1 | /***************************************************************************** |
2 | |
3 | Copyright (c) 1997, 2017, Oracle and/or its affiliates. All Rights Reserved. |
4 | Copyright (c) 2008, Google Inc. |
5 | Copyright (c) 2015, 2018, MariaDB Corporation. |
6 | |
7 | Portions of this file contain modifications contributed and copyrighted by |
8 | Google, Inc. Those modifications are gratefully acknowledged and are described |
9 | briefly in the InnoDB documentation. The contributions by Google are |
10 | incorporated with their permission, and subject to the conditions contained in |
11 | the file COPYING.Google. |
12 | |
13 | This program is free software; you can redistribute it and/or modify it under |
14 | the terms of the GNU General Public License as published by the Free Software |
15 | Foundation; version 2 of the License. |
16 | |
17 | This program is distributed in the hope that it will be useful, but WITHOUT |
18 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
19 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
20 | |
21 | You should have received a copy of the GNU General Public License along with |
22 | this program; if not, write to the Free Software Foundation, Inc., |
23 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
24 | |
25 | *****************************************************************************/ |
26 | |
27 | /***************************************************//** |
28 | @file row/row0sel.cc |
29 | Select |
30 | |
31 | Created 12/19/1997 Heikki Tuuri |
32 | *******************************************************/ |
33 | |
34 | #include "row0sel.h" |
35 | #include "dict0dict.h" |
36 | #include "dict0boot.h" |
37 | #include "trx0undo.h" |
38 | #include "trx0trx.h" |
39 | #include "btr0btr.h" |
40 | #include "btr0cur.h" |
41 | #include "btr0sea.h" |
42 | #include "gis0rtree.h" |
43 | #include "mach0data.h" |
44 | #include "que0que.h" |
45 | #include "row0upd.h" |
46 | #include "row0row.h" |
47 | #include "row0vers.h" |
48 | #include "rem0cmp.h" |
49 | #include "lock0lock.h" |
50 | #include "eval0eval.h" |
51 | #include "pars0sym.h" |
52 | #include "pars0pars.h" |
53 | #include "row0mysql.h" |
54 | #include "buf0lru.h" |
55 | #include "srv0srv.h" |
56 | #include "ha_prototypes.h" |
57 | #include "srv0mon.h" |
58 | #include "ut0new.h" |
59 | |
60 | /* Maximum number of rows to prefetch; MySQL interface has another parameter */ |
61 | #define SEL_MAX_N_PREFETCH 16 |
62 | |
63 | /* Number of rows fetched, after which to start prefetching; MySQL interface |
64 | has another parameter */ |
65 | #define SEL_PREFETCH_LIMIT 1 |
66 | |
67 | /* When a select has accessed about this many pages, it returns control back |
68 | to que_run_threads: this is to allow canceling runaway queries */ |
69 | |
70 | #define SEL_COST_LIMIT 100 |
71 | |
72 | /* Flags for search shortcut */ |
73 | #define SEL_FOUND 0 |
74 | #define SEL_EXHAUSTED 1 |
75 | #define SEL_RETRY 2 |
76 | |
77 | /********************************************************************//** |
78 | Returns TRUE if the user-defined column in a secondary index record |
79 | is alphabetically the same as the corresponding BLOB column in the clustered |
80 | index record. |
81 | NOTE: the comparison is NOT done as a binary comparison, but character |
82 | fields are compared with collation! |
83 | @return TRUE if the columns are equal */ |
84 | static |
85 | ibool |
86 | row_sel_sec_rec_is_for_blob( |
87 | /*========================*/ |
88 | ulint mtype, /*!< in: main type */ |
89 | ulint prtype, /*!< in: precise type */ |
90 | ulint mbminlen, /*!< in: minimum length of |
91 | a character, in bytes */ |
92 | ulint mbmaxlen, /*!< in: maximum length of |
93 | a character, in bytes */ |
94 | const byte* clust_field, /*!< in: the locally stored part of |
95 | the clustered index column, including |
96 | the BLOB pointer; the clustered |
97 | index record must be covered by |
98 | a lock or a page latch to protect it |
99 | against deletion (rollback or purge) */ |
100 | ulint clust_len, /*!< in: length of clust_field */ |
101 | const byte* sec_field, /*!< in: column in secondary index */ |
102 | ulint sec_len, /*!< in: length of sec_field */ |
103 | ulint prefix_len, /*!< in: index column prefix length |
104 | in bytes */ |
105 | dict_table_t* table) /*!< in: table */ |
106 | { |
107 | ulint len; |
108 | byte buf[REC_VERSION_56_MAX_INDEX_COL_LEN]; |
109 | |
110 | /* This function should never be invoked on tables in |
111 | ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT, because they |
112 | should always contain enough prefix in the clustered index record. */ |
113 | ut_ad(dict_table_has_atomic_blobs(table)); |
114 | ut_a(clust_len >= BTR_EXTERN_FIELD_REF_SIZE); |
115 | ut_ad(prefix_len >= sec_len); |
116 | ut_ad(prefix_len > 0); |
117 | ut_a(prefix_len <= sizeof buf); |
118 | |
119 | if (!memcmp(clust_field + clust_len - BTR_EXTERN_FIELD_REF_SIZE, |
120 | field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)) { |
121 | /* The externally stored field was not written yet. |
122 | This record should only be seen by |
123 | recv_recovery_rollback_active() or any |
124 | TRX_ISO_READ_UNCOMMITTED transactions. */ |
125 | return(FALSE); |
126 | } |
127 | |
128 | len = btr_copy_externally_stored_field_prefix( |
129 | buf, prefix_len, page_size_t(table->space->flags), |
130 | clust_field, clust_len); |
131 | |
132 | if (len == 0) { |
133 | /* The BLOB was being deleted as the server crashed. |
134 | There should not be any secondary index records |
135 | referring to this clustered index record, because |
136 | btr_free_externally_stored_field() is called after all |
137 | secondary index entries of the row have been purged. */ |
138 | return(FALSE); |
139 | } |
140 | |
141 | len = dtype_get_at_most_n_mbchars(prtype, mbminlen, mbmaxlen, |
142 | prefix_len, len, (const char*) buf); |
143 | |
144 | return(!cmp_data_data(mtype, prtype, buf, len, sec_field, sec_len)); |
145 | } |
146 | |
147 | /** Returns TRUE if the user-defined column values in a secondary index record |
148 | are alphabetically the same as the corresponding columns in the clustered |
149 | index record. |
150 | NOTE: the comparison is NOT done as a binary comparison, but character |
151 | fields are compared with collation! |
152 | @param[in] sec_rec secondary index record |
153 | @param[in] sec_index secondary index |
154 | @param[in] clust_rec clustered index record; |
155 | must be protected by a page s-latch |
156 | @param[in] clust_index clustered index |
157 | @param[in] thr query thread |
158 | @return TRUE if the secondary record is equal to the corresponding |
159 | fields in the clustered record, when compared with collation; |
160 | FALSE if not equal or if the clustered record has been marked for deletion */ |
161 | static |
162 | ibool |
163 | row_sel_sec_rec_is_for_clust_rec( |
164 | const rec_t* sec_rec, |
165 | dict_index_t* sec_index, |
166 | const rec_t* clust_rec, |
167 | dict_index_t* clust_index, |
168 | que_thr_t* thr) |
169 | { |
170 | const byte* sec_field; |
171 | ulint sec_len; |
172 | const byte* clust_field; |
173 | ulint n; |
174 | ulint i; |
175 | mem_heap_t* heap = NULL; |
176 | ulint clust_offsets_[REC_OFFS_NORMAL_SIZE]; |
177 | ulint sec_offsets_[REC_OFFS_SMALL_SIZE]; |
178 | ulint* clust_offs = clust_offsets_; |
179 | ulint* sec_offs = sec_offsets_; |
180 | ibool is_equal = TRUE; |
181 | |
182 | rec_offs_init(clust_offsets_); |
183 | rec_offs_init(sec_offsets_); |
184 | |
185 | if (rec_get_deleted_flag(clust_rec, |
186 | dict_table_is_comp(clust_index->table))) { |
187 | /* In delete-marked records, DB_TRX_ID must |
188 | always refer to an existing undo log record. */ |
189 | ut_ad(rec_get_trx_id(clust_rec, clust_index)); |
190 | |
191 | /* The clustered index record is delete-marked; |
192 | it is not visible in the read view. Besides, |
193 | if there are any externally stored columns, |
194 | some of them may have already been purged. */ |
195 | return(FALSE); |
196 | } |
197 | |
198 | heap = mem_heap_create(256); |
199 | |
200 | clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs, |
201 | true, ULINT_UNDEFINED, &heap); |
202 | sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs, |
203 | true, ULINT_UNDEFINED, &heap); |
204 | |
205 | n = dict_index_get_n_ordering_defined_by_user(sec_index); |
206 | |
207 | for (i = 0; i < n; i++) { |
208 | const dict_field_t* ifield; |
209 | const dict_col_t* col; |
210 | ulint clust_pos = 0; |
211 | ulint clust_len = 0; |
212 | ulint len; |
213 | bool is_virtual; |
214 | |
215 | ifield = dict_index_get_nth_field(sec_index, i); |
216 | col = dict_field_get_col(ifield); |
217 | |
218 | is_virtual = col->is_virtual(); |
219 | |
220 | /* For virtual column, its value will need to be |
221 | reconstructed from base column in cluster index */ |
222 | if (is_virtual) { |
223 | const dict_v_col_t* v_col; |
224 | const dtuple_t* row; |
225 | dfield_t* vfield; |
226 | row_ext_t* ext; |
227 | |
228 | v_col = reinterpret_cast<const dict_v_col_t*>(col); |
229 | |
230 | row = row_build(ROW_COPY_POINTERS, |
231 | clust_index, clust_rec, |
232 | clust_offs, |
233 | NULL, NULL, NULL, &ext, heap); |
234 | |
235 | vfield = innobase_get_computed_value( |
236 | row, v_col, clust_index, |
237 | &heap, NULL, NULL, |
238 | thr_get_trx(thr)->mysql_thd, |
239 | thr->prebuilt->m_mysql_table, NULL, |
240 | NULL, NULL); |
241 | |
242 | clust_len = vfield->len; |
243 | clust_field = static_cast<byte*>(vfield->data); |
244 | } else { |
245 | clust_pos = dict_col_get_clust_pos(col, clust_index); |
246 | ut_ad(!rec_offs_nth_default(clust_offs, clust_pos)); |
247 | clust_field = rec_get_nth_field( |
248 | clust_rec, clust_offs, clust_pos, &clust_len); |
249 | } |
250 | |
251 | sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len); |
252 | |
253 | len = clust_len; |
254 | |
255 | if (ifield->prefix_len > 0 && len != UNIV_SQL_NULL |
256 | && sec_len != UNIV_SQL_NULL && !is_virtual) { |
257 | |
258 | if (rec_offs_nth_extern(clust_offs, clust_pos)) { |
259 | len -= BTR_EXTERN_FIELD_REF_SIZE; |
260 | } |
261 | |
262 | len = dtype_get_at_most_n_mbchars( |
263 | col->prtype, col->mbminlen, col->mbmaxlen, |
264 | ifield->prefix_len, len, (char*) clust_field); |
265 | |
266 | if (rec_offs_nth_extern(clust_offs, clust_pos) |
267 | && len < sec_len) { |
268 | if (!row_sel_sec_rec_is_for_blob( |
269 | col->mtype, col->prtype, |
270 | col->mbminlen, col->mbmaxlen, |
271 | clust_field, clust_len, |
272 | sec_field, sec_len, |
273 | ifield->prefix_len, |
274 | clust_index->table)) { |
275 | goto inequal; |
276 | } |
277 | |
278 | continue; |
279 | } |
280 | } |
281 | |
282 | /* For spatial index, the first field is MBR, we check |
283 | if the MBR is equal or not. */ |
284 | if (dict_index_is_spatial(sec_index) && i == 0) { |
285 | rtr_mbr_t tmp_mbr; |
286 | rtr_mbr_t sec_mbr; |
287 | byte* dptr = |
288 | const_cast<byte*>(clust_field); |
289 | |
290 | ut_ad(clust_len != UNIV_SQL_NULL); |
291 | |
292 | /* For externally stored field, we need to get full |
293 | geo data to generate the MBR for comparing. */ |
294 | if (rec_offs_nth_extern(clust_offs, clust_pos)) { |
295 | dptr = btr_copy_externally_stored_field( |
296 | &clust_len, dptr, |
297 | page_size_t(clust_index->table->space |
298 | ->flags), |
299 | len, heap); |
300 | } |
301 | |
302 | rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, |
303 | static_cast<uint>(clust_len |
304 | - GEO_DATA_HEADER_SIZE), |
305 | SPDIMS, |
306 | reinterpret_cast<double*>( |
307 | &tmp_mbr)); |
308 | rtr_read_mbr(sec_field, &sec_mbr); |
309 | |
310 | if (!MBR_EQUAL_CMP(&sec_mbr, &tmp_mbr)) { |
311 | is_equal = FALSE; |
312 | goto func_exit; |
313 | } |
314 | } else { |
315 | |
316 | if (0 != cmp_data_data(col->mtype, col->prtype, |
317 | clust_field, len, |
318 | sec_field, sec_len)) { |
319 | inequal: |
320 | is_equal = FALSE; |
321 | goto func_exit; |
322 | } |
323 | } |
324 | } |
325 | |
326 | func_exit: |
327 | if (UNIV_LIKELY_NULL(heap)) { |
328 | mem_heap_free(heap); |
329 | } |
330 | return(is_equal); |
331 | } |
332 | |
333 | /*********************************************************************//** |
334 | Creates a select node struct. |
335 | @return own: select node struct */ |
336 | sel_node_t* |
337 | sel_node_create( |
338 | /*============*/ |
339 | mem_heap_t* heap) /*!< in: memory heap where created */ |
340 | { |
341 | sel_node_t* node; |
342 | |
343 | node = static_cast<sel_node_t*>( |
344 | mem_heap_alloc(heap, sizeof(sel_node_t))); |
345 | |
346 | node->common.type = QUE_NODE_SELECT; |
347 | node->state = SEL_NODE_OPEN; |
348 | |
349 | node->plans = NULL; |
350 | |
351 | return(node); |
352 | } |
353 | |
354 | /*********************************************************************//** |
355 | Frees the memory private to a select node when a query graph is freed, |
356 | does not free the heap where the node was originally created. */ |
357 | void |
358 | sel_node_free_private( |
359 | /*==================*/ |
360 | sel_node_t* node) /*!< in: select node struct */ |
361 | { |
362 | ulint i; |
363 | plan_t* plan; |
364 | |
365 | if (node->plans != NULL) { |
366 | for (i = 0; i < node->n_tables; i++) { |
367 | plan = sel_node_get_nth_plan(node, i); |
368 | |
369 | btr_pcur_close(&(plan->pcur)); |
370 | btr_pcur_close(&(plan->clust_pcur)); |
371 | |
372 | if (plan->old_vers_heap) { |
373 | mem_heap_free(plan->old_vers_heap); |
374 | } |
375 | } |
376 | } |
377 | } |
378 | |
379 | /*********************************************************************//** |
380 | Evaluates the values in a select list. If there are aggregate functions, |
381 | their argument value is added to the aggregate total. */ |
382 | UNIV_INLINE |
383 | void |
384 | sel_eval_select_list( |
385 | /*=================*/ |
386 | sel_node_t* node) /*!< in: select node */ |
387 | { |
388 | que_node_t* exp; |
389 | |
390 | exp = node->select_list; |
391 | |
392 | while (exp) { |
393 | eval_exp(exp); |
394 | |
395 | exp = que_node_get_next(exp); |
396 | } |
397 | } |
398 | |
399 | /*********************************************************************//** |
400 | Assigns the values in the select list to the possible into-variables in |
401 | SELECT ... INTO ... */ |
402 | UNIV_INLINE |
403 | void |
404 | sel_assign_into_var_values( |
405 | /*=======================*/ |
406 | sym_node_t* var, /*!< in: first variable in a list of |
407 | variables */ |
408 | sel_node_t* node) /*!< in: select node */ |
409 | { |
410 | que_node_t* exp; |
411 | |
412 | if (var == NULL) { |
413 | |
414 | return; |
415 | } |
416 | |
417 | for (exp = node->select_list; |
418 | var != 0; |
419 | var = static_cast<sym_node_t*>(que_node_get_next(var))) { |
420 | |
421 | ut_ad(exp); |
422 | |
423 | eval_node_copy_val(var->alias, exp); |
424 | |
425 | exp = que_node_get_next(exp); |
426 | } |
427 | } |
428 | |
429 | /*********************************************************************//** |
430 | Resets the aggregate value totals in the select list of an aggregate type |
431 | query. */ |
432 | UNIV_INLINE |
433 | void |
434 | sel_reset_aggregate_vals( |
435 | /*=====================*/ |
436 | sel_node_t* node) /*!< in: select node */ |
437 | { |
438 | func_node_t* func_node; |
439 | |
440 | ut_ad(node->is_aggregate); |
441 | |
442 | for (func_node = static_cast<func_node_t*>(node->select_list); |
443 | func_node != 0; |
444 | func_node = static_cast<func_node_t*>( |
445 | que_node_get_next(func_node))) { |
446 | |
447 | eval_node_set_int_val(func_node, 0); |
448 | } |
449 | |
450 | node->aggregate_already_fetched = FALSE; |
451 | } |
452 | |
