
| 3814 | The passed WHERE and HAVING are to be saved for the future executions. |
| 3815 | This function saves it, and returns a copy which can be thrashed during |
| 3816 | this execution of the statement. By saving/thrashing here we mean only |
| 3817 | We also save the chain of ORDER::next in group_list, in case |
| 3818 | the list is modified by remove_const(). |
| 3819 | AND/OR trees. |
| 3820 | The function also calls fix_prepare_info_in_table_list that saves all |
| 3821 | ON expressions. |
| 3822 | */ |
| 3823 | |
| 3824 | void st_select_lex::fix_prepare_information(THD *thd, Item **conds, |
| 3825 | Item **having_conds) |
| 3826 | { |
| 3827 | DBUG_ENTER("st_select_lex::fix_prepare_information" ); |
| 3828 | if (!thd->stmt_arena->is_conventional() && first_execution) |
| 3829 | { |
| 3830 | Query_arena_stmt on_stmt_arena(thd); |
| 3831 | first_execution= 0; |
| 3832 | if (group_list.first) |
| 3833 | { |
| 3834 | if (!group_list_ptrs) |
| 3835 | { |
| 3836 | void *mem= thd->stmt_arena->alloc(sizeof(Group_list_ptrs)); |
| 3837 | group_list_ptrs= new (mem) Group_list_ptrs(thd->stmt_arena->mem_root); |
| 3838 | } |
| 3839 | group_list_ptrs->reserve(group_list.elements); |
| 3840 | for (ORDER *order= group_list.first; order; order= order->next) |
| 3841 | { |
| 3842 | group_list_ptrs->push_back(order); |
| 3843 | } |
| 3844 | } |
| 3845 | if (*conds) |
| 3846 | { |
| 3847 | thd->check_and_register_item_tree(&prep_where, conds); |
| 3848 | *conds= where= prep_where->copy_andor_structure(thd); |
| 3849 | } |
| 3850 | if (*having_conds) |
| 3851 | { |
| 3852 | thd->check_and_register_item_tree(&prep_having, having_conds); |
| 3853 | *having_conds= having= prep_having->copy_andor_structure(thd); |
| 3854 | } |
| 3855 | fix_prepare_info_in_table_list(thd, table_list.first); |
| 3856 | } |
| 3857 | DBUG_VOID_RETURN; |
| 3858 | } |
| 3859 | |
| 3860 | |
| 3861 | /* |
| 3862 | There are st_select_lex::add_table_to_list & |
| 3863 | st_select_lex::set_lock_for_tables are in sql_parse.cc |
| 3864 | |
| 3865 | st_select_lex::print is in sql_select.cc |
| 3866 | |
| 3867 | st_select_lex_unit::prepare, st_select_lex_unit::exec, |
| 3868 | st_select_lex_unit::cleanup, st_select_lex_unit::reinit_exec_mechanism, |
| 3869 | st_select_lex_unit::change_result |
| 3870 | are in sql_union.cc |
| 3871 | */ |
| 3872 | |
| 3873 | /* |
| 3874 | Sets the kind of hints to be added by the calls to add_index_hint(). |
| 3875 | |
| 3876 | SYNOPSIS |
| 3877 | set_index_hint_type() |
| 3878 | type_arg The kind of hints to be added from now on. |
| 3879 | clause The clause to use for hints to be added from now on. |
| 3880 | |
| 3881 | DESCRIPTION |
| 3882 | Used in filling up the tagged hints list. |
| 3883 | This list is filled by first setting the kind of the hint as a |
| 3884 | context variable and then adding hints of the current kind. |
| 3885 | Then the context variable index_hint_type can be reset to the |
| 3886 | next hint type. |
| 3887 | */ |
| 3888 | void st_select_lex::set_index_hint_type(enum index_hint_type type_arg, |
| 3889 | index_clause_map clause) |
| 3890 | { |
| 3891 | current_index_hint_type= type_arg; |
| 3892 | current_index_hint_clause= clause; |
| 3893 | } |
| 3894 | |
| 3895 | |
| 3896 | /* |
| 3897 | Makes an array to store index usage hints (ADD/FORCE/IGNORE INDEX). |
| 3898 | |
| 3899 | SYNOPSIS |
| 3900 | alloc_index_hints() |
| 3901 | thd current thread. |
| 3902 | */ |
| 3903 | |
| 3904 | void st_select_lex::alloc_index_hints (THD *thd) |
| 3905 | { |
| 3906 | index_hints= new (thd->mem_root) List<Index_hint>(); |
| 3907 | } |
| 3908 | |
| 3909 | |
| 3910 | |
| 3911 | /* |
| 3912 | adds an element to the array storing index usage hints |
| 3913 | (ADD/FORCE/IGNORE INDEX). |
| 3914 | |
| 3915 | SYNOPSIS |
| 3916 | add_index_hint() |
| 3917 | thd current thread. |
| 3918 | str name of the index. |
| 3919 | length number of characters in str. |
| 3920 | |
| 3921 | RETURN VALUE |
| 3922 | 0 on success, non-zero otherwise |
| 3923 | */ |
| 3924 | bool st_select_lex::add_index_hint (THD *thd, const char *str, size_t length) |
| 3925 | { |
| 3926 | return index_hints->push_front(new (thd->mem_root) |
| 3927 | Index_hint(current_index_hint_type, |
| 3928 | current_index_hint_clause, |
| 3929 | str, length), thd->mem_root); |
| 3930 | } |
| 3931 | |
| 3932 | |
| 3933 | /** |
| 3934 | Optimize all subqueries that have not been flattened into semi-joins. |
| 3935 | |
| 3936 | @details |
| 3937 | This functionality is a method of SELECT_LEX instead of JOIN because |
| 3938 | SQL statements as DELETE/UPDATE do not have a corresponding JOIN object. |
| 3939 | |
| 3940 | @see JOIN::optimize_unflattened_subqueries |
| 3941 | |
| 3942 | @param const_only Restrict subquery optimization to constant subqueries |
| 3943 | |
| 3944 | @return Operation status |
| 3945 | @retval FALSE success. |
| 3946 | @retval TRUE error occurred. |
| 3947 | */ |
| 3948 | |
| 3949 | bool st_select_lex::optimize_unflattened_subqueries(bool const_only) |
| 3950 | { |
| 3951 | SELECT_LEX_UNIT *next_unit= NULL; |
| 3952 | for (SELECT_LEX_UNIT *un= first_inner_unit(); |
| 3953 | un; |
| 3954 | un= next_unit ? next_unit : un->next_unit()) |
| 3955 | { |
| 3956 | Item_subselect *subquery_predicate= un->item; |
| 3957 | next_unit= NULL; |
| 3958 | |
| 3959 | if (subquery_predicate) |
| 3960 | { |
| 3961 | if (!subquery_predicate->fixed) |
| 3962 | { |
| 3963 | /* |
| 3964 | This subquery was excluded as part of some expression so it is |
| 3965 | invisible from all prepared expression. |
| 3966 | */ |
| 3967 | next_unit= un->next_unit(); |
| 3968 | un->exclude_level(); |
| 3969 | if (next_unit) |
| 3970 | continue; |
| 3971 | break; |
| 3972 | } |
| 3973 | if (subquery_predicate->substype() == Item_subselect::IN_SUBS) |
| 3974 | { |
| 3975 | Item_in_subselect *in_subs= (Item_in_subselect*) subquery_predicate; |
| 3976 | if (in_subs->is_jtbm_merged) |
| 3977 | continue; |
| 3978 | } |
| 3979 | |
| 3980 | if (const_only && !subquery_predicate->const_item()) |
| 3981 | { |
| 3982 | /* Skip non-constant subqueries if the caller asked so. */ |
| 3983 | continue; |
| 3984 | } |
| 3985 | |
| 3986 | bool empty_union_result= true; |
| 3987 | bool is_correlated_unit= false; |
| 3988 | bool first= true; |
| 3989 | bool union_plan_saved= false; |
| 3990 | /* |
| 3991 | If the subquery is a UNION, optimize all the subqueries in the UNION. If |
| 3992 | there is no UNION, then the loop will execute once for the subquery. |
| 3993 | */ |
| 3994 | for (SELECT_LEX *sl= un->first_select(); sl; sl= sl->next_select()) |
| 3995 | { |
| 3996 | JOIN *inner_join= sl->join; |
| 3997 | if (first) |
| 3998 | first= false; |
| 3999 | else |
| 4000 | { |
| 4001 | if (!union_plan_saved) |
| 4002 | { |
| 4003 | union_plan_saved= true; |
| 4004 | if (un->save_union_explain(un->thd->lex->explain)) |
| 4005 | return true; /* Failure */ |
| 4006 | } |
| 4007 | } |
| 4008 | if (!inner_join) |
| 4009 | continue; |
| 4010 | SELECT_LEX *save_select= un->thd->lex->current_select; |
| 4011 | ulonglong save_options; |
| 4012 | int res; |
| 4013 | /* We need only 1 row to determine existence */ |
| 4014 | un->set_limit(un->global_parameters()); |
| 4015 | un->thd->lex->current_select= sl; |
| 4016 | save_options= inner_join->select_options; |
| 4017 | if (options & SELECT_DESCRIBE) |
| 4018 | { |
| 4019 | /* Optimize the subquery in the context of EXPLAIN. */ |
| 4020 | sl->set_explain_type(FALSE); |
| 4021 | sl->options|= SELECT_DESCRIBE; |
| 4022 | inner_join->select_options|= SELECT_DESCRIBE; |
| 4023 | } |
| 4024 | res= inner_join->optimize(); |
| 4025 | sl->update_correlated_cache(); |
| 4026 | is_correlated_unit|= sl->is_correlated; |
| 4027 | inner_join->select_options= save_options; |
| 4028 | un->thd->lex->current_select= save_select; |
| 4029 | |
| 4030 | Explain_query *eq; |
| 4031 | if ((eq= inner_join->thd->lex->explain)) |
| 4032 | { |
| 4033 | Explain_select *expl_sel; |
| 4034 | if ((expl_sel= eq->get_select(inner_join->select_lex->select_number))) |
| 4035 | { |
| 4036 | sl->set_explain_type(TRUE); |
| 4037 | expl_sel->select_type= sl->type; |
| 4038 | } |
| 4039 | } |
| 4040 | |
| 4041 | if (empty_union_result) |
| 4042 | { |
| 4043 | /* |
| 4044 | If at least one subquery in a union is non-empty, the UNION result |
| 4045 | is non-empty. If there is no UNION, the only subquery is non-empy. |
| 4046 | */ |
| 4047 | empty_union_result= inner_join->empty_result(); |
| 4048 | } |
| 4049 | if (res) |
| 4050 | return TRUE; |
| 4051 | } |
| 4052 | if (empty_union_result) |
| 4053 | subquery_predicate->no_rows_in_result(); |
| 4054 | if (!is_correlated_unit) |
| 4055 | un->uncacheable&= ~UNCACHEABLE_DEPENDENT; |
| 4056 | subquery_predicate->is_correlated= is_correlated_unit; |
| 4057 | } |
| 4058 | } |
| 4059 | return FALSE; |
| 4060 | } |
| 4061 | |
| 4062 | |
| 4063 | |
| 4064 | /** |
| 4065 | @brief Process all derived tables/views of the SELECT. |
| 4066 | |
| 4067 | @param lex LEX of this thread |
| 4068 | @param phase phases to run derived tables/views through |
| 4069 | |
| 4070 | @details |
| 4071 | This function runs specified 'phases' on all tables from the |
| 4072 | table_list of this select. |
| 4073 | |
| 4074 | @return FALSE ok. |
| 4075 | @return TRUE an error occur. |
| 4076 | */ |
| 4077 | |
| 4078 | bool st_select_lex::handle_derived(LEX *lex, uint phases) |
| 4079 | { |
| 4080 | for (TABLE_LIST *cursor= (TABLE_LIST*) table_list.first; |
| 4081 | cursor; |
| 4082 | cursor= cursor->next_local) |
| 4083 | { |
| 4084 | if (cursor->is_view_or_derived() && cursor->handle_derived(lex, phases)) |
| 4085 | return TRUE; |
| 4086 | } |
| 4087 | return FALSE; |
| 4088 | } |
| 4089 | |
| 4090 | |
| 4091 | /** |
| 4092 | @brief |
| 4093 | Returns first unoccupied table map and table number |
| 4094 | |
| 4095 | @param map [out] return found map |
| 4096 | @param tablenr [out] return found tablenr |
| 4097 | |
| 4098 | @details |
| 4099 | Returns first unoccupied table map and table number in this select. |
| 4100 | Map and table are returned in *'map' and *'tablenr' accordingly. |
| 4101 | |
| 4102 | @retrun TRUE no free table map/table number |
| 4103 | @return FALSE found free table map/table number |
| 4104 | */ |
| 4105 | |
| 4106 | bool st_select_lex::get_free_table_map(table_map *map, uint *tablenr) |
| 4107 | { |
| 4108 | *map= 0; |
| 4109 | *tablenr= 0; |
| 4110 | TABLE_LIST *tl; |
| 4111 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4112 | while ((tl= ti++)) |
| 4113 | { |
| 4114 | if (tl->table->map > *map) |
| 4115 | *map= tl->table->map; |
| 4116 | if (tl->table->tablenr > *tablenr) |
| 4117 | *tablenr= tl->table->tablenr; |
| 4118 | } |
| 4119 | (*map)<<= 1; |
| 4120 | (*tablenr)++; |
| 4121 | if (*tablenr >= MAX_TABLES) |
| 4122 | return TRUE; |
| 4123 | return FALSE; |
| 4124 | } |
| 4125 | |
| 4126 | |
| 4127 | /** |
| 4128 | @brief |
| 4129 | Append given table to the leaf_tables list. |
| 4130 | |
| 4131 | @param link Offset to which list in table structure to use |
| 4132 | @param table Table to append |
| 4133 | |
| 4134 | @details |
| 4135 | Append given 'table' to the leaf_tables list using the 'link' offset. |
| 4136 | If the 'table' is linked with other tables through next_leaf/next_local |
| 4137 | chains then whole list will be appended. |
| 4138 | */ |
| 4139 | |
| 4140 | void st_select_lex::append_table_to_list(TABLE_LIST *TABLE_LIST::*link, |
| 4141 | TABLE_LIST *table) |
| 4142 | { |
| 4143 | TABLE_LIST *tl; |
| 4144 | for (tl= leaf_tables.head(); tl->*link; tl= tl->*link) ; |
| 4145 | tl->*link= table; |
| 4146 | } |
| 4147 | |
| 4148 | |
| 4149 | /* |
| 4150 | @brief |
| 4151 | Replace given table from the leaf_tables list for a list of tables |
| 4152 | |
| 4153 | @param table Table to replace |
| 4154 | @param list List to substititute the table for |
| 4155 | |
| 4156 | @details |
| 4157 | Replace 'table' from the leaf_tables list for a list of tables 'tbl_list'. |
| 4158 | */ |
| 4159 | |
| 4160 | void st_select_lex::replace_leaf_table(TABLE_LIST *table, List<TABLE_LIST> &tbl_list) |
| 4161 | { |
| 4162 | TABLE_LIST *tl; |
| 4163 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4164 | while ((tl= ti++)) |
| 4165 | { |
| 4166 | if (tl == table) |
| 4167 | { |
| 4168 | ti.replace(tbl_list); |
| 4169 | break; |
| 4170 | } |
| 4171 | } |
| 4172 | } |
| 4173 | |
| 4174 | |
| 4175 | /** |
| 4176 | @brief |
| 4177 | Assigns new table maps to tables in the leaf_tables list |
| 4178 | |
| 4179 | @param derived Derived table to take initial table map from |
| 4180 | @param map table map to begin with |
| 4181 | @param tablenr table number to begin with |
| 4182 | @param parent_lex new parent select_lex |
| 4183 | |
| 4184 | @details |
| 4185 | Assign new table maps/table numbers to all tables in the leaf_tables list. |
| 4186 | 'map'/'tablenr' are used for the first table and shifted to left/ |
| 4187 | increased for each consequent table in the leaf_tables list. |
| 4188 | If the 'derived' table is given then it's table map/number is used for the |
| 4189 | first table in the list and 'map'/'tablenr' are used for the second and |
| 4190 | all consequent tables. |
| 4191 | The 'parent_lex' is set as the new parent select_lex for all tables in the |
| 4192 | list. |
| 4193 | */ |
| 4194 | |
| 4195 | void st_select_lex::remap_tables(TABLE_LIST *derived, table_map map, |
| 4196 | uint tablenr, SELECT_LEX *parent_lex) |
| 4197 | { |
| 4198 | bool first_table= TRUE; |
| 4199 | TABLE_LIST *tl; |
| 4200 | table_map first_map; |
| 4201 | uint first_tablenr; |
| 4202 | |
| 4203 | if (derived && derived->table) |
| 4204 | { |
| 4205 | first_map= derived->table->map; |
| 4206 | first_tablenr= derived->table->tablenr; |
| 4207 | } |
| 4208 | else |
| 4209 | { |
| 4210 | first_map= map; |
| 4211 | map<<= 1; |
| 4212 | first_tablenr= tablenr++; |
| 4213 | } |
| 4214 | /* |
| 4215 | Assign table bit/table number. |
| 4216 | To the first table of the subselect the table bit/tablenr of the |
| 4217 | derived table is assigned. The rest of tables are getting bits |
| 4218 | sequentially, starting from the provided table map/tablenr. |
| 4219 | */ |
| 4220 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4221 | while ((tl= ti++)) |
| 4222 | { |
| 4223 | if (first_table) |
| 4224 | { |
| 4225 | first_table= FALSE; |
| 4226 | tl->table->set_table_map(first_map, first_tablenr); |
| 4227 | } |
| 4228 | else |
| 4229 | { |
| 4230 | tl->table->set_table_map(map, tablenr); |
| 4231 | tablenr++; |
| 4232 | map<<= 1; |
| 4233 | } |
| 4234 | SELECT_LEX *old_sl= tl->select_lex; |
| 4235 | tl->select_lex= parent_lex; |
| 4236 | for(TABLE_LIST *emb= tl->embedding; |
| 4237 | emb && emb->select_lex == old_sl; |
| 4238 | emb= emb->embedding) |
| 4239 | emb->select_lex= parent_lex; |
| 4240 | } |
| 4241 | } |
| 4242 | |
| 4243 | /** |
| 4244 | @brief |
| 4245 | Merge a subquery into this select. |
| 4246 | |
| 4247 | @param derived derived table of the subquery to be merged |
| 4248 | @param subq_select select_lex of the subquery |
| 4249 | @param map table map for assigning to merged tables from subquery |
| 4250 | @param table_no table number for assigning to merged tables from subquery |
| 4251 | |
| 4252 | @details |
| 4253 | This function merges a subquery into its parent select. In short the |
| 4254 | merge operation appends the subquery FROM table list to the parent's |
| 4255 | FROM table list. In more details: |
| 4256 | .) the top_join_list of the subquery is wrapped into a join_nest |
| 4257 | and attached to 'derived' |
| 4258 | .) subquery's leaf_tables list is merged with the leaf_tables |
| 4259 | list of this select_lex |
| 4260 | .) the table maps and table numbers of the tables merged from |
| 4261 | the subquery are adjusted to reflect their new binding to |
| 4262 | this select |
| 4263 | |
| 4264 | @return TRUE an error occur |
| 4265 | @return FALSE ok |
| 4266 | */ |
| 4267 | |
| 4268 | bool SELECT_LEX::merge_subquery(THD *thd, TABLE_LIST *derived, |
| 4269 | SELECT_LEX *subq_select, |
| 4270 | uint table_no, table_map map) |
| 4271 | { |
| 4272 | derived->wrap_into_nested_join(subq_select->top_join_list); |
| 4273 | |
| 4274 | ftfunc_list->append(subq_select->ftfunc_list); |
| 4275 | if (join || |
| 4276 | thd->lex->sql_command == SQLCOM_UPDATE_MULTI || |
| 4277 | thd->lex->sql_command == SQLCOM_DELETE_MULTI) |
| 4278 | { |
| 4279 | List_iterator_fast<Item_in_subselect> li(subq_select->sj_subselects); |
| 4280 | Item_in_subselect *in_subq; |
| 4281 | while ((in_subq= li++)) |
| 4282 | { |
| 4283 | sj_subselects.push_back(in_subq, thd->mem_root); |
| 4284 | if (in_subq->emb_on_expr_nest == NO_JOIN_NEST) |
| 4285 | in_subq->emb_on_expr_nest= derived; |
| 4286 | } |
| 4287 | |
| 4288 | uint cnt= sizeof(expr_cache_may_be_used)/sizeof(bool); |
| 4289 | for (uint i= 0; i < cnt; i++) |
| 4290 | { |
| 4291 | if (subq_select->expr_cache_may_be_used[i]) |
| 4292 | expr_cache_may_be_used[i]= true; |
| 4293 | } |
| 4294 | |
| 4295 | List_iterator_fast<Item_func_in> it(subq_select->in_funcs); |
| 4296 | Item_func_in *in_func; |
| 4297 | while ((in_func= it++)) |
| 4298 | { |
| 4299 | in_funcs.push_back(in_func, thd->mem_root); |
| 4300 | if (in_func->emb_on_expr_nest == NO_JOIN_NEST) |
| 4301 | in_func->emb_on_expr_nest= derived; |
| 4302 | } |
| 4303 | } |
| 4304 | |
| 4305 | /* Walk through child's tables and adjust table map, tablenr, |
| 4306 | * parent_lex */ |
| 4307 | subq_select->remap_tables(derived, map, table_no, this); |
| 4308 | subq_select->merged_into= this; |
| 4309 | |
| 4310 | replace_leaf_table(derived, subq_select->leaf_tables); |
| 4311 | |
| 4312 | return FALSE; |
| 4313 | } |
| 4314 | |
| 4315 | |
| 4316 | /** |
| 4317 | @brief |
| 4318 | Mark tables from the leaf_tables list as belong to a derived table. |
| 4319 | |
| 4320 | @param derived tables will be marked as belonging to this derived |
| 4321 | |
| 4322 | @details |
| 4323 | Run through the leaf_list and mark all tables as belonging to the 'derived'. |
| 4324 | */ |
| 4325 | |
| 4326 | void SELECT_LEX::mark_as_belong_to_derived(TABLE_LIST *derived) |
| 4327 | { |
| 4328 | /* Mark tables as belonging to this DT */ |
| 4329 | TABLE_LIST *tl; |
| 4330 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4331 | while ((tl= ti++)) |
| 4332 | tl->belong_to_derived= derived; |
| 4333 | } |
| 4334 | |
| 4335 | |
| 4336 | /** |
| 4337 | @brief |
| 4338 | Update used_tables cache for this select |
| 4339 | |
| 4340 | @details |
| 4341 | This function updates used_tables cache of ON expressions of all tables |
| 4342 | in the leaf_tables list and of the conds expression (if any). |
| 4343 | */ |
| 4344 | |
| 4345 | void SELECT_LEX::update_used_tables() |
| 4346 | { |
| 4347 | TABLE_LIST *tl; |
| 4348 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4349 | |
| 4350 | while ((tl= ti++)) |
| 4351 | { |
| 4352 | if (tl->table && !tl->is_view_or_derived()) |
| 4353 | { |
| 4354 | TABLE_LIST *embedding= tl->embedding; |
| 4355 | for (embedding= tl->embedding; embedding; embedding=embedding->embedding) |
| 4356 | { |
| 4357 | if (embedding->is_view_or_derived()) |
| 4358 | { |
| 4359 | DBUG_ASSERT(embedding->is_merged_derived()); |
| 4360 | TABLE *tab= tl->table; |
| 4361 | tab->covering_keys= tab->s->keys_for_keyread; |
| 4362 | tab->covering_keys.intersect(tab->keys_in_use_for_query); |
| 4363 | /* |
| 4364 | View/derived was merged. Need to recalculate read_set/vcol_set |
| 4365 | bitmaps here. For example: |
| 4366 | CREATE VIEW v1 AS SELECT f1,f2,f3 FROM t1; |
| 4367 | SELECT f1 FROM v1; |
| 4368 | Initially, the view definition will put all f1,f2,f3 in the |