453 | /*********************************************************************//** |
454 | Copies the input variable values when an explicit cursor is opened. */ |
455 | UNIV_INLINE |
456 | void |
457 | row_sel_copy_input_variable_vals( |
458 | /*=============================*/ |
459 | sel_node_t* node) /*!< in: select node */ |
460 | { |
461 | sym_node_t* var; |
462 | |
463 | var = UT_LIST_GET_FIRST(node->copy_variables); |
464 | |
465 | while (var) { |
466 | eval_node_copy_val(var, var->alias); |
467 | |
468 | var->indirection = NULL; |
469 | |
470 | var = UT_LIST_GET_NEXT(col_var_list, var); |
471 | } |
472 | } |
473 | |
474 | /*********************************************************************//** |
475 | Fetches the column values from a record. */ |
476 | static |
477 | void |
478 | row_sel_fetch_columns( |
479 | /*==================*/ |
480 | dict_index_t* index, /*!< in: record index */ |
481 | const rec_t* rec, /*!< in: record in a clustered or non-clustered |
482 | index; must be protected by a page latch */ |
483 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
484 | sym_node_t* column) /*!< in: first column in a column list, or |
485 | NULL */ |
486 | { |
487 | dfield_t* val; |
488 | ulint index_type; |
489 | ulint field_no; |
490 | const byte* data; |
491 | ulint len; |
492 | |
493 | ut_ad(rec_offs_validate(rec, index, offsets)); |
494 | |
495 | if (dict_index_is_clust(index)) { |
496 | index_type = SYM_CLUST_FIELD_NO; |
497 | } else { |
498 | index_type = SYM_SEC_FIELD_NO; |
499 | } |
500 | |
501 | while (column) { |
502 | mem_heap_t* heap = NULL; |
503 | ibool needs_copy; |
504 | |
505 | field_no = column->field_nos[index_type]; |
506 | |
507 | if (field_no != ULINT_UNDEFINED) { |
508 | |
509 | if (UNIV_UNLIKELY(rec_offs_nth_extern( |
510 | offsets, field_no) != 0)) { |
511 | |
512 | /* Copy an externally stored field to the |
513 | temporary heap, if possible. */ |
514 | |
515 | heap = mem_heap_create(1); |
516 | |
517 | data = btr_rec_copy_externally_stored_field( |
518 | rec, offsets, |
519 | dict_table_page_size(index->table), |
520 | field_no, &len, heap); |
521 | |
522 | /* data == NULL means that the |
523 | externally stored field was not |
524 | written yet. This record |
525 | should only be seen by |
526 | recv_recovery_rollback_active() or any |
527 | TRX_ISO_READ_UNCOMMITTED |
528 | transactions. The InnoDB SQL parser |
529 | (the sole caller of this function) |
530 | does not implement READ UNCOMMITTED, |
531 | and it is not involved during rollback. */ |
532 | ut_a(data); |
533 | ut_a(len != UNIV_SQL_NULL); |
534 | |
535 | needs_copy = TRUE; |
536 | } else { |
537 | data = rec_get_nth_cfield(rec, index, offsets, |
538 | field_no, &len); |
539 | needs_copy = column->copy_val; |
540 | } |
541 | |
542 | if (needs_copy) { |
543 | eval_node_copy_and_alloc_val(column, data, |
544 | len); |
545 | } else { |
546 | val = que_node_get_val(column); |
547 | dfield_set_data(val, data, len); |
548 | } |
549 | |
550 | if (UNIV_LIKELY_NULL(heap)) { |
551 | mem_heap_free(heap); |
552 | } |
553 | } |
554 | |
555 | column = UT_LIST_GET_NEXT(col_var_list, column); |
556 | } |
557 | } |
558 | |
559 | /*********************************************************************//** |
560 | Allocates a prefetch buffer for a column when prefetch is first time done. */ |
561 | static |
562 | void |
563 | sel_col_prefetch_buf_alloc( |
564 | /*=======================*/ |
565 | sym_node_t* column) /*!< in: symbol table node for a column */ |
566 | { |
567 | sel_buf_t* sel_buf; |
568 | ulint i; |
569 | |
570 | ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL); |
571 | |
572 | column->prefetch_buf = static_cast<sel_buf_t*>( |
573 | ut_malloc_nokey(SEL_MAX_N_PREFETCH * sizeof(sel_buf_t))); |
574 | |
575 | for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
576 | sel_buf = column->prefetch_buf + i; |
577 | |
578 | sel_buf->data = NULL; |
579 | sel_buf->len = 0; |
580 | sel_buf->val_buf_size = 0; |
581 | } |
582 | } |
583 | |
584 | /*********************************************************************//** |
585 | Frees a prefetch buffer for a column, including the dynamically allocated |
586 | memory for data stored there. */ |
587 | void |
588 | sel_col_prefetch_buf_free( |
589 | /*======================*/ |
590 | sel_buf_t* prefetch_buf) /*!< in, own: prefetch buffer */ |
591 | { |
592 | sel_buf_t* sel_buf; |
593 | ulint i; |
594 | |
595 | for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { |
596 | sel_buf = prefetch_buf + i; |
597 | |
598 | if (sel_buf->val_buf_size > 0) { |
599 | |
600 | ut_free(sel_buf->data); |
601 | } |
602 | } |
603 | |
604 | ut_free(prefetch_buf); |
605 | } |
606 | |
607 | /*********************************************************************//** |
608 | Pops the column values for a prefetched, cached row from the column prefetch |
609 | buffers and places them to the val fields in the column nodes. */ |
610 | static |
611 | void |
612 | sel_dequeue_prefetched_row( |
613 | /*=======================*/ |
614 | plan_t* plan) /*!< in: plan node for a table */ |
615 | { |
616 | sym_node_t* column; |
617 | sel_buf_t* sel_buf; |
618 | dfield_t* val; |
619 | byte* data; |
620 | ulint len; |
621 | ulint val_buf_size; |
622 | |
623 | ut_ad(plan->n_rows_prefetched > 0); |
624 | |
625 | column = UT_LIST_GET_FIRST(plan->columns); |
626 | |
627 | while (column) { |
628 | val = que_node_get_val(column); |
629 | |
630 | if (!column->copy_val) { |
631 | /* We did not really push any value for the |
632 | column */ |
633 | |
634 | ut_ad(!column->prefetch_buf); |
635 | ut_ad(que_node_get_val_buf_size(column) == 0); |
636 | ut_d(dfield_set_null(val)); |
637 | |
638 | goto next_col; |
639 | } |
640 | |
641 | ut_ad(column->prefetch_buf); |
642 | ut_ad(!dfield_is_ext(val)); |
643 | |
644 | sel_buf = column->prefetch_buf + plan->first_prefetched; |
645 | |
646 | data = sel_buf->data; |
647 | len = sel_buf->len; |
648 | val_buf_size = sel_buf->val_buf_size; |
649 | |
650 | /* We must keep track of the allocated memory for |
651 | column values to be able to free it later: therefore |
652 | we swap the values for sel_buf and val */ |
653 | |
654 | sel_buf->data = static_cast<byte*>(dfield_get_data(val)); |
655 | sel_buf->len = dfield_get_len(val); |
656 | sel_buf->val_buf_size = que_node_get_val_buf_size(column); |
657 | |
658 | dfield_set_data(val, data, len); |
659 | que_node_set_val_buf_size(column, val_buf_size); |
660 | next_col: |
661 | column = UT_LIST_GET_NEXT(col_var_list, column); |
662 | } |
663 | |
664 | plan->n_rows_prefetched--; |
665 | |
666 | plan->first_prefetched++; |
667 | } |
668 | |
669 | /*********************************************************************//** |
670 | Pushes the column values for a prefetched, cached row to the column prefetch |
671 | buffers from the val fields in the column nodes. */ |
672 | UNIV_INLINE |
673 | void |
674 | sel_enqueue_prefetched_row( |
675 | /*=======================*/ |
676 | plan_t* plan) /*!< in: plan node for a table */ |
677 | { |
678 | sym_node_t* column; |
679 | sel_buf_t* sel_buf; |
680 | dfield_t* val; |
681 | byte* data; |
682 | ulint len; |
683 | ulint pos; |
684 | ulint val_buf_size; |
685 | |
686 | if (plan->n_rows_prefetched == 0) { |
687 | pos = 0; |
688 | plan->first_prefetched = 0; |
689 | } else { |
690 | pos = plan->n_rows_prefetched; |
691 | |
692 | /* We have the convention that pushing new rows starts only |
693 | after the prefetch stack has been emptied: */ |
694 | |
695 | ut_ad(plan->first_prefetched == 0); |
696 | } |
697 | |
698 | plan->n_rows_prefetched++; |
699 | |
700 | ut_ad(pos < SEL_MAX_N_PREFETCH); |
701 | |
702 | for (column = UT_LIST_GET_FIRST(plan->columns); |
703 | column != 0; |
704 | column = UT_LIST_GET_NEXT(col_var_list, column)) { |
705 | |
706 | if (!column->copy_val) { |
707 | /* There is no sense to push pointers to database |
708 | page fields when we do not keep latch on the page! */ |
709 | continue; |
710 | } |
711 | |
712 | if (!column->prefetch_buf) { |
713 | /* Allocate a new prefetch buffer */ |
714 | |
715 | sel_col_prefetch_buf_alloc(column); |
716 | } |
717 | |
718 | sel_buf = column->prefetch_buf + pos; |
719 | |
720 | val = que_node_get_val(column); |
721 | |
722 | data = static_cast<byte*>(dfield_get_data(val)); |
723 | len = dfield_get_len(val); |
724 | val_buf_size = que_node_get_val_buf_size(column); |
725 | |
726 | /* We must keep track of the allocated memory for |
727 | column values to be able to free it later: therefore |
728 | we swap the values for sel_buf and val */ |
729 | |
730 | dfield_set_data(val, sel_buf->data, sel_buf->len); |
731 | que_node_set_val_buf_size(column, sel_buf->val_buf_size); |
732 | |
733 | sel_buf->data = data; |
734 | sel_buf->len = len; |
735 | sel_buf->val_buf_size = val_buf_size; |
736 | } |
737 | } |
738 | |
739 | /*********************************************************************//** |
740 | Builds a previous version of a clustered index record for a consistent read |
741 | @return DB_SUCCESS or error code */ |
742 | static MY_ATTRIBUTE((nonnull, warn_unused_result)) |
743 | dberr_t |
744 | row_sel_build_prev_vers( |
745 | /*====================*/ |
746 | ReadView* read_view, /*!< in: read view */ |
747 | dict_index_t* index, /*!< in: plan node for table */ |
748 | rec_t* rec, /*!< in: record in a clustered index */ |
749 | ulint** offsets, /*!< in/out: offsets returned by |
750 | rec_get_offsets(rec, plan->index) */ |
751 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
752 | the offsets are allocated */ |
753 | mem_heap_t** old_vers_heap, /*!< out: old version heap to use */ |
754 | rec_t** old_vers, /*!< out: old version, or NULL if the |
755 | record does not exist in the view: |
756 | i.e., it was freshly inserted |
757 | afterwards */ |
758 | mtr_t* mtr) /*!< in: mtr */ |
759 | { |
760 | dberr_t err; |
761 | |
762 | if (*old_vers_heap) { |
763 | mem_heap_empty(*old_vers_heap); |
764 | } else { |
765 | *old_vers_heap = mem_heap_create(512); |
766 | } |
767 | |
768 | err = row_vers_build_for_consistent_read( |
769 | rec, mtr, index, offsets, read_view, offset_heap, |
770 | *old_vers_heap, old_vers, NULL); |
771 | return(err); |
772 | } |
773 | |
774 | /*********************************************************************//** |
775 | Builds the last committed version of a clustered index record for a |
776 | semi-consistent read. */ |
777 | static |
778 | void |
779 | row_sel_build_committed_vers_for_mysql( |
780 | /*===================================*/ |
781 | dict_index_t* clust_index, /*!< in: clustered index */ |
782 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ |
783 | const rec_t* rec, /*!< in: record in a clustered index */ |
784 | ulint** offsets, /*!< in/out: offsets returned by |
785 | rec_get_offsets(rec, clust_index) */ |
786 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
787 | the offsets are allocated */ |
788 | const rec_t** old_vers, /*!< out: old version, or NULL if the |
789 | record does not exist in the view: |
790 | i.e., it was freshly inserted |
791 | afterwards */ |
792 | const dtuple_t**vrow, /*!< out: to be filled with old virtual |
793 | column version if any */ |
794 | mtr_t* mtr) /*!< in: mtr */ |
795 | { |
796 | if (prebuilt->old_vers_heap) { |
797 | mem_heap_empty(prebuilt->old_vers_heap); |
798 | } else { |
799 | prebuilt->old_vers_heap = mem_heap_create( |
800 | rec_offs_size(*offsets)); |
801 | } |
802 | |
803 | row_vers_build_for_semi_consistent_read(prebuilt->trx, |
804 | rec, mtr, clust_index, offsets, offset_heap, |
805 | prebuilt->old_vers_heap, old_vers, vrow); |
806 | } |
807 | |
808 | /*********************************************************************//** |
809 | Tests the conditions which determine when the index segment we are searching |
810 | through has been exhausted. |
811 | @return TRUE if row passed the tests */ |
812 | UNIV_INLINE |
813 | ibool |
814 | row_sel_test_end_conds( |
815 | /*===================*/ |
816 | plan_t* plan) /*!< in: plan for the table; the column values must |
817 | already have been retrieved and the right sides of |
818 | comparisons evaluated */ |
819 | { |
820 | func_node_t* cond; |
821 | |
822 | /* All conditions in end_conds are comparisons of a column to an |
823 | expression */ |
824 | |
825 | for (cond = UT_LIST_GET_FIRST(plan->end_conds); |
826 | cond != 0; |
827 | cond = UT_LIST_GET_NEXT(cond_list, cond)) { |
828 | |
829 | /* Evaluate the left side of the comparison, i.e., get the |
830 | column value if there is an indirection */ |
831 | |
832 | eval_sym(static_cast<sym_node_t*>(cond->args)); |
833 | |
834 | /* Do the comparison */ |
835 | |
836 | if (!eval_cmp(cond)) { |
837 | |
838 | return(FALSE); |
839 | } |
840 | } |
841 | |
842 | return(TRUE); |
843 | } |
844 | |
845 | /*********************************************************************//** |
846 | Tests the other conditions. |
847 | @return TRUE if row passed the tests */ |
848 | UNIV_INLINE |
849 | ibool |
850 | row_sel_test_other_conds( |
851 | /*=====================*/ |
852 | plan_t* plan) /*!< in: plan for the table; the column values must |
853 | already have been retrieved */ |
854 | { |
855 | func_node_t* cond; |
856 | |
857 | cond = UT_LIST_GET_FIRST(plan->other_conds); |
858 | |
859 | while (cond) { |
860 | eval_exp(cond); |
861 | |
862 | if (!eval_node_get_ibool_val(cond)) { |
863 | |
864 | return(FALSE); |
865 | } |
866 | |
867 | cond = UT_LIST_GET_NEXT(cond_list, cond); |
868 | } |
869 | |
870 | return(TRUE); |
871 | } |
872 | |
873 | /*********************************************************************//** |
874 | Retrieves the clustered index record corresponding to a record in a |
875 | non-clustered index. Does the necessary locking. |
876 | @return DB_SUCCESS or error code */ |
877 | static MY_ATTRIBUTE((nonnull, warn_unused_result)) |
878 | dberr_t |
879 | row_sel_get_clust_rec( |
880 | /*==================*/ |
881 | sel_node_t* node, /*!< in: select_node */ |
882 | plan_t* plan, /*!< in: plan node for table */ |
883 | rec_t* rec, /*!< in: record in a non-clustered index */ |
884 | que_thr_t* thr, /*!< in: query thread */ |
885 | rec_t** out_rec,/*!< out: clustered record or an old version of |
886 | it, NULL if the old version did not exist |
887 | in the read view, i.e., it was a fresh |
888 | inserted version */ |
889 | mtr_t* mtr) /*!< in: mtr used to get access to the |
890 | non-clustered record; the same mtr is used to |
891 | access the clustered index */ |
892 | { |
893 | dict_index_t* index; |
894 | rec_t* clust_rec; |
895 | rec_t* old_vers; |
896 | dberr_t err; |
897 | mem_heap_t* heap = NULL; |
898 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
899 | ulint* offsets = offsets_; |
900 | rec_offs_init(offsets_); |
901 | |
902 | *out_rec = NULL; |
903 | |
904 | offsets = rec_get_offsets(rec, |
905 | btr_pcur_get_btr_cur(&plan->pcur)->index, |
906 | offsets, true, ULINT_UNDEFINED, &heap); |
907 | |
908 | row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets); |
909 | |
910 | index = dict_table_get_first_index(plan->table); |
911 | |
912 | btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE, |
913 | BTR_SEARCH_LEAF, &plan->clust_pcur, |
914 | 0, mtr); |
915 | |
916 | clust_rec = btr_pcur_get_rec(&(plan->clust_pcur)); |
917 | |
918 | /* Note: only if the search ends up on a non-infimum record is the |
919 | low_match value the real match to the search tuple */ |
920 | |
921 | if (!page_rec_is_user_rec(clust_rec) |
922 | || btr_pcur_get_low_match(&(plan->clust_pcur)) |
923 | < dict_index_get_n_unique(index)) { |
924 | |
925 | ut_a(rec_get_deleted_flag(rec, |
926 | dict_table_is_comp(plan->table))); |