| 4369 | read_set for t1. But after the view is merged, only f1 should |
| 4370 | be in the read_set. |
| 4371 | */ |
| 4372 | bitmap_clear_all(tab->read_set); |
| 4373 | if (tab->vcol_set) |
| 4374 | bitmap_clear_all(tab->vcol_set); |
| 4375 | break; |
| 4376 | } |
| 4377 | } |
| 4378 | } |
| 4379 | } |
| 4380 | |
| 4381 | ti.rewind(); |
| 4382 | while ((tl= ti++)) |
| 4383 | { |
| 4384 | TABLE_LIST *embedding= tl; |
| 4385 | do |
| 4386 | { |
| 4387 | bool maybe_null; |
| 4388 | if ((maybe_null= MY_TEST(embedding->outer_join))) |
| 4389 | { |
| 4390 | tl->table->maybe_null= maybe_null; |
| 4391 | break; |
| 4392 | } |
| 4393 | } |
| 4394 | while ((embedding= embedding->embedding)); |
| 4395 | if (tl->on_expr) |
| 4396 | { |
| 4397 | tl->on_expr->update_used_tables(); |
| 4398 | tl->on_expr->walk(&Item::eval_not_null_tables, 0, NULL); |
| 4399 | } |
| 4400 | /* |
| 4401 | - There is no need to check sj_on_expr, because merged semi-joins inject |
| 4402 | sj_on_expr into the parent's WHERE clase. |
| 4403 | - For non-merged semi-joins (aka JTBMs), we need to check their |
| 4404 | left_expr. There is no need to check the rest of the subselect, we know |
| 4405 | it is uncorrelated and so cannot refer to any tables in this select. |
| 4406 | */ |
| 4407 | if (tl->jtbm_subselect) |
| 4408 | { |
| 4409 | Item *left_expr= tl->jtbm_subselect->left_expr; |
| 4410 | left_expr->walk(&Item::update_table_bitmaps_processor, FALSE, NULL); |
| 4411 | } |
| 4412 | |
| 4413 | embedding= tl->embedding; |
| 4414 | while (embedding) |
| 4415 | { |
| 4416 | if (embedding->on_expr && |
| 4417 | embedding->nested_join->join_list.head() == tl) |
| 4418 | { |
| 4419 | embedding->on_expr->update_used_tables(); |
| 4420 | embedding->on_expr->walk(&Item::eval_not_null_tables, 0, NULL); |
| 4421 | } |
| 4422 | tl= embedding; |
| 4423 | embedding= tl->embedding; |
| 4424 | } |
| 4425 | } |
| 4426 | |
| 4427 | if (join->conds) |
| 4428 | { |
| 4429 | join->conds->update_used_tables(); |
| 4430 | join->conds->walk(&Item::eval_not_null_tables, 0, NULL); |
| 4431 | } |
| 4432 | if (join->having) |
| 4433 | { |
| 4434 | join->having->update_used_tables(); |
| 4435 | } |
| 4436 | |
| 4437 | Item *item; |
| 4438 | List_iterator_fast<Item> it(join->fields_list); |
| 4439 | select_list_tables= 0; |
| 4440 | while ((item= it++)) |
| 4441 | { |
| 4442 | item->update_used_tables(); |
| 4443 | select_list_tables|= item->used_tables(); |
| 4444 | } |
| 4445 | Item_outer_ref *ref; |
| 4446 | List_iterator_fast<Item_outer_ref> ref_it(inner_refs_list); |
| 4447 | while ((ref= ref_it++)) |
| 4448 | { |
| 4449 | item= ref->outer_ref; |
| 4450 | item->update_used_tables(); |
| 4451 | } |
| 4452 | for (ORDER *order= group_list.first; order; order= order->next) |
| 4453 | (*order->item)->update_used_tables(); |
| 4454 | if (!master_unit()->is_unit_op() || |
| 4455 | master_unit()->global_parameters() != this) |
| 4456 | { |
| 4457 | for (ORDER *order= order_list.first; order; order= order->next) |
| 4458 | (*order->item)->update_used_tables(); |
| 4459 | } |
| 4460 | join->result->update_used_tables(); |
| 4461 | } |
| 4462 | |
| 4463 | |
| 4464 | /** |
| 4465 | @brief |
| 4466 | Update is_correlated cache for this select |
| 4467 | |
| 4468 | @details |
| 4469 | */ |
| 4470 | |
| 4471 | void st_select_lex::update_correlated_cache() |
| 4472 | { |
| 4473 | TABLE_LIST *tl; |
| 4474 | List_iterator<TABLE_LIST> ti(leaf_tables); |
| 4475 | |
| 4476 | is_correlated= false; |
| 4477 | |
| 4478 | while ((tl= ti++)) |
| 4479 | { |
| 4480 | // is_correlated|= tl->is_with_table_recursive_reference(); |
| 4481 | if (tl->on_expr) |
| 4482 | is_correlated|= MY_TEST(tl->on_expr->used_tables() & OUTER_REF_TABLE_BIT); |
| 4483 | for (TABLE_LIST *embedding= tl->embedding ; embedding ; |
| 4484 | embedding= embedding->embedding) |
| 4485 | { |
| 4486 | if (embedding->on_expr) |
| 4487 | is_correlated|= MY_TEST(embedding->on_expr->used_tables() & |
| 4488 | OUTER_REF_TABLE_BIT); |
| 4489 | } |
| 4490 | } |
| 4491 | |
| 4492 | if (join->conds) |
| 4493 | is_correlated|= MY_TEST(join->conds->used_tables() & OUTER_REF_TABLE_BIT); |
| 4494 | |
| 4495 | is_correlated|= join->having_is_correlated; |
| 4496 | |
| 4497 | if (join->having) |
| 4498 | is_correlated|= MY_TEST(join->having->used_tables() & OUTER_REF_TABLE_BIT); |
| 4499 | |
| 4500 | if (join->tmp_having) |
| 4501 | is_correlated|= MY_TEST(join->tmp_having->used_tables() & |
| 4502 | OUTER_REF_TABLE_BIT); |
| 4503 | |
| 4504 | Item *item; |
| 4505 | List_iterator_fast<Item> it(join->fields_list); |
| 4506 | while ((item= it++)) |
| 4507 | is_correlated|= MY_TEST(item->used_tables() & OUTER_REF_TABLE_BIT); |
| 4508 | |
| 4509 | for (ORDER *order= group_list.first; order; order= order->next) |
| 4510 | is_correlated|= MY_TEST((*order->item)->used_tables() & |
| 4511 | OUTER_REF_TABLE_BIT); |
| 4512 | |
| 4513 | if (!master_unit()->is_unit_op()) |
| 4514 | { |
| 4515 | for (ORDER *order= order_list.first; order; order= order->next) |
| 4516 | is_correlated|= MY_TEST((*order->item)->used_tables() & |
| 4517 | OUTER_REF_TABLE_BIT); |
| 4518 | } |
| 4519 | |
| 4520 | if (!is_correlated) |
| 4521 | uncacheable&= ~UNCACHEABLE_DEPENDENT; |
| 4522 | } |
| 4523 | |
| 4524 | |
| 4525 | /** |
| 4526 | Set the EXPLAIN type for this subquery. |
| 4527 | |
| 4528 | @param on_the_fly TRUE<=> We're running a SHOW EXPLAIN command, so we must |
| 4529 | not change any variables |
| 4530 | */ |
| 4531 | |
| 4532 | void st_select_lex::set_explain_type(bool on_the_fly) |
| 4533 | { |
| 4534 | bool is_primary= FALSE; |
| 4535 | if (next_select()) |
| 4536 | is_primary= TRUE; |
| 4537 | |
| 4538 | if (!is_primary && first_inner_unit()) |
| 4539 | { |
| 4540 | /* |
| 4541 | If there is at least one materialized derived|view then it's a PRIMARY select. |
| 4542 | Otherwise, all derived tables/views were merged and this select is a SIMPLE one. |
| 4543 | */ |
| 4544 | for (SELECT_LEX_UNIT *un= first_inner_unit(); un; un= un->next_unit()) |
| 4545 | { |
| 4546 | if ((!un->derived || un->derived->is_materialized_derived())) |
| 4547 | { |
| 4548 | is_primary= TRUE; |
| 4549 | break; |
| 4550 | } |
| 4551 | } |
| 4552 | } |
| 4553 | |
| 4554 | if (on_the_fly && !is_primary && have_merged_subqueries) |
| 4555 | is_primary= TRUE; |
| 4556 | |
| 4557 | SELECT_LEX *first= master_unit()->first_select(); |
| 4558 | /* drop UNCACHEABLE_EXPLAIN, because it is for internal usage only */ |
| 4559 | uint8 is_uncacheable= (uncacheable & ~UNCACHEABLE_EXPLAIN); |
| 4560 | |
| 4561 | bool using_materialization= FALSE; |
| 4562 | Item_subselect *parent_item; |
| 4563 | if ((parent_item= master_unit()->item) && |
| 4564 | parent_item->substype() == Item_subselect::IN_SUBS) |
| 4565 | { |
| 4566 | Item_in_subselect *in_subs= (Item_in_subselect*)parent_item; |
| 4567 | /* |
| 4568 | Surprisingly, in_subs->is_set_strategy() can return FALSE here, |
| 4569 | even for the last invocation of this function for the select. |
| 4570 | */ |
| 4571 | if (in_subs->test_strategy(SUBS_MATERIALIZATION)) |
| 4572 | using_materialization= TRUE; |
| 4573 | } |
| 4574 | |
| 4575 | if (&master_unit()->thd->lex->select_lex == this) |
| 4576 | { |
| 4577 | type= is_primary ? "PRIMARY" : "SIMPLE" ; |
| 4578 | } |
| 4579 | else |
| 4580 | { |
| 4581 | if (this == first) |
| 4582 | { |
| 4583 | /* If we're a direct child of a UNION, we're the first sibling there */ |
| 4584 | if (linkage == DERIVED_TABLE_TYPE) |
| 4585 | { |
| 4586 | if (is_uncacheable & UNCACHEABLE_DEPENDENT) |
| 4587 | type= "LATERAL DERIVED" ; |
| 4588 | else |
| 4589 | type= "DERIVED" ; |
| 4590 | } |
| 4591 | else if (using_materialization) |
| 4592 | type= "MATERIALIZED" ; |
| 4593 | else |
| 4594 | { |
| 4595 | if (is_uncacheable & UNCACHEABLE_DEPENDENT) |
| 4596 | type= "DEPENDENT SUBQUERY" ; |
| 4597 | else |
| 4598 | { |
| 4599 | type= is_uncacheable? "UNCACHEABLE SUBQUERY" : |
| 4600 | "SUBQUERY" ; |
| 4601 | } |
| 4602 | } |
| 4603 | } |
| 4604 | else |
| 4605 | { |
| 4606 | switch (linkage) |
| 4607 | { |
| 4608 | case INTERSECT_TYPE: |
| 4609 | type= "INTERSECT" ; |
| 4610 | break; |
| 4611 | case EXCEPT_TYPE: |
| 4612 | type= "EXCEPT" ; |
| 4613 | break; |
| 4614 | default: |
| 4615 | /* This a non-first sibling in UNION */ |
| 4616 | if (is_uncacheable & UNCACHEABLE_DEPENDENT) |
| 4617 | type= "DEPENDENT UNION" ; |
| 4618 | else if (using_materialization) |
| 4619 | type= "MATERIALIZED UNION" ; |
| 4620 | else |
| 4621 | { |
| 4622 | type= is_uncacheable ? "UNCACHEABLE UNION" : "UNION" ; |
| 4623 | if (this == master_unit()->fake_select_lex) |
| 4624 | type= unit_operation_text[master_unit()->common_op()]; |
| 4625 | /* |
| 4626 | join below may be =NULL when this functions is called at an early |
| 4627 | stage. It will be later called again and we will set the correct |
| 4628 | value. |
| 4629 | */ |
| 4630 | if (join) |
| 4631 | { |
| 4632 | bool uses_cte= false; |
| 4633 | for (JOIN_TAB *tab= first_linear_tab(join, WITHOUT_BUSH_ROOTS, |
| 4634 | WITH_CONST_TABLES); |
| 4635 | tab; |
| 4636 | tab= next_linear_tab(join, tab, WITHOUT_BUSH_ROOTS)) |
| 4637 | { |
| 4638 | /* |
| 4639 | pos_in_table_list=NULL for e.g. post-join aggregation JOIN_TABs. |
| 4640 | */ |
| 4641 | if (tab->table && tab->table->pos_in_table_list && |
| 4642 | tab->table->pos_in_table_list->with && |
| 4643 | tab->table->pos_in_table_list->with->is_recursive) |
| 4644 | { |
| 4645 | uses_cte= true; |
| 4646 | break; |
| 4647 | } |
| 4648 | } |
| 4649 | if (uses_cte) |
| 4650 | type= "RECURSIVE UNION" ; |
| 4651 | } |
| 4652 | } |
| 4653 | break; |
| 4654 | } |
| 4655 | } |
| 4656 | } |
| 4657 | |
| 4658 | if (!on_the_fly) |
| 4659 | options|= SELECT_DESCRIBE; |
| 4660 | } |
| 4661 | |
| 4662 | |
| 4663 | /** |
| 4664 | @brief |
| 4665 | Increase estimated number of records for a derived table/view |
| 4666 | |
| 4667 | @param records number of records to increase estimate by |
| 4668 | |
| 4669 | @details |
| 4670 | This function increases estimated number of records by the 'records' |
| 4671 | for the derived table to which this select belongs to. |
| 4672 | */ |
| 4673 | |
| 4674 | void SELECT_LEX::increase_derived_records(ha_rows records) |
| 4675 | { |
| 4676 | SELECT_LEX_UNIT *unit= master_unit(); |
| 4677 | DBUG_ASSERT(unit->derived); |
| 4678 | |
| 4679 | if (unit->with_element && unit->with_element->is_recursive) |
| 4680 | { |
| 4681 | st_select_lex *first_recursive= unit->with_element->first_recursive; |
| 4682 | st_select_lex *sl= unit->first_select(); |
| 4683 | for ( ; sl != first_recursive; sl= sl->next_select()) |
| 4684 | { |
| 4685 | if (sl == this) |
| 4686 | break; |
| 4687 | } |
| 4688 | if (sl == first_recursive) |
| 4689 | return; |
| 4690 | } |
| 4691 | |
| 4692 | select_unit *result= (select_unit*)unit->result; |
| 4693 | switch (linkage) |
| 4694 | { |
| 4695 | case INTERSECT_TYPE: |
| 4696 | // result of intersect can't be more then one of components |
| 4697 | set_if_smaller(result->records, records); |
| 4698 | case EXCEPT_TYPE: |
| 4699 | // in worse case none of record will be removed |
| 4700 | break; |
| 4701 | default: |
| 4702 | // usual UNION |
| 4703 | result->records+= records; |
| 4704 | break; |
| 4705 | } |
| 4706 | } |
| 4707 | |
| 4708 | |
| 4709 | /** |
| 4710 | @brief |
| 4711 | Mark select's derived table as a const one. |
| 4712 | |
| 4713 | @param empty Whether select has an empty result set |
| 4714 | |
| 4715 | @details |
| 4716 | Mark derived table/view of this select as a constant one (to |
| 4717 | materialize it at the optimization phase) unless this select belongs to a |
| 4718 | union. Estimated number of rows is incremented if this select has non empty |
| 4719 | result set. |
| 4720 | */ |
| 4721 | |
| 4722 | void SELECT_LEX::mark_const_derived(bool empty) |
| 4723 | { |
| 4724 | TABLE_LIST *derived= master_unit()->derived; |
| 4725 | /* join == NULL in DELETE ... RETURNING */ |
| 4726 | if (!(join && join->thd->lex->describe) && derived) |
| 4727 | { |
| 4728 | if (!empty) |
| 4729 | increase_derived_records(1); |
| 4730 | if (!master_unit()->is_unit_op() && !derived->is_merged_derived() && |
| 4731 | !(join && join->with_two_phase_optimization)) |
| 4732 | derived->fill_me= TRUE; |
| 4733 | } |
| 4734 | } |
| 4735 | |
| 4736 | |
| 4737 | bool st_select_lex::save_leaf_tables(THD *thd) |
| 4738 | { |
| 4739 | Query_arena *arena, backup; |
| 4740 | arena= thd->activate_stmt_arena_if_needed(&backup); |
| 4741 | |
| 4742 | List_iterator_fast<TABLE_LIST> li(leaf_tables); |
| 4743 | TABLE_LIST *table; |
| 4744 | while ((table= li++)) |
| 4745 | { |
| 4746 | if (leaf_tables_exec.push_back(table, thd->mem_root)) |
| 4747 | return 1; |
| 4748 | table->tablenr_exec= table->get_tablenr(); |
| 4749 | table->map_exec= table->get_map(); |
| 4750 | if (join && (join->select_options & SELECT_DESCRIBE)) |
| 4751 | table->maybe_null_exec= 0; |
| 4752 | else |
| 4753 | table->maybe_null_exec= table->table? table->table->maybe_null: 0; |
| 4754 | } |
| 4755 | if (arena) |
| 4756 | thd->restore_active_arena(arena, &backup); |
| 4757 | |
| 4758 | return 0; |
| 4759 | } |
| 4760 | |
| 4761 | |
| 4762 | bool LEX::save_prep_leaf_tables() |
| 4763 | { |
| 4764 | if (!thd->save_prep_leaf_list) |
| 4765 | return FALSE; |
| 4766 | |
| 4767 | Query_arena *arena= thd->stmt_arena, backup; |
| 4768 | arena= thd->activate_stmt_arena_if_needed(&backup); |
| 4769 | //It is used for DETETE/UPDATE so top level has only one SELECT |
| 4770 | DBUG_ASSERT(select_lex.next_select() == NULL); |
| 4771 | bool res= select_lex.save_prep_leaf_tables(thd); |
| 4772 | |
| 4773 | if (arena) |
| 4774 | thd->restore_active_arena(arena, &backup); |
| 4775 | |
| 4776 | if (res) |
| 4777 | return TRUE; |
| 4778 | |
| 4779 | thd->save_prep_leaf_list= FALSE; |
| 4780 | return FALSE; |
| 4781 | } |
| 4782 | |
| 4783 | |
| 4784 | bool st_select_lex::save_prep_leaf_tables(THD *thd) |
| 4785 | { |
| 4786 | List_iterator_fast<TABLE_LIST> li(leaf_tables); |
| 4787 | TABLE_LIST *table; |
| 4788 | |
| 4789 | /* |
| 4790 | Check that the SELECT_LEX was really prepared and so tables are setup. |
| 4791 | |
| 4792 | It can be subquery in SET clause of UPDATE which was not prepared yet, so |
| 4793 | its tables are not yet setup and ready for storing. |
| 4794 | */ |
| 4795 | if (prep_leaf_list_state != READY) |
| 4796 | return FALSE; |
| 4797 | |
| 4798 | while ((table= li++)) |
| 4799 | { |
| 4800 | if (leaf_tables_prep.push_back(table)) |
| 4801 | return TRUE; |
| 4802 | } |
| 4803 | prep_leaf_list_state= SAVED; |
| 4804 | for (SELECT_LEX_UNIT *u= first_inner_unit(); u; u= u->next_unit()) |
| 4805 | { |
| 4806 | for (SELECT_LEX *sl= u->first_select(); sl; sl= sl->next_select()) |
| 4807 | { |
| 4808 | if (sl->save_prep_leaf_tables(thd)) |
| 4809 | return TRUE; |
| 4810 | } |
| 4811 | } |
| 4812 | |
| 4813 | return FALSE; |
| 4814 | } |
| 4815 | |
| 4816 | |
| 4817 | /* |
| 4818 | Return true if this select_lex has been converted into a semi-join nest |
| 4819 | within 'ancestor'. |
| 4820 | |
| 4821 | We need a loop to check this because there could be several nested |
| 4822 | subselects, like |
| 4823 | |
| 4824 | SELECT ... FROM grand_parent |
| 4825 | WHERE expr1 IN (SELECT ... FROM parent |
| 4826 | WHERE expr2 IN ( SELECT ... FROM child) |
| 4827 | |
| 4828 | which were converted into: |
| 4829 | |
| 4830 | SELECT ... |
| 4831 | FROM grand_parent SEMI_JOIN (parent JOIN child) |
| 4832 | WHERE |
| 4833 | expr1 AND expr2 |
| 4834 | |
| 4835 | In this case, both parent and child selects were merged into the parent. |
| 4836 | */ |
| 4837 | |
| 4838 | bool st_select_lex::is_merged_child_of(st_select_lex *ancestor) |
| 4839 | { |
| 4840 | bool all_merged= TRUE; |
| 4841 | for (SELECT_LEX *sl= this; sl && sl!=ancestor; |
| 4842 | sl=sl->outer_select()) |
| 4843 | { |
| 4844 | Item *subs= sl->master_unit()->item; |
| 4845 | if (subs && subs->type() == Item::SUBSELECT_ITEM && |
| 4846 | ((Item_subselect*)subs)->substype() == Item_subselect::IN_SUBS && |
| 4847 | ((Item_in_subselect*)subs)->test_strategy(SUBS_SEMI_JOIN)) |
| 4848 | { |
| 4849 | continue; |
| 4850 | } |
| 4851 | |
| 4852 | if (sl->master_unit()->derived && |
| 4853 | sl->master_unit()->derived->is_merged_derived()) |
| 4854 | { |
| 4855 | continue; |
| 4856 | } |
| 4857 | all_merged= FALSE; |
| 4858 | break; |
| 4859 | } |
| 4860 | return all_merged; |
| 4861 | } |
| 4862 | |
| 4863 | /* |
| 4864 | This is used by SHOW EXPLAIN. It assuses query plan has been already |
| 4865 | collected into QPF structures and we only need to print it out. |
| 4866 | */ |
| 4867 | |
| 4868 | int LEX::print_explain(select_result_sink *output, uint8 explain_flags, |
| 4869 | bool is_analyze, bool *printed_anything) |
| 4870 | { |
| 4871 | int res; |
| 4872 | if (explain && explain->have_query_plan()) |
| 4873 | { |
| 4874 | res= explain->print_explain(output, explain_flags, is_analyze); |
| 4875 | *printed_anything= true; |
| 4876 | } |
| 4877 | else |
| 4878 | { |
| 4879 | res= 0; |
| 4880 | *printed_anything= false; |
| 4881 | } |
| 4882 | return res; |
| 4883 | } |
| 4884 | |
| 4885 | |
| 4886 | /** |
| 4887 | Allocates and set arena for SET STATEMENT old values. |
| 4888 | |
| 4889 | @param backup where to save backup of arena. |
| 4890 | |
| 4891 | @retval 1 Error |
| 4892 | @retval 0 OK |
| 4893 | */ |
| 4894 | |
| 4895 | bool LEX::set_arena_for_set_stmt(Query_arena *backup) |
| 4896 | { |
| 4897 | DBUG_ENTER("LEX::set_arena_for_set_stmt" ); |
| 4898 | DBUG_ASSERT(arena_for_set_stmt== 0); |
| 4899 | if (!mem_root_for_set_stmt) |
| 4900 | { |
| 4901 | mem_root_for_set_stmt= new MEM_ROOT(); |
| 4902 | if (unlikely(!(mem_root_for_set_stmt))) |
| 4903 | DBUG_RETURN(1); |
| 4904 | init_sql_alloc(mem_root_for_set_stmt, "set_stmt" , |
| 4905 | ALLOC_ROOT_SET, ALLOC_ROOT_SET, MYF(MY_THREAD_SPECIFIC)); |
| 4906 | } |
| 4907 | if (unlikely(!(arena_for_set_stmt= new(mem_root_for_set_stmt) |
| 4908 | Query_arena_memroot(mem_root_for_set_stmt, |
| 4909 | Query_arena::STMT_INITIALIZED)))) |
| 4910 | DBUG_RETURN(1); |
| 4911 | DBUG_PRINT("info" , ("mem_root: %p arena: %p" , |
| 4912 | mem_root_for_set_stmt, |
| 4913 | arena_for_set_stmt)); |
| 4914 | thd->set_n_backup_active_arena(arena_for_set_stmt, backup); |
| 4915 | DBUG_RETURN(0); |
| 4916 | } |
| 4917 | |
| 4918 | |
| 4919 | void LEX::reset_arena_for_set_stmt(Query_arena *backup) |
| 4920 | { |
| 4921 | DBUG_ENTER("LEX::reset_arena_for_set_stmt" ); |
| 4922 | DBUG_ASSERT(arena_for_set_stmt); |
| 4923 | thd->restore_active_arena(arena_for_set_stmt, backup); |
| 4924 | DBUG_PRINT("info" , ("mem_root: %p arena: %p" , |
| 4925 | arena_for_set_stmt->mem_root, |
| 4926 | arena_for_set_stmt)); |
| 4927 | DBUG_VOID_RETURN; |
| 4928 | } |
| 4929 | |
| 4930 | |
| 4931 | void LEX::free_arena_for_set_stmt() |
| 4932 | { |
| 4933 | DBUG_ENTER("LEX::free_arena_for_set_stmt" ); |
| 4934 | if (!arena_for_set_stmt) |
| 4935 | return; |
| 4936 | DBUG_PRINT("info" , ("mem_root: %p arena: %p" , |
| 4937 | arena_for_set_stmt->mem_root, |
| 4938 | arena_for_set_stmt)); |
| 4939 | arena_for_set_stmt->free_items(); |
| 4940 | delete(arena_for_set_stmt); |
| 4941 | free_root(mem_root_for_set_stmt, MYF(MY_KEEP_PREALLOC)); |
| 4942 | arena_for_set_stmt= 0; |
| 4943 | DBUG_VOID_RETURN; |
| 4944 | } |
| 4945 | |
| 4946 | void LEX::restore_set_statement_var() |
| 4947 | { |
| 4948 | DBUG_ENTER("LEX::restore_set_statement_var" ); |
| 4949 | if (!old_var_list.is_empty()) |
| 4950 | { |
| 4951 | DBUG_PRINT("info" , ("vars: %d" , old_var_list.elements)); |
| 4952 | sql_set_variables(thd, &old_var_list, false); |
| 4953 | old_var_list.empty(); |