927 | ut_a(node->read_view); |
928 | |
929 | /* In a rare case it is possible that no clust rec is found |
930 | for a delete-marked secondary index record: if in row0umod.cc |
931 | in row_undo_mod_remove_clust_low() we have already removed |
932 | the clust rec, while purge is still cleaning and removing |
933 | secondary index records associated with earlier versions of |
934 | the clustered index record. In that case we know that the |
935 | clustered index record did not exist in the read view of |
936 | trx. */ |
937 | |
938 | goto func_exit; |
939 | } |
940 | |
941 | offsets = rec_get_offsets(clust_rec, index, offsets, true, |
942 | ULINT_UNDEFINED, &heap); |
943 | |
944 | if (!node->read_view) { |
945 | /* Try to place a lock on the index record */ |
946 | ulint lock_type; |
947 | trx_t* trx; |
948 | |
949 | trx = thr_get_trx(thr); |
950 | |
951 | /* If innodb_locks_unsafe_for_binlog option is used |
952 | or this session is using READ COMMITTED or lower isolation level |
953 | we lock only the record, i.e., next-key locking is |
954 | not used. */ |
955 | if (srv_locks_unsafe_for_binlog |
956 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { |
957 | lock_type = LOCK_REC_NOT_GAP; |
958 | } else { |
959 | lock_type = LOCK_ORDINARY; |
960 | } |
961 | |
962 | err = lock_clust_rec_read_check_and_lock( |
963 | 0, btr_pcur_get_block(&plan->clust_pcur), |
964 | clust_rec, index, offsets, |
965 | static_cast<lock_mode>(node->row_lock_mode), |
966 | lock_type, |
967 | thr); |
968 | |
969 | switch (err) { |
970 | case DB_SUCCESS: |
971 | case DB_SUCCESS_LOCKED_REC: |
972 | /* Declare the variable uninitialized in Valgrind. |
973 | It should be set to DB_SUCCESS at func_exit. */ |
974 | UNIV_MEM_INVALID(&err, sizeof err); |
975 | break; |
976 | default: |
977 | goto err_exit; |
978 | } |
979 | } else { |
980 | /* This is a non-locking consistent read: if necessary, fetch |
981 | a previous version of the record */ |
982 | |
983 | old_vers = NULL; |
984 | |
985 | if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets, |
986 | node->read_view)) { |
987 | |
988 | err = row_sel_build_prev_vers( |
989 | node->read_view, index, clust_rec, |
990 | &offsets, &heap, &plan->old_vers_heap, |
991 | &old_vers, mtr); |
992 | |
993 | if (err != DB_SUCCESS) { |
994 | |
995 | goto err_exit; |
996 | } |
997 | |
998 | clust_rec = old_vers; |
999 | |
1000 | if (clust_rec == NULL) { |
1001 | goto func_exit; |
1002 | } |
1003 | } |
1004 | |
1005 | /* If we had to go to an earlier version of row or the |
1006 | secondary index record is delete marked, then it may be that |
1007 | the secondary index record corresponding to clust_rec |
1008 | (or old_vers) is not rec; in that case we must ignore |
1009 | such row because in our snapshot rec would not have existed. |
1010 | Remember that from rec we cannot see directly which transaction |
1011 | id corresponds to it: we have to go to the clustered index |
1012 | record. A query where we want to fetch all rows where |
1013 | the secondary index value is in some interval would return |
1014 | a wrong result if we would not drop rows which we come to |
1015 | visit through secondary index records that would not really |
1016 | exist in our snapshot. */ |
1017 | |
1018 | if ((old_vers |
1019 | || rec_get_deleted_flag(rec, dict_table_is_comp( |
1020 | plan->table))) |
1021 | && !row_sel_sec_rec_is_for_clust_rec(rec, plan->index, |
1022 | clust_rec, index, |
1023 | thr)) { |
1024 | goto func_exit; |
1025 | } |
1026 | } |
1027 | |
1028 | /* Fetch the columns needed in test conditions. The clustered |
1029 | index record is protected by a page latch that was acquired |
1030 | when plan->clust_pcur was positioned. The latch will not be |
1031 | released until mtr->commit(). */ |
1032 | |
1033 | ut_ad(!rec_get_deleted_flag(clust_rec, rec_offs_comp(offsets))); |
1034 | row_sel_fetch_columns(index, clust_rec, offsets, |
1035 | UT_LIST_GET_FIRST(plan->columns)); |
1036 | *out_rec = clust_rec; |
1037 | func_exit: |
1038 | err = DB_SUCCESS; |
1039 | err_exit: |
1040 | if (UNIV_LIKELY_NULL(heap)) { |
1041 | mem_heap_free(heap); |
1042 | } |
1043 | return(err); |
1044 | } |
1045 | |
1046 | /*********************************************************************//** |
1047 | Sets a lock on a page of R-Tree record. This is all or none action, |
1048 | mostly due to we cannot reposition a record in R-Tree (with the |
1049 | nature of splitting) |
1050 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
1051 | UNIV_INLINE |
1052 | dberr_t |
1053 | sel_set_rtr_rec_lock( |
1054 | /*=================*/ |
1055 | btr_pcur_t* pcur, /*!< in: cursor */ |
1056 | const rec_t* first_rec,/*!< in: record */ |
1057 | dict_index_t* index, /*!< in: index */ |
1058 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
1059 | ulint mode, /*!< in: lock mode */ |
1060 | ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or |
1061 | LOC_REC_NOT_GAP */ |
1062 | que_thr_t* thr, /*!< in: query thread */ |
1063 | mtr_t* mtr) /*!< in: mtr */ |
1064 | { |
1065 | matched_rec_t* match = pcur->btr_cur.rtr_info->matches; |
1066 | mem_heap_t* heap = NULL; |
1067 | dberr_t err = DB_SUCCESS; |
1068 | trx_t* trx = thr_get_trx(thr); |
1069 | buf_block_t* cur_block = btr_pcur_get_block(pcur); |
1070 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
1071 | ulint* my_offsets = const_cast<ulint*>(offsets); |
1072 | rec_t* rec = const_cast<rec_t*>(first_rec); |
1073 | rtr_rec_vector* match_rec; |
1074 | rtr_rec_vector::iterator end; |
1075 | |
1076 | rec_offs_init(offsets_); |
1077 | |
1078 | if (match->locked || page_rec_is_supremum(first_rec)) { |
1079 | return(DB_SUCCESS_LOCKED_REC); |
1080 | } |
1081 | |
1082 | ut_ad(page_align(first_rec) == cur_block->frame); |
1083 | ut_ad(match->valid); |
1084 | |
1085 | rw_lock_x_lock(&(match->block.lock)); |
1086 | retry: |
1087 | cur_block = btr_pcur_get_block(pcur); |
1088 | ut_ad(rw_lock_own(&(match->block.lock), RW_LOCK_X) |
1089 | || rw_lock_own(&(match->block.lock), RW_LOCK_S)); |
1090 | ut_ad(page_is_leaf(buf_block_get_frame(cur_block))); |
1091 | |
1092 | err = lock_sec_rec_read_check_and_lock( |
1093 | 0, cur_block, rec, index, my_offsets, |
1094 | static_cast<lock_mode>(mode), type, thr); |
1095 | |
1096 | if (err == DB_LOCK_WAIT) { |
1097 | re_scan: |
1098 | mtr->commit(); |
1099 | trx->error_state = err; |
1100 | que_thr_stop_for_mysql(thr); |
1101 | thr->lock_state = QUE_THR_LOCK_ROW; |
1102 | if (row_mysql_handle_errors( |
1103 | &err, trx, thr, NULL)) { |
1104 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
1105 | mtr->start(); |
1106 | |
1107 | mutex_enter(&match->rtr_match_mutex); |
1108 | if (!match->valid && match->matched_recs->empty()) { |
1109 | mutex_exit(&match->rtr_match_mutex); |
1110 | err = DB_RECORD_NOT_FOUND; |
1111 | goto func_end; |
1112 | } |
1113 | mutex_exit(&match->rtr_match_mutex); |
1114 | |
1115 | /* MDEV-14059 FIXME: why re-latch the block? |
1116 | pcur is already positioned on it! */ |
1117 | ulint page_no = page_get_page_no( |
1118 | btr_pcur_get_page(pcur)); |
1119 | |
1120 | cur_block = buf_page_get_gen( |
1121 | page_id_t(index->table->space->id, page_no), |
1122 | page_size_t(index->table->space->flags), |
1123 | RW_X_LATCH, NULL, BUF_GET, |
1124 | __FILE__, __LINE__, mtr, &err); |
1125 | } else { |
1126 | mtr->start(); |
1127 | goto func_end; |
1128 | } |
1129 | |
1130 | DEBUG_SYNC_C("rtr_set_lock_wait" ); |
1131 | |
1132 | if (!match->valid) { |
1133 | /* Page got deleted */ |
1134 | mtr->commit(); |
1135 | mtr->start(); |
1136 | err = DB_RECORD_NOT_FOUND; |
1137 | goto func_end; |
1138 | } |
1139 | |
1140 | match->matched_recs->clear(); |
1141 | |
1142 | rtr_cur_search_with_match( |
1143 | cur_block, index, |
1144 | pcur->btr_cur.rtr_info->search_tuple, |
1145 | pcur->btr_cur.rtr_info->search_mode, |
1146 | &pcur->btr_cur.page_cur, |
1147 | pcur->btr_cur.rtr_info); |
1148 | |
1149 | if (!page_is_leaf(buf_block_get_frame(cur_block))) { |
1150 | /* Page got splitted and promoted (only for |
1151 | root page it is possible). Release the |
1152 | page and ask for a re-search */ |
1153 | mtr->commit(); |
1154 | mtr->start(); |
1155 | err = DB_RECORD_NOT_FOUND; |
1156 | goto func_end; |
1157 | } |
1158 | |
1159 | rec = btr_pcur_get_rec(pcur); |
1160 | my_offsets = offsets_; |
1161 | my_offsets = rec_get_offsets(rec, index, my_offsets, true, |
1162 | ULINT_UNDEFINED, &heap); |
1163 | |
1164 | /* No match record */ |
1165 | if (page_rec_is_supremum(rec) || !match->valid) { |
1166 | mtr->commit(); |
1167 | mtr->start(); |
1168 | err = DB_RECORD_NOT_FOUND; |
1169 | goto func_end; |
1170 | } |
1171 | |
1172 | goto retry; |
1173 | } |
1174 | |
1175 | my_offsets = offsets_; |
1176 | match_rec = match->matched_recs; |
1177 | end = match_rec->end(); |
1178 | |
1179 | for (rtr_rec_vector::iterator it = match_rec->begin(); |
1180 | it != end; ++it) { |
1181 | rtr_rec_t* rtr_rec = &(*it); |
1182 | |
1183 | my_offsets = rec_get_offsets( |
1184 | rtr_rec->r_rec, index, my_offsets, true, |
1185 | ULINT_UNDEFINED, &heap); |
1186 | |
1187 | err = lock_sec_rec_read_check_and_lock( |
1188 | 0, &match->block, rtr_rec->r_rec, index, |
1189 | my_offsets, static_cast<lock_mode>(mode), |
1190 | type, thr); |
1191 | |
1192 | if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) { |
1193 | rtr_rec->locked = true; |
1194 | } else if (err == DB_LOCK_WAIT) { |
1195 | goto re_scan; |
1196 | } else { |
1197 | goto func_end; |
1198 | } |
1199 | } |
1200 | |
1201 | match->locked = true; |
1202 | |
1203 | func_end: |
1204 | rw_lock_x_unlock(&(match->block.lock)); |
1205 | if (heap != NULL) { |
1206 | mem_heap_free(heap); |
1207 | } |
1208 | |
1209 | ut_ad(err != DB_LOCK_WAIT); |
1210 | |
1211 | return(err); |
1212 | } |
1213 | |
1214 | /*********************************************************************//** |
1215 | Sets a lock on a record. |
1216 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
1217 | UNIV_INLINE |
1218 | dberr_t |
1219 | sel_set_rec_lock( |
1220 | /*=============*/ |
1221 | btr_pcur_t* pcur, /*!< in: cursor */ |
1222 | const rec_t* rec, /*!< in: record */ |
1223 | dict_index_t* index, /*!< in: index */ |
1224 | const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ |
1225 | ulint mode, /*!< in: lock mode */ |
1226 | ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or |
1227 | LOC_REC_NOT_GAP */ |
1228 | que_thr_t* thr, /*!< in: query thread */ |
1229 | mtr_t* mtr) /*!< in: mtr */ |
1230 | { |
1231 | trx_t* trx; |
1232 | dberr_t err = DB_SUCCESS; |
1233 | const buf_block_t* block; |
1234 | |
1235 | block = btr_pcur_get_block(pcur); |
1236 | |
1237 | trx = thr_get_trx(thr); |
1238 | |
1239 | if (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000) { |
1240 | if (buf_LRU_buf_pool_running_out()) { |
1241 | |
1242 | return(DB_LOCK_TABLE_FULL); |
1243 | } |
1244 | } |
1245 | |
1246 | if (dict_index_is_clust(index)) { |
1247 | err = lock_clust_rec_read_check_and_lock( |
1248 | 0, block, rec, index, offsets, |
1249 | static_cast<lock_mode>(mode), type, thr); |
1250 | } else { |
1251 | |
1252 | if (dict_index_is_spatial(index)) { |
1253 | if (type == LOCK_GAP || type == LOCK_ORDINARY) { |
1254 | ut_ad(0); |
1255 | ib::error() << "Incorrectly request GAP lock " |
1256 | "on RTree" ; |
1257 | return(DB_SUCCESS); |
1258 | } |
1259 | err = sel_set_rtr_rec_lock(pcur, rec, index, offsets, |
1260 | mode, type, thr, mtr); |
1261 | } else { |
1262 | err = lock_sec_rec_read_check_and_lock( |
1263 | 0, block, rec, index, offsets, |
1264 | static_cast<lock_mode>(mode), type, thr); |
1265 | } |
1266 | } |
1267 | |
1268 | return(err); |
1269 | } |
1270 | |
1271 | /*********************************************************************//** |
1272 | Opens a pcur to a table index. */ |
1273 | static |
1274 | void |
1275 | row_sel_open_pcur( |
1276 | /*==============*/ |
1277 | plan_t* plan, /*!< in: table plan */ |
1278 | #ifdef BTR_CUR_HASH_ADAPT |
1279 | rw_lock_t* ahi_latch, |
1280 | /*!< in: the adaptive hash index latch */ |
1281 | #endif /* BTR_CUR_HASH_ADAPT */ |
1282 | mtr_t* mtr) /*!< in/out: mini-transaction */ |
1283 | { |
1284 | dict_index_t* index; |
1285 | func_node_t* cond; |
1286 | que_node_t* exp; |
1287 | ulint n_fields; |
1288 | ulint i; |
1289 | |
1290 | index = plan->index; |
1291 | |
1292 | /* Calculate the value of the search tuple: the exact match columns |
1293 | get their expressions evaluated when we evaluate the right sides of |
1294 | end_conds */ |
1295 | |
1296 | cond = UT_LIST_GET_FIRST(plan->end_conds); |
1297 | |
1298 | while (cond) { |
1299 | eval_exp(que_node_get_next(cond->args)); |
1300 | |
1301 | cond = UT_LIST_GET_NEXT(cond_list, cond); |
1302 | } |
1303 | |
1304 | if (plan->tuple) { |
1305 | n_fields = dtuple_get_n_fields(plan->tuple); |
1306 | |
1307 | if (plan->n_exact_match < n_fields) { |
1308 | /* There is a non-exact match field which must be |
1309 | evaluated separately */ |
1310 | |
1311 | eval_exp(plan->tuple_exps[n_fields - 1]); |
1312 | } |
1313 | |
1314 | for (i = 0; i < n_fields; i++) { |
1315 | exp = plan->tuple_exps[i]; |
1316 | |
1317 | dfield_copy_data(dtuple_get_nth_field(plan->tuple, i), |
1318 | que_node_get_val(exp)); |
1319 | } |
1320 | |
1321 | /* Open pcur to the index */ |
1322 | |
1323 | btr_pcur_open_with_no_init(index, plan->tuple, plan->mode, |
1324 | BTR_SEARCH_LEAF, &plan->pcur, |
1325 | ahi_latch, mtr); |
1326 | } else { |
1327 | /* Open the cursor to the start or the end of the index |
1328 | (FALSE: no init) */ |
1329 | |
1330 | btr_pcur_open_at_index_side(plan->asc, index, BTR_SEARCH_LEAF, |
1331 | &(plan->pcur), false, 0, mtr); |
1332 | } |
1333 | |
1334 | ut_ad(plan->n_rows_prefetched == 0); |
1335 | ut_ad(plan->n_rows_fetched == 0); |
1336 | ut_ad(plan->cursor_at_end == FALSE); |
1337 | |
1338 | plan->pcur_is_open = TRUE; |
1339 | } |
1340 | |
1341 | /*********************************************************************//** |
1342 | Restores a stored pcur position to a table index. |
1343 | @return TRUE if the cursor should be moved to the next record after we |
1344 | return from this function (moved to the previous, in the case of a |
1345 | descending cursor) without processing again the current cursor |
1346 | record */ |
1347 | static |
1348 | ibool |
1349 | row_sel_restore_pcur_pos( |
1350 | /*=====================*/ |
1351 | plan_t* plan, /*!< in: table plan */ |
1352 | mtr_t* mtr) /*!< in: mtr */ |
1353 | { |
1354 | ibool equal_position; |
1355 | ulint relative_position; |
1356 | |
1357 | ut_ad(!plan->cursor_at_end); |
1358 | |
1359 | relative_position = btr_pcur_get_rel_pos(&(plan->pcur)); |
1360 | |
1361 | equal_position = btr_pcur_restore_position(BTR_SEARCH_LEAF, |
1362 | &(plan->pcur), mtr); |
1363 | |
1364 | /* If the cursor is traveling upwards, and relative_position is |
1365 | |
1366 | (1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock |
1367 | yet on the successor of the page infimum; |
1368 | (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the |
1369 | first record GREATER than the predecessor of a page supremum; we have |
1370 | not yet processed the cursor record: no need to move the cursor to the |
1371 | next record; |
1372 | (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the |
1373 | last record LESS or EQUAL to the old stored user record; (a) if |
1374 | equal_position is FALSE, this means that the cursor is now on a record |
1375 | less than the old user record, and we must move to the next record; |
1376 | (b) if equal_position is TRUE, then if |
1377 | plan->stored_cursor_rec_processed is TRUE, we must move to the next |
1378 | record, else there is no need to move the cursor. */ |
1379 | |