| 4954 | free_arena_for_set_stmt(); |
| 4955 | } |
| 4956 | DBUG_ASSERT(!is_arena_for_set_stmt()); |
| 4957 | DBUG_VOID_RETURN; |
| 4958 | } |
| 4959 | |
| 4960 | unit_common_op st_select_lex_unit::common_op() |
| 4961 | { |
| 4962 | SELECT_LEX *first= first_select(); |
| 4963 | bool first_op= TRUE; |
| 4964 | unit_common_op operation= OP_MIX; // if no op |
| 4965 | for (SELECT_LEX *sl= first; sl; sl= sl->next_select()) |
| 4966 | { |
| 4967 | if (sl != first) |
| 4968 | { |
| 4969 | unit_common_op op; |
| 4970 | switch (sl->linkage) |
| 4971 | { |
| 4972 | case INTERSECT_TYPE: |
| 4973 | op= OP_INTERSECT; |
| 4974 | break; |
| 4975 | case EXCEPT_TYPE: |
| 4976 | op= OP_EXCEPT; |
| 4977 | break; |
| 4978 | default: |
| 4979 | op= OP_UNION; |
| 4980 | break; |
| 4981 | } |
| 4982 | if (first_op) |
| 4983 | { |
| 4984 | operation= op; |
| 4985 | first_op= FALSE; |
| 4986 | } |
| 4987 | else |
| 4988 | { |
| 4989 | if (operation != op) |
| 4990 | operation= OP_MIX; |
| 4991 | } |
| 4992 | } |
| 4993 | } |
| 4994 | return operation; |
| 4995 | } |
| 4996 | /* |
| 4997 | Save explain structures of a UNION. The only variable member is whether the |
| 4998 | union has "Using filesort". |
| 4999 | |
| 5000 | There is also save_union_explain_part2() function, which is called before we read |
| 5001 | UNION's output. |
| 5002 | |
| 5003 | The reason for it is examples like this: |
| 5004 | |
| 5005 | SELECT col1 FROM t1 UNION SELECT col2 FROM t2 ORDER BY (select ... from t3 ...) |
| 5006 | |
| 5007 | Here, the (select ... from t3 ...) subquery must be a child of UNION's |
| 5008 | st_select_lex. However, it is not connected as child until a very late |
| 5009 | stage in execution. |
| 5010 | */ |
| 5011 | |
| 5012 | int st_select_lex_unit::save_union_explain(Explain_query *output) |
| 5013 | { |
| 5014 | SELECT_LEX *first= first_select(); |
| 5015 | |
| 5016 | if (output->get_union(first->select_number)) |
| 5017 | return 0; /* Already added */ |
| 5018 | |
| 5019 | Explain_union *eu= |
| 5020 | new (output->mem_root) Explain_union(output->mem_root, |
| 5021 | thd->lex->analyze_stmt); |
| 5022 | if (unlikely(!eu)) |
| 5023 | return 0; |
| 5024 | |
| 5025 | if (with_element && with_element->is_recursive) |
| 5026 | eu->is_recursive_cte= true; |
| 5027 | |
| 5028 | if (derived) |
| 5029 | eu->connection_type= Explain_node::EXPLAIN_NODE_DERIVED; |
| 5030 | /* |
| 5031 | Note: Non-merged semi-joins cannot be made out of UNIONs currently, so we |
| 5032 | dont ever set EXPLAIN_NODE_NON_MERGED_SJ. |
| 5033 | */ |
| 5034 | for (SELECT_LEX *sl= first; sl; sl= sl->next_select()) |
| 5035 | eu->add_select(sl->select_number); |
| 5036 | |
| 5037 | eu->fake_select_type= unit_operation_text[eu->operation= common_op()]; |
| 5038 | eu->using_filesort= MY_TEST(global_parameters()->order_list.first); |
| 5039 | eu->using_tmp= union_needs_tmp_table(); |
| 5040 | |
| 5041 | // Save the UNION node |
| 5042 | output->add_node(eu); |
| 5043 | |
| 5044 | if (eu->get_select_id() == 1) |
| 5045 | output->query_plan_ready(); |
| 5046 | |
| 5047 | return 0; |
| 5048 | } |
| 5049 | |
| 5050 | |
| 5051 | /* |
| 5052 | @see st_select_lex_unit::save_union_explain |
| 5053 | */ |
| 5054 | |
| 5055 | int st_select_lex_unit::save_union_explain_part2(Explain_query *output) |
| 5056 | { |
| 5057 | Explain_union *eu= output->get_union(first_select()->select_number); |
| 5058 | if (fake_select_lex) |
| 5059 | { |
| 5060 | for (SELECT_LEX_UNIT *unit= fake_select_lex->first_inner_unit(); |
| 5061 | unit; unit= unit->next_unit()) |
| 5062 | { |
| 5063 | if (!(unit->item && unit->item->eliminated)) |
| 5064 | { |
| 5065 | eu->add_child(unit->first_select()->select_number); |
| 5066 | } |
| 5067 | } |
| 5068 | fake_select_lex->join->explain= &eu->fake_select_lex_explain; |
| 5069 | } |
| 5070 | return 0; |
| 5071 | } |
| 5072 | |
| 5073 | |
| 5074 | /** |
| 5075 | A routine used by the parser to decide whether we are specifying a full |
| 5076 | partitioning or if only partitions to add or to split. |
| 5077 | |
| 5078 | @note This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it |
| 5079 | is used from the sql parser that doesn't have any ifdef's |
| 5080 | |
| 5081 | @retval TRUE Yes, it is part of a management partition command |
| 5082 | @retval FALSE No, not a management partition command |
| 5083 | */ |
| 5084 | |
| 5085 | bool LEX::is_partition_management() const |
| 5086 | { |
| 5087 | return (sql_command == SQLCOM_ALTER_TABLE && |
| 5088 | (alter_info.partition_flags == ALTER_PARTITION_ADD || |
| 5089 | alter_info.partition_flags == ALTER_PARTITION_REORGANIZE)); |
| 5090 | } |
| 5091 | |
| 5092 | |
| 5093 | /** |
| 5094 | Exclude last added SELECT_LEX (current) in the UNIT and return pointer in it |
| 5095 | (previous become currect) |
| 5096 | |
| 5097 | @return detached SELECT_LEX or NULL in case of error |
| 5098 | */ |
| 5099 | |
| 5100 | SELECT_LEX *LEX::exclude_last_select() |
| 5101 | { |
| 5102 | DBUG_ENTER("SELECT_LEX::exclude_last_select" ); |
| 5103 | SELECT_LEX *exclude= current_select; |
| 5104 | SELECT_LEX_UNIT *unit= exclude->master_unit(); |
| 5105 | SELECT_LEX *sl; |
| 5106 | DBUG_ASSERT(unit->first_select() != exclude); |
| 5107 | /* we should go through the list to correctly set current_select */ |
| 5108 | for(sl= unit->first_select(); |
| 5109 | sl->next_select() && sl->next_select() != exclude; |
| 5110 | sl= sl->next_select()); |
| 5111 | DBUG_PRINT("info" , ("excl: %p unit: %p prev: %p" , exclude, unit, sl)); |
| 5112 | if (!sl) |
| 5113 | DBUG_RETURN(NULL); |
| 5114 | DBUG_ASSERT(exclude->next_select() == NULL); |
| 5115 | exclude->exclude_from_tree(); |
| 5116 | current_select= sl; |
| 5117 | DBUG_RETURN(exclude); |
| 5118 | } |
| 5119 | |
| 5120 | |
| 5121 | /** |
| 5122 | Put given (new) SELECT_LEX level below after currect (last) SELECT |
| 5123 | |
| 5124 | LAST SELECT -> DUMMY SELECT |
| 5125 | | |
| 5126 | V |
| 5127 | NEW UNIT |
| 5128 | | |
| 5129 | V |
| 5130 | NEW SELECT |
| 5131 | |
| 5132 | SELECT (*LAST*) ... FROM (SELECT (*NEW*) ... ) |
| 5133 | |
| 5134 | @param nselect Select to put one level below |
| 5135 | |
| 5136 | @retval TRUE Error |
| 5137 | @retval FALSE OK |
| 5138 | */ |
| 5139 | |
| 5140 | bool LEX::add_unit_in_brackets(SELECT_LEX *nselect) |
| 5141 | { |
| 5142 | DBUG_ENTER("LEX::add_unit_in_brackets" ); |
| 5143 | bool distinct= nselect->master_unit()->union_distinct == nselect; |
| 5144 | bool rc= add_select_to_union_list(distinct, nselect->linkage, 0); |
| 5145 | if (rc) |
| 5146 | DBUG_RETURN(TRUE); |
| 5147 | SELECT_LEX* dummy_select= current_select; |
| 5148 | dummy_select->automatic_brackets= TRUE; |
| 5149 | dummy_select->linkage= nselect->linkage; |
| 5150 | |
| 5151 | /* stuff dummy SELECT * FROM (...) */ |
| 5152 | Name_resolution_context *context= &dummy_select->context; |
| 5153 | context->init(); |
| 5154 | |
| 5155 | /* add SELECT list*/ |
| 5156 | Item *item= new (thd->mem_root) |
| 5157 | Item_field(thd, context, NULL, NULL, &star_clex_str); |
| 5158 | if (unlikely(item == NULL)) |
| 5159 | DBUG_RETURN(TRUE); |
| 5160 | if (unlikely(add_item_to_list(thd, item))) |
| 5161 | DBUG_RETURN(TRUE); |
| 5162 | (dummy_select->with_wild)++; |
| 5163 | |
| 5164 | rc= mysql_new_select(this, 1, nselect); |
| 5165 | nselect->linkage= DERIVED_TABLE_TYPE; |
| 5166 | DBUG_ASSERT(nselect->outer_select() == dummy_select); |
| 5167 | |
| 5168 | current_select= dummy_select; |
| 5169 | current_select->nest_level--; |
| 5170 | |
| 5171 | SELECT_LEX_UNIT *unit= nselect->master_unit(); |
| 5172 | Table_ident *ti= new (thd->mem_root) Table_ident(unit); |
| 5173 | if (unlikely(ti == NULL)) |
| 5174 | DBUG_RETURN(TRUE); |
| 5175 | char buff[10]; |
| 5176 | LEX_CSTRING alias; |
| 5177 | alias.length= my_snprintf(buff, sizeof(buff), |
| 5178 | "__%u" , dummy_select->select_number); |
| 5179 | alias.str= thd->strmake(buff, alias.length); |
| 5180 | if (unlikely(!alias.str)) |
| 5181 | DBUG_RETURN(TRUE); |
| 5182 | |
| 5183 | TABLE_LIST *table_list; |
| 5184 | if (unlikely(!(table_list= |
| 5185 | dummy_select->add_table_to_list(thd, ti, &alias, |
| 5186 | 0, TL_READ, |
| 5187 | MDL_SHARED_READ)))) |
| 5188 | DBUG_RETURN(TRUE); |
| 5189 | context->resolve_in_table_list_only(table_list); |
| 5190 | dummy_select->add_joined_table(table_list); |
| 5191 | |
| 5192 | derived_tables|= DERIVED_SUBQUERY; |
| 5193 | |
| 5194 | current_select= nselect; |
| 5195 | current_select->nest_level++; |
| 5196 | DBUG_RETURN(rc); |
| 5197 | } |
| 5198 | |
| 5199 | |
| 5200 | /** |
| 5201 | Checks if we need finish "automatic brackets" mode |
| 5202 | |
| 5203 | INTERSECT has higher priority then UNION and EXCEPT, so when it is need we |
| 5204 | automatically create lower layer for INTERSECT (automatic brackets) and |
| 5205 | here we check if we should return back one level up during parsing procedure. |
| 5206 | */ |
| 5207 | |
| 5208 | void LEX::check_automatic_up(enum sub_select_type type) |
| 5209 | { |
| 5210 | if (type != INTERSECT_TYPE && |
| 5211 | current_select->linkage == INTERSECT_TYPE && |
| 5212 | current_select->outer_select() && |
| 5213 | current_select->outer_select()->automatic_brackets) |
| 5214 | { |
| 5215 | nest_level--; |
| 5216 | current_select= current_select->outer_select(); |
| 5217 | } |
| 5218 | } |
| 5219 | |
| 5220 | |
| 5221 | sp_variable *LEX::sp_param_init(LEX_CSTRING *name) |
| 5222 | { |
| 5223 | if (spcont->find_variable(name, true)) |
| 5224 | { |
| 5225 | my_error(ER_SP_DUP_PARAM, MYF(0), name->str); |
| 5226 | return NULL; |
| 5227 | } |
| 5228 | sp_variable *spvar= spcont->add_variable(thd, name); |
| 5229 | init_last_field(&spvar->field_def, name, |
| 5230 | thd->variables.collation_database); |
| 5231 | return spvar; |
| 5232 | } |
| 5233 | |
| 5234 | |
| 5235 | bool LEX::sp_param_fill_definition(sp_variable *spvar) |
| 5236 | { |
| 5237 | return sphead->fill_spvar_definition(thd, last_field, &spvar->name); |
| 5238 | } |
| 5239 | |
| 5240 | |
| 5241 | void LEX::set_stmt_init() |
| 5242 | { |
| 5243 | sql_command= SQLCOM_SET_OPTION; |
| 5244 | mysql_init_select(this); |
| 5245 | option_type= OPT_SESSION; |
| 5246 | autocommit= 0; |
| 5247 | }; |
| 5248 | |
| 5249 | |
| 5250 | /** |
| 5251 | Find a local or a package body variable by name. |
| 5252 | @param IN name - the variable name |
| 5253 | @param OUT ctx - NULL, if the variable was not found, |
| 5254 | or LEX::spcont (if a local variable was found) |
| 5255 | or the package top level context |
| 5256 | (if a package variable was found) |
| 5257 | @param OUT handler - NULL, if the variable was not found, |
| 5258 | or a pointer to rcontext handler |
| 5259 | @retval - the variable (if found), or NULL otherwise. |
| 5260 | */ |
| 5261 | sp_variable * |
| 5262 | LEX::find_variable(const LEX_CSTRING *name, |
| 5263 | sp_pcontext **ctx, |
| 5264 | const Sp_rcontext_handler **rh) const |
| 5265 | { |
| 5266 | sp_variable *spv; |
| 5267 | if (spcont && (spv= spcont->find_variable(name, false))) |
| 5268 | { |
| 5269 | *ctx= spcont; |
| 5270 | *rh= &sp_rcontext_handler_local; |
| 5271 | return spv; |
| 5272 | } |
| 5273 | sp_package *pkg= sphead ? sphead->m_parent : NULL; |
| 5274 | if (pkg && (spv= pkg->find_package_variable(name))) |
| 5275 | { |
| 5276 | *ctx= pkg->get_parse_context()->child_context(0); |
| 5277 | *rh= &sp_rcontext_handler_package_body; |
| 5278 | return spv; |
| 5279 | } |
| 5280 | *ctx= NULL; |
| 5281 | *rh= NULL; |
| 5282 | return NULL; |
| 5283 | } |
| 5284 | |
| 5285 | |
| 5286 | static bool is_new(const char *str) |
| 5287 | { |
| 5288 | return (str[0] == 'n' || str[0] == 'N') && |
| 5289 | (str[1] == 'e' || str[1] == 'E') && |
| 5290 | (str[2] == 'w' || str[2] == 'W'); |
| 5291 | } |
| 5292 | |
| 5293 | static bool is_old(const char *str) |
| 5294 | { |
| 5295 | return (str[0] == 'o' || str[0] == 'O') && |
| 5296 | (str[1] == 'l' || str[1] == 'L') && |
| 5297 | (str[2] == 'd' || str[2] == 'D'); |
| 5298 | } |
| 5299 | |
| 5300 | |
| 5301 | bool LEX::is_trigger_new_or_old_reference(const LEX_CSTRING *name) const |
| 5302 | { |
| 5303 | // "name" is not necessarily NULL-terminated! |
| 5304 | return sphead && sphead->m_handler->type() == TYPE_ENUM_TRIGGER && |
| 5305 | name->length == 3 && (is_new(name->str) || is_old(name->str)); |
| 5306 | } |
| 5307 | |
| 5308 | |
| 5309 | void LEX::sp_variable_declarations_init(THD *thd, int nvars) |
| 5310 | { |
| 5311 | sp_variable *spvar= spcont->get_last_context_variable(); |
| 5312 | |
| 5313 | sphead->reset_lex(thd); |
| 5314 | spcont->declare_var_boundary(nvars); |
| 5315 | thd->lex->init_last_field(&spvar->field_def, &spvar->name, |
| 5316 | thd->variables.collation_database); |
| 5317 | } |
| 5318 | |
| 5319 | |
| 5320 | bool LEX::sp_variable_declarations_set_default(THD *thd, int nvars, |
| 5321 | Item *dflt_value_item) |
| 5322 | { |
| 5323 | if (!dflt_value_item && |
| 5324 | unlikely(!(dflt_value_item= new (thd->mem_root) Item_null(thd)))) |
| 5325 | return true; |
| 5326 | |
| 5327 | for (uint i= 0 ; i < (uint) nvars ; i++) |
| 5328 | { |
| 5329 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5330 | bool last= i + 1 == (uint) nvars; |
| 5331 | spvar->default_value= dflt_value_item; |
| 5332 | /* The last instruction is responsible for freeing LEX. */ |
| 5333 | sp_instr_set *is= new (this->thd->mem_root) |
| 5334 | sp_instr_set(sphead->instructions(), |
| 5335 | spcont, &sp_rcontext_handler_local, |
| 5336 | spvar->offset, dflt_value_item, |
| 5337 | this, last); |
| 5338 | if (unlikely(is == NULL || sphead->add_instr(is))) |
| 5339 | return true; |
| 5340 | } |
| 5341 | return false; |
| 5342 | } |
| 5343 | |
| 5344 | |
| 5345 | bool |
| 5346 | LEX::sp_variable_declarations_copy_type_finalize(THD *thd, int nvars, |
| 5347 | const Column_definition &ref, |
| 5348 | Row_definition_list *fields, |
| 5349 | Item *default_value) |
| 5350 | { |
| 5351 | for (uint i= 0 ; i < (uint) nvars; i++) |
| 5352 | { |
| 5353 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5354 | spvar->field_def.set_type(ref); |
| 5355 | if (fields) |
| 5356 | { |
| 5357 | DBUG_ASSERT(ref.type_handler() == &type_handler_row); |
| 5358 | spvar->field_def.set_row_field_definitions(fields); |
| 5359 | } |
| 5360 | spvar->field_def.field_name= spvar->name; |
| 5361 | } |
| 5362 | if (unlikely(sp_variable_declarations_set_default(thd, nvars, |
| 5363 | default_value))) |
| 5364 | return true; |
| 5365 | spcont->declare_var_boundary(0); |
| 5366 | return sphead->restore_lex(thd); |
| 5367 | } |
| 5368 | |
| 5369 | |
| 5370 | bool LEX::sp_variable_declarations_finalize(THD *thd, int nvars, |
| 5371 | const Column_definition *cdef, |
| 5372 | Item *dflt_value_item) |
| 5373 | { |
| 5374 | DBUG_ASSERT(cdef); |
| 5375 | Column_definition tmp(*cdef); |
| 5376 | if (sphead->fill_spvar_definition(thd, &tmp)) |
| 5377 | return true; |
| 5378 | return sp_variable_declarations_copy_type_finalize(thd, nvars, tmp, NULL, |
| 5379 | dflt_value_item); |
| 5380 | } |
| 5381 | |
| 5382 | |
| 5383 | bool LEX::sp_variable_declarations_row_finalize(THD *thd, int nvars, |
| 5384 | Row_definition_list *row, |
| 5385 | Item *dflt_value_item) |
| 5386 | { |
| 5387 | DBUG_ASSERT(row); |
| 5388 | /* |
| 5389 | Prepare all row fields. |
| 5390 | Note, we do it only one time outside of the below loop. |
| 5391 | The converted list in "row" is further reused by all variable |
| 5392 | declarations processed by the current call. |
| 5393 | Example: |
| 5394 | DECLARE |
| 5395 | a, b, c ROW(x VARCHAR(10) CHARACTER SET utf8); |
| 5396 | BEGIN |
| 5397 | ... |
| 5398 | END; |
| 5399 | */ |
| 5400 | if (sphead->row_fill_field_definitions(thd, row)) |
| 5401 | return true; |
| 5402 | |
| 5403 | for (uint i= 0 ; i < (uint) nvars ; i++) |
| 5404 | { |
| 5405 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5406 | spvar->field_def.set_row_field_definitions(row); |
| 5407 | if (sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name)) |
| 5408 | return true; |
| 5409 | } |
| 5410 | |
| 5411 | if (sp_variable_declarations_set_default(thd, nvars, dflt_value_item)) |
| 5412 | return true; |
| 5413 | spcont->declare_var_boundary(0); |
| 5414 | return sphead->restore_lex(thd); |
| 5415 | } |
| 5416 | |
| 5417 | |
| 5418 | /** |
| 5419 | Finalize a %ROWTYPE declaration, e.g.: |
| 5420 | DECLARE a,b,c,d t1%ROWTYPE := ROW(1,2,3); |
| 5421 | |
| 5422 | @param thd - the current thd |
| 5423 | @param nvars - the number of variables in the declaration |
| 5424 | @param ref - the table or cursor name (see comments below) |
| 5425 | @param def - the default value, e.g., ROW(1,2,3), or NULL (no default). |
| 5426 | */ |
| 5427 | bool |
| 5428 | LEX::sp_variable_declarations_rowtype_finalize(THD *thd, int nvars, |
| 5429 | Qualified_column_ident *ref, |
| 5430 | Item *def) |
| 5431 | { |
| 5432 | uint coffp; |
| 5433 | const sp_pcursor *pcursor= ref->table.str && ref->db.str ? NULL : |
| 5434 | spcont->find_cursor(&ref->m_column, &coffp, |
| 5435 | false); |
| 5436 | if (pcursor) |
| 5437 | return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars, |
| 5438 | coffp, def); |
| 5439 | /* |
| 5440 | When parsing a qualified identifier chain, the parser does not know yet |
| 5441 | if it's going to be a qualified column name (for %TYPE), |
| 5442 | or a qualified table name (for %ROWTYPE). So it collects the chain |
| 5443 | into Qualified_column_ident. |
| 5444 | Now we know that it was actually a qualified table name (%ROWTYPE). |
| 5445 | Create a new Table_ident from Qualified_column_ident, |
| 5446 | shifting fields as follows: |
| 5447 | - ref->m_column becomes table_ref->table |
| 5448 | - ref->table becomes table_ref->db |
| 5449 | */ |
| 5450 | return sp_variable_declarations_table_rowtype_finalize(thd, nvars, |
| 5451 | ref->table, |
| 5452 | ref->m_column, |
| 5453 | def); |
| 5454 | } |
| 5455 | |
| 5456 | |
| 5457 | bool |
| 5458 | LEX::sp_variable_declarations_table_rowtype_finalize(THD *thd, int nvars, |
| 5459 | const LEX_CSTRING &db, |
| 5460 | const LEX_CSTRING &table, |
| 5461 | Item *def) |
| 5462 | { |
| 5463 | Table_ident *table_ref; |
| 5464 | if (unlikely(!(table_ref= |
| 5465 | new (thd->mem_root) Table_ident(thd, &db, &table, false)))) |
| 5466 | return true; |
| 5467 | // Loop through all variables in the same declaration |
| 5468 | for (uint i= 0 ; i < (uint) nvars; i++) |
| 5469 | { |
| 5470 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5471 | spvar->field_def.set_table_rowtype_ref(table_ref); |
| 5472 | sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); |
| 5473 | } |
| 5474 | if (sp_variable_declarations_set_default(thd, nvars, def)) |
| 5475 | return true; |
| 5476 | // Make sure sp_rcontext is created using the invoker security context: |
| 5477 | sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; |
| 5478 | spcont->declare_var_boundary(0); |
| 5479 | return sphead->restore_lex(thd); |
| 5480 | } |
| 5481 | |
| 5482 | |
| 5483 | bool |
| 5484 | LEX::sp_variable_declarations_cursor_rowtype_finalize(THD *thd, int nvars, |
| 5485 | uint offset, |
| 5486 | Item *def) |
| 5487 | { |
| 5488 | const sp_pcursor *pcursor= spcont->find_cursor(offset); |
| 5489 | |
| 5490 | // Loop through all variables in the same declaration |
| 5491 | for (uint i= 0 ; i < (uint) nvars; i++) |
| 5492 | { |
| 5493 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5494 | |
| 5495 | spvar->field_def.set_cursor_rowtype_ref(offset); |
| 5496 | sp_instr_cursor_copy_struct *instr= |
| 5497 | new (thd->mem_root) sp_instr_cursor_copy_struct(sphead->instructions(), |
| 5498 | spcont, pcursor->lex(), |
| 5499 | spvar->offset); |
| 5500 | if (instr == NULL || sphead->add_instr(instr)) |