1380 | if (plan->asc) { |
1381 | if (relative_position == BTR_PCUR_ON) { |
1382 | |
1383 | if (equal_position) { |
1384 | |
1385 | return(plan->stored_cursor_rec_processed); |
1386 | } |
1387 | |
1388 | return(TRUE); |
1389 | } |
1390 | |
1391 | ut_ad(relative_position == BTR_PCUR_AFTER |
1392 | || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
1393 | |
1394 | return(FALSE); |
1395 | } |
1396 | |
1397 | /* If the cursor is traveling downwards, and relative_position is |
1398 | |
1399 | (1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on |
1400 | the last record LESS than the successor of a page infimum; we have not |
1401 | processed the cursor record: no need to move the cursor; |
1402 | (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the |
1403 | first record GREATER than the predecessor of a page supremum; we have |
1404 | processed the cursor record: we should move the cursor to the previous |
1405 | record; |
1406 | (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the |
1407 | last record LESS or EQUAL to the old stored user record; (a) if |
1408 | equal_position is FALSE, this means that the cursor is now on a record |
1409 | less than the old user record, and we need not move to the previous |
1410 | record; (b) if equal_position is TRUE, then if |
1411 | plan->stored_cursor_rec_processed is TRUE, we must move to the previous |
1412 | record, else there is no need to move the cursor. */ |
1413 | |
1414 | if (relative_position == BTR_PCUR_BEFORE |
1415 | || relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) { |
1416 | |
1417 | return(FALSE); |
1418 | } |
1419 | |
1420 | if (relative_position == BTR_PCUR_ON) { |
1421 | |
1422 | if (equal_position) { |
1423 | |
1424 | return(plan->stored_cursor_rec_processed); |
1425 | } |
1426 | |
1427 | return(FALSE); |
1428 | } |
1429 | |
1430 | ut_ad(relative_position == BTR_PCUR_AFTER |
1431 | || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); |
1432 | |
1433 | return(TRUE); |
1434 | } |
1435 | |
1436 | /*********************************************************************//** |
1437 | Resets a plan cursor to a closed state. */ |
1438 | UNIV_INLINE |
1439 | void |
1440 | plan_reset_cursor( |
1441 | /*==============*/ |
1442 | plan_t* plan) /*!< in: plan */ |
1443 | { |
1444 | plan->pcur_is_open = FALSE; |
1445 | plan->cursor_at_end = FALSE; |
1446 | plan->n_rows_fetched = 0; |
1447 | plan->n_rows_prefetched = 0; |
1448 | } |
1449 | |
1450 | #ifdef BTR_CUR_HASH_ADAPT |
1451 | /*********************************************************************//** |
1452 | Tries to do a shortcut to fetch a clustered index record with a unique key, |
1453 | using the hash index if possible (not always). |
1454 | @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ |
1455 | static |
1456 | ulint |
1457 | row_sel_try_search_shortcut( |
1458 | /*========================*/ |
1459 | sel_node_t* node, /*!< in: select node for a consistent read */ |
1460 | plan_t* plan, /*!< in: plan for a unique search in clustered |
1461 | index */ |
1462 | mtr_t* mtr) /*!< in: mtr */ |
1463 | { |
1464 | dict_index_t* index = plan->index; |
1465 | |
1466 | ut_ad(node->read_view); |
1467 | ut_ad(plan->unique_search); |
1468 | ut_ad(!plan->must_get_clust); |
1469 | |
1470 | rw_lock_t* ahi_latch = btr_get_search_latch(index); |
1471 | rw_lock_s_lock(ahi_latch); |
1472 | |
1473 | row_sel_open_pcur(plan, ahi_latch, mtr); |
1474 | |
1475 | const rec_t* rec = btr_pcur_get_rec(&(plan->pcur)); |
1476 | |
1477 | if (!page_rec_is_user_rec(rec) || rec_is_default_row(rec, index)) { |
1478 | retry: |
1479 | rw_lock_s_unlock(ahi_latch); |
1480 | return(SEL_RETRY); |
1481 | } |
1482 | |
1483 | ut_ad(plan->mode == PAGE_CUR_GE); |
1484 | |
1485 | /* As the cursor is now placed on a user record after a search with |
1486 | the mode PAGE_CUR_GE, the up_match field in the cursor tells how many |
1487 | fields in the user record matched to the search tuple */ |
1488 | |
1489 | if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) { |
1490 | exhausted: |
1491 | rw_lock_s_unlock(ahi_latch); |
1492 | return(SEL_EXHAUSTED); |
1493 | } |
1494 | |
1495 | /* This is a non-locking consistent read: if necessary, fetch |
1496 | a previous version of the record */ |
1497 | |
1498 | mem_heap_t* heap = NULL; |
1499 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
1500 | ulint* offsets = offsets_; |
1501 | rec_offs_init(offsets_); |
1502 | offsets = rec_get_offsets(rec, index, offsets, true, |
1503 | ULINT_UNDEFINED, &heap); |
1504 | |
1505 | if (dict_index_is_clust(index)) { |
1506 | if (!lock_clust_rec_cons_read_sees(rec, index, offsets, |
1507 | node->read_view)) { |
1508 | goto retry; |
1509 | } |
1510 | } else if (!srv_read_only_mode |
1511 | && !lock_sec_rec_cons_read_sees( |
1512 | rec, index, node->read_view)) { |
1513 | goto retry; |
1514 | } |
1515 | |
1516 | if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) { |
1517 | goto exhausted; |
1518 | } |
1519 | |
1520 | /* Fetch the columns needed in test conditions. The index |
1521 | record is protected by a page latch that was acquired when |
1522 | plan->pcur was positioned. The latch will not be released |
1523 | until mtr->commit(). */ |
1524 | |
1525 | row_sel_fetch_columns(index, rec, offsets, |
1526 | UT_LIST_GET_FIRST(plan->columns)); |
1527 | |
1528 | /* Test the rest of search conditions */ |
1529 | |
1530 | if (!row_sel_test_other_conds(plan)) { |
1531 | goto exhausted; |
1532 | } |
1533 | |
1534 | ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); |
1535 | |
1536 | plan->n_rows_fetched++; |
1537 | rw_lock_s_unlock(ahi_latch); |
1538 | |
1539 | if (UNIV_LIKELY_NULL(heap)) { |
1540 | mem_heap_free(heap); |
1541 | } |
1542 | return(SEL_FOUND); |
1543 | } |
1544 | #endif /* BTR_CUR_HASH_ADAPT */ |
1545 | |
1546 | /*********************************************************************//** |
1547 | Performs a select step. |
1548 | @return DB_SUCCESS or error code */ |
1549 | static MY_ATTRIBUTE((warn_unused_result)) |
1550 | dberr_t |
1551 | row_sel( |
1552 | /*====*/ |
1553 | sel_node_t* node, /*!< in: select node */ |
1554 | que_thr_t* thr) /*!< in: query thread */ |
1555 | { |
1556 | dict_index_t* index; |
1557 | plan_t* plan; |
1558 | mtr_t mtr; |
1559 | ibool moved; |
1560 | rec_t* rec; |
1561 | rec_t* old_vers; |
1562 | rec_t* clust_rec; |
1563 | ibool consistent_read; |
1564 | |
1565 | /* The following flag becomes TRUE when we are doing a |
1566 | consistent read from a non-clustered index and we must look |
1567 | at the clustered index to find out the previous delete mark |
1568 | state of the non-clustered record: */ |
1569 | |
1570 | ibool cons_read_requires_clust_rec = FALSE; |
1571 | ulint cost_counter = 0; |
1572 | ibool cursor_just_opened; |
1573 | ibool must_go_to_next; |
1574 | ibool = FALSE; |
1575 | /* TRUE if the search was made using |
1576 | a non-clustered index, and we had to |
1577 | access the clustered record: now &mtr |
1578 | contains a clustered index latch, and |
1579 | &mtr must be committed before we move |
1580 | to the next non-clustered record */ |
1581 | dberr_t err; |
1582 | mem_heap_t* heap = NULL; |
1583 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
1584 | ulint* offsets = offsets_; |
1585 | rec_offs_init(offsets_); |
1586 | |
1587 | ut_ad(thr->run_node == node); |
1588 | |
1589 | if (node->read_view) { |
1590 | /* In consistent reads, we try to do with the hash index and |
1591 | not to use the buffer page get. This is to reduce memory bus |
1592 | load resulting from semaphore operations. The search latch |
1593 | will be s-locked when we access an index with a unique search |
1594 | condition, but not locked when we access an index with a |
1595 | less selective search condition. */ |
1596 | |
1597 | consistent_read = TRUE; |
1598 | } else { |
1599 | consistent_read = FALSE; |
1600 | } |
1601 | |
1602 | table_loop: |
1603 | /* TABLE LOOP |
1604 | ---------- |
1605 | This is the outer major loop in calculating a join. We come here when |
1606 | node->fetch_table changes, and after adding a row to aggregate totals |
1607 | and, of course, when this function is called. */ |
1608 | |
1609 | ut_ad(mtr_has_extra_clust_latch == FALSE); |
1610 | |
1611 | plan = sel_node_get_nth_plan(node, node->fetch_table); |
1612 | index = plan->index; |
1613 | |
1614 | if (plan->n_rows_prefetched > 0) { |
1615 | sel_dequeue_prefetched_row(plan); |
1616 | |
1617 | goto next_table_no_mtr; |
1618 | } |
1619 | |
1620 | if (plan->cursor_at_end) { |
1621 | /* The cursor has already reached the result set end: no more |
1622 | rows to process for this table cursor, as also the prefetch |
1623 | stack was empty */ |
1624 | |
1625 | ut_ad(plan->pcur_is_open); |
1626 | |
1627 | goto table_exhausted_no_mtr; |
1628 | } |
1629 | |
1630 | /* Open a cursor to index, or restore an open cursor position */ |
1631 | |
1632 | mtr.start(); |
1633 | |
1634 | #ifdef BTR_CUR_HASH_ADAPT |
1635 | if (consistent_read && plan->unique_search && !plan->pcur_is_open |
1636 | && !plan->must_get_clust) { |
1637 | switch (row_sel_try_search_shortcut(node, plan, &mtr)) { |
1638 | case SEL_FOUND: |
1639 | goto next_table; |
1640 | case SEL_EXHAUSTED: |
1641 | goto table_exhausted; |
1642 | default: |
1643 | ut_ad(0); |
1644 | /* fall through */ |
1645 | case SEL_RETRY: |
1646 | break; |
1647 | } |
1648 | |
1649 | plan_reset_cursor(plan); |
1650 | |
1651 | mtr.commit(); |
1652 | mtr.start(); |
1653 | } |
1654 | #endif /* BTR_CUR_HASH_ADAPT */ |
1655 | |
1656 | if (!plan->pcur_is_open) { |
1657 | /* Evaluate the expressions to build the search tuple and |
1658 | open the cursor */ |
1659 | row_sel_open_pcur(plan, |
1660 | #ifdef BTR_CUR_HASH_ADAPT |
1661 | NULL, |
1662 | #endif /* BTR_CUR_HASH_ADAPT */ |
1663 | &mtr); |
1664 | |
1665 | cursor_just_opened = TRUE; |
1666 | |
1667 | /* A new search was made: increment the cost counter */ |
1668 | cost_counter++; |
1669 | } else { |
1670 | /* Restore pcur position to the index */ |
1671 | |
1672 | must_go_to_next = row_sel_restore_pcur_pos(plan, &mtr); |
1673 | |
1674 | cursor_just_opened = FALSE; |
1675 | |
1676 | if (must_go_to_next) { |
1677 | /* We have already processed the cursor record: move |
1678 | to the next */ |
1679 | |
1680 | goto next_rec; |
1681 | } |
1682 | } |
1683 | |
1684 | rec_loop: |
1685 | /* RECORD LOOP |
1686 | ----------- |
1687 | In this loop we use pcur and try to fetch a qualifying row, and |
1688 | also fill the prefetch buffer for this table if n_rows_fetched has |
1689 | exceeded a threshold. While we are inside this loop, the following |
1690 | holds: |
1691 | (1) &mtr is started, |
1692 | (2) pcur is positioned and open. |
1693 | |
1694 | NOTE that if cursor_just_opened is TRUE here, it means that we came |
1695 | to this point right after row_sel_open_pcur. */ |
1696 | |
1697 | ut_ad(mtr_has_extra_clust_latch == FALSE); |
1698 | |
1699 | rec = btr_pcur_get_rec(&(plan->pcur)); |
1700 | |
1701 | /* PHASE 1: Set a lock if specified */ |
1702 | |
1703 | if (!node->asc && cursor_just_opened |
1704 | && !page_rec_is_supremum(rec)) { |
1705 | |
1706 | /* Do not support "descending search" for Spatial index */ |
1707 | ut_ad(!dict_index_is_spatial(index)); |
1708 | |
1709 | /* When we open a cursor for a descending search, we must set |
1710 | a next-key lock on the successor record: otherwise it would |
1711 | be possible to insert new records next to the cursor position, |
1712 | and it might be that these new records should appear in the |
1713 | search result set, resulting in the phantom problem. */ |
1714 | |
1715 | if (!consistent_read) { |
1716 | rec_t* next_rec = page_rec_get_next(rec); |
1717 | ulint lock_type; |
1718 | trx_t* trx; |
1719 | |
1720 | trx = thr_get_trx(thr); |
1721 | |
1722 | offsets = rec_get_offsets(next_rec, index, offsets, |
1723 | true, |
1724 | ULINT_UNDEFINED, &heap); |
1725 | |
1726 | /* If innodb_locks_unsafe_for_binlog option is used |
1727 | or this session is using READ COMMITTED or lower isolation |
1728 | level, we lock only the record, i.e., next-key |
1729 | locking is not used. */ |
1730 | if (srv_locks_unsafe_for_binlog |
1731 | || trx->isolation_level |
1732 | <= TRX_ISO_READ_COMMITTED) { |
1733 | |
1734 | if (page_rec_is_supremum(next_rec)) { |
1735 | |
1736 | goto skip_lock; |
1737 | } |
1738 | |
1739 | lock_type = LOCK_REC_NOT_GAP; |
1740 | } else { |
1741 | lock_type = LOCK_ORDINARY; |
1742 | } |
1743 | |
1744 | err = sel_set_rec_lock(&plan->pcur, |
1745 | next_rec, index, offsets, |
1746 | node->row_lock_mode, |
1747 | lock_type, thr, &mtr); |
1748 | |
1749 | switch (err) { |
1750 | case DB_SUCCESS_LOCKED_REC: |
1751 | err = DB_SUCCESS; |
1752 | /* fall through */ |
1753 | case DB_SUCCESS: |
1754 | break; |
1755 | default: |
1756 | /* Note that in this case we will store in pcur |
1757 | the PREDECESSOR of the record we are waiting |
1758 | the lock for */ |
1759 | goto lock_wait_or_error; |
1760 | } |
1761 | } |
1762 | } |
1763 | |
1764 | skip_lock: |
1765 | if (page_rec_is_infimum(rec)) { |
1766 | |
1767 | /* The infimum record on a page cannot be in the result set, |
1768 | and neither can a record lock be placed on it: we skip such |
1769 | a record. We also increment the cost counter as we may have |
1770 | processed yet another page of index. */ |
1771 | |
1772 | cost_counter++; |
1773 | |
1774 | goto next_rec; |
1775 | } |
1776 | |
1777 | if (rec_is_default_row(rec, index)) { |
1778 | /* Skip the 'default row' pseudo-record. */ |
1779 | cost_counter++; |
1780 | goto next_rec; |
1781 | } |
1782 | |
1783 | if (!consistent_read) { |
1784 | /* Try to place a lock on the index record */ |
1785 | ulint lock_type; |
1786 | trx_t* trx; |
1787 | |
1788 | offsets = rec_get_offsets(rec, index, offsets, true, |
1789 | ULINT_UNDEFINED, &heap); |
1790 | |
1791 | trx = thr_get_trx(thr); |
1792 | |
1793 | /* If innodb_locks_unsafe_for_binlog option is used |
1794 | or this session is using READ COMMITTED or lower isolation level, |
1795 | we lock only the record, i.e., next-key locking is |
1796 | not used. */ |
1797 | if (srv_locks_unsafe_for_binlog |
1798 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED |
1799 | || dict_index_is_spatial(index)) { |
1800 | |
1801 | if (page_rec_is_supremum(rec)) { |
1802 | |
1803 | goto next_rec; |
1804 | } |
1805 | |
1806 | lock_type = LOCK_REC_NOT_GAP; |
1807 | } else { |
1808 | lock_type = LOCK_ORDINARY; |
1809 | } |
1810 | |
1811 | err = sel_set_rec_lock(&plan->pcur, |
1812 | rec, index, offsets, |
1813 | node->row_lock_mode, lock_type, |
1814 | thr, &mtr); |
1815 | |
1816 | switch (err) { |
1817 | case DB_SUCCESS_LOCKED_REC: |
1818 | err = DB_SUCCESS; |
1819 | /* fall through */ |
1820 | case DB_SUCCESS: |
1821 | break; |
1822 | default: |
1823 | goto lock_wait_or_error; |
1824 | } |
1825 | } |
1826 | |
1827 | if (page_rec_is_supremum(rec)) { |
1828 | |
1829 | /* A page supremum record cannot be in the result set: skip |
1830 | it now when we have placed a possible lock on it */ |
1831 | |
1832 | goto next_rec; |
1833 | } |
1834 | |
1835 | ut_ad(page_rec_is_user_rec(rec)); |
1836 | |
1837 | if (cost_counter > SEL_COST_LIMIT) { |
1838 | |
1839 | /* Now that we have placed the necessary locks, we can stop |
1840 | for a while and store the cursor position; NOTE that if we |
1841 | would store the cursor position BEFORE placing a record lock, |
1842 | it might happen that the cursor would jump over some records |
1843 | that another transaction could meanwhile insert adjacent to |
1844 | the cursor: this would result in the phantom problem. */ |
1845 | |
1846 | goto stop_for_a_while; |
1847 | } |
1848 | |
1849 | /* PHASE 2: Check a mixed index mix id if needed */ |
1850 | |
1851 | if (plan->unique_search && cursor_just_opened) { |
1852 | |
1853 | ut_ad(plan->mode == PAGE_CUR_GE); |
1854 | |
1855 | /* As the cursor is now placed on a user record after a search |
1856 | with the mode PAGE_CUR_GE, the up_match field in the cursor |
1857 | tells how many fields in the user record matched to the search |
1858 | tuple */ |
1859 | |
1860 | if (btr_pcur_get_up_match(&(plan->pcur)) |
1861 | < plan->n_exact_match) { |
1862 | goto table_exhausted; |
1863 | } |
1864 | |
1865 | /* Ok, no need to test end_conds or mix id */ |
1866 | |
1867 | } |
1868 | |
1869 | /* We are ready to look at a possible new index entry in the result |
1870 | set: the cursor is now placed on a user record */ |
1871 | |
1872 | /* PHASE 3: Get previous version in a consistent read */ |
1873 | |
1874 | cons_read_requires_clust_rec = FALSE; |
1875 | offsets = rec_get_offsets(rec, index, offsets, true, |
1876 | ULINT_UNDEFINED, &heap); |
1877 | |
1878 | if (consistent_read) { |
1879 | /* This is a non-locking consistent read: if necessary, fetch |
1880 | a previous version of the record */ |
1881 | |
1882 | if (dict_index_is_clust(index)) { |
1883 | |
1884 | if (!lock_clust_rec_cons_read_sees( |
1885 | rec, index, offsets, node->read_view)) { |
1886 | |
1887 | err = row_sel_build_prev_vers( |
1888 | node->read_view, index, rec, |
1889 | &offsets, &heap, &plan->old_vers_heap, |
1890 | &old_vers, &mtr); |
1891 | |
1892 | if (err != DB_SUCCESS) { |
1893 | |
1894 | goto lock_wait_or_error; |
1895 | } |
1896 | |
1897 | if (old_vers == NULL) { |
1898 | /* The record does not exist |
1899 | in our read view. Skip it, but |
1900 | first attempt to determine |
1901 | whether the index segment we |
1902 | are searching through has been |
1903 | exhausted. */ |
1904 | |
1905 | offsets = rec_get_offsets( |
1906 | rec, index, offsets, true, |
1907 | ULINT_UNDEFINED, &heap); |
1908 | |
1909 | /* Fetch the columns needed in |
1910 | test conditions. The clustered |
1911 | index record is protected by a |
1912 | page latch that was acquired |
1913 | by row_sel_open_pcur() or |
1914 | row_sel_restore_pcur_pos(). |
1915 | The latch will not be released |
1916 | until mtr.commit(). */ |
1917 | |
1918 | row_sel_fetch_columns( |
1919 | index, rec, offsets, |
1920 | UT_LIST_GET_FIRST( |
1921 | plan->columns)); |
1922 | |
1923 | if (!row_sel_test_end_conds(plan)) { |
1924 | |
1925 | goto table_exhausted; |
1926 | } |
1927 | |
1928 | goto next_rec; |
1929 | } |
1930 | |
1931 | rec = old_vers; |
1932 | } |
1933 | } else if (!srv_read_only_mode |
1934 | && !lock_sec_rec_cons_read_sees( |
1935 | rec, index, node->read_view)) { |
1936 | |
1937 | cons_read_requires_clust_rec = TRUE; |
1938 | } |
1939 | } |
1940 | |
1941 | /* PHASE 4: Test search end conditions and deleted flag */ |
1942 | |
1943 | /* Fetch the columns needed in test conditions. The record is |
1944 | protected by a page latch that was acquired by |
1945 | row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch |
1946 | will not be released until mtr.commit(). */ |
1947 | |
1948 | row_sel_fetch_columns(index, rec, offsets, |
1949 | UT_LIST_GET_FIRST(plan->columns)); |
1950 | |
1951 | /* Test the selection end conditions: these can only contain columns |
1952 | which already are found in the index, even though the index might be |
1953 | non-clustered */ |
1954 | |
1955 | if (plan->unique_search && cursor_just_opened) { |
1956 | |
1957 | /* No test necessary: the test was already made above */ |
1958 | |
1959 | } else if (!row_sel_test_end_conds(plan)) { |
1960 | |
1961 | goto table_exhausted; |
1962 | } |
1963 | |
1964 | if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)) |
1965 | && !cons_read_requires_clust_rec) { |
1966 | |
1967 | /* The record is delete marked: we can skip it if this is |
1968 | not a consistent read which might see an earlier version |
1969 | of a non-clustered index record */ |
1970 | |
1971 | if (plan->unique_search) { |
1972 | |
1973 | goto table_exhausted; |
1974 | } |
1975 | |
1976 | goto next_rec; |
1977 | } |
1978 | |
1979 | /* PHASE 5: Get the clustered index record, if needed and if we did |
1980 | not do the search using the clustered index */ |
1981 | |
1982 | if (plan->must_get_clust || cons_read_requires_clust_rec) { |
1983 | |
1984 | /* It was a non-clustered index and we must fetch also the |
1985 | clustered index record */ |
1986 | |
1987 | err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec, |
1988 | &mtr); |
1989 | mtr_has_extra_clust_latch = TRUE; |
1990 | |
1991 | if (err != DB_SUCCESS) { |
1992 | |
1993 | goto lock_wait_or_error; |
1994 | } |
1995 | |
1996 | /* Retrieving the clustered record required a search: |
1997 | increment the cost counter */ |
1998 | |
1999 | cost_counter++; |
2000 | |
2001 | if (clust_rec == NULL) { |
2002 | /* The record did not exist in the read view */ |
2003 | ut_ad(consistent_read); |
2004 | |
2005 | goto next_rec; |
2006 | } |
2007 | |
2008 | if (rec_get_deleted_flag(clust_rec, |
2009 | dict_table_is_comp(plan->table))) { |
2010 | /* In delete-marked records, DB_TRX_ID must |
2011 | always refer to an existing update_undo log record. */ |
2012 | ut_ad(rec_get_trx_id(clust_rec, |
2013 | dict_table_get_first_index( |
2014 | plan->table))); |
2015 | |
2016 | /* The record is delete marked: we can skip it */ |
2017 | |
2018 | goto next_rec; |
2019 | } |
2020 | |
2021 | if (node->can_get_updated) { |
2022 | |
2023 | btr_pcur_store_position(&(plan->clust_pcur), &mtr); |
2024 | } |
2025 | } |
2026 | |
2027 | /* PHASE 6: Test the rest of search conditions */ |
2028 | |
2029 | if (!row_sel_test_other_conds(plan)) { |
2030 | |
2031 | if (plan->unique_search) { |
2032 | |
2033 | goto table_exhausted; |
2034 | } |
2035 | |
2036 | goto next_rec; |
2037 | } |
2038 | |
2039 | /* PHASE 7: We found a new qualifying row for the current table; push |
2040 | the row if prefetch is on, or move to the next table in the join */ |
2041 | |
2042 | plan->n_rows_fetched++; |
2043 | |
2044 | ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); |
2045 | |
2046 | if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT) |
2047 | || plan->unique_search || plan->no_prefetch) { |
2048 | |
2049 | /* No prefetch in operation: go to the next table */ |
2050 | |
2051 | goto next_table; |
2052 | } |
2053 | |
2054 | sel_enqueue_prefetched_row(plan); |
2055 | |
2056 | if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) { |
2057 | |
2058 | /* The prefetch buffer is now full */ |
2059 | |
2060 | sel_dequeue_prefetched_row(plan); |
2061 | |
2062 | goto next_table; |
2063 | } |
2064 | |
2065 | next_rec: |
2066 | if (mtr_has_extra_clust_latch) { |
2067 | |
2068 | /* We must commit &mtr if we are moving to the next |
2069 | non-clustered index record, because we could break the |
2070 | latching order if we would access a different clustered |
2071 | index page right away without releasing the previous. */ |
2072 | |
2073 | goto commit_mtr_for_a_while; |
2074 | } |
2075 | |
2076 | if (node->asc) { |
2077 | moved = btr_pcur_move_to_next(&(plan->pcur), &mtr); |
2078 | } else { |
2079 | moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr); |
2080 | } |
2081 | |
2082 | if (!moved) { |
2083 | |
2084 | goto table_exhausted; |
2085 | } |
2086 | |
2087 | cursor_just_opened = FALSE; |
2088 | |
2089 | /* END OF RECORD LOOP |
2090 | ------------------ */ |
2091 | goto rec_loop; |
2092 | |
2093 | next_table: |
2094 | /* We found a record which satisfies the conditions: we can move to |
2095 | the next table or return a row in the result set */ |
2096 | |
2097 | ut_ad(btr_pcur_is_on_user_rec(&plan->pcur)); |
2098 | |
2099 | if (plan->unique_search && !node->can_get_updated) { |
2100 | |
2101 | plan->cursor_at_end = TRUE; |
2102 | } else { |
2103 | plan->stored_cursor_rec_processed = TRUE; |
2104 | |
2105 | btr_pcur_store_position(&(plan->pcur), &mtr); |
2106 | } |
2107 | |
2108 | mtr.commit(); |
2109 | |
2110 | mtr_has_extra_clust_latch = FALSE; |
2111 | |
2112 | next_table_no_mtr: |
2113 | /* If we use 'goto' to this label, it means that the row was popped |
2114 | from the prefetched rows stack, and &mtr is already committed */ |
2115 | |
2116 | if (node->fetch_table + 1 == node->n_tables) { |
2117 | |
2118 | sel_eval_select_list(node); |
2119 | |
2120 | if (node->is_aggregate) { |
2121 | |
2122 | goto table_loop; |
2123 | } |
2124 | |
2125 | sel_assign_into_var_values(node->into_list, node); |
2126 | |
2127 | thr->run_node = que_node_get_parent(node); |
2128 | |
2129 | err = DB_SUCCESS; |
2130 | goto func_exit; |
2131 | } |
2132 | |
2133 | node->fetch_table++; |
2134 | |
2135 | /* When we move to the next table, we first reset the plan cursor: |
2136 | we do not care about resetting it when we backtrack from a table */ |
2137 | |
2138 | plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table)); |
2139 | |
2140 | goto table_loop; |
2141 | |
2142 | table_exhausted: |
2143 | /* The table cursor pcur reached the result set end: backtrack to the |
2144 | previous table in the join if we do not have cached prefetched rows */ |
2145 | |
2146 | plan->cursor_at_end = TRUE; |
2147 | |
2148 | mtr.commit(); |
2149 | |
2150 | mtr_has_extra_clust_latch = FALSE; |
2151 | |
2152 | if (plan->n_rows_prefetched > 0) { |
2153 | /* The table became exhausted during a prefetch */ |
2154 | |
2155 | sel_dequeue_prefetched_row(plan); |
2156 | |
2157 | goto next_table_no_mtr; |
2158 | } |
2159 | |
2160 | table_exhausted_no_mtr: |
2161 | if (node->fetch_table == 0) { |
2162 | err = DB_SUCCESS; |
2163 | |
2164 | if (node->is_aggregate && !node->aggregate_already_fetched) { |
2165 | |
2166 | node->aggregate_already_fetched = TRUE; |
2167 | |
2168 | sel_assign_into_var_values(node->into_list, node); |
2169 | |
2170 | thr->run_node = que_node_get_parent(node); |
2171 | } else { |
2172 | node->state = SEL_NODE_NO_MORE_ROWS; |
2173 | |
2174 | thr->run_node = que_node_get_parent(node); |
2175 | } |
2176 | |
2177 | goto func_exit; |
2178 | } |
2179 | |
2180 | node->fetch_table--; |
2181 | |
2182 | goto table_loop; |
2183 | |
2184 | stop_for_a_while: |
2185 | /* Return control for a while to que_run_threads, so that runaway |
2186 | queries can be canceled. NOTE that when we come here, we must, in a |
2187 | locking read, have placed the necessary (possibly waiting request) |
2188 | record lock on the cursor record or its successor: when we reposition |
2189 | the cursor, this record lock guarantees that nobody can meanwhile have |
2190 | inserted new records which should have appeared in the result set, |
2191 | which would result in the phantom problem. */ |
2192 | |
2193 | plan->stored_cursor_rec_processed = FALSE; |
2194 | btr_pcur_store_position(&(plan->pcur), &mtr); |
2195 | |
2196 | mtr.commit(); |
2197 | ut_ad(!sync_check_iterate(sync_check())); |
2198 | |
2199 | err = DB_SUCCESS; |
2200 | goto func_exit; |
2201 | |
2202 | commit_mtr_for_a_while: |
2203 | /* Stores the cursor position and commits &mtr; this is used if |
2204 | &mtr may contain latches which would break the latching order if |
2205 | &mtr would not be committed and the latches released. */ |
2206 | |
2207 | plan->stored_cursor_rec_processed = TRUE; |
2208 | |
2209 | btr_pcur_store_position(&(plan->pcur), &mtr); |
2210 | |
2211 | mtr.commit(); |
2212 | |
2213 | mtr_has_extra_clust_latch = FALSE; |
2214 | ut_ad(!sync_check_iterate(dict_sync_check())); |
2215 | |
2216 | goto table_loop; |
2217 | |
2218 | lock_wait_or_error: |
2219 | /* See the note at stop_for_a_while: the same holds for this case */ |
2220 | |
2221 | ut_ad(!btr_pcur_is_before_first_on_page(&plan->pcur) || !node->asc); |
2222 | |
2223 | plan->stored_cursor_rec_processed = FALSE; |
2224 | btr_pcur_store_position(&(plan->pcur), &mtr); |
2225 | |
2226 | mtr.commit(); |
2227 | |
2228 | func_exit: |
2229 | ut_ad(!sync_check_iterate(dict_sync_check())); |
2230 | |
2231 | if (heap != NULL) { |
2232 | mem_heap_free(heap); |
2233 | } |
2234 | return(err); |
2235 | } |
2236 | |
2237 | /**********************************************************************//** |
2238 | Performs a select step. This is a high-level function used in SQL execution |
2239 | graphs. |
2240 | @return query thread to run next or NULL */ |
2241 | que_thr_t* |
2242 | row_sel_step( |
2243 | /*=========*/ |
2244 | que_thr_t* thr) /*!< in: query thread */ |
2245 | { |
2246 | sel_node_t* node; |
2247 | |
2248 | ut_ad(thr); |
2249 | |
2250 | node = static_cast<sel_node_t*>(thr->run_node); |
2251 | |
2252 | ut_ad(que_node_get_type(node) == QUE_NODE_SELECT); |
2253 | |
2254 | /* If this is a new time this node is executed (or when execution |
2255 | resumes after wait for a table intention lock), set intention locks |
2256 | on the tables, or assign a read view */ |
2257 | |
2258 | if (node->into_list && (thr->prev_node == que_node_get_parent(node))) { |
2259 | |
2260 | node->state = SEL_NODE_OPEN; |
2261 | } |
2262 | |
2263 | if (node->state == SEL_NODE_OPEN) { |
2264 | |
2265 | /* It may be that the current session has not yet started |
2266 | its transaction, or it has been committed: */ |
2267 | |
2268 | trx_start_if_not_started_xa(thr_get_trx(thr), false); |
2269 | |
2270 | plan_reset_cursor(sel_node_get_nth_plan(node, 0)); |
2271 | |
2272 | if (node->consistent_read) { |
2273 | trx_t *trx = thr_get_trx(thr); |
2274 | /* Assign a read view for the query */ |
2275 | trx->read_view.open(trx); |
2276 | node->read_view = trx->read_view.is_open() ? |
2277 | &trx->read_view : NULL; |
2278 | } else { |
2279 | sym_node_t* table_node; |
2280 | lock_mode i_lock_mode; |
2281 | |
2282 | if (node->set_x_locks) { |
2283 | i_lock_mode = LOCK_IX; |
2284 | } else { |
2285 | i_lock_mode = LOCK_IS; |
2286 | } |
2287 | |
2288 | for (table_node = node->table_list; |
2289 | table_node != 0; |
2290 | table_node = static_cast<sym_node_t*>( |
2291 | que_node_get_next(table_node))) { |
2292 | |
2293 | dberr_t err = lock_table( |
2294 | 0, table_node->table, i_lock_mode, |
2295 | thr); |
2296 | |
2297 | if (err != DB_SUCCESS) { |
2298 | trx_t* trx; |
2299 | |
2300 | trx = thr_get_trx(thr); |
2301 | trx->error_state = err; |
2302 | |
2303 | return(NULL); |
2304 | } |
2305 | } |
2306 | } |
2307 | |
2308 | /* If this is an explicit cursor, copy stored procedure |
2309 | variable values, so that the values cannot change between |
2310 | fetches (currently, we copy them also for non-explicit |
2311 | cursors) */ |
2312 | |
2313 | if (node->explicit_cursor |
2314 | && UT_LIST_GET_FIRST(node->copy_variables)) { |
2315 | |
2316 | row_sel_copy_input_variable_vals(node); |
2317 | } |
2318 | |
2319 | node->state = SEL_NODE_FETCH; |
2320 | node->fetch_table = 0; |
2321 | |
2322 | if (node->is_aggregate) { |
2323 | /* Reset the aggregate total values */ |
2324 | sel_reset_aggregate_vals(node); |
2325 | } |
2326 | } |
2327 | |
2328 | dberr_t err = row_sel(node, thr); |
2329 | |
2330 | /* NOTE! if queries are parallelized, the following assignment may |
2331 | have problems; the assignment should be made only if thr is the |
2332 | only top-level thr in the graph: */ |
2333 | |
2334 | thr->graph->last_sel_node = node; |
2335 | |
2336 | if (err != DB_SUCCESS) { |
2337 | thr_get_trx(thr)->error_state = err; |
2338 | |
2339 | return(NULL); |
2340 | } |
2341 | |
2342 | return(thr); |
2343 | } |
2344 | |
2345 | /**********************************************************************//** |
2346 | Performs a fetch for a cursor. |
2347 | @return query thread to run next or NULL */ |
2348 | que_thr_t* |
2349 | fetch_step( |
2350 | /*=======*/ |
2351 | que_thr_t* thr) /*!< in: query thread */ |
2352 | { |