| 5501 | return true; |
| 5502 | |
| 5503 | sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); |
| 5504 | } |
| 5505 | if (unlikely(sp_variable_declarations_set_default(thd, nvars, def))) |
| 5506 | return true; |
| 5507 | // Make sure sp_rcontext is created using the invoker security context: |
| 5508 | sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; |
| 5509 | spcont->declare_var_boundary(0); |
| 5510 | return sphead->restore_lex(thd); |
| 5511 | } |
| 5512 | |
| 5513 | |
| 5514 | /* |
| 5515 | Add declarations for table column and SP variable anchor types: |
| 5516 | - DECLARE spvar1 TYPE OF db1.table1.column1; |
| 5517 | - DECLARE spvar1 TYPE OF table1.column1; |
| 5518 | - DECLARE spvar1 TYPE OF spvar0; |
| 5519 | */ |
| 5520 | bool |
| 5521 | LEX::sp_variable_declarations_with_ref_finalize(THD *thd, int nvars, |
| 5522 | Qualified_column_ident *ref, |
| 5523 | Item *def) |
| 5524 | { |
| 5525 | return ref->db.length == 0 && ref->table.length == 0 ? |
| 5526 | sp_variable_declarations_vartype_finalize(thd, nvars, ref->m_column, def) : |
| 5527 | sp_variable_declarations_column_type_finalize(thd, nvars, ref, def); |
| 5528 | } |
| 5529 | |
| 5530 | |
| 5531 | bool |
| 5532 | LEX::sp_variable_declarations_column_type_finalize(THD *thd, int nvars, |
| 5533 | Qualified_column_ident *ref, |
| 5534 | Item *def) |
| 5535 | { |
| 5536 | for (uint i= 0 ; i < (uint) nvars; i++) |
| 5537 | { |
| 5538 | sp_variable *spvar= spcont->get_last_context_variable((uint) nvars - 1 - i); |
| 5539 | spvar->field_def.set_column_type_ref(ref); |
| 5540 | spvar->field_def.field_name= spvar->name; |
| 5541 | } |
| 5542 | sphead->m_flags|= sp_head::HAS_COLUMN_TYPE_REFS; |
| 5543 | if (sp_variable_declarations_set_default(thd, nvars, def)) |
| 5544 | return true; |
| 5545 | spcont->declare_var_boundary(0); |
| 5546 | return sphead->restore_lex(thd); |
| 5547 | } |
| 5548 | |
| 5549 | |
| 5550 | bool |
| 5551 | LEX::sp_variable_declarations_vartype_finalize(THD *thd, int nvars, |
| 5552 | const LEX_CSTRING &ref, |
| 5553 | Item *default_value) |
| 5554 | { |
| 5555 | sp_variable *t; |
| 5556 | if (!spcont || !(t= spcont->find_variable(&ref, false))) |
| 5557 | { |
| 5558 | my_error(ER_SP_UNDECLARED_VAR, MYF(0), ref.str); |
| 5559 | return true; |
| 5560 | } |
| 5561 | |
| 5562 | if (t->field_def.is_cursor_rowtype_ref()) |
| 5563 | { |
| 5564 | uint offset= t->field_def.cursor_rowtype_offset(); |
| 5565 | return sp_variable_declarations_cursor_rowtype_finalize(thd, nvars, |
| 5566 | offset, |
| 5567 | default_value); |
| 5568 | } |
| 5569 | |
| 5570 | if (t->field_def.is_column_type_ref()) |
| 5571 | { |
| 5572 | Qualified_column_ident *tmp= t->field_def.column_type_ref(); |
| 5573 | return sp_variable_declarations_column_type_finalize(thd, nvars, tmp, |
| 5574 | default_value); |
| 5575 | } |
| 5576 | |
| 5577 | if (t->field_def.is_table_rowtype_ref()) |
| 5578 | { |
| 5579 | const Table_ident *tmp= t->field_def.table_rowtype_ref(); |
| 5580 | return sp_variable_declarations_table_rowtype_finalize(thd, nvars, |
| 5581 | tmp->db, |
| 5582 | tmp->table, |
| 5583 | default_value); |
| 5584 | } |
| 5585 | |
| 5586 | // A reference to a scalar or a row variable with an explicit data type |
| 5587 | return sp_variable_declarations_copy_type_finalize(thd, nvars, |
| 5588 | t->field_def, |
| 5589 | t->field_def. |
| 5590 | row_field_definitions(), |
| 5591 | default_value); |
| 5592 | } |
| 5593 | |
| 5594 | |
| 5595 | /********************************************************************** |
| 5596 | The FOR LOOP statement |
| 5597 | |
| 5598 | This syntax: |
| 5599 | FOR i IN lower_bound .. upper_bound |
| 5600 | LOOP |
| 5601 | statements; |
| 5602 | END LOOP; |
| 5603 | |
| 5604 | is translated into: |
| 5605 | |
| 5606 | DECLARE |
| 5607 | i INT := lower_bound; |
| 5608 | j INT := upper_bound; |
| 5609 | BEGIN |
| 5610 | WHILE i <= j |
| 5611 | LOOP |
| 5612 | statements; |
| 5613 | i:= i + 1; |
| 5614 | END LOOP; |
| 5615 | END; |
| 5616 | */ |
| 5617 | |
| 5618 | |
| 5619 | sp_variable *LEX::sp_add_for_loop_variable(THD *thd, const LEX_CSTRING *name, |
| 5620 | Item *value) |
| 5621 | { |
| 5622 | sp_variable *spvar= spcont->add_variable(thd, name); |
| 5623 | spcont->declare_var_boundary(1); |
| 5624 | spvar->field_def.field_name= spvar->name; |
| 5625 | spvar->field_def.set_handler(&type_handler_longlong); |
| 5626 | type_handler_longlong.Column_definition_prepare_stage2(&spvar->field_def, |
| 5627 | NULL, HA_CAN_GEOMETRY); |
| 5628 | if (!value && unlikely(!(value= new (thd->mem_root) Item_null(thd)))) |
| 5629 | return NULL; |
| 5630 | |
| 5631 | spvar->default_value= value; |
| 5632 | sp_instr_set *is= new (this->thd->mem_root) |
| 5633 | sp_instr_set(sphead->instructions(), |
| 5634 | spcont, &sp_rcontext_handler_local, |
| 5635 | spvar->offset, value, |
| 5636 | this, true); |
| 5637 | if (unlikely(is == NULL || sphead->add_instr(is))) |
| 5638 | return NULL; |
| 5639 | spcont->declare_var_boundary(0); |
| 5640 | return spvar; |
| 5641 | } |
| 5642 | |
| 5643 | |
| 5644 | bool LEX::sp_for_loop_implicit_cursor_statement(THD *thd, |
| 5645 | Lex_for_loop_bounds_st *bounds, |
| 5646 | sp_lex_cursor *cur) |
| 5647 | { |
| 5648 | Item *item; |
| 5649 | DBUG_ASSERT(sphead); |
| 5650 | LEX_CSTRING name= {STRING_WITH_LEN("[implicit_cursor]" ) }; |
| 5651 | if (sp_declare_cursor(thd, &name, cur, NULL, true)) |
| 5652 | return true; |
| 5653 | DBUG_ASSERT(thd->lex == this); |
| 5654 | if (unlikely(!(bounds->m_index= |
| 5655 | new (thd->mem_root) sp_assignment_lex(thd, this)))) |
| 5656 | return true; |
| 5657 | bounds->m_index->sp_lex_in_use= true; |
| 5658 | sphead->reset_lex(thd, bounds->m_index); |
| 5659 | DBUG_ASSERT(thd->lex != this); |
| 5660 | if (unlikely(!(item= |
| 5661 | new (thd->mem_root) Item_field(thd, |
| 5662 | thd->lex->current_context(), |
| 5663 | NullS, NullS, &name)))) |
| 5664 | return true; |
| 5665 | bounds->m_index->set_item_and_free_list(item, NULL); |
| 5666 | if (thd->lex->sphead->restore_lex(thd)) |
| 5667 | return true; |
| 5668 | DBUG_ASSERT(thd->lex == this); |
| 5669 | bounds->m_direction= 1; |
| 5670 | bounds->m_upper_bound= NULL; |
| 5671 | bounds->m_implicit_cursor= true; |
| 5672 | return false; |
| 5673 | } |
| 5674 | |
| 5675 | sp_variable * |
| 5676 | LEX::sp_add_for_loop_cursor_variable(THD *thd, |
| 5677 | const LEX_CSTRING *name, |
| 5678 | const sp_pcursor *pcursor, |
| 5679 | uint coffset, |
| 5680 | sp_assignment_lex *param_lex, |
| 5681 | Item_args *parameters) |
| 5682 | { |
| 5683 | sp_variable *spvar= spcont->add_variable(thd, name); |
| 5684 | if (!spvar) |
| 5685 | return NULL; |
| 5686 | spcont->declare_var_boundary(1); |
| 5687 | sphead->fill_spvar_definition(thd, &spvar->field_def, &spvar->name); |
| 5688 | if (unlikely(!(spvar->default_value= new (thd->mem_root) Item_null(thd)))) |
| 5689 | return NULL; |
| 5690 | |
| 5691 | spvar->field_def.set_cursor_rowtype_ref(coffset); |
| 5692 | |
| 5693 | if (unlikely(sphead->add_for_loop_open_cursor(thd, spcont, spvar, pcursor, |
| 5694 | coffset, |
| 5695 | param_lex, parameters))) |
| 5696 | return NULL; |
| 5697 | |
| 5698 | spcont->declare_var_boundary(0); |
| 5699 | return spvar; |
| 5700 | } |
| 5701 | |
| 5702 | |
| 5703 | /** |
| 5704 | Generate a code for a FOR loop condition: |
| 5705 | - Make Item_splocal for the FOR loop index variable |
| 5706 | - Make Item_splocal for the FOR loop upper bound variable |
| 5707 | - Make a comparison function item on top of these two variables |
| 5708 | */ |
| 5709 | bool LEX::sp_for_loop_condition(THD *thd, const Lex_for_loop_st &loop) |
| 5710 | { |
| 5711 | Item_splocal *args[2]; |
| 5712 | for (uint i= 0 ; i < 2; i++) |
| 5713 | { |
| 5714 | sp_variable *src= i == 0 ? loop.m_index : loop.m_upper_bound; |
| 5715 | args[i]= new (thd->mem_root) |
| 5716 | Item_splocal(thd, &sp_rcontext_handler_local, |
| 5717 | &src->name, src->offset, src->type_handler()); |
| 5718 | if (unlikely(args[i] == NULL)) |
| 5719 | return true; |
| 5720 | #ifdef DBUG_ASSERT_EXISTS |
| 5721 | args[i]->m_sp= sphead; |
| 5722 | #endif |
| 5723 | } |
| 5724 | |
| 5725 | Item *expr= loop.m_direction > 0 ? |
| 5726 | (Item *) new (thd->mem_root) Item_func_le(thd, args[0], args[1]) : |
| 5727 | (Item *) new (thd->mem_root) Item_func_ge(thd, args[0], args[1]); |
| 5728 | return unlikely(!expr) || unlikely(sp_while_loop_expression(thd, expr)); |
| 5729 | } |
| 5730 | |
| 5731 | |
| 5732 | /** |
| 5733 | Generate the FOR LOOP condition code in its own lex |
| 5734 | */ |
| 5735 | bool LEX::sp_for_loop_intrange_condition_test(THD *thd, |
| 5736 | const Lex_for_loop_st &loop) |
| 5737 | { |
| 5738 | spcont->set_for_loop(loop); |
| 5739 | sphead->reset_lex(thd); |
| 5740 | if (unlikely(thd->lex->sp_for_loop_condition(thd, loop))) |
| 5741 | return true; |
| 5742 | return thd->lex->sphead->restore_lex(thd); |
| 5743 | } |
| 5744 | |
| 5745 | |
| 5746 | bool LEX::sp_for_loop_cursor_condition_test(THD *thd, |
| 5747 | const Lex_for_loop_st &loop) |
| 5748 | { |
| 5749 | const LEX_CSTRING *cursor_name; |
| 5750 | Item *expr; |
| 5751 | spcont->set_for_loop(loop); |
| 5752 | sphead->reset_lex(thd); |
| 5753 | cursor_name= spcont->find_cursor(loop.m_cursor_offset); |
| 5754 | DBUG_ASSERT(cursor_name); |
| 5755 | if (unlikely(!(expr= |
| 5756 | new (thd->mem_root) |
| 5757 | Item_func_cursor_found(thd, cursor_name, |
| 5758 | loop.m_cursor_offset)))) |
| 5759 | return true; |
| 5760 | if (thd->lex->sp_while_loop_expression(thd, expr)) |
| 5761 | return true; |
| 5762 | return thd->lex->sphead->restore_lex(thd); |
| 5763 | } |
| 5764 | |
| 5765 | |
| 5766 | bool LEX::sp_for_loop_intrange_declarations(THD *thd, Lex_for_loop_st *loop, |
| 5767 | const LEX_CSTRING *index, |
| 5768 | const Lex_for_loop_bounds_st &bounds) |
| 5769 | { |
| 5770 | if (unlikely(!(loop->m_index= |
| 5771 | bounds.m_index-> |
| 5772 | sp_add_for_loop_variable(thd, index, |
| 5773 | bounds.m_index->get_item())))) |
| 5774 | return true; |
| 5775 | if (unlikely(!(loop->m_upper_bound= |
| 5776 | bounds.m_upper_bound-> |
| 5777 | sp_add_for_loop_upper_bound(thd, |
| 5778 | bounds. |
| 5779 | m_upper_bound->get_item())))) |
| 5780 | return true; |
| 5781 | loop->m_direction= bounds.m_direction; |
| 5782 | loop->m_implicit_cursor= 0; |
| 5783 | return false; |
| 5784 | } |
| 5785 | |
| 5786 | |
| 5787 | bool LEX::sp_for_loop_cursor_declarations(THD *thd, |
| 5788 | Lex_for_loop_st *loop, |
| 5789 | const LEX_CSTRING *index, |
| 5790 | const Lex_for_loop_bounds_st &bounds) |
| 5791 | { |
| 5792 | Item *item= bounds.m_index->get_item(); |
| 5793 | Item_splocal *item_splocal; |
| 5794 | Item_field *item_field; |
| 5795 | Item_func_sp *item_func_sp= NULL; |
| 5796 | LEX_CSTRING name; |
| 5797 | uint coffs, param_count= 0; |
| 5798 | const sp_pcursor *pcursor; |
| 5799 | |
| 5800 | if ((item_splocal= item->get_item_splocal())) |
| 5801 | name= item_splocal->m_name; |
| 5802 | else if ((item_field= item->type() == Item::FIELD_ITEM ? |
| 5803 | static_cast<Item_field *>(item) : NULL) && |
| 5804 | item_field->table_name == NULL) |
| 5805 | name= item_field->field_name; |
| 5806 | else if (item->type() == Item::FUNC_ITEM && |
| 5807 | static_cast<Item_func*>(item)->functype() == Item_func::FUNC_SP && |
| 5808 | !static_cast<Item_func_sp*>(item)->get_sp_name()->m_explicit_name) |
| 5809 | { |
| 5810 | /* |
| 5811 | When a FOR LOOP for a cursor with parameters is parsed: |
| 5812 | FOR index IN cursor(1,2,3) LOOP |
| 5813 | statements; |
| 5814 | END LOOP; |
| 5815 | the parser scans "cursor(1,2,3)" using the "expr" rule, |
| 5816 | so it thinks that cursor(1,2,3) is a stored function call. |
| 5817 | It's not easy to implement this without using "expr" because |
| 5818 | of grammar conflicts. |
| 5819 | As a side effect, the Item_func_sp and its arguments in the parentheses |
| 5820 | belong to the same LEX. This is different from an explicit |
| 5821 | "OPEN cursor(1,2,3)" where every expression belongs to a separate LEX. |
| 5822 | */ |
| 5823 | item_func_sp= static_cast<Item_func_sp*>(item); |
| 5824 | name= item_func_sp->get_sp_name()->m_name; |
| 5825 | param_count= item_func_sp->argument_count(); |
| 5826 | } |
| 5827 | else |
| 5828 | { |
| 5829 | thd->parse_error(); |
| 5830 | return true; |
| 5831 | } |
| 5832 | if (unlikely(!(pcursor= spcont->find_cursor_with_error(&name, &coffs, |
| 5833 | false)) || |
| 5834 | pcursor->check_param_count_with_error(param_count))) |
| 5835 | return true; |
| 5836 | |
| 5837 | if (!(loop->m_index= sp_add_for_loop_cursor_variable(thd, index, |
| 5838 | pcursor, coffs, |
| 5839 | bounds.m_index, |
| 5840 | item_func_sp))) |
| 5841 | return true; |
| 5842 | loop->m_upper_bound= NULL; |
| 5843 | loop->m_direction= bounds.m_direction; |
| 5844 | loop->m_cursor_offset= coffs; |
| 5845 | loop->m_implicit_cursor= bounds.m_implicit_cursor; |
| 5846 | return false; |
| 5847 | } |
| 5848 | |
| 5849 | |
| 5850 | /** |
| 5851 | Generate a code for a FOR loop index increment |
| 5852 | */ |
| 5853 | bool LEX::sp_for_loop_increment(THD *thd, const Lex_for_loop_st &loop) |
| 5854 | { |
| 5855 | Item_splocal *splocal= new (thd->mem_root) |
| 5856 | Item_splocal(thd, &sp_rcontext_handler_local, |
| 5857 | &loop.m_index->name, loop.m_index->offset, |
| 5858 | loop.m_index->type_handler()); |
| 5859 | if (unlikely(splocal == NULL)) |
| 5860 | return true; |
| 5861 | #ifdef DBUG_ASSERT_EXISTS |
| 5862 | splocal->m_sp= sphead; |
| 5863 | #endif |
| 5864 | Item_int *inc= new (thd->mem_root) Item_int(thd, loop.m_direction); |
| 5865 | if (unlikely(!inc)) |
| 5866 | return true; |
| 5867 | Item *expr= new (thd->mem_root) Item_func_plus(thd, splocal, inc); |
| 5868 | if (unlikely(!expr) || |
| 5869 | unlikely(sphead->set_local_variable(thd, spcont, |
| 5870 | &sp_rcontext_handler_local, |
| 5871 | loop.m_index, expr, this, true))) |
| 5872 | return true; |
| 5873 | return false; |
| 5874 | } |
| 5875 | |
| 5876 | |
| 5877 | bool LEX::sp_for_loop_intrange_finalize(THD *thd, const Lex_for_loop_st &loop) |
| 5878 | { |
| 5879 | sphead->reset_lex(thd); |
| 5880 | |
| 5881 | // Generate FOR LOOP index increment in its own lex |
| 5882 | DBUG_ASSERT(this != thd->lex); |
| 5883 | if (unlikely(thd->lex->sp_for_loop_increment(thd, loop) || |
| 5884 | thd->lex->sphead->restore_lex(thd))) |
| 5885 | return true; |
| 5886 | |
| 5887 | // Generate a jump to the beginning of the loop |
| 5888 | DBUG_ASSERT(this == thd->lex); |
| 5889 | return sp_while_loop_finalize(thd); |
| 5890 | } |
| 5891 | |
| 5892 | |
| 5893 | bool LEX::sp_for_loop_cursor_finalize(THD *thd, const Lex_for_loop_st &loop) |
| 5894 | { |
| 5895 | sp_instr_cfetch *instr= |
| 5896 | new (thd->mem_root) sp_instr_cfetch(sphead->instructions(), |
| 5897 | spcont, loop.m_cursor_offset, false); |
| 5898 | if (unlikely(instr == NULL) || unlikely(sphead->add_instr(instr))) |
| 5899 | return true; |
| 5900 | instr->add_to_varlist(loop.m_index); |
| 5901 | // Generate a jump to the beginning of the loop |
| 5902 | return sp_while_loop_finalize(thd); |
| 5903 | } |
| 5904 | |
| 5905 | /***************************************************************************/ |
| 5906 | |
| 5907 | bool LEX::sp_declare_cursor(THD *thd, const LEX_CSTRING *name, |
| 5908 | sp_lex_cursor *cursor_stmt, |
| 5909 | sp_pcontext *param_ctx, bool add_cpush_instr) |
| 5910 | { |
| 5911 | uint offp; |
| 5912 | sp_instr_cpush *i; |
| 5913 | |
| 5914 | if (spcont->find_cursor(name, &offp, true)) |
| 5915 | { |
| 5916 | my_error(ER_SP_DUP_CURS, MYF(0), name->str); |
| 5917 | return true; |
| 5918 | } |
| 5919 | cursor_stmt->set_cursor_name(name); |
| 5920 | |
| 5921 | if (unlikely(spcont->add_cursor(name, param_ctx, cursor_stmt))) |
| 5922 | return true; |
| 5923 | |
| 5924 | if (add_cpush_instr) |
| 5925 | { |
| 5926 | i= new (thd->mem_root) |
| 5927 | sp_instr_cpush(sphead->instructions(), spcont, cursor_stmt, |
| 5928 | spcont->current_cursor_count() - 1); |
| 5929 | return unlikely(i == NULL) || unlikely(sphead->add_instr(i)); |
| 5930 | } |
| 5931 | return false; |
| 5932 | } |
| 5933 | |
| 5934 | |
| 5935 | /** |
| 5936 | Generate an SP code for an "OPEN cursor_name" statement. |
| 5937 | @param thd |
| 5938 | @param name - Name of the cursor |
| 5939 | @param parameters - Cursor parameters, e.g. OPEN c(1,2,3) |
| 5940 | @returns - false on success, true on error |
| 5941 | */ |
| 5942 | bool LEX::sp_open_cursor(THD *thd, const LEX_CSTRING *name, |
| 5943 | List<sp_assignment_lex> *parameters) |
| 5944 | { |
| 5945 | uint offset; |
| 5946 | const sp_pcursor *pcursor; |
| 5947 | uint param_count= parameters ? parameters->elements : 0; |
| 5948 | return !(pcursor= spcont->find_cursor_with_error(name, &offset, false)) || |
| 5949 | pcursor->check_param_count_with_error(param_count) || |
| 5950 | sphead->add_open_cursor(thd, spcont, offset, |
| 5951 | pcursor->param_context(), parameters); |
| 5952 | } |
| 5953 | |
| 5954 | |
| 5955 | bool LEX::sp_handler_declaration_init(THD *thd, int type) |
| 5956 | { |
| 5957 | sp_handler *h= spcont->add_handler(thd, (sp_handler::enum_type) type); |
| 5958 | |
| 5959 | spcont= spcont->push_context(thd, sp_pcontext::HANDLER_SCOPE); |
| 5960 | |
| 5961 | sp_instr_hpush_jump *i= |
| 5962 | new (thd->mem_root) sp_instr_hpush_jump(sphead->instructions(), spcont, h); |
| 5963 | |
| 5964 | if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) |
| 5965 | return true; |
| 5966 | |
| 5967 | /* For continue handlers, mark end of handler scope. */ |
| 5968 | if (type == sp_handler::CONTINUE && |
| 5969 | unlikely(sphead->push_backpatch(thd, i, spcont->last_label()))) |
| 5970 | return true; |
| 5971 | |
| 5972 | if (unlikely(sphead->push_backpatch(thd, i, |
| 5973 | spcont->push_label(thd, &empty_clex_str, |
| 5974 | 0)))) |
| 5975 | return true; |
| 5976 | |
| 5977 | return false; |
| 5978 | } |
| 5979 | |
| 5980 | |
| 5981 | bool LEX::sp_handler_declaration_finalize(THD *thd, int type) |
| 5982 | { |
| 5983 | sp_label *hlab= spcont->pop_label(); /* After this hdlr */ |
| 5984 | sp_instr_hreturn *i; |
| 5985 | |
| 5986 | if (type == sp_handler::CONTINUE) |
| 5987 | { |
| 5988 | i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont); |
| 5989 | if (unlikely(i == NULL) || |
| 5990 | unlikely(sphead->add_instr(i))) |
| 5991 | return true; |
| 5992 | } |
| 5993 | else |
| 5994 | { /* EXIT or UNDO handler, just jump to the end of the block */ |
| 5995 | i= new (thd->mem_root) sp_instr_hreturn(sphead->instructions(), spcont); |
| 5996 | if (unlikely(i == NULL) || |
| 5997 | unlikely(sphead->add_instr(i)) || |
| 5998 | unlikely(sphead->push_backpatch(thd, i, spcont->last_label()))) /* Block end */ |
| 5999 | return true; |
| 6000 | } |
| 6001 | sphead->backpatch(hlab); |
| 6002 | spcont= spcont->pop_context(); |
| 6003 | return false; |
| 6004 | } |
| 6005 | |
| 6006 | |
| 6007 | void LEX::sp_block_init(THD *thd, const LEX_CSTRING *label) |
| 6008 | { |
| 6009 | spcont->push_label(thd, label, sphead->instructions(), sp_label::BEGIN); |
| 6010 | spcont= spcont->push_context(thd, sp_pcontext::REGULAR_SCOPE); |
| 6011 | } |
| 6012 | |
| 6013 | |
| 6014 | bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock, |
| 6015 | class sp_label **splabel) |
| 6016 | { |
| 6017 | sp_head *sp= sphead; |
| 6018 | sp_pcontext *ctx= spcont; |
| 6019 | sp_instr *i; |
| 6020 | |
| 6021 | sp->backpatch(ctx->last_label()); /* We always have a label */ |
| 6022 | if (spblock.hndlrs) |
| 6023 | { |
| 6024 | i= new (thd->mem_root) |
| 6025 | sp_instr_hpop(sp->instructions(), ctx, spblock.hndlrs); |
| 6026 | if (unlikely(i == NULL) || |
| 6027 | unlikely(sp->add_instr(i))) |
| 6028 | return true; |
| 6029 | } |
| 6030 | if (spblock.curs) |
| 6031 | { |
| 6032 | i= new (thd->mem_root) |
| 6033 | sp_instr_cpop(sp->instructions(), ctx, spblock.curs); |
| 6034 | if (unlikely(i == NULL) || |
| 6035 | unlikely(sp->add_instr(i))) |
| 6036 | return true; |
| 6037 | } |
| 6038 | spcont= ctx->pop_context(); |
| 6039 | *splabel= spcont->pop_label(); |
| 6040 | return false; |
| 6041 | } |
| 6042 | |
| 6043 | |
| 6044 | bool LEX::sp_block_finalize(THD *thd, const Lex_spblock_st spblock, |
| 6045 | const LEX_CSTRING *end_label) |
| 6046 | { |
| 6047 | sp_label *splabel; |
| 6048 | if (unlikely(sp_block_finalize(thd, spblock, &splabel))) |
| 6049 | return true; |
| 6050 | if (unlikely(end_label->str && |
| 6051 | lex_string_cmp(system_charset_info, |
| 6052 | end_label, &splabel->name) != 0)) |
| 6053 | { |
| 6054 | my_error(ER_SP_LABEL_MISMATCH, MYF(0), end_label->str); |
| 6055 | return true; |
| 6056 | } |
| 6057 | return false; |
| 6058 | } |
| 6059 | |
| 6060 | |
| 6061 | sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name) |
| 6062 | { |
| 6063 | sp_name *res; |
| 6064 | LEX_CSTRING db; |
| 6065 | if (unlikely(check_routine_name(name)) || |
| 6066 | unlikely(copy_db_to(&db)) || |
| 6067 | unlikely((!(res= new (thd->mem_root) sp_name(&db, name, false))))) |
| 6068 | return NULL; |
| 6069 | return res; |
| 6070 | } |
| 6071 | |
| 6072 | |
| 6073 | /** |
| 6074 | When a package routine name is stored in memory in Database_qualified_name, |
| 6075 | the dot character is used to delimit package name from the routine name, |
| 6076 | e.g.: |
| 6077 | m_db= 'test'; -- database 'test' |
| 6078 | m_name= 'p1.p1'; -- package 'p1', routine 'p1' |
| 6079 | See database_qualified_name::make_package_routine_name() for details. |
| 6080 | Disallow package routine names with dots, |
| 6081 | to avoid ambiguity when interpreting m_name='p1.p1.p1', between: |
| 6082 | a. package 'p1.p1' + routine 'p1' |
| 6083 | b. package 'p1' + routine 'p1.p1' |
| 6084 | m_name='p1.p1.p1' will always mean (a). |
| 6085 | */ |
| 6086 | sp_name *LEX::make_sp_name_package_routine(THD *thd, const LEX_CSTRING *name) |
| 6087 | { |
| 6088 | sp_name *res= make_sp_name(thd, name); |
| 6089 | if (likely(res) && unlikely(strchr(res->m_name.str, '.'))) |
| 6090 | { |
| 6091 | my_error(ER_SP_WRONG_NAME, MYF(0), res->m_name.str); |
| 6092 | res= NULL; |
| 6093 | } |
| 6094 | return res; |
| 6095 | } |
| 6096 | |
| 6097 | |
| 6098 | sp_name *LEX::make_sp_name(THD *thd, const LEX_CSTRING *name1, |
| 6099 | const LEX_CSTRING *name2) |
| 6100 | { |
| 6101 | sp_name *res; |
| 6102 | LEX_CSTRING norm_name1; |
| 6103 | if (unlikely(!name1->str) || |
| 6104 | unlikely(!thd->make_lex_string(&norm_name1, name1->str, |
| 6105 | name1->length)) || |
| 6106 | unlikely(check_db_name((LEX_STRING *) &norm_name1))) |
| 6107 | { |
| 6108 | my_error(ER_WRONG_DB_NAME, MYF(0), name1->str); |
| 6109 | return NULL; |
| 6110 | } |
| 6111 | if (unlikely(check_routine_name(name2)) || |
| 6112 | unlikely(!(res= new (thd->mem_root) sp_name(&norm_name1, name2, true)))) |
| 6113 | return NULL; |
| 6114 | return res; |
| 6115 | } |
| 6116 | |
| 6117 | |
| 6118 | sp_head *LEX::make_sp_head(THD *thd, const sp_name *name, |
| 6119 | const Sp_handler *sph) |
| 6120 | { |
| 6121 | sp_package *package= get_sp_package(); |
| 6122 | sp_head *sp; |
| 6123 | |
| 6124 | /* Order is important here: new - reset - init */ |
| 6125 | if (likely((sp= new sp_head(package, sph)))) |
| 6126 | { |
| 6127 | sp->reset_thd_mem_root(thd); |
| 6128 | sp->init(this); |
| 6129 | if (name) |
| 6130 | { |
| 6131 | if (package) |
| 6132 | sp->make_package_routine_name(sp->get_main_mem_root(), |
| 6133 | package->m_db, |
| 6134 | package->m_name, |
| 6135 | name->m_name); |
| 6136 | else |
| 6137 | sp->init_sp_name(name); |
| 6138 | sp->make_qname(sp->get_main_mem_root(), &sp->m_qname); |
| 6139 | } |
| 6140 | sphead= sp; |
| 6141 | } |
| 6142 | sp_chistics.init(); |
| 6143 | return sp; |
| 6144 | } |
| 6145 | |
| 6146 | |
| 6147 | sp_head *LEX::make_sp_head_no_recursive(THD *thd, const sp_name *name, |
| 6148 | const Sp_handler *sph) |
| 6149 | { |
| 6150 | sp_package *package= thd->lex->get_sp_package(); |
| 6151 | /* |
| 6152 | Sp_handler::sp_clone_and_link_routine() generates a standalone-alike |
| 6153 | statement to clone package routines for recursion, e.g.: |
| 6154 | CREATE PROCEDURE p1 AS BEGIN NULL; END; |
| 6155 | Translate a standalone routine handler to the corresponding |
| 6156 | package routine handler if we're cloning a package routine, e.g.: |
| 6157 | sp_handler_procedure -> sp_handler_package_procedure |
| 6158 | sp_handler_function -> sp_handler_package_function |
| 6159 | */ |
| 6160 | if (package && package->m_is_cloning_routine) |
| 6161 | sph= sph->package_routine_handler(); |
| 6162 | if (!sphead || |
| 6163 | (package && |
| 6164 | (sph == &sp_handler_package_procedure || |
| 6165 | sph == &sp_handler_package_function))) |
| 6166 | return make_sp_head(thd, name, sph); |
| 6167 | my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str()); |
| 6168 | return NULL; |
| 6169 | } |
| 6170 | |
| 6171 | |
| 6172 | bool LEX::sp_body_finalize_procedure(THD *thd) |
| 6173 | { |
| 6174 | if (sphead->check_unresolved_goto()) |
| 6175 | return true; |
| 6176 | sphead->set_stmt_end(thd); |
| 6177 | sphead->restore_thd_mem_root(thd); |
| 6178 | return false; |
| 6179 | } |
| 6180 | |
| 6181 | |
| 6182 | bool LEX::sp_body_finalize_function(THD *thd) |
| 6183 | { |
| 6184 | if (sphead->is_not_allowed_in_function("function" )) |
| 6185 | return true; |
| 6186 | if (!(sphead->m_flags & sp_head::HAS_RETURN)) |
| 6187 | { |
| 6188 | my_error(ER_SP_NORETURN, MYF(0), ErrConvDQName(sphead).ptr()); |
| 6189 | return true; |
| 6190 | } |
| 6191 | if (sp_body_finalize_procedure(thd)) |
| 6192 | return true; |
| 6193 | (void) is_native_function_with_warn(thd, &sphead->m_name); |
| 6194 | return false; |
| 6195 | } |
| 6196 | |
| 6197 | |
| 6198 | bool LEX::sp_block_with_exceptions_finalize_declarations(THD *thd) |
| 6199 | { |
| 6200 | /* |
| 6201 | [ DECLARE declarations ] |
| 6202 | BEGIN executable_section |
| 6203 | [ EXCEPTION exceptions ] |
| 6204 | END |
| 6205 | |
| 6206 | We are now at the "BEGIN" keyword. |
| 6207 | We have collected all declarations, including DECLARE HANDLER directives. |
| 6208 | But there will be possibly more handlers in the EXCEPTION section. |
| 6209 | |
| 6210 | Generate a forward jump from the end of the DECLARE section to the |
| 6211 | beginning of the EXCEPTION section, over the executable section. |
| 6212 | */ |
| 6213 | return sphead->add_instr_jump(thd, spcont); |
| 6214 | } |
| 6215 | |
| 6216 | |
| 6217 | bool |
| 6218 | LEX::sp_block_with_exceptions_finalize_executable_section(THD *thd, |
| 6219 | uint executable_section_ip) |
| 6220 | { |
| 6221 | /* |
| 6222 | We're now at the end of "executable_section" of the block, |
| 6223 | near the "EXCEPTION" or the "END" keyword. |
| 6224 | Generate a jump to the END of the block over the EXCEPTION section. |
| 6225 | */ |
| 6226 | if (sphead->add_instr_jump_forward_with_backpatch(thd, spcont)) |
| 6227 | return true; |
| 6228 | /* |
| 6229 | Set the destination for the jump that we added in |
| 6230 | sp_block_with_exceptions_finalize_declarations(). |
| 6231 | */ |
| 6232 | sp_instr *instr= sphead->get_instr(executable_section_ip - 1); |
| 6233 | instr->backpatch(sphead->instructions(), spcont); |
| 6234 | return false; |
| 6235 | } |
| 6236 | |
| 6237 | |
| 6238 | bool |
| 6239 | LEX::sp_block_with_exceptions_finalize_exceptions(THD *thd, |
| 6240 | uint executable_section_ip, |
| 6241 | uint exception_count) |
| 6242 | { |
| 6243 | if (!exception_count) |
| 6244 | { |
| 6245 | /* |
| 6246 | The jump from the end of DECLARE section to |
| 6247 | the beginning of the EXCEPTION section that we added in |
| 6248 | sp_block_with_exceptions_finalize_declarations() is useless |
| 6249 | if there were no exceptions. |
| 6250 | Replace it to "no operation". |
| 6251 | */ |
| 6252 | return sphead->replace_instr_to_nop(thd, executable_section_ip - 1); |
| 6253 | } |
| 6254 | /* |
| 6255 | Generate a jump from the end of the EXCEPTION code |
| 6256 | to the executable section. |
| 6257 | */ |
| 6258 | return sphead->add_instr_jump(thd, spcont, executable_section_ip); |
| 6259 | } |
| 6260 | |
| 6261 | |
| 6262 | bool LEX::sp_block_with_exceptions_add_empty(THD *thd) |
| 6263 | { |
| 6264 | uint ip= sphead->instructions(); |
| 6265 | return sp_block_with_exceptions_finalize_executable_section(thd, ip) || |
| 6266 | sp_block_with_exceptions_finalize_exceptions(thd, ip, 0); |
| 6267 | } |
| 6268 | |
| 6269 | |
| 6270 | bool LEX::sp_change_context(THD *thd, const sp_pcontext *ctx, bool exclusive) |
| 6271 | { |
| 6272 | uint n; |
| 6273 | uint ip= sphead->instructions(); |
| 6274 | if ((n= spcont->diff_handlers(ctx, exclusive))) |
| 6275 | { |
| 6276 | sp_instr_hpop *hpop= new (thd->mem_root) sp_instr_hpop(ip++, spcont, n); |
| 6277 | if (unlikely(hpop == NULL) || unlikely(sphead->add_instr(hpop))) |
| 6278 | return true; |
| 6279 | } |
| 6280 | if ((n= spcont->diff_cursors(ctx, exclusive))) |
| 6281 | { |
| 6282 | sp_instr_cpop *cpop= new (thd->mem_root) sp_instr_cpop(ip++, spcont, n); |
| 6283 | if (unlikely(cpop == NULL) || unlikely(sphead->add_instr(cpop))) |
| 6284 | return true; |
| 6285 | } |
| 6286 | return false; |
| 6287 | } |
| 6288 | |
| 6289 | |
| 6290 | bool LEX::sp_leave_statement(THD *thd, const LEX_CSTRING *label_name) |
| 6291 | { |
| 6292 | sp_label *lab= spcont->find_label(label_name); |
| 6293 | if (unlikely(!lab)) |
| 6294 | { |
| 6295 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "LEAVE" , label_name->str); |
| 6296 | return true; |
| 6297 | } |
| 6298 | return sp_exit_block(thd, lab, NULL); |
| 6299 | } |
| 6300 | |
| 6301 | bool LEX::sp_goto_statement(THD *thd, const LEX_CSTRING *label_name) |
| 6302 | { |
| 6303 | sp_label *lab= spcont->find_goto_label(label_name); |
| 6304 | if (!lab || lab->ip == 0) |
| 6305 | { |
| 6306 | sp_label *delayedlabel; |
| 6307 | if (!lab) |
| 6308 | { |
| 6309 | // Label not found --> add forward jump to an unknown label |
| 6310 | spcont->push_goto_label(thd, label_name, 0, sp_label::GOTO); |
| 6311 | delayedlabel= spcont->last_goto_label(); |
| 6312 | } |
| 6313 | else |
| 6314 | { |
| 6315 | delayedlabel= lab; |
| 6316 | } |
| 6317 | return sphead->push_backpatch_goto(thd, spcont, delayedlabel); |
| 6318 | } |
| 6319 | else |
| 6320 | { |
| 6321 | // Label found (backward goto) |
| 6322 | return sp_change_context(thd, lab->ctx, false) || |
| 6323 | sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */ |
| 6324 | } |
| 6325 | return false; |
| 6326 | } |
| 6327 | |
| 6328 | bool LEX::sp_push_goto_label(THD *thd, const LEX_CSTRING *label_name) |
| 6329 | { |
| 6330 | sp_label *lab= spcont->find_goto_label(label_name, false); |
| 6331 | if (lab) |
| 6332 | { |
| 6333 | if (unlikely(lab->ip != 0)) |
| 6334 | { |
| 6335 | my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str); |
| 6336 | return true; |
| 6337 | } |
| 6338 | lab->ip= sphead->instructions(); |
| 6339 | |
| 6340 | sp_label *beginblocklabel= spcont->find_label(&empty_clex_str); |
| 6341 | sphead->backpatch_goto(thd, lab, beginblocklabel); |
| 6342 | } |
| 6343 | else |
| 6344 | { |
| 6345 | spcont->push_goto_label(thd, label_name, sphead->instructions()); |
| 6346 | } |
| 6347 | return false; |
| 6348 | } |
| 6349 | |
| 6350 | bool LEX::sp_exit_block(THD *thd, sp_label *lab) |
| 6351 | { |
| 6352 | /* |
| 6353 | When jumping to a BEGIN-END block end, the target jump |
| 6354 | points to the block hpop/cpop cleanup instructions, |
| 6355 | so we should exclude the block context here. |
| 6356 | When jumping to something else (i.e., SP_LAB_ITER), |
| 6357 | there are no hpop/cpop at the jump destination, |
| 6358 | so we should include the block context here for cleanup. |
| 6359 | */ |
| 6360 | bool exclusive= (lab->type == sp_label::BEGIN); |
| 6361 | return sp_change_context(thd, lab->ctx, exclusive) || |
| 6362 | sphead->add_instr_jump_forward_with_backpatch(thd, spcont, lab); |
| 6363 | } |
| 6364 | |
| 6365 | |
| 6366 | bool LEX::sp_exit_block(THD *thd, sp_label *lab, Item *when) |
| 6367 | { |
| 6368 | if (!when) |
| 6369 | return sp_exit_block(thd, lab); |
| 6370 | |
| 6371 | DBUG_ASSERT(sphead == thd->lex->sphead); |
| 6372 | DBUG_ASSERT(spcont == thd->lex->spcont); |
| 6373 | sp_instr_jump_if_not *i= new (thd->mem_root) |
| 6374 | sp_instr_jump_if_not(sphead->instructions(), |
| 6375 | spcont, |
| 6376 | when, thd->lex); |
| 6377 | if (unlikely(i == NULL) || |
| 6378 | unlikely(sphead->add_instr(i)) || |
| 6379 | unlikely(sp_exit_block(thd, lab))) |
| 6380 | return true; |
| 6381 | i->backpatch(sphead->instructions(), spcont); |
| 6382 | return false; |
| 6383 | } |
| 6384 | |
| 6385 | |
| 6386 | bool LEX::sp_exit_statement(THD *thd, Item *item) |
| 6387 | { |
| 6388 | sp_label *lab= spcont->find_label_current_loop_start(); |
| 6389 | if (unlikely(!lab)) |
| 6390 | { |
| 6391 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT" , "" ); |
| 6392 | return true; |
| 6393 | } |
| 6394 | DBUG_ASSERT(lab->type == sp_label::ITERATION); |
| 6395 | return sp_exit_block(thd, lab, item); |
| 6396 | } |
| 6397 | |
| 6398 | |
| 6399 | bool LEX::sp_exit_statement(THD *thd, const LEX_CSTRING *label_name, Item *item) |
| 6400 | { |
| 6401 | sp_label *lab= spcont->find_label(label_name); |
| 6402 | if (unlikely(!lab || lab->type != sp_label::ITERATION)) |
| 6403 | { |
| 6404 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "EXIT" , label_name->str); |
| 6405 | return true; |
| 6406 | } |
| 6407 | return sp_exit_block(thd, lab, item); |
| 6408 | } |
| 6409 | |
| 6410 | |
| 6411 | bool LEX::sp_iterate_statement(THD *thd, const LEX_CSTRING *label_name) |
| 6412 | { |
| 6413 | sp_label *lab= spcont->find_label(label_name); |
| 6414 | if (unlikely(!lab || lab->type != sp_label::ITERATION)) |
| 6415 | { |
| 6416 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "ITERATE" , label_name->str); |
| 6417 | return true; |
| 6418 | } |
| 6419 | return sp_continue_loop(thd, lab); |
| 6420 | } |
| 6421 | |
| 6422 | |
| 6423 | bool LEX::sp_continue_loop(THD *thd, sp_label *lab) |
| 6424 | { |
| 6425 | if (lab->ctx->for_loop().m_index) |
| 6426 | { |
| 6427 | // We're in a FOR loop, increment the index variable before backward jump |
| 6428 | sphead->reset_lex(thd); |
| 6429 | DBUG_ASSERT(this != thd->lex); |
| 6430 | if (thd->lex->sp_for_loop_increment(thd, lab->ctx->for_loop()) || |
| 6431 | thd->lex->sphead->restore_lex(thd)) |
| 6432 | return true; |
| 6433 | } |
| 6434 | return sp_change_context(thd, lab->ctx, false) || |
| 6435 | sphead->add_instr_jump(thd, spcont, lab->ip); /* Jump back */ |
| 6436 | } |
| 6437 | |
| 6438 | |
| 6439 | bool LEX::sp_continue_loop(THD *thd, sp_label *lab, Item *when) |
| 6440 | { |
| 6441 | if (!when) |
| 6442 | return sp_continue_loop(thd, lab); |
| 6443 | |
| 6444 | DBUG_ASSERT(sphead == thd->lex->sphead); |
| 6445 | DBUG_ASSERT(spcont == thd->lex->spcont); |
| 6446 | sp_instr_jump_if_not *i= new (thd->mem_root) |
| 6447 | sp_instr_jump_if_not(sphead->instructions(), |
| 6448 | spcont, |
| 6449 | when, thd->lex); |
| 6450 | if (unlikely(i == NULL) || |
| 6451 | unlikely(sphead->add_instr(i)) || |
| 6452 | unlikely(sp_continue_loop(thd, lab))) |
| 6453 | return true; |
| 6454 | i->backpatch(sphead->instructions(), spcont); |
| 6455 | return false; |
| 6456 | } |
| 6457 | |
| 6458 | |
| 6459 | bool LEX::sp_continue_statement(THD *thd, Item *when) |
| 6460 | { |
| 6461 | sp_label *lab= spcont->find_label_current_loop_start(); |
| 6462 | if (unlikely(!lab)) |
| 6463 | { |
| 6464 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE" , "" ); |
| 6465 | return true; |
| 6466 | } |
| 6467 | DBUG_ASSERT(lab->type == sp_label::ITERATION); |
| 6468 | return sp_continue_loop(thd, lab, when); |
| 6469 | } |
| 6470 | |
| 6471 | |
| 6472 | bool LEX::sp_continue_statement(THD *thd, const LEX_CSTRING *label_name, |
| 6473 | Item *when) |
| 6474 | { |
| 6475 | sp_label *lab= spcont->find_label(label_name); |
| 6476 | if (!lab || lab->type != sp_label::ITERATION) |
| 6477 | { |
| 6478 | my_error(ER_SP_LILABEL_MISMATCH, MYF(0), "CONTINUE" , label_name->str); |
| 6479 | return true; |
| 6480 | } |
| 6481 | return sp_continue_loop(thd, lab, when); |
| 6482 | } |
| 6483 | |
| 6484 | |
| 6485 | bool LEX::maybe_start_compound_statement(THD *thd) |
| 6486 | { |
| 6487 | if (!sphead) |
| 6488 | { |
| 6489 | if (!make_sp_head(thd, NULL, &sp_handler_procedure)) |
| 6490 | return true; |
| 6491 | sphead->set_suid(SP_IS_NOT_SUID); |
| 6492 | sphead->set_body_start(thd, thd->m_parser_state->m_lip.get_cpp_ptr()); |
| 6493 | } |
| 6494 | return false; |
| 6495 | } |
| 6496 | |
| 6497 | |
| 6498 | bool LEX::sp_push_loop_label(THD *thd, const LEX_CSTRING *label_name) |
| 6499 | { |
| 6500 | sp_label *lab= spcont->find_label(label_name); |
| 6501 | if (lab) |
| 6502 | { |
| 6503 | my_error(ER_SP_LABEL_REDEFINE, MYF(0), label_name->str); |
| 6504 | return true; |
| 6505 | } |
| 6506 | spcont->push_label(thd, label_name, sphead->instructions(), |
| 6507 | sp_label::ITERATION); |
| 6508 | return false; |
| 6509 | } |
| 6510 | |
| 6511 | |
| 6512 | bool LEX::sp_push_loop_empty_label(THD *thd) |
| 6513 | { |
| 6514 | if (maybe_start_compound_statement(thd)) |
| 6515 | return true; |
| 6516 | /* Unlabeled controls get an empty label. */ |
| 6517 | spcont->push_label(thd, &empty_clex_str, sphead->instructions(), |
| 6518 | sp_label::ITERATION); |
| 6519 | return false; |
| 6520 | } |
| 6521 | |
| 6522 | |
| 6523 | bool LEX::sp_pop_loop_label(THD *thd, const LEX_CSTRING *label_name) |
| 6524 | { |
| 6525 | sp_label *lab= spcont->pop_label(); |
| 6526 | sphead->backpatch(lab); |
| 6527 | if (label_name->str && |
| 6528 | lex_string_cmp(system_charset_info, label_name, |
| 6529 | &lab->name) != 0) |
| 6530 | { |
| 6531 | my_error(ER_SP_LABEL_MISMATCH, MYF(0), label_name->str); |
| 6532 | return true; |
| 6533 | } |
| 6534 | return false; |
| 6535 | } |
| 6536 | |
| 6537 | |
| 6538 | void LEX::sp_pop_loop_empty_label(THD *thd) |
| 6539 | { |
| 6540 | sp_label *lab= spcont->pop_label(); |
| 6541 | sphead->backpatch(lab); |
| 6542 | DBUG_ASSERT(lab->name.length == 0); |
| 6543 | } |
| 6544 | |
| 6545 | |
| 6546 | bool LEX::sp_while_loop_expression(THD *thd, Item *expr) |
| 6547 | { |
| 6548 | sp_instr_jump_if_not *i= new (thd->mem_root) |
| 6549 | sp_instr_jump_if_not(sphead->instructions(), spcont, expr, this); |
| 6550 | return (unlikely(i == NULL) || |
| 6551 | /* Jumping forward */ |
| 6552 | unlikely(sphead->push_backpatch(thd, i, spcont->last_label())) || |
| 6553 | unlikely(sphead->new_cont_backpatch(i)) || |
| 6554 | unlikely(sphead->add_instr(i))); |
| 6555 | } |
| 6556 | |
| 6557 | |
| 6558 | bool LEX::sp_while_loop_finalize(THD *thd) |
| 6559 | { |
| 6560 | sp_label *lab= spcont->last_label(); /* Jumping back */ |
| 6561 | sp_instr_jump *i= new (thd->mem_root) |
| 6562 | sp_instr_jump(sphead->instructions(), spcont, lab->ip); |
| 6563 | if (unlikely(i == NULL) || |
| 6564 | unlikely(sphead->add_instr(i))) |
| 6565 | return true; |
| 6566 | sphead->do_cont_backpatch(); |
| 6567 | return false; |
| 6568 | } |
| 6569 | |
| 6570 | |
| 6571 | Item *LEX::create_and_link_Item_trigger_field(THD *thd, |
| 6572 | const LEX_CSTRING *name, |
| 6573 | bool new_row) |
| 6574 | { |
| 6575 | Item_trigger_field *trg_fld; |
| 6576 | |
| 6577 | if (unlikely(trg_chistics.event == TRG_EVENT_INSERT && !new_row)) |
| 6578 | { |