2353 | sel_node_t* sel_node; |
2354 | fetch_node_t* node; |
2355 | |
2356 | ut_ad(thr); |
2357 | |
2358 | node = static_cast<fetch_node_t*>(thr->run_node); |
2359 | sel_node = node->cursor_def; |
2360 | |
2361 | ut_ad(que_node_get_type(node) == QUE_NODE_FETCH); |
2362 | |
2363 | if (thr->prev_node != que_node_get_parent(node)) { |
2364 | |
2365 | if (sel_node->state != SEL_NODE_NO_MORE_ROWS) { |
2366 | |
2367 | if (node->into_list) { |
2368 | sel_assign_into_var_values(node->into_list, |
2369 | sel_node); |
2370 | } else { |
2371 | ibool ret = (*node->func->func)( |
2372 | sel_node, node->func->arg); |
2373 | |
2374 | if (!ret) { |
2375 | sel_node->state |
2376 | = SEL_NODE_NO_MORE_ROWS; |
2377 | } |
2378 | } |
2379 | } |
2380 | |
2381 | thr->run_node = que_node_get_parent(node); |
2382 | |
2383 | return(thr); |
2384 | } |
2385 | |
2386 | /* Make the fetch node the parent of the cursor definition for |
2387 | the time of the fetch, so that execution knows to return to this |
2388 | fetch node after a row has been selected or we know that there is |
2389 | no row left */ |
2390 | |
2391 | sel_node->common.parent = node; |
2392 | |
2393 | if (sel_node->state == SEL_NODE_CLOSED) { |
2394 | ib::error() << "fetch called on a closed cursor" ; |
2395 | |
2396 | thr_get_trx(thr)->error_state = DB_ERROR; |
2397 | |
2398 | return(NULL); |
2399 | } |
2400 | |
2401 | thr->run_node = sel_node; |
2402 | |
2403 | return(thr); |
2404 | } |
2405 | |
2406 | /***********************************************************//** |
2407 | Prints a row in a select result. |
2408 | @return query thread to run next or NULL */ |
2409 | que_thr_t* |
2410 | row_printf_step( |
2411 | /*============*/ |
2412 | que_thr_t* thr) /*!< in: query thread */ |
2413 | { |
2414 | row_printf_node_t* node; |
2415 | sel_node_t* sel_node; |
2416 | que_node_t* arg; |
2417 | |
2418 | ut_ad(thr); |
2419 | |
2420 | node = static_cast<row_printf_node_t*>(thr->run_node); |
2421 | |
2422 | sel_node = node->sel_node; |
2423 | |
2424 | ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF); |
2425 | |
2426 | if (thr->prev_node == que_node_get_parent(node)) { |
2427 | |
2428 | /* Reset the cursor */ |
2429 | sel_node->state = SEL_NODE_OPEN; |
2430 | |
2431 | /* Fetch next row to print */ |
2432 | |
2433 | thr->run_node = sel_node; |
2434 | |
2435 | return(thr); |
2436 | } |
2437 | |
2438 | if (sel_node->state != SEL_NODE_FETCH) { |
2439 | |
2440 | ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); |
2441 | |
2442 | /* No more rows to print */ |
2443 | |
2444 | thr->run_node = que_node_get_parent(node); |
2445 | |
2446 | return(thr); |
2447 | } |
2448 | |
2449 | arg = sel_node->select_list; |
2450 | |
2451 | while (arg) { |
2452 | dfield_print_also_hex(que_node_get_val(arg)); |
2453 | |
2454 | fputs(" ::: " , stderr); |
2455 | |
2456 | arg = que_node_get_next(arg); |
2457 | } |
2458 | |
2459 | putc('\n', stderr); |
2460 | |
2461 | /* Fetch next row to print */ |
2462 | |
2463 | thr->run_node = sel_node; |
2464 | |
2465 | return(thr); |
2466 | } |
2467 | |
2468 | /****************************************************************//** |
2469 | Converts a key value stored in MySQL format to an Innobase dtuple. The last |
2470 | field of the key value may be just a prefix of a fixed length field: hence |
2471 | the parameter key_len. But currently we do not allow search keys where the |
2472 | last field is only a prefix of the full key field len and print a warning if |
2473 | such appears. A counterpart of this function is |
2474 | ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ |
2475 | void |
2476 | row_sel_convert_mysql_key_to_innobase( |
2477 | /*==================================*/ |
2478 | dtuple_t* tuple, /*!< in/out: tuple where to build; |
2479 | NOTE: we assume that the type info |
2480 | in the tuple is already according |
2481 | to index! */ |
2482 | byte* buf, /*!< in: buffer to use in field |
2483 | conversions; NOTE that dtuple->data |
2484 | may end up pointing inside buf so |
2485 | do not discard that buffer while |
2486 | the tuple is being used. See |
2487 | row_mysql_store_col_in_innobase_format() |
2488 | in the case of DATA_INT */ |
2489 | ulint buf_len, /*!< in: buffer length */ |
2490 | dict_index_t* index, /*!< in: index of the key value */ |
2491 | const byte* key_ptr, /*!< in: MySQL key value */ |
2492 | ulint key_len) /*!< in: MySQL key value length */ |
2493 | { |
2494 | byte* original_buf = buf; |
2495 | const byte* original_key_ptr = key_ptr; |
2496 | dict_field_t* field; |
2497 | dfield_t* dfield; |
2498 | ulint data_offset; |
2499 | ulint data_len; |
2500 | ulint data_field_len; |
2501 | ibool is_null; |
2502 | const byte* key_end; |
2503 | ulint n_fields = 0; |
2504 | |
2505 | /* For documentation of the key value storage format in MySQL, see |
2506 | ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ |
2507 | |
2508 | key_end = key_ptr + key_len; |
2509 | |
2510 | /* Permit us to access any field in the tuple (ULINT_MAX): */ |
2511 | |
2512 | dtuple_set_n_fields(tuple, ULINT_MAX); |
2513 | |
2514 | dfield = dtuple_get_nth_field(tuple, 0); |
2515 | field = dict_index_get_nth_field(index, 0); |
2516 | |
2517 | if (UNIV_UNLIKELY(dfield_get_type(dfield)->mtype == DATA_SYS)) { |
2518 | /* A special case: we are looking for a position in the |
2519 | generated clustered index which InnoDB automatically added |
2520 | to a table with no primary key: the first and the only |
2521 | ordering column is ROW_ID which InnoDB stored to the key_ptr |
2522 | buffer. */ |
2523 | |
2524 | ut_a(key_len == DATA_ROW_ID_LEN); |
2525 | |
2526 | dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN); |
2527 | |
2528 | dtuple_set_n_fields(tuple, 1); |
2529 | |
2530 | return; |
2531 | } |
2532 | |
2533 | while (key_ptr < key_end) { |
2534 | |
2535 | ulint type = dfield_get_type(dfield)->mtype; |
2536 | ut_a(field->col->mtype == type); |
2537 | |
2538 | data_offset = 0; |
2539 | is_null = FALSE; |
2540 | |
2541 | if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) { |
2542 | /* The first byte in the field tells if this is |
2543 | an SQL NULL value */ |
2544 | |
2545 | data_offset = 1; |
2546 | |
2547 | if (*key_ptr != 0) { |
2548 | dfield_set_null(dfield); |
2549 | |
2550 | is_null = TRUE; |
2551 | } |
2552 | } |
2553 | |
2554 | /* Calculate data length and data field total length */ |
2555 | if (DATA_LARGE_MTYPE(type) || DATA_GEOMETRY_MTYPE(type)) { |
2556 | |
2557 | /* For R-tree index, data length should be the |
2558 | total size of the wkb data.*/ |
2559 | if (dict_index_is_spatial(index)) { |
2560 | ut_ad(DATA_GEOMETRY_MTYPE(type)); |
2561 | data_len = key_len; |
2562 | data_field_len = data_offset + data_len; |
2563 | } else { |
2564 | /* The key field is a column prefix of a BLOB |
2565 | or TEXT. */ |
2566 | |
2567 | ut_a(field->prefix_len > 0); |
2568 | |
2569 | /* MySQL stores the actual data length to the |
2570 | first 2 bytes after the optional SQL NULL |
2571 | marker byte. The storage format is |
2572 | little-endian, that is, the most significant |
2573 | byte at a higher address. In UTF-8, MySQL |
2574 | seems to reserve field->prefix_len bytes for |
2575 | storing this field in the key value buffer, |
2576 | even though the actual value only takes data |
2577 | len bytes from the start. */ |
2578 | |
2579 | data_len = ulint(key_ptr[data_offset]) |
2580 | | ulint(key_ptr[data_offset + 1]) << 8; |
2581 | data_field_len = data_offset + 2 |
2582 | + field->prefix_len; |
2583 | |
2584 | data_offset += 2; |
2585 | |
2586 | /* Now that we know the length, we store the |
2587 | column value like it would be a fixed char |
2588 | field */ |
2589 | } |
2590 | |
2591 | |
2592 | } else if (field->prefix_len > 0) { |
2593 | /* Looks like MySQL pads unused end bytes in the |
2594 | prefix with space. Therefore, also in UTF-8, it is ok |
2595 | to compare with a prefix containing full prefix_len |
2596 | bytes, and no need to take at most prefix_len / 3 |
2597 | UTF-8 characters from the start. |
2598 | If the prefix is used as the upper end of a LIKE |
2599 | 'abc%' query, then MySQL pads the end with chars |
2600 | 0xff. TODO: in that case does it any harm to compare |
2601 | with the full prefix_len bytes. How do characters |
2602 | 0xff in UTF-8 behave? */ |
2603 | |
2604 | data_len = field->prefix_len; |
2605 | data_field_len = data_offset + data_len; |
2606 | } else { |
2607 | data_len = dfield_get_type(dfield)->len; |
2608 | data_field_len = data_offset + data_len; |
2609 | } |
2610 | |
2611 | if ((dtype_get_mysql_type(dfield_get_type(dfield)) |
2612 | == DATA_MYSQL_TRUE_VARCHAR) |
2613 | && (type != DATA_INT)) { |
2614 | /* In a MySQL key value format, a true VARCHAR is |
2615 | always preceded by 2 bytes of a length field. |
2616 | dfield_get_type(dfield)->len returns the maximum |
2617 | 'payload' len in bytes. That does not include the |
2618 | 2 bytes that tell the actual data length. |
2619 | |
2620 | We added the check != DATA_INT to make sure we do |
2621 | not treat MySQL ENUM or SET as a true VARCHAR! */ |
2622 | |
2623 | data_len += 2; |
2624 | data_field_len += 2; |
2625 | } |
2626 | |
2627 | /* Storing may use at most data_len bytes of buf */ |
2628 | |
2629 | if (UNIV_LIKELY(!is_null)) { |
2630 | buf = row_mysql_store_col_in_innobase_format( |
2631 | dfield, buf, |
2632 | FALSE, /* MySQL key value format col */ |
2633 | key_ptr + data_offset, data_len, |
2634 | dict_table_is_comp(index->table)); |
2635 | ut_a(buf <= original_buf + buf_len); |
2636 | } |
2637 | |
2638 | key_ptr += data_field_len; |
2639 | |
2640 | if (UNIV_UNLIKELY(key_ptr > key_end)) { |
2641 | /* The last field in key was not a complete key field |
2642 | but a prefix of it. |
2643 | |
2644 | Print a warning about this! HA_READ_PREFIX_LAST does |
2645 | not currently work in InnoDB with partial-field key |
2646 | value prefixes. Since MySQL currently uses a padding |
2647 | trick to calculate LIKE 'abc%' type queries there |
2648 | should never be partial-field prefixes in searches. */ |
2649 | |
2650 | ib::warn() << "Using a partial-field key prefix in" |
2651 | " search, index " << index->name |
2652 | << " of table " << index->table->name |
2653 | << ". Last data field length " |
2654 | << data_field_len << " bytes, key ptr now" |
2655 | " exceeds key end by " << (key_ptr - key_end) |
2656 | << " bytes. Key value in the MySQL format:" ; |
2657 | |
2658 | ut_print_buf(stderr, original_key_ptr, key_len); |
2659 | putc('\n', stderr); |
2660 | |
2661 | if (!is_null) { |
2662 | ulint len = dfield_get_len(dfield); |
2663 | dfield_set_len(dfield, len |
2664 | - (ulint) (key_ptr - key_end)); |
2665 | } |
2666 | ut_ad(0); |
2667 | } |
2668 | |
2669 | n_fields++; |
2670 | field++; |
2671 | dfield++; |
2672 | } |
2673 | |
2674 | ut_a(buf <= original_buf + buf_len); |
2675 | |
2676 | /* We set the length of tuple to n_fields: we assume that the memory |
2677 | area allocated for it is big enough (usually bigger than n_fields). */ |
2678 | |
2679 | dtuple_set_n_fields(tuple, n_fields); |
2680 | } |
2681 | |
2682 | /**************************************************************//** |
2683 | Stores the row id to the prebuilt struct. */ |
2684 | static |
2685 | void |
2686 | row_sel_store_row_id_to_prebuilt( |
2687 | /*=============================*/ |
2688 | row_prebuilt_t* prebuilt, /*!< in/out: prebuilt */ |
2689 | const rec_t* index_rec, /*!< in: record */ |
2690 | const dict_index_t* index, /*!< in: index of the record */ |
2691 | const ulint* offsets) /*!< in: rec_get_offsets |
2692 | (index_rec, index) */ |
2693 | { |
2694 | const byte* data; |
2695 | ulint len; |
2696 | |
2697 | ut_ad(rec_offs_validate(index_rec, index, offsets)); |
2698 | |
2699 | data = rec_get_nth_field( |
2700 | index_rec, offsets, |
2701 | dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len); |
2702 | |
2703 | if (UNIV_UNLIKELY(len != DATA_ROW_ID_LEN)) { |
2704 | |
2705 | ib::error() << "Row id field is wrong length " << len << " in" |
2706 | " index " << index->name |
2707 | << " of table " << index->table->name |
2708 | << ", Field number " |
2709 | << dict_index_get_sys_col_pos(index, DATA_ROW_ID) |
2710 | << ", record:" ; |
2711 | |
2712 | rec_print_new(stderr, index_rec, offsets); |
2713 | putc('\n', stderr); |
2714 | ut_error; |
2715 | } |
2716 | |
2717 | ut_memcpy(prebuilt->row_id, data, len); |
2718 | } |
2719 | |
2720 | /**************************************************************//** |
2721 | Stores a non-SQL-NULL field in the MySQL format. The counterpart of this |
2722 | function is row_mysql_store_col_in_innobase_format() in row0mysql.cc. */ |
2723 | void |
2724 | row_sel_field_store_in_mysql_format_func( |
2725 | byte* dest, |
2726 | const mysql_row_templ_t* templ, |
2727 | #ifdef UNIV_DEBUG |
2728 | const dict_index_t* index, |
2729 | ulint field_no, |
2730 | #endif /* UNIV_DEBUG */ |
2731 | const byte* data, |
2732 | ulint len) |
2733 | { |
2734 | byte* ptr; |
2735 | #ifdef UNIV_DEBUG |
2736 | const dict_field_t* field |
2737 | = templ->is_virtual |
2738 | ? NULL : dict_index_get_nth_field(index, field_no); |
2739 | #endif /* UNIV_DEBUG */ |
2740 | |
2741 | ut_ad(len != UNIV_SQL_NULL); |
2742 | UNIV_MEM_ASSERT_RW(data, len); |
2743 | UNIV_MEM_ASSERT_W(dest, templ->mysql_col_len); |
2744 | UNIV_MEM_INVALID(dest, templ->mysql_col_len); |
2745 | |
2746 | switch (templ->type) { |
2747 | const byte* field_end; |
2748 | byte* pad; |
2749 | case DATA_INT: |
2750 | /* Convert integer data from Innobase to a little-endian |
2751 | format, sign bit restored to normal */ |
2752 | |
2753 | ptr = dest + len; |
2754 | |
2755 | for (;;) { |
2756 | ptr--; |
2757 | *ptr = *data; |
2758 | if (ptr == dest) { |
2759 | break; |
2760 | } |
2761 | data++; |
2762 | } |
2763 | |
2764 | if (!templ->is_unsigned) { |
2765 | dest[len - 1] = (byte) (dest[len - 1] ^ 128); |
2766 | } |
2767 | |
2768 | ut_ad(templ->mysql_col_len == len); |
2769 | break; |
2770 | |
2771 | case DATA_VARCHAR: |
2772 | case DATA_VARMYSQL: |
2773 | case DATA_BINARY: |
2774 | field_end = dest + templ->mysql_col_len; |
2775 | |
2776 | if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) { |
2777 | /* This is a >= 5.0.3 type true VARCHAR. Store the |
2778 | length of the data to the first byte or the first |
2779 | two bytes of dest. */ |
2780 | |
2781 | dest = row_mysql_store_true_var_len( |
2782 | dest, len, templ->mysql_length_bytes); |
2783 | /* Copy the actual data. Leave the rest of the |
2784 | buffer uninitialized. */ |
2785 | memcpy(dest, data, len); |
2786 | break; |
2787 | } |
2788 | |
2789 | /* Copy the actual data */ |
2790 | ut_memcpy(dest, data, len); |
2791 | |
2792 | /* Pad with trailing spaces. */ |
2793 | |
2794 | pad = dest + len; |
2795 | |
2796 | ut_ad(templ->mbminlen <= templ->mbmaxlen); |
2797 | |
2798 | /* We treat some Unicode charset strings specially. */ |
2799 | switch (templ->mbminlen) { |
2800 | case 4: |
2801 | /* InnoDB should never have stripped partial |
2802 | UTF-32 characters. */ |
2803 | ut_a(!(len & 3)); |
2804 | break; |
2805 | case 2: |
2806 | /* A space char is two bytes, |
2807 | 0x0020 in UCS2 and UTF-16 */ |
2808 | |
2809 | if (UNIV_UNLIKELY(len & 1)) { |
2810 | /* A 0x20 has been stripped from the column. |
2811 | Pad it back. */ |
2812 | |
2813 | if (pad < field_end) { |
2814 | *pad++ = 0x20; |
2815 | } |
2816 | } |
2817 | } |
2818 | |
2819 | row_mysql_pad_col(templ->mbminlen, pad, |
2820 | ulint(field_end - pad)); |
2821 | break; |
2822 | |
2823 | case DATA_BLOB: |
2824 | /* Store a pointer to the BLOB buffer to dest: the BLOB was |
2825 | already copied to the buffer in row_sel_store_mysql_rec */ |
2826 | |