| 6579 | my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "OLD" , "on INSERT" ); |
| 6580 | return NULL; |
| 6581 | } |
| 6582 | |
| 6583 | if (unlikely(trg_chistics.event == TRG_EVENT_DELETE && new_row)) |
| 6584 | { |
| 6585 | my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW" , "on DELETE" ); |
| 6586 | return NULL; |
| 6587 | } |
| 6588 | |
| 6589 | DBUG_ASSERT(!new_row || |
| 6590 | (trg_chistics.event == TRG_EVENT_INSERT || |
| 6591 | trg_chistics.event == TRG_EVENT_UPDATE)); |
| 6592 | |
| 6593 | const bool tmp_read_only= |
| 6594 | !(new_row && trg_chistics.action_time == TRG_ACTION_BEFORE); |
| 6595 | trg_fld= new (thd->mem_root) |
| 6596 | Item_trigger_field(thd, current_context(), |
| 6597 | new_row ? |
| 6598 | Item_trigger_field::NEW_ROW: |
| 6599 | Item_trigger_field::OLD_ROW, |
| 6600 | name, SELECT_ACL, tmp_read_only); |
| 6601 | /* |
| 6602 | Let us add this item to list of all Item_trigger_field objects |
| 6603 | in trigger. |
| 6604 | */ |
| 6605 | if (likely(trg_fld)) |
| 6606 | trg_table_fields.link_in_list(trg_fld, &trg_fld->next_trg_field); |
| 6607 | |
| 6608 | return trg_fld; |
| 6609 | } |
| 6610 | |
| 6611 | |
| 6612 | Item *LEX::make_item_colon_ident_ident(THD *thd, |
| 6613 | const Lex_ident_cli_st *ca, |
| 6614 | const Lex_ident_cli_st *cb) |
| 6615 | { |
| 6616 | Lex_ident_sys a(thd, ca), b(thd, cb); |
| 6617 | if (a.is_null() || b.is_null()) |
| 6618 | return NULL; // OEM |
| 6619 | if (!is_trigger_new_or_old_reference(&a)) |
| 6620 | { |
| 6621 | thd->parse_error(); |
| 6622 | return NULL; |
| 6623 | } |
| 6624 | bool new_row= (a.str[0] == 'N' || a.str[0] == 'n'); |
| 6625 | return create_and_link_Item_trigger_field(thd, &b, new_row); |
| 6626 | } |
| 6627 | |
| 6628 | |
| 6629 | Item *LEX::make_item_sysvar(THD *thd, |
| 6630 | enum_var_type type, |
| 6631 | const LEX_CSTRING *name, |
| 6632 | const LEX_CSTRING *component) |
| 6633 | |
| 6634 | { |
| 6635 | Item *item; |
| 6636 | DBUG_ASSERT(name->str); |
| 6637 | /* |
| 6638 | "SELECT @@global.global.variable" is not allowed |
| 6639 | Note, "global" can come through TEXT_STRING_sys. |
| 6640 | */ |
| 6641 | if (component->str && unlikely(check_reserved_words(name))) |
| 6642 | { |
| 6643 | thd->parse_error(); |
| 6644 | return NULL; |
| 6645 | } |
| 6646 | if (unlikely(!(item= get_system_var(thd, type, name, component)))) |
| 6647 | return NULL; |
| 6648 | if (!((Item_func_get_system_var*) item)->is_written_to_binlog()) |
| 6649 | set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_VARIABLE); |
| 6650 | return item; |
| 6651 | } |
| 6652 | |
| 6653 | |
| 6654 | Item_param *LEX::add_placeholder(THD *thd, const LEX_CSTRING *name, |
| 6655 | const char *start, const char *end) |
| 6656 | { |
| 6657 | if (unlikely(!thd->m_parser_state->m_lip.stmt_prepare_mode)) |
| 6658 | { |
| 6659 | thd->parse_error(ER_SYNTAX_ERROR, start); |
| 6660 | return NULL; |
| 6661 | } |
| 6662 | if (unlikely(!parsing_options.allows_variable)) |
| 6663 | { |
| 6664 | my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); |
| 6665 | return NULL; |
| 6666 | } |
| 6667 | |
| 6668 | Query_fragment pos(thd, sphead, start, end); |
| 6669 | Item_param *item= new (thd->mem_root) Item_param(thd, name, |
| 6670 | pos.pos(), pos.length()); |
| 6671 | if (unlikely(!item) || unlikely(param_list.push_back(item, thd->mem_root))) |
| 6672 | { |
| 6673 | my_error(ER_OUT_OF_RESOURCES, MYF(0)); |
| 6674 | return NULL; |
| 6675 | } |
| 6676 | return item; |
| 6677 | } |
| 6678 | |
| 6679 | |
| 6680 | bool LEX::add_signal_statement(THD *thd, const sp_condition_value *v) |
| 6681 | { |
| 6682 | Yacc_state *state= &thd->m_parser_state->m_yacc; |
| 6683 | sql_command= SQLCOM_SIGNAL; |
| 6684 | m_sql_cmd= new (thd->mem_root) Sql_cmd_signal(v, state->m_set_signal_info); |
| 6685 | return m_sql_cmd == NULL; |
| 6686 | } |
| 6687 | |
| 6688 | |
| 6689 | bool LEX::add_resignal_statement(THD *thd, const sp_condition_value *v) |
| 6690 | { |
| 6691 | Yacc_state *state= &thd->m_parser_state->m_yacc; |
| 6692 | sql_command= SQLCOM_RESIGNAL; |
| 6693 | m_sql_cmd= new (thd->mem_root) Sql_cmd_resignal(v, state->m_set_signal_info); |
| 6694 | return m_sql_cmd == NULL; |
| 6695 | } |
| 6696 | |
| 6697 | |
| 6698 | Item *LEX::create_item_ident_nospvar(THD *thd, |
| 6699 | const Lex_ident_sys_st *a, |
| 6700 | const Lex_ident_sys_st *b) |
| 6701 | { |
| 6702 | DBUG_ASSERT(this == thd->lex); |
| 6703 | /* |
| 6704 | FIXME This will work ok in simple_ident_nospvar case because |
| 6705 | we can't meet simple_ident_nospvar in trigger now. But it |
| 6706 | should be changed in future. |
| 6707 | */ |
| 6708 | if (is_trigger_new_or_old_reference(a)) |
| 6709 | { |
| 6710 | bool new_row= (a->str[0]=='N' || a->str[0]=='n'); |
| 6711 | |
| 6712 | return create_and_link_Item_trigger_field(thd, b, new_row); |
| 6713 | } |
| 6714 | |
| 6715 | if (unlikely(current_select->no_table_names_allowed)) |
| 6716 | { |
| 6717 | my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), a->str, thd->where); |
| 6718 | return NULL; |
| 6719 | } |
| 6720 | if ((current_select->parsing_place != IN_HAVING) || |
| 6721 | (current_select->get_in_sum_expr() > 0)) |
| 6722 | return new (thd->mem_root) Item_field(thd, current_context(), |
| 6723 | NullS, a->str, b); |
| 6724 | return new (thd->mem_root) Item_ref(thd, current_context(), |
| 6725 | NullS, a->str, b); |
| 6726 | } |
| 6727 | |
| 6728 | |
| 6729 | Item_splocal *LEX::create_item_spvar_row_field(THD *thd, |
| 6730 | const Sp_rcontext_handler *rh, |
| 6731 | const Lex_ident_sys *a, |
| 6732 | const Lex_ident_sys *b, |
| 6733 | sp_variable *spv, |
| 6734 | const char *start, |
| 6735 | const char *end) |
| 6736 | { |
| 6737 | if (unlikely(!parsing_options.allows_variable)) |
| 6738 | { |
| 6739 | my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); |
| 6740 | return NULL; |
| 6741 | } |
| 6742 | |
| 6743 | Query_fragment pos(thd, sphead, start, end); |
| 6744 | Item_splocal *item; |
| 6745 | if (spv->field_def.is_table_rowtype_ref() || |
| 6746 | spv->field_def.is_cursor_rowtype_ref()) |
| 6747 | { |
| 6748 | if (unlikely(!(item= new (thd->mem_root) |
| 6749 | Item_splocal_row_field_by_name(thd, rh, a, b, spv->offset, |
| 6750 | &type_handler_null, |
| 6751 | pos.pos(), pos.length())))) |
| 6752 | return NULL; |
| 6753 | } |
| 6754 | else |
| 6755 | { |
| 6756 | uint row_field_offset; |
| 6757 | const Spvar_definition *def; |
| 6758 | if (unlikely(!(def= spv->find_row_field(a, b, &row_field_offset)))) |
| 6759 | return NULL; |
| 6760 | |
| 6761 | if (unlikely(!(item= new (thd->mem_root) |
| 6762 | Item_splocal_row_field(thd, rh, a, b, |
| 6763 | spv->offset, row_field_offset, |
| 6764 | def->type_handler(), |
| 6765 | pos.pos(), pos.length())))) |
| 6766 | return NULL; |
| 6767 | } |
| 6768 | #ifdef DBUG_ASSERT_EXISTS |
| 6769 | item->m_sp= sphead; |
| 6770 | #endif |
| 6771 | safe_to_cache_query=0; |
| 6772 | return item; |
| 6773 | } |
| 6774 | |
| 6775 | |
| 6776 | my_var *LEX::create_outvar(THD *thd, const LEX_CSTRING *name) |
| 6777 | { |
| 6778 | const Sp_rcontext_handler *rh; |
| 6779 | sp_variable *spv; |
| 6780 | if (likely((spv= find_variable(name, &rh)))) |
| 6781 | return result ? new (thd->mem_root) |
| 6782 | my_var_sp(rh, name, spv->offset, |
| 6783 | spv->type_handler(), sphead) : |
| 6784 | NULL /* EXPLAIN */; |
| 6785 | my_error(ER_SP_UNDECLARED_VAR, MYF(0), name->str); |
| 6786 | return NULL; |
| 6787 | } |
| 6788 | |
| 6789 | |
| 6790 | my_var *LEX::create_outvar(THD *thd, |
| 6791 | const LEX_CSTRING *a, |
| 6792 | const LEX_CSTRING *b) |
| 6793 | { |
| 6794 | const Sp_rcontext_handler *rh; |
| 6795 | sp_variable *t; |
| 6796 | if (unlikely(!(t= find_variable(a, &rh)))) |
| 6797 | { |
| 6798 | my_error(ER_SP_UNDECLARED_VAR, MYF(0), a->str); |
| 6799 | return NULL; |
| 6800 | } |
| 6801 | uint row_field_offset; |
| 6802 | if (!t->find_row_field(a, b, &row_field_offset)) |
| 6803 | return NULL; |
| 6804 | return result ? |
| 6805 | new (thd->mem_root) my_var_sp_row_field(rh, a, b, t->offset, |
| 6806 | row_field_offset, sphead) : |
| 6807 | NULL /* EXPLAIN */; |
| 6808 | } |
| 6809 | |
| 6810 | |
| 6811 | Item *LEX::create_item_func_nextval(THD *thd, Table_ident *table_ident) |
| 6812 | { |
| 6813 | TABLE_LIST *table; |
| 6814 | if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, |
| 6815 | TL_OPTION_SEQUENCE, |
| 6816 | TL_WRITE_ALLOW_WRITE, |
| 6817 | MDL_SHARED_WRITE)))) |
| 6818 | return NULL; |
| 6819 | thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION); |
| 6820 | return new (thd->mem_root) Item_func_nextval(thd, table); |
| 6821 | } |
| 6822 | |
| 6823 | |
| 6824 | Item *LEX::create_item_func_lastval(THD *thd, Table_ident *table_ident) |
| 6825 | { |
| 6826 | TABLE_LIST *table; |
| 6827 | if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, |
| 6828 | TL_OPTION_SEQUENCE, |
| 6829 | TL_READ, |
| 6830 | MDL_SHARED_READ)))) |
| 6831 | return NULL; |
| 6832 | thd->lex->set_stmt_unsafe(LEX::BINLOG_STMT_UNSAFE_SYSTEM_FUNCTION); |
| 6833 | return new (thd->mem_root) Item_func_lastval(thd, table); |
| 6834 | } |
| 6835 | |
| 6836 | |
| 6837 | Item *LEX::create_item_func_nextval(THD *thd, |
| 6838 | const LEX_CSTRING *db, |
| 6839 | const LEX_CSTRING *name) |
| 6840 | { |
| 6841 | Table_ident *table_ident; |
| 6842 | if (unlikely(!(table_ident= |
| 6843 | new (thd->mem_root) Table_ident(thd, db, name, false)))) |
| 6844 | return NULL; |
| 6845 | return create_item_func_nextval(thd, table_ident); |
| 6846 | } |
| 6847 | |
| 6848 | |
| 6849 | Item *LEX::create_item_func_lastval(THD *thd, |
| 6850 | const LEX_CSTRING *db, |
| 6851 | const LEX_CSTRING *name) |
| 6852 | { |
| 6853 | Table_ident *table_ident; |
| 6854 | if (unlikely(!(table_ident= |
| 6855 | new (thd->mem_root) Table_ident(thd, db, name, false)))) |
| 6856 | return NULL; |
| 6857 | return create_item_func_lastval(thd, table_ident); |
| 6858 | } |
| 6859 | |
| 6860 | |
| 6861 | Item *LEX::create_item_func_setval(THD *thd, Table_ident *table_ident, |
| 6862 | longlong nextval, ulonglong round, |
| 6863 | bool is_used) |
| 6864 | { |
| 6865 | TABLE_LIST *table; |
| 6866 | if (unlikely(!(table= current_select->add_table_to_list(thd, table_ident, 0, |
| 6867 | TL_OPTION_SEQUENCE, |
| 6868 | TL_WRITE_ALLOW_WRITE, |
| 6869 | MDL_SHARED_WRITE)))) |
| 6870 | return NULL; |
| 6871 | return new (thd->mem_root) Item_func_setval(thd, table, nextval, round, |
| 6872 | is_used); |
| 6873 | } |
| 6874 | |
| 6875 | |
| 6876 | Item *LEX::create_item_ident(THD *thd, |
| 6877 | const Lex_ident_cli_st *ca, |
| 6878 | const Lex_ident_cli_st *cb) |
| 6879 | { |
| 6880 | const char *start= ca->pos(); |
| 6881 | const char *end= cb->end(); |
| 6882 | const Sp_rcontext_handler *rh; |
| 6883 | sp_variable *spv; |
| 6884 | DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start); |
| 6885 | DBUG_ASSERT(start <= end); |
| 6886 | DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query()); |
| 6887 | Lex_ident_sys a(thd, ca), b(thd, cb); |
| 6888 | if (a.is_null() || b.is_null()) |
| 6889 | return NULL; // OEM |
| 6890 | if ((spv= find_variable(&a, &rh)) && |
| 6891 | (spv->field_def.is_row() || |
| 6892 | spv->field_def.is_table_rowtype_ref() || |
| 6893 | spv->field_def.is_cursor_rowtype_ref())) |
| 6894 | return create_item_spvar_row_field(thd, rh, &a, &b, spv, start, end); |
| 6895 | |
| 6896 | if ((thd->variables.sql_mode & MODE_ORACLE) && b.length == 7) |
| 6897 | { |
| 6898 | if (!my_strnncoll(system_charset_info, |
| 6899 | (const uchar *) b.str, 7, |
| 6900 | (const uchar *) "NEXTVAL" , 7)) |
| 6901 | return create_item_func_nextval(thd, &null_clex_str, &a); |
| 6902 | else if (!my_strnncoll(system_charset_info, |
| 6903 | (const uchar *) b.str, 7, |
| 6904 | (const uchar *) "CURRVAL" , 7)) |
| 6905 | return create_item_func_lastval(thd, &null_clex_str, &a); |
| 6906 | } |
| 6907 | |
| 6908 | return create_item_ident_nospvar(thd, &a, &b); |
| 6909 | } |
| 6910 | |
| 6911 | |
| 6912 | Item *LEX::create_item_ident(THD *thd, |
| 6913 | const Lex_ident_sys_st *a, |
| 6914 | const Lex_ident_sys_st *b, |
| 6915 | const Lex_ident_sys_st *c) |
| 6916 | { |
| 6917 | const char *schema= (thd->client_capabilities & CLIENT_NO_SCHEMA ? |
| 6918 | NullS : a->str); |
| 6919 | |
| 6920 | if ((thd->variables.sql_mode & MODE_ORACLE) && c->length == 7) |
| 6921 | { |
| 6922 | if (!my_strnncoll(system_charset_info, |
| 6923 | (const uchar *) c->str, 7, |
| 6924 | (const uchar *) "NEXTVAL" , 7)) |
| 6925 | return create_item_func_nextval(thd, a, b); |
| 6926 | else if (!my_strnncoll(system_charset_info, |
| 6927 | (const uchar *) c->str, 7, |
| 6928 | (const uchar *) "CURRVAL" , 7)) |
| 6929 | return create_item_func_lastval(thd, a, b); |
| 6930 | } |
| 6931 | |
| 6932 | if (current_select->no_table_names_allowed) |
| 6933 | { |
| 6934 | my_error(ER_TABLENAME_NOT_ALLOWED_HERE, MYF(0), b->str, thd->where); |
| 6935 | return NULL; |
| 6936 | } |
| 6937 | if (current_select->parsing_place != IN_HAVING || |
| 6938 | current_select->get_in_sum_expr() > 0) |
| 6939 | return new (thd->mem_root) Item_field(thd, current_context(), |
| 6940 | schema, b->str, c); |
| 6941 | return new (thd->mem_root) Item_ref(thd, current_context(), |
| 6942 | schema, b->str, c); |
| 6943 | } |
| 6944 | |
| 6945 | |
| 6946 | Item *LEX::create_item_limit(THD *thd, const Lex_ident_cli_st *ca) |
| 6947 | { |
| 6948 | DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos()); |
| 6949 | DBUG_ASSERT(ca->pos() <= ca->end()); |
| 6950 | DBUG_ASSERT(ca->end() <= thd->m_parser_state->m_lip.get_end_of_query()); |
| 6951 | |
| 6952 | const Sp_rcontext_handler *rh; |
| 6953 | sp_variable *spv; |
| 6954 | Lex_ident_sys sa(thd, ca); |
| 6955 | if (sa.is_null()) |
| 6956 | return NULL; // EOM |
| 6957 | if (!(spv= find_variable(&sa, &rh))) |
| 6958 | { |
| 6959 | my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str); |
| 6960 | return NULL; |
| 6961 | } |
| 6962 | |
| 6963 | Query_fragment pos(thd, sphead, ca->pos(), ca->end()); |
| 6964 | Item_splocal *item; |
| 6965 | if (unlikely(!(item= new (thd->mem_root) |
| 6966 | Item_splocal(thd, rh, &sa, |
| 6967 | spv->offset, spv->type_handler(), |
| 6968 | pos.pos(), pos.length())))) |
| 6969 | return NULL; |
| 6970 | #ifdef DBUG_ASSERT_EXISTS |
| 6971 | item->m_sp= sphead; |
| 6972 | #endif |
| 6973 | safe_to_cache_query= 0; |
| 6974 | |
| 6975 | if (unlikely(item->type() != Item::INT_ITEM)) |
| 6976 | { |
| 6977 | my_error(ER_WRONG_SPVAR_TYPE_IN_LIMIT, MYF(0)); |
| 6978 | return NULL; |
| 6979 | } |
| 6980 | item->limit_clause_param= true; |
| 6981 | return item; |
| 6982 | } |
| 6983 | |
| 6984 | |
| 6985 | Item *LEX::create_item_limit(THD *thd, |
| 6986 | const Lex_ident_cli_st *ca, |
| 6987 | const Lex_ident_cli_st *cb) |
| 6988 | { |
| 6989 | DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= ca->pos()); |
| 6990 | DBUG_ASSERT(ca->pos() <= cb->end()); |
| 6991 | DBUG_ASSERT(cb->end() <= thd->m_parser_state->m_lip.get_end_of_query()); |
| 6992 | |
| 6993 | const Sp_rcontext_handler *rh; |
| 6994 | sp_variable *spv; |
| 6995 | Lex_ident_sys sa(thd, ca), sb(thd, cb); |
| 6996 | if (unlikely(sa.is_null() || sb.is_null())) |
| 6997 | return NULL; // EOM |
| 6998 | if (!(spv= find_variable(&sa, &rh))) |
| 6999 | { |
| 7000 | my_error(ER_SP_UNDECLARED_VAR, MYF(0), sa.str); |
| 7001 | return NULL; |
| 7002 | } |
| 7003 | // Qualified %TYPE variables are not possible |
| 7004 | DBUG_ASSERT(!spv->field_def.column_type_ref()); |
| 7005 | Item_splocal *item; |
| 7006 | if (unlikely(!(item= create_item_spvar_row_field(thd, rh, &sa, &sb, spv, |
| 7007 | ca->pos(), cb->end())))) |
| 7008 | return NULL; |
| 7009 | if (unlikely(item->type() != Item::INT_ITEM)) |
| 7010 | { |
| 7011 | my_error(ER_WRONG_SPVAR_TYPE_IN_LIMIT, MYF(0)); |
| 7012 | return NULL; |
| 7013 | } |
| 7014 | item->limit_clause_param= true; |
| 7015 | return item; |
| 7016 | } |
| 7017 | |
| 7018 | |
| 7019 | bool LEX::set_user_variable(THD *thd, const LEX_CSTRING *name, Item *val) |
| 7020 | { |
| 7021 | Item_func_set_user_var *item; |
| 7022 | set_var_user *var; |
| 7023 | if (unlikely(!(item= new (thd->mem_root) Item_func_set_user_var(thd, name, |
| 7024 | val))) || |
| 7025 | unlikely(!(var= new (thd->mem_root) set_var_user(item)))) |
| 7026 | return true; |
| 7027 | if (unlikely(var_list.push_back(var, thd->mem_root))) |
| 7028 | return true; |
| 7029 | return false; |
| 7030 | } |
| 7031 | |
| 7032 | |
| 7033 | Item *LEX::create_item_ident_nosp(THD *thd, Lex_ident_sys_st *name) |
| 7034 | { |
| 7035 | if (current_select->parsing_place != IN_HAVING || |
| 7036 | current_select->get_in_sum_expr() > 0) |
| 7037 | return new (thd->mem_root) Item_field(thd, current_context(), |
| 7038 | NullS, NullS, name); |
| 7039 | |
| 7040 | return new (thd->mem_root) Item_ref(thd, current_context(), |
| 7041 | NullS, NullS, name); |
| 7042 | } |
| 7043 | |
| 7044 | |
| 7045 | Item *LEX::create_item_ident_sp(THD *thd, Lex_ident_sys_st *name, |
| 7046 | const char *start, |
| 7047 | const char *end) |
| 7048 | { |
| 7049 | DBUG_ASSERT(thd->m_parser_state->m_lip.get_buf() <= start); |
| 7050 | DBUG_ASSERT(start <= end); |
| 7051 | DBUG_ASSERT(end <= thd->m_parser_state->m_lip.get_end_of_query()); |
| 7052 | |
| 7053 | const Sp_rcontext_handler *rh; |
| 7054 | sp_variable *spv; |
| 7055 | DBUG_ASSERT(spcont); |
| 7056 | DBUG_ASSERT(sphead); |
| 7057 | if ((spv= find_variable(name, &rh))) |
| 7058 | { |
| 7059 | /* We're compiling a stored procedure and found a variable */ |
| 7060 | if (!parsing_options.allows_variable) |
| 7061 | { |
| 7062 | my_error(ER_VIEW_SELECT_VARIABLE, MYF(0)); |
| 7063 | return NULL; |
| 7064 | } |
| 7065 | |
| 7066 | Query_fragment pos(thd, sphead, start, end); |
| 7067 | Item_splocal *splocal= spv->field_def.is_column_type_ref() ? |
| 7068 | new (thd->mem_root) Item_splocal_with_delayed_data_type(thd, rh, name, |
| 7069 | spv->offset, |
| 7070 | pos.pos(), |
| 7071 | pos.length()) : |
| 7072 | new (thd->mem_root) Item_splocal(thd, rh, name, |
| 7073 | spv->offset, spv->type_handler(), |
| 7074 | pos.pos(), pos.length()); |
| 7075 | if (unlikely(splocal == NULL)) |
| 7076 | return NULL; |
| 7077 | #ifdef DBUG_ASSERT_EXISTS |
| 7078 | splocal->m_sp= sphead; |
| 7079 | #endif |
| 7080 | safe_to_cache_query= 0; |
| 7081 | return splocal; |
| 7082 | } |
| 7083 | |
| 7084 | if (thd->variables.sql_mode & MODE_ORACLE) |
| 7085 | { |
| 7086 | if (lex_string_eq(name, STRING_WITH_LEN("SQLCODE" ))) |
| 7087 | return new (thd->mem_root) Item_func_sqlcode(thd); |
| 7088 | if (lex_string_eq(name, STRING_WITH_LEN("SQLERRM" ))) |
| 7089 | return new (thd->mem_root) Item_func_sqlerrm(thd); |
| 7090 | } |
| 7091 | return create_item_ident_nosp(thd, name); |
| 7092 | } |
| 7093 | |
| 7094 | |
| 7095 | |
| 7096 | bool LEX::set_variable(const LEX_CSTRING *name, Item *item) |
| 7097 | { |
| 7098 | sp_pcontext *ctx; |
| 7099 | const Sp_rcontext_handler *rh; |
| 7100 | sp_variable *spv= find_variable(name, &ctx, &rh); |
| 7101 | return spv ? sphead->set_local_variable(thd, ctx, rh, spv, item, this, true) : |
| 7102 | set_system_variable(option_type, name, item); |
| 7103 | } |
| 7104 | |
| 7105 | |
| 7106 | /** |
| 7107 | Generate instructions for: |
| 7108 | SET x.y= expr; |
| 7109 | */ |
| 7110 | bool LEX::set_variable(const LEX_CSTRING *name1, |
| 7111 | const LEX_CSTRING *name2, |
| 7112 | Item *item) |
| 7113 | { |
| 7114 | const Sp_rcontext_handler *rh; |
| 7115 | sp_pcontext *ctx; |
| 7116 | sp_variable *spv; |
| 7117 | if (spcont && (spv= find_variable(name1, &ctx, &rh))) |
| 7118 | { |
| 7119 | if (spv->field_def.is_table_rowtype_ref() || |
| 7120 | spv->field_def.is_cursor_rowtype_ref()) |
| 7121 | return sphead->set_local_variable_row_field_by_name(thd, ctx, |
| 7122 | rh, |
| 7123 | spv, name2, |
| 7124 | item, this); |
| 7125 | // A field of a ROW variable |
| 7126 | uint row_field_offset; |
| 7127 | return !spv->find_row_field(name1, name2, &row_field_offset) || |
| 7128 | sphead->set_local_variable_row_field(thd, ctx, rh, |
| 7129 | spv, row_field_offset, |
| 7130 | item, this); |
| 7131 | } |
| 7132 | |
| 7133 | if (is_trigger_new_or_old_reference(name1)) |
| 7134 | return set_trigger_field(name1, name2, item); |
| 7135 | |
| 7136 | return set_system_variable(thd, option_type, name1, name2, item); |
| 7137 | } |
| 7138 | |
| 7139 | |
| 7140 | bool LEX::set_default_system_variable(enum_var_type var_type, |
| 7141 | const LEX_CSTRING *name, |
| 7142 | Item *val) |
| 7143 | { |
| 7144 | static LEX_CSTRING default_base_name= {STRING_WITH_LEN("default" )}; |
| 7145 | sys_var *var= find_sys_var(thd, name->str, name->length); |
| 7146 | if (!var) |
| 7147 | return true; |
| 7148 | if (unlikely(!var->is_struct())) |
| 7149 | { |
| 7150 | my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name->str); |
| 7151 | return true; |
| 7152 | } |
| 7153 | return set_system_variable(var_type, var, &default_base_name, val); |
| 7154 | } |
| 7155 | |
| 7156 | |
| 7157 | bool LEX::set_system_variable(enum_var_type var_type, |
| 7158 | const LEX_CSTRING *name, |
| 7159 | Item *val) |
| 7160 | { |
| 7161 | sys_var *var= find_sys_var(thd, name->str, name->length); |
| 7162 | DBUG_ASSERT(thd->is_error() || var != NULL); |
| 7163 | return likely(var) ? set_system_variable(var_type, var, &null_clex_str, val) : true; |
| 7164 | } |
| 7165 | |
| 7166 | |
| 7167 | bool LEX::set_system_variable(THD *thd, enum_var_type var_type, |
| 7168 | const LEX_CSTRING *name1, |
| 7169 | const LEX_CSTRING *name2, |
| 7170 | Item *val) |
| 7171 | { |
| 7172 | sys_var *tmp; |
| 7173 | if (unlikely(check_reserved_words(name1)) || |
| 7174 | unlikely(!(tmp= find_sys_var_ex(thd, name2->str, name2->length, true, |
| 7175 | false)))) |
| 7176 | { |
| 7177 | my_error(ER_UNKNOWN_STRUCTURED_VARIABLE, MYF(0), |
| 7178 | (int) name1->length, name1->str); |
| 7179 | return true; |
| 7180 | } |
| 7181 | if (unlikely(!tmp->is_struct())) |
| 7182 | { |
| 7183 | my_error(ER_VARIABLE_IS_NOT_STRUCT, MYF(0), name2->str); |
| 7184 | return true; |
| 7185 | } |
| 7186 | return set_system_variable(var_type, tmp, name1, val); |
| 7187 | } |
| 7188 | |
| 7189 | |
| 7190 | bool LEX::set_trigger_field(const LEX_CSTRING *name1, const LEX_CSTRING *name2, |
| 7191 | Item *val) |
| 7192 | { |
| 7193 | DBUG_ASSERT(is_trigger_new_or_old_reference(name1)); |
| 7194 | if (unlikely(name1->str[0]=='O' || name1->str[0]=='o')) |
| 7195 | { |
| 7196 | my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "OLD" , "" ); |
| 7197 | return true; |
| 7198 | } |
| 7199 | if (unlikely(trg_chistics.event == TRG_EVENT_DELETE)) |
| 7200 | { |
| 7201 | my_error(ER_TRG_NO_SUCH_ROW_IN_TRG, MYF(0), "NEW" , "on DELETE" ); |
| 7202 | return true; |
| 7203 | } |
| 7204 | if (unlikely(trg_chistics.action_time == TRG_ACTION_AFTER)) |
| 7205 | { |
| 7206 | my_error(ER_TRG_CANT_CHANGE_ROW, MYF(0), "NEW" , "after " ); |
| 7207 | return true; |
| 7208 | } |
| 7209 | return set_trigger_new_row(name2, val); |
| 7210 | } |
| 7211 | |
| 7212 | |
| 7213 | #ifdef MYSQL_SERVER |
| 7214 | uint binlog_unsafe_map[256]; |
| 7215 | |
| 7216 | #define UNSAFE(a, b, c) \ |
| 7217 | { \ |
| 7218 | DBUG_PRINT("unsafe_mixed_statement", ("SETTING BASE VALUES: %s, %s, %02X\n", \ |
| 7219 | LEX::stmt_accessed_table_string(a), \ |
| 7220 | LEX::stmt_accessed_table_string(b), \ |
| 7221 | c)); \ |
| 7222 | unsafe_mixed_statement(a, b, c); \ |
| 7223 | } |
| 7224 | |
| 7225 | /* |
| 7226 | Sets the combination given by "a" and "b" and automatically combinations |
| 7227 | given by other types of access, i.e. 2^(8 - 2), as unsafe. |
| 7228 | |
| 7229 | It may happen a colision when automatically defining a combination as unsafe. |
| 7230 | For that reason, a combination has its unsafe condition redefined only when |
| 7231 | the new_condition is greater then the old. For instance, |
| 7232 | |
| 7233 | . (BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY) is never overwritten by |
| 7234 | . (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF). |
| 7235 | */ |
| 7236 | void unsafe_mixed_statement(LEX::enum_stmt_accessed_table a, |
| 7237 | LEX::enum_stmt_accessed_table b, uint condition) |
| 7238 | { |
| 7239 | int type= 0; |
| 7240 | int index= (1U << a) | (1U << b); |
| 7241 | |
| 7242 | |
| 7243 | for (type= 0; type < 256; type++) |
| 7244 | { |
| 7245 | if ((type & index) == index) |
| 7246 | { |
| 7247 | binlog_unsafe_map[type] |= condition; |
| 7248 | } |
| 7249 | } |
| 7250 | } |
| 7251 | /* |
| 7252 | The BINLOG_* AND TRX_CACHE_* values can be combined by using '&' or '|', |
| 7253 | which means that both conditions need to be satisfied or any of them is |
| 7254 | enough. For example, |
| 7255 | |
| 7256 | . BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY means that the statment is |
| 7257 | unsafe when the option is on and trx-cache is not empty; |
| 7258 | |
| 7259 | . BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF means the statement is unsafe |
| 7260 | in all cases. |
| 7261 | |
| 7262 | . TRX_CACHE_EMPTY | TRX_CACHE_NOT_EMPTY means the statement is unsafe |
| 7263 | in all cases. Similar as above. |
| 7264 | */ |
| 7265 | void binlog_unsafe_map_init() |
| 7266 | { |
| 7267 | memset((void*) binlog_unsafe_map, 0, sizeof(uint) * 256); |
| 7268 | |
| 7269 | /* |
| 7270 | Classify a statement as unsafe when there is a mixed statement and an |
| 7271 | on-going transaction at any point of the execution if: |
| 7272 | |
| 7273 | 1. The mixed statement is about to update a transactional table and |
| 7274 | a non-transactional table. |
| 7275 | |
| 7276 | 2. The mixed statement is about to update a transactional table and |
| 7277 | read from a non-transactional table. |
| 7278 | |
| 7279 | 3. The mixed statement is about to update a non-transactional table |
| 7280 | and temporary transactional table. |
| 7281 | |
| 7282 | 4. The mixed statement is about to update a temporary transactional |
| 7283 | table and read from a non-transactional table. |
| 7284 | |
| 7285 | 5. The mixed statement is about to update a transactional table and |
| 7286 | a temporary non-transactional table. |
| 7287 | |
| 7288 | 6. The mixed statement is about to update a transactional table and |
| 7289 | read from a temporary non-transactional table. |
| 7290 | |
| 7291 | 7. The mixed statement is about to update a temporary transactional |
| 7292 | table and temporary non-transactional table. |
| 7293 | |
| 7294 | 8. The mixed statement is about to update a temporary transactional |
| 7295 | table and read from a temporary non-transactional table. |
| 7296 | |
| 7297 | After updating a transactional table if: |
| 7298 | |
| 7299 | 9. The mixed statement is about to update a non-transactional table |
| 7300 | and read from a transactional table. |
| 7301 | |
| 7302 | 10. The mixed statement is about to update a non-transactional table |
| 7303 | and read from a temporary transactional table. |
| 7304 | |
| 7305 | 11. The mixed statement is about to update a temporary non-transactional |
| 7306 | table and read from a transactional table. |
| 7307 | |
| 7308 | 12. The mixed statement is about to update a temporary non-transactional |
| 7309 | table and read from a temporary transactional table. |
| 7310 | |
| 7311 | 13. The mixed statement is about to update a temporary non-transactional |
| 7312 | table and read from a non-transactional table. |
| 7313 | |
| 7314 | The reason for this is that locks acquired may not protected a concurrent |
| 7315 | transaction of interfering in the current execution and by consequence in |
| 7316 | the result. |
| 7317 | */ |
| 7318 | /* Case 1. */ |
| 7319 | UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_NON_TRANS_TABLE, |
| 7320 | BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); |
| 7321 | /* Case 2. */ |
| 7322 | UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, |
| 7323 | BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); |
| 7324 | /* Case 3. */ |
| 7325 | UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_WRITES_TEMP_TRANS_TABLE, |
| 7326 | BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); |
| 7327 | /* Case 4. */ |
| 7328 | UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, |
| 7329 | BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF); |
| 7330 | /* Case 5. */ |
| 7331 | UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, |
| 7332 | BINLOG_DIRECT_ON); |
| 7333 | /* Case 6. */ |
| 7334 | UNSAFE(LEX::STMT_WRITES_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE, |
| 7335 | BINLOG_DIRECT_ON); |
| 7336 | /* Case 7. */ |
| 7337 | UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, |
| 7338 | BINLOG_DIRECT_ON); |
| 7339 | /* Case 8. */ |
| 7340 | UNSAFE(LEX::STMT_WRITES_TEMP_TRANS_TABLE, LEX::STMT_READS_TEMP_NON_TRANS_TABLE, |
| 7341 | BINLOG_DIRECT_ON); |
| 7342 | /* Case 9. */ |
| 7343 | UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE, |
| 7344 | (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY); |
| 7345 | /* Case 10 */ |
| 7346 | UNSAFE(LEX::STMT_WRITES_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE, |
| 7347 | (BINLOG_DIRECT_ON | BINLOG_DIRECT_OFF) & TRX_CACHE_NOT_EMPTY); |
| 7348 | /* Case 11. */ |
| 7349 | UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TRANS_TABLE, |
| 7350 | BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY); |
| 7351 | /* Case 12. */ |
| 7352 | UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_TEMP_TRANS_TABLE, |
| 7353 | BINLOG_DIRECT_ON & TRX_CACHE_NOT_EMPTY); |
| 7354 | /* Case 13. */ |
| 7355 | UNSAFE(LEX::STMT_WRITES_TEMP_NON_TRANS_TABLE, LEX::STMT_READS_NON_TRANS_TABLE, |
| 7356 | BINLOG_DIRECT_OFF & TRX_CACHE_NOT_EMPTY); |
| 7357 | } |
| 7358 | #endif |
| 7359 | |
| 7360 | |
| 7361 | /** |
| 7362 | @brief |
| 7363 | Finding fiels that are used in the GROUP BY of this st_select_lex |
| 7364 | |
| 7365 | @param thd The thread handle |
| 7366 | |
| 7367 | @details |
| 7368 | This method looks through the fields which are used in the GROUP BY of this |
| 7369 | st_select_lex and saves this fields. |
| 7370 | */ |
| 7371 | |
| 7372 | void st_select_lex::collect_grouping_fields(THD *thd, |
| 7373 | ORDER *grouping_list) |
| 7374 | { |
| 7375 | grouping_tmp_fields.empty(); |
| 7376 | List_iterator<Item> li(join->fields_list); |
| 7377 | Item *item= li++; |
| 7378 | for (uint i= 0; i < master_unit()->derived->table->s->fields; i++, (item=li++)) |
| 7379 | { |
| 7380 | for (ORDER *ord= grouping_list; ord; ord= ord->next) |
| 7381 | { |
| 7382 | if ((*ord->item)->eq((Item*)item, 0)) |
| 7383 | { |
| 7384 | Grouping_tmp_field *grouping_tmp_field= |
| 7385 | new Grouping_tmp_field(master_unit()->derived->table->field[i], item); |
| 7386 | grouping_tmp_fields.push_back(grouping_tmp_field); |
| 7387 | } |
| 7388 | } |
| 7389 | } |
| 7390 | } |
| 7391 | |
| 7392 | /** |
| 7393 | @brief |
| 7394 | For a condition check possibility of exraction a formula over grouping fields |
| 7395 | |
| 7396 | @param cond The condition whose subformulas are to be analyzed |
| 7397 | |
| 7398 | @details |
| 7399 | This method traverses the AND-OR condition cond and for each subformula of |
| 7400 | the condition it checks whether it can be usable for the extraction of a |
| 7401 | condition over the grouping fields of this select. The method uses |
| 7402 | the call-back parameter check_processor to ckeck whether a primary formula |
| 7403 | depends only on grouping fields. |
| 7404 | The subformulas that are not usable are marked with the flag NO_EXTRACTION_FL. |
| 7405 | The subformulas that can be entierly extracted are marked with the flag |
| 7406 | FULL_EXTRACTION_FL. |
| 7407 | @note |
| 7408 | This method is called before any call of extract_cond_for_grouping_fields. |
| 7409 | The flag NO_EXTRACTION_FL set in a subformula allows to avoid building clone |
| 7410 | for the subformula when extracting the pushable condition. |
| 7411 | The flag FULL_EXTRACTION_FL allows to delete later all top level conjuncts |
| 7412 | from cond. |
| 7413 | */ |
| 7414 | |
| 7415 | void |
| 7416 | st_select_lex::(Item *cond, |
| 7417 | TABLE_LIST *derived) |
| 7418 | { |
| 7419 | cond->clear_extraction_flag(); |
| 7420 | if (cond->type() == Item::COND_ITEM) |
| 7421 | { |
| 7422 | bool and_cond= ((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC; |
| 7423 | List<Item> *arg_list= ((Item_cond*) cond)->argument_list(); |
| 7424 | List_iterator<Item> li(*arg_list); |
| 7425 | uint count= 0; // to count items not containing NO_EXTRACTION_FL |
| 7426 | uint count_full= 0; // to count items with FULL_EXTRACTION_FL |
| 7427 | Item *item; |
| 7428 | while ((item=li++)) |
| 7429 | { |
| 7430 | check_cond_extraction_for_grouping_fields(item, derived); |
| 7431 | if (item->get_extraction_flag() != NO_EXTRACTION_FL) |
| 7432 | { |
| 7433 | count++; |
| 7434 | if (item->get_extraction_flag() == FULL_EXTRACTION_FL) |
| 7435 | count_full++; |
| 7436 | } |
| 7437 | else if (!and_cond) |
| 7438 | break; |
| 7439 | } |
| 7440 | if ((and_cond && count == 0) || item) |
| 7441 | cond->set_extraction_flag(NO_EXTRACTION_FL); |
| 7442 | if (count_full == arg_list->elements) |
| 7443 | cond->set_extraction_flag(FULL_EXTRACTION_FL); |
| 7444 | if (cond->get_extraction_flag() != 0) |
| 7445 | { |
| 7446 | li.rewind(); |
| 7447 | while ((item=li++)) |
| 7448 | item->clear_extraction_flag(); |
| 7449 | } |
| 7450 | } |
| 7451 | else |
| 7452 | { |
| 7453 | int fl= cond->excl_dep_on_grouping_fields(this) ? |
| 7454 | FULL_EXTRACTION_FL : NO_EXTRACTION_FL; |
| 7455 | cond->set_extraction_flag(fl); |
| 7456 | } |
| 7457 | } |
| 7458 | |
| 7459 | |
| 7460 | /** |
| 7461 | @brief |
| 7462 | Build condition extractable from the given one depended on grouping fields |
| 7463 | |
| 7464 | @param thd The thread handle |
| 7465 | @param cond The condition from which the condition depended |
| 7466 | on grouping fields is to be extracted |
| 7467 | @param no_top_clones If it's true then no clones for the top fully |
| 7468 | extractable conjuncts are built |
| 7469 | |
| 7470 | @details |
| 7471 | For the given condition cond this method finds out what condition depended |
| 7472 | only on the grouping fields can be extracted from cond. If such condition C |
| 7473 | exists the method builds the item for it. |
| 7474 | This method uses the flags NO_EXTRACTION_FL and FULL_EXTRACTION_FL set by the |
| 7475 | preliminary call of st_select_lex::check_cond_extraction_for_grouping_fields |
| 7476 | to figure out whether a subformula depends only on these fields or not. |
| 7477 | @note |
| 7478 | The built condition C is always implied by the condition cond |
| 7479 | (cond => C). The method tries to build the most restictive such |
| 7480 | condition (i.e. for any other condition C' such that cond => C' |
| 7481 | we have C => C'). |
| 7482 | @note |
| 7483 | The build item is not ready for usage: substitution for the field items |
| 7484 | has to be done and it has to be re-fixed. |
| 7485 | |
| 7486 | @retval |
| 7487 | the built condition depended only on grouping fields if such a condition exists |
| 7488 | NULL if there is no such a condition |
| 7489 | */ |
| 7490 | |
| 7491 | Item *st_select_lex::build_cond_for_grouping_fields(THD *thd, Item *cond, |
| 7492 | bool no_top_clones) |
| 7493 | { |
| 7494 | if (cond->get_extraction_flag() == FULL_EXTRACTION_FL) |
| 7495 | { |
| 7496 | if (no_top_clones) |
| 7497 | return cond; |
| 7498 | cond->clear_extraction_flag(); |
| 7499 | return cond->build_clone(thd); |
| 7500 | } |
| 7501 | if (cond->type() == Item::COND_ITEM) |
| 7502 | { |
| 7503 | bool cond_and= false; |
| 7504 | Item_cond *new_cond; |
| 7505 | if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC) |
| 7506 | { |
| 7507 | cond_and= true; |
| 7508 | new_cond= new (thd->mem_root) Item_cond_and(thd); |
| 7509 | } |
| 7510 | else |
| 7511 | new_cond= new (thd->mem_root) Item_cond_or(thd); |
| 7512 | if (unlikely(!new_cond)) |
| 7513 | return 0; |
| 7514 | List_iterator<Item> li(*((Item_cond*) cond)->argument_list()); |
| 7515 | Item *item; |
| 7516 | while ((item=li++)) |
| 7517 | { |
| 7518 | if (item->get_extraction_flag() == NO_EXTRACTION_FL) |
| 7519 | { |
| 7520 | DBUG_ASSERT(cond_and); |
| 7521 | item->clear_extraction_flag(); |
| 7522 | continue; |
| 7523 | } |
| 7524 | Item *fix= build_cond_for_grouping_fields(thd, item, |
| 7525 | no_top_clones & cond_and); |
| 7526 | if (unlikely(!fix)) |
| 7527 | { |
| 7528 | if (cond_and) |
| 7529 | continue; |
| 7530 | break; |
| 7531 | } |
| 7532 | new_cond->argument_list()->push_back(fix, thd->mem_root); |
| 7533 | } |
| 7534 | |
| 7535 | if (!cond_and && item) |
| 7536 | { |
| 7537 | while((item= li++)) |
| 7538 | item->clear_extraction_flag(); |
| 7539 | return 0; |
| 7540 | } |
| 7541 | switch (new_cond->argument_list()->elements) |
| 7542 | { |
| 7543 | case 0: |
| 7544 | return 0; |
| 7545 | case 1: |
| 7546 | return new_cond->argument_list()->head(); |
| 7547 | default: |
| 7548 | return new_cond; |
| 7549 | } |
| 7550 | } |
| 7551 | return 0; |
| 7552 | } |
| 7553 | |
| 7554 | |
| 7555 | int set_statement_var_if_exists(THD *thd, const char *var_name, |
| 7556 | size_t var_name_length, ulonglong value) |
| 7557 | { |
| 7558 | sys_var *sysvar; |
| 7559 | if (unlikely(thd->lex->sql_command == SQLCOM_CREATE_VIEW)) |
| 7560 | { |
| 7561 | my_error(ER_VIEW_SELECT_CLAUSE, MYF(0), "[NO]WAIT" ); |
| 7562 | return 1; |
| 7563 | } |
| 7564 | if (unlikely(thd->lex->sphead)) |
| 7565 | { |
| 7566 | my_error(ER_SP_BADSTATEMENT, MYF(0), "[NO]WAIT" ); |
| 7567 | return 1; |
| 7568 | } |
| 7569 | if ((sysvar= find_sys_var_ex(thd, var_name, var_name_length, true, false))) |
| 7570 | { |
| 7571 | Item *item= new (thd->mem_root) Item_uint(thd, value); |
| 7572 | set_var *var= new (thd->mem_root) set_var(thd, OPT_SESSION, sysvar, |
| 7573 | &null_clex_str, item); |
| 7574 | |
| 7575 | if (unlikely(!item) || unlikely(!var) || |
| 7576 | unlikely(thd->lex->stmt_var_list.push_back(var, thd->mem_root))) |
| 7577 | { |
| 7578 | my_error(ER_OUT_OF_RESOURCES, MYF(0)); |
| 7579 | return 1; |
| 7580 | } |
| 7581 | } |
| 7582 | return 0; |
| 7583 | } |
| 7584 | |
| 7585 | |
| 7586 | bool LEX::sp_add_cfetch(THD *thd, const LEX_CSTRING *name) |
| 7587 | { |
| 7588 | uint offset; |
| 7589 | sp_instr_cfetch *i; |
| 7590 | |
| 7591 | if (!spcont->find_cursor(name, &offset, false)) |
| 7592 | { |
| 7593 | my_error(ER_SP_CURSOR_MISMATCH, MYF(0), name->str); |
| 7594 | return true; |
| 7595 | } |
| 7596 | i= new (thd->mem_root) |
| 7597 | sp_instr_cfetch(sphead->instructions(), spcont, offset, |
| 7598 | !(thd->variables.sql_mode & MODE_ORACLE)); |
| 7599 | if (unlikely(i == NULL) || unlikely(sphead->add_instr(i))) |
| 7600 | return true; |
| 7601 | return false; |
| 7602 | } |
| 7603 | |
| 7604 | |
| 7605 | bool LEX::create_or_alter_view_finalize(THD *thd, Table_ident *table_ident) |
| 7606 | { |
| 7607 | sql_command= SQLCOM_CREATE_VIEW; |
| 7608 | /* first table in list is target VIEW name */ |
| 7609 | if (unlikely(!select_lex.add_table_to_list(thd, table_ident, NULL, |
| 7610 | TL_OPTION_UPDATING, |
| 7611 | TL_IGNORE, |
| 7612 | MDL_EXCLUSIVE))) |
| 7613 | return true; |
| 7614 | query_tables->open_strategy= TABLE_LIST::OPEN_STUB; |
| 7615 | return false; |
| 7616 | } |
| 7617 | |
| 7618 | |
| 7619 | bool LEX::add_alter_view(THD *thd, uint16 algorithm, |
| 7620 | enum_view_suid suid, |
| 7621 | Table_ident *table_ident) |
| 7622 | { |
| 7623 | if (unlikely(sphead)) |
| 7624 | { |
| 7625 | my_error(ER_SP_BADSTATEMENT, MYF(0), "ALTER VIEW" ); |
| 7626 | return true; |
| 7627 | } |
| 7628 | if (unlikely(!(create_view= new (thd->mem_root) |
| 7629 | Create_view_info(VIEW_ALTER, algorithm, suid)))) |
| 7630 | return true; |
| 7631 | return create_or_alter_view_finalize(thd, table_ident); |
| 7632 | } |
| 7633 | |
| 7634 | |
| 7635 | bool LEX::add_create_view(THD *thd, DDL_options_st ddl, |
| 7636 | uint16 algorithm, enum_view_suid suid, |
| 7637 | Table_ident *table_ident) |
| 7638 | { |
| 7639 | if (unlikely(set_create_options_with_check(ddl))) |
| 7640 | return true; |
| 7641 | if (unlikely(!(create_view= new (thd->mem_root) |
| 7642 | Create_view_info(ddl.or_replace() ? |
| 7643 | VIEW_CREATE_OR_REPLACE : |
| 7644 | VIEW_CREATE_NEW, |
| 7645 | algorithm, suid)))) |
| 7646 | return true; |
| 7647 | return create_or_alter_view_finalize(thd, table_ident); |
| 7648 | } |
| 7649 | |
| 7650 | |
| 7651 | bool LEX::call_statement_start(THD *thd, sp_name *name) |
| 7652 | { |
| 7653 | Database_qualified_name pkgname(&null_clex_str, &null_clex_str); |
| 7654 | const Sp_handler *sph= &sp_handler_procedure; |
| 7655 | sql_command= SQLCOM_CALL; |
| 7656 | value_list.empty(); |
| 7657 | if (unlikely(sph->sp_resolve_package_routine(thd, thd->lex->sphead, |
| 7658 | name, &sph, &pkgname))) |
| 7659 | return true; |
| 7660 | if (unlikely(!(m_sql_cmd= new (thd->mem_root) Sql_cmd_call(name, sph)))) |
| 7661 | return true; |
| 7662 | sph->add_used_routine(this, thd, name); |
| 7663 | if (pkgname.m_name.length) |
| 7664 | sp_handler_package_body.add_used_routine(this, thd, &pkgname); |
| 7665 | return false; |
| 7666 | } |
| 7667 | |
| 7668 | |
| 7669 | bool LEX::call_statement_start(THD *thd, const LEX_CSTRING *name) |
| 7670 | { |
| 7671 | sp_name *spname= make_sp_name(thd, name); |
| 7672 | return unlikely(!spname) || call_statement_start(thd, spname); |
| 7673 | } |
| 7674 | |
| 7675 | |
| 7676 | bool LEX::call_statement_start(THD *thd, const LEX_CSTRING *name1, |
| 7677 | const LEX_CSTRING *name2) |
| 7678 | { |
| 7679 | sp_name *spname= make_sp_name(thd, name1, name2); |
| 7680 | return unlikely(!spname) || call_statement_start(thd, spname); |
| 7681 | } |
| 7682 | |
| 7683 | |
| 7684 | sp_package *LEX::get_sp_package() const |
| 7685 | { |
| 7686 | return sphead ? sphead->get_package() : NULL; |
| 7687 | } |
| 7688 | |
| 7689 | |
| 7690 | sp_package *LEX::create_package_start(THD *thd, |
| 7691 | enum_sql_command command, |
| 7692 | const Sp_handler *sph, |
| 7693 | const sp_name *name_arg, |
| 7694 | DDL_options_st options) |
| 7695 | { |
| 7696 | sp_package *pkg; |
| 7697 | |
| 7698 | if (unlikely(sphead)) |
| 7699 | { |
| 7700 | my_error(ER_SP_NO_RECURSIVE_CREATE, MYF(0), sph->type_str()); |
| 7701 | return NULL; |
| 7702 | } |
| 7703 | if (unlikely(set_command_with_check(command, options))) |
| 7704 | return NULL; |
| 7705 | if (sph->type() == TYPE_ENUM_PACKAGE_BODY) |
| 7706 | { |
| 7707 | /* |
| 7708 | If we start parsing a "CREATE PACKAGE BODY", we need to load |
| 7709 | the corresponding "CREATE PACKAGE", for the following reasons: |
| 7710 | 1. "CREATE PACKAGE BODY" is allowed only if "CREATE PACKAGE" |
| 7711 | was done earlier for the same package name. |
| 7712 | So if "CREATE PACKAGE" does not exist, we throw an error here. |
| 7713 | 2. When parsing "CREATE PACKAGE BODY", we need to know all package |
| 7714 | public and private routine names, to translate procedure and |
| 7715 | function calls correctly. |
| 7716 | For example, this statement inside a package routine: |
| 7717 | CALL p; |
| 7718 | can be translated to: |
| 7719 | CALL db.pkg.p; -- p is a known (public or private) package routine |
| 7720 | CALL db.p; -- p is not a known package routine |
| 7721 | */ |
| 7722 | sp_head *spec; |
| 7723 | int ret= sp_handler_package_spec. |
| 7724 | sp_cache_routine_reentrant(thd, name_arg, &spec); |
| 7725 | if (unlikely(!spec)) |
| 7726 | { |
| 7727 | if (!ret) |
| 7728 | my_error(ER_SP_DOES_NOT_EXIST, MYF(0), |
| 7729 | "PACKAGE" , ErrConvDQName(name_arg).ptr()); |
| 7730 | return 0; |
| 7731 | } |
| 7732 | } |
| 7733 | if (unlikely(!(pkg= new sp_package(this, name_arg, sph)))) |
| 7734 | return NULL; |
| 7735 | pkg->reset_thd_mem_root(thd); |
| 7736 | pkg->init(this); |
| 7737 | pkg->make_qname(pkg->get_main_mem_root(), &pkg->m_qname); |
| 7738 | sphead= pkg; |
| 7739 | return pkg; |
| 7740 | } |
| 7741 | |
| 7742 | |
| 7743 | bool LEX::create_package_finalize(THD *thd, |
| 7744 | const sp_name *name, |
| 7745 | const sp_name *name2, |
| 7746 | const char *body_start, |
| 7747 | const char *body_end) |
| 7748 | { |
| 7749 | if (name2 && |
| 7750 | (name2->m_explicit_name != name->m_explicit_name || |
| 7751 | strcmp(name2->m_db.str, name->m_db.str) || |
| 7752 | !Sp_handler::eq_routine_name(name2->m_name, name->m_name))) |
| 7753 | { |
| 7754 | bool exp= name2->m_explicit_name || name->m_explicit_name; |
| 7755 | my_error(ER_END_IDENTIFIER_DOES_NOT_MATCH, MYF(0), |
| 7756 | exp ? ErrConvDQName(name2).ptr() : name2->m_name.str, |
| 7757 | exp ? ErrConvDQName(name).ptr() : name->m_name.str); |
| 7758 | return true; |
| 7759 | } |
| 7760 | sphead->m_body.length= body_end - body_start; |
| 7761 | if (unlikely(!(sphead->m_body.str= thd->strmake(body_start, |
| 7762 | sphead->m_body.length)))) |
| 7763 | return true; |
| 7764 | |
| 7765 | size_t not_used; |
| 7766 | Lex_input_stream *lip= & thd->m_parser_state->m_lip; |
| 7767 | sphead->m_defstr.length= lip->get_cpp_ptr() - lip->get_cpp_buf(); |
| 7768 | sphead->m_defstr.str= thd->strmake(lip->get_cpp_buf(), sphead->m_defstr.length); |
| 7769 | trim_whitespace(thd->charset(), &sphead->m_defstr, ¬_used); |
| 7770 | |
| 7771 | sphead->restore_thd_mem_root(thd); |
| 7772 | sp_package *pkg= sphead->get_package(); |
| 7773 | DBUG_ASSERT(pkg); |
| 7774 | return pkg->validate_after_parser(thd); |
| 7775 | } |
| 7776 | |
| 7777 | |
| 7778 | bool LEX::add_grant_command(THD *thd, enum_sql_command sql_command_arg, |
| 7779 | stored_procedure_type type_arg) |
| 7780 | { |
| 7781 | if (columns.elements) |
| 7782 | { |
| 7783 | thd->parse_error(); |
| 7784 | return true; |
| 7785 | } |
| 7786 | sql_command= sql_command_arg, |
| 7787 | type= type_arg; |
| 7788 | return false; |
| 7789 | } |
| 7790 | |
| 7791 | |
| 7792 | Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b, Item *c) |
| 7793 | { |
| 7794 | return (thd->variables.sql_mode & MODE_ORACLE) ? |
| 7795 | new (thd->mem_root) Item_func_substr_oracle(thd, a, b, c) : |
| 7796 | new (thd->mem_root) Item_func_substr(thd, a, b, c); |
| 7797 | } |
| 7798 | |
| 7799 | |
| 7800 | Item *LEX::make_item_func_substr(THD *thd, Item *a, Item *b) |
| 7801 | { |
| 7802 | return (thd->variables.sql_mode & MODE_ORACLE) ? |
| 7803 | new (thd->mem_root) Item_func_substr_oracle(thd, a, b) : |
| 7804 | new (thd->mem_root) Item_func_substr(thd, a, b); |
| 7805 | } |
| 7806 | |
| 7807 | |
| 7808 | Item *LEX::make_item_func_replace(THD *thd, |
| 7809 | Item *org, |
| 7810 | Item *find, |
| 7811 | Item *replace) |
| 7812 | { |
| 7813 | return (thd->variables.sql_mode & MODE_ORACLE) ? |
| 7814 | new (thd->mem_root) Item_func_replace_oracle(thd, org, find, replace) : |
| 7815 | new (thd->mem_root) Item_func_replace(thd, org, find, replace); |
| 7816 | } |
| 7817 | |
| 7818 | |
| 7819 | bool SELECT_LEX::vers_push_field(THD *thd, TABLE_LIST *table, |
| 7820 | const LEX_CSTRING field_name) |
| 7821 | { |
| 7822 | DBUG_ASSERT(field_name.str); |
| 7823 | Item_field *fld= new (thd->mem_root) Item_field(thd, &context, |
| 7824 | table->db.str, |
| 7825 | table->alias.str, |
| 7826 | &field_name); |
| 7827 | if (unlikely(!fld) || unlikely(item_list.push_back(fld))) |
| 7828 | return true; |
| 7829 | |
| 7830 | if (thd->lex->view_list.elements) |
| 7831 | { |
| 7832 | LEX_CSTRING *l; |
| 7833 | if (unlikely(!(l= thd->make_clex_string(field_name.str, |
| 7834 | field_name.length))) || |
| 7835 | unlikely(thd->lex->view_list.push_back(l))) |
| 7836 | return true; |
| 7837 | } |
| 7838 | |
| 7839 | return false; |
| 7840 | } |
| 7841 | |
| 7842 | |
| 7843 | Item *Lex_trim_st::make_item_func_trim_std(THD *thd) const |
| 7844 | { |
| 7845 | if (m_remove) |
| 7846 | { |
| 7847 | switch (m_spec) { |
| 7848 | case TRIM_BOTH: |
| 7849 | return new (thd->mem_root) Item_func_trim(thd, m_source, m_remove); |
| 7850 | case TRIM_LEADING: |
| 7851 | return new (thd->mem_root) Item_func_ltrim(thd, m_source, m_remove); |
| 7852 | case TRIM_TRAILING: |
| 7853 | return new (thd->mem_root) Item_func_rtrim(thd, m_source, m_remove); |
| 7854 | } |
| 7855 | } |
| 7856 | |
| 7857 | switch (m_spec) { |
| 7858 | case TRIM_BOTH: |
| 7859 | return new (thd->mem_root) Item_func_trim(thd, m_source); |
| 7860 | case TRIM_LEADING: |
| 7861 | return new (thd->mem_root) Item_func_ltrim(thd, m_source); |
| 7862 | case TRIM_TRAILING: |
| 7863 | return new (thd->mem_root) Item_func_rtrim(thd, m_source); |
| 7864 | } |
| 7865 | DBUG_ASSERT(0); |
| 7866 | return NULL; |
| 7867 | } |
| 7868 | |
| 7869 | |
| 7870 | Item *Lex_trim_st::make_item_func_trim_oracle(THD *thd) const |
| 7871 | { |
| 7872 | if (m_remove) |
| 7873 | { |
| 7874 | switch (m_spec) { |
| 7875 | case TRIM_BOTH: |
| 7876 | return new (thd->mem_root) Item_func_trim_oracle(thd, m_source, m_remove); |
| 7877 | case TRIM_LEADING: |
| 7878 | return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source, m_remove); |
| 7879 | case TRIM_TRAILING: |
| 7880 | return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source, m_remove); |
| 7881 | } |
| 7882 | } |
| 7883 | |
| 7884 | switch (m_spec) { |
| 7885 | case TRIM_BOTH: |
| 7886 | return new (thd->mem_root) Item_func_trim_oracle(thd, m_source); |
| 7887 | case TRIM_LEADING: |
| 7888 | return new (thd->mem_root) Item_func_ltrim_oracle(thd, m_source); |
| 7889 | case TRIM_TRAILING: |
| 7890 | return new (thd->mem_root) Item_func_rtrim_oracle(thd, m_source); |
| 7891 | } |
| 7892 | DBUG_ASSERT(0); |
| 7893 | return NULL; |
| 7894 | } |
| 7895 | |
| 7896 | |
| 7897 | Item *Lex_trim_st::make_item_func_trim(THD *thd) const |
| 7898 | { |
| 7899 | return (thd->variables.sql_mode & MODE_ORACLE) ? |
| 7900 | make_item_func_trim_oracle(thd) : |
| 7901 | make_item_func_trim_std(thd); |
| 7902 | } |
| 7903 | |
| 7904 | |
| 7905 | Item *LEX::make_item_func_call_generic(THD *thd, Lex_ident_cli_st *cdb, |
| 7906 | Lex_ident_cli_st *cname, List<Item> *args) |
| 7907 | { |
| 7908 | Lex_ident_sys db(thd, cdb), name(thd, cname); |
| 7909 | if (db.is_null() || name.is_null()) |
| 7910 | return NULL; // EOM |
| 7911 | /* |
| 7912 | The following in practice calls: |
| 7913 | <code>Create_sp_func::create()</code> |
| 7914 | and builds a stored function. |
| 7915 | |
| 7916 | However, it's important to maintain the interface between the |
| 7917 | parser and the implementation in item_create.cc clean, |
| 7918 | since this will change with WL#2128 (SQL PATH): |
| 7919 | - INFORMATION_SCHEMA.version() is the SQL 99 syntax for the native |
| 7920 | function version(), |
| 7921 | - MySQL.version() is the SQL 2003 syntax for the native function |
| 7922 | version() (a vendor can specify any schema). |
| 7923 | */ |
| 7924 | |
| 7925 | if (!name.str || check_db_name((LEX_STRING*) static_cast<LEX_CSTRING*>(&db))) |
| 7926 | { |
| 7927 | my_error(ER_WRONG_DB_NAME, MYF(0), db.str); |
| 7928 | return NULL; |
| 7929 | } |
| 7930 | if (check_routine_name(&name)) |
| 7931 | return NULL; |
| 7932 | |
| 7933 | Create_qfunc *builder= find_qualified_function_builder(thd); |
| 7934 | DBUG_ASSERT(builder); |
| 7935 | return builder->create_with_db(thd, &db, &name, true, args); |
| 7936 | } |
| 7937 | |
| 7938 | |
| 7939 | Item *LEX::create_item_qualified_asterisk(THD *thd, |
| 7940 | const Lex_ident_sys_st *name) |
| 7941 | { |
| 7942 | Item *item; |
| 7943 | if (!(item= new (thd->mem_root) Item_field(thd, current_context(), |
| 7944 | NullS, name->str, |
| 7945 | &star_clex_str))) |
| 7946 | return NULL; |
| 7947 | current_select->with_wild++; |
| 7948 | return item; |
| 7949 | } |
| 7950 | |
| 7951 | |
| 7952 | Item *LEX::create_item_qualified_asterisk(THD *thd, |
| 7953 | const Lex_ident_sys_st *a, |
| 7954 | const Lex_ident_sys_st *b) |
| 7955 | { |
| 7956 | Item *item; |
| 7957 | const char* schema= thd->client_capabilities & CLIENT_NO_SCHEMA ? |
| 7958 | NullS : a->str; |
| 7959 | if (!(item= new (thd->mem_root) Item_field(thd, current_context(), |
| 7960 | schema, b->str, |
| 7961 | &star_clex_str))) |
| 7962 | return NULL; |
| 7963 | current_select->with_wild++; |
| 7964 | return item; |
| 7965 | } |
| 7966 | |
| 7967 | |
| 7968 | bool Lex_ident_sys_st::copy_ident_cli(THD *thd, const Lex_ident_cli_st *str) |
| 7969 | { |
| 7970 | return thd->to_ident_sys_alloc(this, str); |
| 7971 | } |
| 7972 | |
| 7973 | bool Lex_ident_sys_st::copy_keyword(THD *thd, const Lex_ident_cli_st *str) |
| 7974 | { |
| 7975 | return thd->make_lex_string(static_cast<LEX_CSTRING*>(this), |
| 7976 | str->str, str->length) == NULL; |
| 7977 | } |
| 7978 | |
| 7979 | bool Lex_ident_sys_st::copy_or_convert(THD *thd, |
| 7980 | const Lex_ident_cli_st *src, |
| 7981 | CHARSET_INFO *cs) |
| 7982 | { |
| 7983 | if (!src->is_8bit()) |
| 7984 | return copy_keyword(thd, src); // 7bit string makes a wellformed identifier |
| 7985 | return convert(thd, src, cs); |
| 7986 | } |
| 7987 | |
| 7988 | |
| 7989 | bool Lex_ident_sys_st::copy_sys(THD *thd, const LEX_CSTRING *src) |
| 7990 | { |
| 7991 | if (thd->check_string_for_wellformedness(src->str, src->length, |
| 7992 | system_charset_info)) |
| 7993 | return true; |
| 7994 | return thd->make_lex_string(this, src->str, src->length) == NULL; |
| 7995 | } |
| 7996 | |
| 7997 | |
| 7998 | bool Lex_ident_sys_st::convert(THD *thd, |
| 7999 | const LEX_CSTRING *src, CHARSET_INFO *cs) |
| 8000 | { |
| 8001 | LEX_STRING tmp; |
| 8002 | if (thd->convert_with_error(system_charset_info, &tmp, cs, |
| 8003 | src->str, src->length)) |
| 8004 | return true; |
| 8005 | str= tmp.str; |
| 8006 | length= tmp.length; |
| 8007 | return false; |
| 8008 | } |
| 8009 | |
| 8010 | |
| 8011 | bool Lex_ident_sys_st::to_size_number(ulonglong *to) const |
| 8012 | { |
| 8013 | ulonglong number; |
| 8014 | uint text_shift_number= 0; |
| 8015 | longlong prefix_number; |
| 8016 | const char *start_ptr= str; |
| 8017 | size_t str_len= length; |
| 8018 | const char *end_ptr= start_ptr + str_len; |
| 8019 | int error; |
| 8020 | prefix_number= my_strtoll10(start_ptr, (char**) &end_ptr, &error); |
| 8021 | if (likely((start_ptr + str_len - 1) == end_ptr)) |
| 8022 | { |
| 8023 | switch (end_ptr[0]) |
| 8024 | { |
| 8025 | case 'g': |
| 8026 | case 'G': text_shift_number+=30; break; |
| 8027 | case 'm': |
| 8028 | case 'M': text_shift_number+=20; break; |
| 8029 | case 'k': |
| 8030 | case 'K': text_shift_number+=10; break; |
| 8031 | default: |
| 8032 | my_error(ER_WRONG_SIZE_NUMBER, MYF(0)); |
| 8033 | return true; |
| 8034 | } |
| 8035 | if (unlikely(prefix_number >> 31)) |
| 8036 | { |
| 8037 | my_error(ER_SIZE_OVERFLOW_ERROR, MYF(0)); |
| 8038 | return true; |
| 8039 | } |
| 8040 | number= prefix_number << text_shift_number; |
| 8041 | } |
| 8042 | else |
| 8043 | { |
| 8044 | my_error(ER_WRONG_SIZE_NUMBER, MYF(0)); |
| 8045 | return true; |
| 8046 | } |
| 8047 | *to= number; |
| 8048 | return false; |
| 8049 | } |
| 8050 | |
| 8051 | |
| 8052 | bool LEX::part_values_current(THD *thd) |
| 8053 | { |
| 8054 | partition_element *elem= part_info->curr_part_elem; |
| 8055 | if (!is_partition_management()) |
| 8056 | { |
| 8057 | if (unlikely(part_info->part_type != VERSIONING_PARTITION)) |
| 8058 | { |
| 8059 | my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME" ); |
| 8060 | return true; |
| 8061 | } |
| 8062 | } |
| 8063 | else |
| 8064 | { |
| 8065 | DBUG_ASSERT(create_last_non_select_table); |
| 8066 | DBUG_ASSERT(create_last_non_select_table->table_name.str); |
| 8067 | // FIXME: other ALTER commands? |
| 8068 | my_error(ER_VERS_WRONG_PARTS, MYF(0), |
| 8069 | create_last_non_select_table->table_name.str); |
| 8070 | return true; |
| 8071 | } |
| 8072 | elem->type(partition_element::CURRENT); |
| 8073 | DBUG_ASSERT(part_info->vers_info); |
| 8074 | part_info->vers_info->now_part= elem; |
| 8075 | if (unlikely(part_info->init_column_part(thd))) |
| 8076 | return true; |
| 8077 | return false; |
| 8078 | } |
| 8079 | |
| 8080 | |
| 8081 | bool LEX::part_values_history(THD *thd) |
| 8082 | { |
| 8083 | partition_element *elem= part_info->curr_part_elem; |
| 8084 | if (!is_partition_management()) |
| 8085 | { |
| 8086 | if (unlikely(part_info->part_type != VERSIONING_PARTITION)) |
| 8087 | { |
| 8088 | my_error(ER_PARTITION_WRONG_TYPE, MYF(0), "SYSTEM_TIME" ); |
| 8089 | return true; |
| 8090 | } |
| 8091 | } |
| 8092 | else |
| 8093 | { |
| 8094 | part_info->vers_init_info(thd); |
| 8095 | elem->id= UINT_MAX32; |
| 8096 | } |
| 8097 | DBUG_ASSERT(part_info->vers_info); |
| 8098 | if (unlikely(part_info->vers_info->now_part)) |
| 8099 | { |
| 8100 | DBUG_ASSERT(create_last_non_select_table); |
| 8101 | DBUG_ASSERT(create_last_non_select_table->table_name.str); |
| 8102 | my_error(ER_VERS_WRONG_PARTS, MYF(0), |
| 8103 | create_last_non_select_table->table_name.str); |
| 8104 | return true; |
| 8105 | } |
| 8106 | elem->type(partition_element::HISTORY); |
| 8107 | if (unlikely(part_info->init_column_part(thd))) |
| 8108 | return true; |
| 8109 | return false; |
| 8110 | } |
| 8111 | |
| 8112 | |
| 8113 | bool LEX::last_field_generated_always_as_row_start_or_end(Lex_ident *p, |
| 8114 | const char *type, |
| 8115 | uint flag) |
| 8116 | { |
| 8117 | if (unlikely(p->str)) |
| 8118 | { |
| 8119 | my_error(ER_VERS_DUPLICATE_ROW_START_END, MYF(0), type, |
| 8120 | last_field->field_name.str); |
| 8121 | return true; |
| 8122 | } |
| 8123 | last_field->flags|= (flag | NOT_NULL_FLAG); |
| 8124 | DBUG_ASSERT(p); |
| 8125 | *p= last_field->field_name; |
| 8126 | return false; |
| 8127 | } |
| 8128 | |
| 8129 | |
| 8130 | |
| 8131 | bool LEX::last_field_generated_always_as_row_start() |
| 8132 | { |
| 8133 | Vers_parse_info &info= vers_get_info(); |
| 8134 | Lex_ident *p= &info.as_row.start; |
| 8135 | return last_field_generated_always_as_row_start_or_end(p, "START" , |
| 8136 | VERS_SYS_START_FLAG); |
| 8137 | } |
| 8138 | |
| 8139 | |
| 8140 | bool LEX::last_field_generated_always_as_row_end() |
| 8141 | { |
| 8142 | Vers_parse_info &info= vers_get_info(); |
| 8143 | Lex_ident *p= &info.as_row.end; |
| 8144 | return last_field_generated_always_as_row_start_or_end(p, "END" , |
| 8145 | VERS_SYS_END_FLAG); |
| 8146 | } |
| 8147 | |
| 8148 | |
| 8149 | bool LEX::tvc_finalize() |
| 8150 | { |
| 8151 | mysql_init_select(this); |
| 8152 | if (unlikely(!(current_select->tvc= |
| 8153 | new (thd->mem_root) |
| 8154 | table_value_constr(many_values, |
| 8155 | current_select, |
| 8156 | current_select->options)))) |
| 8157 | return true; |
| 8158 | many_values.empty(); |
| 8159 | return false; |
| 8160 | } |
| 8161 | |
| 8162 | |
| 8163 | bool LEX::tvc_finalize_derived() |
| 8164 | { |
| 8165 | derived_tables|= DERIVED_SUBQUERY; |
| 8166 | if (unlikely(!expr_allows_subselect || sql_command == (int)SQLCOM_PURGE)) |
| 8167 | { |
| 8168 | thd->parse_error(); |
| 8169 | return true; |
| 8170 | } |
| 8171 | if (current_select->linkage == GLOBAL_OPTIONS_TYPE || |
| 8172 | unlikely(mysql_new_select(this, 1, NULL))) |
| 8173 | return true; |
| 8174 | current_select->linkage= DERIVED_TABLE_TYPE; |
| 8175 | return tvc_finalize(); |
| 8176 | } |
| 8177 | |