2827 | row_mysql_store_blob_ref(dest, templ->mysql_col_len, data, |
2828 | len); |
2829 | break; |
2830 | |
2831 | case DATA_GEOMETRY: |
2832 | /* We store all geometry data as BLOB data at server layer. */ |
2833 | row_mysql_store_geometry(dest, templ->mysql_col_len, data, len); |
2834 | break; |
2835 | |
2836 | case DATA_MYSQL: |
2837 | memcpy(dest, data, len); |
2838 | |
2839 | ut_ad(templ->mysql_col_len >= len); |
2840 | ut_ad(templ->mbmaxlen >= templ->mbminlen); |
2841 | |
2842 | /* If field_no equals to templ->icp_rec_field_no, |
2843 | we are examining a row pointed by "icp_rec_field_no". |
2844 | There is possibility that icp_rec_field_no refers to |
2845 | a field in a secondary index while templ->rec_field_no |
2846 | points to field in a primary index. The length |
2847 | should still be equal, unless the field pointed |
2848 | by icp_rec_field_no has a prefix */ |
2849 | ut_ad(templ->mbmaxlen > templ->mbminlen |
2850 | || templ->mysql_col_len == len |
2851 | || (field_no == templ->icp_rec_field_no |
2852 | && field->prefix_len > 0)); |
2853 | |
2854 | /* The following assertion would fail for old tables |
2855 | containing UTF-8 ENUM columns due to Bug #9526. */ |
2856 | ut_ad(!templ->mbmaxlen |
2857 | || !(templ->mysql_col_len % templ->mbmaxlen)); |
2858 | ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len |
2859 | || (field_no == templ->icp_rec_field_no |
2860 | && field->prefix_len > 0) |
2861 | || templ->rec_field_is_prefix); |
2862 | |
2863 | ut_ad(templ->is_virtual |
2864 | || !(field->prefix_len % templ->mbmaxlen)); |
2865 | |
2866 | if (templ->mbminlen == 1 && templ->mbmaxlen != 1) { |
2867 | /* Pad with spaces. This undoes the stripping |
2868 | done in row0mysql.cc, function |
2869 | row_mysql_store_col_in_innobase_format(). */ |
2870 | |
2871 | memset(dest + len, 0x20, templ->mysql_col_len - len); |
2872 | } |
2873 | break; |
2874 | |
2875 | default: |
2876 | #ifdef UNIV_DEBUG |
2877 | case DATA_SYS_CHILD: |
2878 | case DATA_SYS: |
2879 | /* These column types should never be shipped to MySQL. */ |
2880 | ut_ad(0); |
2881 | /* fall through */ |
2882 | |
2883 | case DATA_CHAR: |
2884 | case DATA_FIXBINARY: |
2885 | case DATA_FLOAT: |
2886 | case DATA_DOUBLE: |
2887 | case DATA_DECIMAL: |
2888 | /* Above are the valid column types for MySQL data. */ |
2889 | #endif /* UNIV_DEBUG */ |
2890 | ut_ad((templ->is_virtual && !field) |
2891 | || (field && field->prefix_len |
2892 | ? field->prefix_len == len |
2893 | : templ->mysql_col_len == len)); |
2894 | memcpy(dest, data, len); |
2895 | } |
2896 | } |
2897 | |
2898 | #ifdef UNIV_DEBUG |
2899 | /** Convert a field from Innobase format to MySQL format. */ |
2900 | # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ |
2901 | row_sel_store_mysql_field_func(m,p,r,i,o,f,t) |
2902 | #else /* UNIV_DEBUG */ |
2903 | /** Convert a field from Innobase format to MySQL format. */ |
2904 | # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ |
2905 | row_sel_store_mysql_field_func(m,p,r,o,f,t) |
2906 | #endif /* UNIV_DEBUG */ |
2907 | /** Convert a field in the Innobase format to a field in the MySQL format. |
2908 | @param[out] mysql_rec record in the MySQL format |
2909 | @param[in,out] prebuilt prebuilt struct |
2910 | @param[in] rec InnoDB record; must be protected |
2911 | by a page latch |
2912 | @param[in] index index of rec |
2913 | @param[in] offsets array returned by rec_get_offsets() |
2914 | @param[in] field_no templ->rec_field_no or |
2915 | templ->clust_rec_field_no |
2916 | or templ->icp_rec_field_no |
2917 | @param[in] templ row template |
2918 | */ |
2919 | static MY_ATTRIBUTE((warn_unused_result)) |
2920 | ibool |
2921 | row_sel_store_mysql_field_func( |
2922 | byte* mysql_rec, |
2923 | row_prebuilt_t* prebuilt, |
2924 | const rec_t* rec, |
2925 | #ifdef UNIV_DEBUG |
2926 | const dict_index_t* index, |
2927 | #endif |
2928 | const ulint* offsets, |
2929 | ulint field_no, |
2930 | const mysql_row_templ_t*templ) |
2931 | { |
2932 | DBUG_ENTER("row_sel_store_mysql_field_func" ); |
2933 | |
2934 | const byte* data; |
2935 | ulint len; |
2936 | |
2937 | ut_ad(prebuilt->default_rec); |
2938 | ut_ad(templ); |
2939 | ut_ad(templ >= prebuilt->mysql_template); |
2940 | ut_ad(templ < &prebuilt->mysql_template[prebuilt->n_template]); |
2941 | ut_ad(field_no == templ->clust_rec_field_no |
2942 | || field_no == templ->rec_field_no |
2943 | || field_no == templ->icp_rec_field_no); |
2944 | ut_ad(rec_offs_validate(rec, index, offsets)); |
2945 | |
2946 | if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no) != 0)) { |
2947 | |
2948 | mem_heap_t* heap; |
2949 | /* Copy an externally stored field to a temporary heap */ |
2950 | |
2951 | ut_ad(field_no == templ->clust_rec_field_no); |
2952 | |
2953 | if (DATA_LARGE_MTYPE(templ->type)) { |
2954 | if (prebuilt->blob_heap == NULL) { |
2955 | prebuilt->blob_heap = mem_heap_create( |
2956 | srv_page_size); |
2957 | } |
2958 | |
2959 | heap = prebuilt->blob_heap; |
2960 | } else { |
2961 | heap = mem_heap_create(srv_page_size); |
2962 | } |
2963 | |
2964 | /* NOTE: if we are retrieving a big BLOB, we may |
2965 | already run out of memory in the next call, which |
2966 | causes an assert */ |
2967 | |
2968 | data = btr_rec_copy_externally_stored_field( |
2969 | rec, offsets, |
2970 | dict_table_page_size(prebuilt->table), |
2971 | field_no, &len, heap); |
2972 | |
2973 | if (UNIV_UNLIKELY(!data)) { |
2974 | /* The externally stored field was not written |
2975 | yet. This record should only be seen by |
2976 | recv_recovery_rollback_active() or any |
2977 | TRX_ISO_READ_UNCOMMITTED transactions. */ |
2978 | |
2979 | if (heap != prebuilt->blob_heap) { |
2980 | mem_heap_free(heap); |
2981 | } |
2982 | |
2983 | ut_a(prebuilt->trx->isolation_level |
2984 | == TRX_ISO_READ_UNCOMMITTED); |
2985 | DBUG_RETURN(FALSE); |
2986 | } |
2987 | |
2988 | ut_a(len != UNIV_SQL_NULL); |
2989 | |
2990 | row_sel_field_store_in_mysql_format( |
2991 | mysql_rec + templ->mysql_col_offset, |
2992 | templ, index, field_no, data, len); |
2993 | |
2994 | if (heap != prebuilt->blob_heap) { |
2995 | mem_heap_free(heap); |
2996 | } |
2997 | } else { |
2998 | /* The field is stored in the index record, or |
2999 | in the 'default row' for instant ADD COLUMN. */ |
3000 | |
3001 | if (rec_offs_nth_default(offsets, field_no)) { |
3002 | ut_ad(dict_index_is_clust(index)); |
3003 | ut_ad(index->is_instant()); |
3004 | const dict_index_t* clust_index |
3005 | = dict_table_get_first_index(prebuilt->table); |
3006 | ut_ad(index == clust_index); |
3007 | data = clust_index->instant_field_value(field_no,&len); |
3008 | } else { |
3009 | data = rec_get_nth_field(rec, offsets, field_no, &len); |
3010 | } |
3011 | |
3012 | if (len == UNIV_SQL_NULL) { |
3013 | /* MySQL assumes that the field for an SQL |
3014 | NULL value is set to the default value. */ |
3015 | ut_ad(templ->mysql_null_bit_mask); |
3016 | |
3017 | UNIV_MEM_ASSERT_RW(prebuilt->default_rec |
3018 | + templ->mysql_col_offset, |
3019 | templ->mysql_col_len); |
3020 | mysql_rec[templ->mysql_null_byte_offset] |
3021 | |= (byte) templ->mysql_null_bit_mask; |
3022 | memcpy(mysql_rec + templ->mysql_col_offset, |
3023 | (const byte*) prebuilt->default_rec |
3024 | + templ->mysql_col_offset, |
3025 | templ->mysql_col_len); |
3026 | DBUG_RETURN(TRUE); |
3027 | } |
3028 | |
3029 | if (DATA_LARGE_MTYPE(templ->type) |
3030 | || DATA_GEOMETRY_MTYPE(templ->type)) { |
3031 | |
3032 | /* It is a BLOB field locally stored in the |
3033 | InnoDB record: we MUST copy its contents to |
3034 | prebuilt->blob_heap here because |
3035 | row_sel_field_store_in_mysql_format() stores a |
3036 | pointer to the data, and the data passed to us |
3037 | will be invalid as soon as the |
3038 | mini-transaction is committed and the page |
3039 | latch on the clustered index page is |
3040 | released. */ |
3041 | |
3042 | if (prebuilt->blob_heap == NULL) { |
3043 | prebuilt->blob_heap = mem_heap_create( |
3044 | srv_page_size); |
3045 | DBUG_PRINT("anna" , ("blob_heap allocated: %p" , |
3046 | prebuilt->blob_heap)); |
3047 | } |
3048 | |
3049 | data = static_cast<byte*>( |
3050 | mem_heap_dup(prebuilt->blob_heap, data, len)); |
3051 | } |
3052 | |
3053 | row_sel_field_store_in_mysql_format( |
3054 | mysql_rec + templ->mysql_col_offset, |
3055 | templ, index, field_no, data, len); |
3056 | } |
3057 | |
3058 | ut_ad(len != UNIV_SQL_NULL); |
3059 | |
3060 | if (templ->mysql_null_bit_mask) { |
3061 | /* It is a nullable column with a non-NULL |
3062 | value */ |
3063 | mysql_rec[templ->mysql_null_byte_offset] |
3064 | &= ~(byte) templ->mysql_null_bit_mask; |
3065 | } |
3066 | |
3067 | DBUG_RETURN(TRUE); |
3068 | } |
3069 | |
3070 | /** Convert a row in the Innobase format to a row in the MySQL format. |
3071 | Note that the template in prebuilt may advise us to copy only a few |
3072 | columns to mysql_rec, other columns are left blank. All columns may not |
3073 | be needed in the query. |
3074 | @param[out] mysql_rec row in the MySQL format |
3075 | @param[in] prebuilt prebuilt structure |
3076 | @param[in] rec Innobase record in the index |
3077 | which was described in prebuilt's |
3078 | template, or in the clustered index; |
3079 | must be protected by a page latch |
3080 | @param[in] vrow virtual columns |
3081 | @param[in] rec_clust whether the rec in the clustered index |
3082 | @param[in] index index of rec |
3083 | @param[in] offsets array returned by rec_get_offsets(rec) |
3084 | @return TRUE on success, FALSE if not all columns could be retrieved */ |
3085 | static MY_ATTRIBUTE((warn_unused_result)) |
3086 | ibool |
3087 | row_sel_store_mysql_rec( |
3088 | byte* mysql_rec, |
3089 | row_prebuilt_t* prebuilt, |
3090 | const rec_t* rec, |
3091 | const dtuple_t* vrow, |
3092 | bool rec_clust, |
3093 | const dict_index_t* index, |
3094 | const ulint* offsets) |
3095 | { |
3096 | DBUG_ENTER("row_sel_store_mysql_rec" ); |
3097 | |
3098 | ut_ad(rec_clust || index == prebuilt->index); |
3099 | ut_ad(!rec_clust || dict_index_is_clust(index)); |
3100 | |
3101 | if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { |
3102 | row_mysql_prebuilt_free_blob_heap(prebuilt); |
3103 | } |
3104 | |
3105 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
3106 | const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; |
3107 | |
3108 | if (templ->is_virtual && dict_index_is_clust(index)) { |
3109 | |
3110 | /* Skip virtual columns if it is not a covered |
3111 | search or virtual key read is not requested. */ |
3112 | if (!dict_index_has_virtual(prebuilt->index) |
3113 | || (!prebuilt->read_just_key |
3114 | && !prebuilt->m_read_virtual_key) |
3115 | || !rec_clust) { |
3116 | continue; |
3117 | } |
3118 | |
3119 | dict_v_col_t* col; |
3120 | col = dict_table_get_nth_v_col( |
3121 | index->table, templ->clust_rec_field_no); |
3122 | |
3123 | ut_ad(vrow); |
3124 | |
3125 | const dfield_t* dfield = dtuple_get_nth_v_field( |
3126 | vrow, col->v_pos); |
3127 | |
3128 | /* If this is a partitioned table, it might request |
3129 | InnoDB to fill out virtual column data for serach |
3130 | index key values while other non key columns are also |
3131 | getting selected. The non-key virtual columns may |
3132 | not be materialized and we should skip them. */ |
3133 | if (dfield_get_type(dfield)->mtype == DATA_MISSING) { |
3134 | #ifdef UNIV_DEBUG |
3135 | ulint prefix; |
3136 | #endif /* UNIV_DEBUG */ |
3137 | ut_ad(prebuilt->m_read_virtual_key); |
3138 | |
3139 | /* If it is part of index key the data should |
3140 | have been materialized. */ |
3141 | ut_ad(dict_index_get_nth_col_or_prefix_pos( |
3142 | prebuilt->index, col->v_pos, false, |
3143 | true, &prefix) == ULINT_UNDEFINED); |
3144 | |
3145 | continue; |
3146 | } |
3147 | |
3148 | if (dfield->len == UNIV_SQL_NULL) { |
3149 | mysql_rec[templ->mysql_null_byte_offset] |
3150 | |= (byte) templ->mysql_null_bit_mask; |
3151 | memcpy(mysql_rec |
3152 | + templ->mysql_col_offset, |
3153 | (const byte*) prebuilt->default_rec |
3154 | + templ->mysql_col_offset, |
3155 | templ->mysql_col_len); |
3156 | } else { |
3157 | row_sel_field_store_in_mysql_format( |
3158 | mysql_rec + templ->mysql_col_offset, |
3159 | templ, index, templ->clust_rec_field_no, |
3160 | (const byte*)dfield->data, dfield->len); |
3161 | if (templ->mysql_null_bit_mask) { |
3162 | mysql_rec[ |
3163 | templ->mysql_null_byte_offset] |
3164 | &= ~(byte) templ->mysql_null_bit_mask; |
3165 | } |
3166 | } |
3167 | |
3168 | continue; |
3169 | } |
3170 | |
3171 | const ulint field_no |
3172 | = rec_clust |
3173 | ? templ->clust_rec_field_no |
3174 | : templ->rec_field_no; |
3175 | /* We should never deliver column prefixes to MySQL, |
3176 | except for evaluating innobase_index_cond(). */ |
3177 | /* ...actually, we do want to do this in order to |
3178 | support the prefix query optimization. |
3179 | |
3180 | ut_ad(dict_index_get_nth_field(index, field_no)->prefix_len |
3181 | == 0); |
3182 | |
3183 | ...so we disable this assert. */ |
3184 | |
3185 | if (!row_sel_store_mysql_field(mysql_rec, prebuilt, |
3186 | rec, index, offsets, |
3187 | field_no, templ)) { |
3188 | |
3189 | DBUG_RETURN(FALSE); |
3190 | } |
3191 | } |
3192 | |
3193 | /* FIXME: We only need to read the doc_id if an FTS indexed |
3194 | column is being updated. |
3195 | NOTE, the record can be cluster or secondary index record. |
3196 | if secondary index is used then FTS_DOC_ID column should be part |
3197 | of this index. */ |
3198 | if (dict_table_has_fts_index(prebuilt->table)) { |
3199 | if (dict_index_is_clust(index) |
3200 | || prebuilt->fts_doc_id_in_read_set) { |
3201 | prebuilt->fts_doc_id = fts_get_doc_id_from_rec( |
3202 | prebuilt->table, rec, index, NULL); |
3203 | } |
3204 | } |
3205 | |
3206 | DBUG_RETURN(TRUE); |
3207 | } |
3208 | |
3209 | /*********************************************************************//** |
3210 | Builds a previous version of a clustered index record for a consistent read |
3211 | @return DB_SUCCESS or error code */ |
3212 | static MY_ATTRIBUTE((warn_unused_result)) |
3213 | dberr_t |
3214 | row_sel_build_prev_vers_for_mysql( |
3215 | /*==============================*/ |
3216 | ReadView* read_view, /*!< in: read view */ |
3217 | dict_index_t* clust_index, /*!< in: clustered index */ |
3218 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ |
3219 | const rec_t* rec, /*!< in: record in a clustered index */ |
3220 | ulint** offsets, /*!< in/out: offsets returned by |
3221 | rec_get_offsets(rec, clust_index) */ |
3222 | mem_heap_t** offset_heap, /*!< in/out: memory heap from which |
3223 | the offsets are allocated */ |
3224 | rec_t** old_vers, /*!< out: old version, or NULL if the |
3225 | record does not exist in the view: |
3226 | i.e., it was freshly inserted |
3227 | afterwards */ |
3228 | const dtuple_t**vrow, /*!< out: dtuple to hold old virtual |
3229 | column data */ |
3230 | mtr_t* mtr) /*!< in: mtr */ |
3231 | { |
3232 | dberr_t err; |
3233 | |
3234 | if (prebuilt->old_vers_heap) { |
3235 | mem_heap_empty(prebuilt->old_vers_heap); |
3236 | } else { |
3237 | prebuilt->old_vers_heap = mem_heap_create(200); |
3238 | } |
3239 | |
3240 | err = row_vers_build_for_consistent_read( |
3241 | rec, mtr, clust_index, offsets, read_view, offset_heap, |
3242 | prebuilt->old_vers_heap, old_vers, vrow); |
3243 | return(err); |
3244 | } |
3245 | |
3246 | /*********************************************************************//** |
3247 | Retrieves the clustered index record corresponding to a record in a |
3248 | non-clustered index. Does the necessary locking. Used in the MySQL |
3249 | interface. |
3250 | @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ |
3251 | static MY_ATTRIBUTE((warn_unused_result)) |
3252 | dberr_t |
3253 | row_sel_get_clust_rec_for_mysql( |
3254 | /*============================*/ |
3255 | row_prebuilt_t* prebuilt,/*!< in: prebuilt struct in the handle */ |
3256 | dict_index_t* sec_index,/*!< in: secondary index where rec resides */ |
3257 | const rec_t* rec, /*!< in: record in a non-clustered index; if |
3258 | this is a locking read, then rec is not |
3259 | allowed to be delete-marked, and that would |
3260 | not make sense either */ |
3261 | que_thr_t* thr, /*!< in: query thread */ |
3262 | const rec_t** out_rec,/*!< out: clustered record or an old version of |
3263 | it, NULL if the old version did not exist |
3264 | in the read view, i.e., it was a fresh |
3265 | inserted version */ |
3266 | ulint** offsets,/*!< in: offsets returned by |
3267 | rec_get_offsets(rec, sec_index); |
3268 | out: offsets returned by |
3269 | rec_get_offsets(out_rec, clust_index) */ |
3270 | mem_heap_t** offset_heap,/*!< in/out: memory heap from which |
3271 | the offsets are allocated */ |
3272 | const dtuple_t**vrow, /*!< out: virtual column to fill */ |
3273 | mtr_t* mtr) /*!< in: mtr used to get access to the |
3274 | non-clustered record; the same mtr is used to |
3275 | access the clustered index */ |
3276 | { |
3277 | dict_index_t* clust_index; |
3278 | const rec_t* clust_rec; |
3279 | rec_t* old_vers; |
3280 | dberr_t err; |
3281 | trx_t* trx; |
3282 | |
3283 | *out_rec = NULL; |
3284 | trx = thr_get_trx(thr); |
3285 | |
3286 | srv_stats.n_sec_rec_cluster_reads.inc( |
3287 | thd_get_thread_id(trx->mysql_thd)); |
3288 | |
3289 | row_build_row_ref_in_tuple(prebuilt->clust_ref, rec, |
3290 | sec_index, *offsets); |
3291 | |
3292 | clust_index = dict_table_get_first_index(sec_index->table); |
3293 | |
3294 | btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref, |
3295 | PAGE_CUR_LE, BTR_SEARCH_LEAF, |
3296 | prebuilt->clust_pcur, 0, mtr); |
3297 | |
3298 | clust_rec = btr_pcur_get_rec(prebuilt->clust_pcur); |
3299 | |
3300 | prebuilt->clust_pcur->trx_if_known = trx; |
3301 | |
3302 | /* Note: only if the search ends up on a non-infimum record is the |
3303 | low_match value the real match to the search tuple */ |
3304 | |
3305 | if (!page_rec_is_user_rec(clust_rec) |
3306 | || btr_pcur_get_low_match(prebuilt->clust_pcur) |
3307 | < dict_index_get_n_unique(clust_index)) { |
3308 | btr_cur_t* btr_cur = btr_pcur_get_btr_cur(prebuilt->pcur); |
3309 | |
3310 | /* If this is a spatial index scan, and we are reading |
3311 | from a shadow buffer, the record could be already |
3312 | deleted (due to rollback etc.). So get the original |
3313 | page and verify that */ |
3314 | if (dict_index_is_spatial(sec_index) |
3315 | && btr_cur->rtr_info->matches |
3316 | && (page_align(rec) |
3317 | == btr_cur->rtr_info->matches->block.frame |
3318 | || rec != btr_pcur_get_rec(prebuilt->pcur))) { |
3319 | #ifdef UNIV_DEBUG |
3320 | rtr_info_t* rtr_info = btr_cur->rtr_info; |
3321 | mutex_enter(&rtr_info->matches->rtr_match_mutex); |
3322 | /* The page could be deallocated (by rollback etc.) */ |
3323 | if (!rtr_info->matches->valid) { |
3324 | mutex_exit(&rtr_info->matches->rtr_match_mutex); |
3325 | clust_rec = NULL; |
3326 | |
3327 | err = DB_SUCCESS; |
3328 | goto func_exit; |
3329 | } |
3330 | mutex_exit(&rtr_info->matches->rtr_match_mutex); |
3331 | |
3332 | if (rec_get_deleted_flag(rec, |
3333 | dict_table_is_comp(sec_index->table)) |
3334 | && prebuilt->select_lock_type == LOCK_NONE) { |
3335 | |
3336 | clust_rec = NULL; |
3337 | |
3338 | err = DB_SUCCESS; |
3339 | goto func_exit; |
3340 | } |
3341 | |
3342 | if (rec != btr_pcur_get_rec(prebuilt->pcur)) { |
3343 | clust_rec = NULL; |
3344 | |
3345 | err = DB_SUCCESS; |
3346 | goto func_exit; |
3347 | } |
3348 | |
3349 | /* FIXME: Why is this block not the |
3350 | same as btr_pcur_get_block(prebuilt->pcur), |
3351 | and is it not unsafe to use RW_NO_LATCH here? */ |
3352 | buf_block_t* block = buf_page_get_gen( |
3353 | btr_pcur_get_block(prebuilt->pcur)->page.id, |
3354 | dict_table_page_size(sec_index->table), |
3355 | RW_NO_LATCH, NULL, BUF_GET, |
3356 | __FILE__, __LINE__, mtr, &err); |
3357 | mem_heap_t* heap = mem_heap_create(256); |
3358 | dtuple_t* tuple = dict_index_build_data_tuple( |
3359 | rec, sec_index, true, |
3360 | sec_index->n_fields, heap); |
3361 | page_cur_t page_cursor; |
3362 | |
3363 | ulint low_match = page_cur_search( |
3364 | block, sec_index, tuple, |
3365 | PAGE_CUR_LE, &page_cursor); |
3366 | |
3367 | ut_ad(low_match < dtuple_get_n_fields_cmp(tuple)); |
3368 | mem_heap_free(heap); |
3369 | clust_rec = NULL; |
3370 | |
3371 | err = DB_SUCCESS; |
3372 | goto func_exit; |
3373 | #endif /* UNIV_DEBUG */ |
3374 | } else if (!rec_get_deleted_flag(rec, |
3375 | dict_table_is_comp(sec_index->table)) |
3376 | || prebuilt->select_lock_type != LOCK_NONE) { |
3377 | /* In a rare case it is possible that no clust |
3378 | rec is found for a delete-marked secondary index |
3379 | record: if in row0umod.cc in |
3380 | row_undo_mod_remove_clust_low() we have already removed |
3381 | the clust rec, while purge is still cleaning and |
3382 | removing secondary index records associated with |
3383 | earlier versions of the clustered index record. |
3384 | In that case we know that the clustered index |
3385 | record did not exist in the read view of trx. */ |
3386 | ib::error() << "Clustered record for sec rec not found" |
3387 | " index " << sec_index->name |
3388 | << " of table " << sec_index->table->name; |
3389 | |
3390 | fputs("InnoDB: sec index record " , stderr); |
3391 | rec_print(stderr, rec, sec_index); |
3392 | fputs("\n" |
3393 | "InnoDB: clust index record " , stderr); |
3394 | rec_print(stderr, clust_rec, clust_index); |
3395 | putc('\n', stderr); |
3396 | trx_print(stderr, trx, 600); |
3397 | fputs("\n" |
3398 | "InnoDB: Submit a detailed bug report" |
3399 | " to https://jira.mariadb.org/\n" , stderr); |
3400 | ut_ad(0); |
3401 | } |
3402 | |
3403 | clust_rec = NULL; |
3404 | |
3405 | err = DB_SUCCESS; |
3406 | goto func_exit; |
3407 | } |
3408 | |
3409 | *offsets = rec_get_offsets(clust_rec, clust_index, *offsets, true, |
3410 | ULINT_UNDEFINED, offset_heap); |
3411 | |
3412 | if (prebuilt->select_lock_type != LOCK_NONE) { |
3413 | /* Try to place a lock on the index record; we are searching |
3414 | the clust rec with a unique condition, hence |
3415 | we set a LOCK_REC_NOT_GAP type lock */ |
3416 | |
3417 | err = lock_clust_rec_read_check_and_lock( |
3418 | 0, btr_pcur_get_block(prebuilt->clust_pcur), |
3419 | clust_rec, clust_index, *offsets, |
3420 | static_cast<lock_mode>(prebuilt->select_lock_type), |
3421 | LOCK_REC_NOT_GAP, |
3422 | thr); |
3423 | |
3424 | switch (err) { |
3425 | case DB_SUCCESS: |
3426 | case DB_SUCCESS_LOCKED_REC: |
3427 | break; |
3428 | default: |
3429 | goto err_exit; |
3430 | } |
3431 | } else { |
3432 | /* This is a non-locking consistent read: if necessary, fetch |
3433 | a previous version of the record */ |
3434 | |
3435 | old_vers = NULL; |
3436 | |
3437 | /* If the isolation level allows reading of uncommitted data, |
3438 | then we never look for an earlier version */ |
3439 | |
3440 | if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
3441 | && !lock_clust_rec_cons_read_sees( |
3442 | clust_rec, clust_index, *offsets, |
3443 | &trx->read_view)) { |
3444 | |
3445 | /* The following call returns 'offsets' associated with |
3446 | 'old_vers' */ |
3447 | err = row_sel_build_prev_vers_for_mysql( |
3448 | &trx->read_view, clust_index, prebuilt, |
3449 | clust_rec, offsets, offset_heap, &old_vers, |
3450 | vrow, mtr); |
3451 | |
3452 | if (err != DB_SUCCESS || old_vers == NULL) { |
3453 | |
3454 | goto err_exit; |
3455 | } |
3456 | |
3457 | clust_rec = old_vers; |
3458 | } |
3459 | |
3460 | /* If we had to go to an earlier version of row or the |
3461 | secondary index record is delete marked, then it may be that |
3462 | the secondary index record corresponding to clust_rec |
3463 | (or old_vers) is not rec; in that case we must ignore |
3464 | such row because in our snapshot rec would not have existed. |
3465 | Remember that from rec we cannot see directly which transaction |
3466 | id corresponds to it: we have to go to the clustered index |
3467 | record. A query where we want to fetch all rows where |
3468 | the secondary index value is in some interval would return |
3469 | a wrong result if we would not drop rows which we come to |
3470 | visit through secondary index records that would not really |
3471 | exist in our snapshot. */ |
3472 | |
3473 | /* And for spatial index, since the rec is from shadow buffer, |
3474 | so we need to check if it's exactly match the clust_rec. */ |
3475 | if (clust_rec |
3476 | && (old_vers |
3477 | || trx->isolation_level <= TRX_ISO_READ_UNCOMMITTED |
3478 | || dict_index_is_spatial(sec_index) |
3479 | || rec_get_deleted_flag(rec, dict_table_is_comp( |
3480 | sec_index->table))) |
3481 | && !row_sel_sec_rec_is_for_clust_rec( |
3482 | rec, sec_index, clust_rec, clust_index, thr)) { |
3483 | clust_rec = NULL; |
3484 | } |
3485 | |
3486 | err = DB_SUCCESS; |
3487 | } |
3488 | |
3489 | func_exit: |
3490 | *out_rec = clust_rec; |
3491 | |
3492 | if (prebuilt->select_lock_type != LOCK_NONE) { |
3493 | /* We may use the cursor in update or in unlock_row(): |
3494 | store its position */ |
3495 | |
3496 | btr_pcur_store_position(prebuilt->clust_pcur, mtr); |
3497 | } |
3498 | |
3499 | err_exit: |
3500 | return(err); |
3501 | } |
3502 | |
3503 | /********************************************************************//** |
3504 | Restores cursor position after it has been stored. We have to take into |
3505 | account that the record cursor was positioned on may have been deleted. |
3506 | Then we may have to move the cursor one step up or down. |
3507 | @return true if we may need to process the record the cursor is now |
3508 | positioned on (i.e. we should not go to the next record yet) */ |
3509 | static |
3510 | bool |
3511 | sel_restore_position_for_mysql( |
3512 | /*===========================*/ |
3513 | ibool* same_user_rec, /*!< out: TRUE if we were able to restore |
3514 | the cursor on a user record with the |
3515 | same ordering prefix in in the |
3516 | B-tree index */ |
3517 | ulint latch_mode, /*!< in: latch mode wished in |
3518 | restoration */ |
3519 | btr_pcur_t* pcur, /*!< in: cursor whose position |
3520 | has been stored */ |
3521 | ibool moves_up, /*!< in: TRUE if the cursor moves up |
3522 | in the index */ |
3523 | mtr_t* mtr) /*!< in: mtr; CAUTION: may commit |
3524 | mtr temporarily! */ |
3525 | { |
3526 | ibool success; |
3527 | |
3528 | success = btr_pcur_restore_position(latch_mode, pcur, mtr); |
3529 | |
3530 | *same_user_rec = success; |
3531 | |
3532 | ut_ad(!success || pcur->rel_pos == BTR_PCUR_ON); |
3533 | #ifdef UNIV_DEBUG |
3534 | if (pcur->pos_state == BTR_PCUR_IS_POSITIONED_OPTIMISTIC) { |
3535 | ut_ad(pcur->rel_pos == BTR_PCUR_BEFORE |
3536 | || pcur->rel_pos == BTR_PCUR_AFTER); |
3537 | } else { |
3538 | ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED); |
3539 | ut_ad((pcur->rel_pos == BTR_PCUR_ON) |
3540 | == btr_pcur_is_on_user_rec(pcur)); |
3541 | } |
3542 | #endif /* UNIV_DEBUG */ |
3543 | |
3544 | /* The position may need be adjusted for rel_pos and moves_up. */ |
3545 | |
3546 | switch (pcur->rel_pos) { |
3547 | case BTR_PCUR_ON: |
3548 | if (!success && moves_up) { |
3549 | next: |
3550 | if (btr_pcur_move_to_next(pcur, mtr) |
3551 | && rec_is_default_row(btr_pcur_get_rec(pcur), |
3552 | pcur->btr_cur.index)) { |
3553 | btr_pcur_move_to_next(pcur, mtr); |
3554 | } |
3555 | |
3556 | return true; |
3557 | } |
3558 | return(!success); |
3559 | case BTR_PCUR_AFTER_LAST_IN_TREE: |
3560 | case BTR_PCUR_BEFORE_FIRST_IN_TREE: |
3561 | return true; |
3562 | case BTR_PCUR_AFTER: |
3563 | /* positioned to record after pcur->old_rec. */ |
3564 | pcur->pos_state = BTR_PCUR_IS_POSITIONED; |
3565 | prev: |
3566 | if (btr_pcur_is_on_user_rec(pcur) && !moves_up |
3567 | && !rec_is_default_row(btr_pcur_get_rec(pcur), |
3568 | pcur->btr_cur.index)) { |
3569 | btr_pcur_move_to_prev(pcur, mtr); |
3570 | } |
3571 | return true; |
3572 | case BTR_PCUR_BEFORE: |
3573 | /* For non optimistic restoration: |
3574 | The position is now set to the record before pcur->old_rec. |
3575 | |
3576 | For optimistic restoration: |
3577 | The position also needs to take the previous search_mode into |
3578 | consideration. */ |
3579 | |
3580 | switch (pcur->pos_state) { |
3581 | case BTR_PCUR_IS_POSITIONED_OPTIMISTIC: |
3582 | pcur->pos_state = BTR_PCUR_IS_POSITIONED; |
3583 | if (pcur->search_mode == PAGE_CUR_GE) { |
3584 | /* Positioned during Greater or Equal search |
3585 | with BTR_PCUR_BEFORE. Optimistic restore to |
3586 | the same record. If scanning for lower then |
3587 | we must move to previous record. |
3588 | This can happen with: |
3589 | HANDLER READ idx a = (const); |
3590 | HANDLER READ idx PREV; */ |
3591 | goto prev; |
3592 | } |
3593 | return true; |
3594 | case BTR_PCUR_IS_POSITIONED: |
3595 | if (moves_up && btr_pcur_is_on_user_rec(pcur)) { |
3596 | goto next; |
3597 | } |
3598 | return true; |
3599 | case BTR_PCUR_WAS_POSITIONED: |
3600 | case BTR_PCUR_NOT_POSITIONED: |
3601 | break; |
3602 | } |
3603 | } |
3604 | ut_ad(0); |
3605 | return true; |
3606 | } |
3607 | |
3608 | /********************************************************************//** |
3609 | Copies a cached field for MySQL from the fetch cache. */ |
3610 | static |
3611 | void |
3612 | row_sel_copy_cached_field_for_mysql( |
3613 | /*================================*/ |
3614 | byte* buf, /*!< in/out: row buffer */ |
3615 | const byte* cache, /*!< in: cached row */ |
3616 | const mysql_row_templ_t*templ) /*!< in: column template */ |
3617 | { |
3618 | ulint len; |
3619 | |
3620 | buf += templ->mysql_col_offset; |
3621 | cache += templ->mysql_col_offset; |
3622 | |
3623 | UNIV_MEM_ASSERT_W(buf, templ->mysql_col_len); |
3624 | |
3625 | if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR |
3626 | && (templ->type != DATA_INT)) { |
3627 | /* Check for != DATA_INT to make sure we do |
3628 | not treat MySQL ENUM or SET as a true VARCHAR! |
3629 | Find the actual length of the true VARCHAR field. */ |
3630 | row_mysql_read_true_varchar( |
3631 | &len, cache, templ->mysql_length_bytes); |
3632 | len += templ->mysql_length_bytes; |
3633 | UNIV_MEM_INVALID(buf, templ->mysql_col_len); |
3634 | } else { |
3635 | len = templ->mysql_col_len; |
3636 | } |
3637 | |
3638 | ut_memcpy(buf, cache, len); |
3639 | } |
3640 | |
3641 | /** Copy used fields from cached row. |
3642 | Copy cache record field by field, don't touch fields that |
3643 | are not covered by current key. |
3644 | @param[out] buf Where to copy the MySQL row. |
3645 | @param[in] cached_rec What to copy (in MySQL row format). |
3646 | @param[in] prebuilt prebuilt struct. */ |
3647 | void |
3648 | row_sel_copy_cached_fields_for_mysql( |
3649 | byte* buf, |
3650 | const byte* cached_rec, |
3651 | row_prebuilt_t* prebuilt) |
3652 | { |
3653 | const mysql_row_templ_t*templ; |
3654 | ulint i; |
3655 | for (i = 0; i < prebuilt->n_template; i++) { |
3656 | templ = prebuilt->mysql_template + i; |
3657 | |
3658 | /* Skip virtual columns */ |
3659 | if (templ->is_virtual) { |
3660 | continue; |
3661 | } |
3662 | |
3663 | row_sel_copy_cached_field_for_mysql( |
3664 | buf, cached_rec, templ); |
3665 | /* Copy NULL bit of the current field from cached_rec |
3666 | to buf */ |
3667 | if (templ->mysql_null_bit_mask) { |
3668 | buf[templ->mysql_null_byte_offset] |
3669 | ^= (buf[templ->mysql_null_byte_offset] |
3670 | ^ cached_rec[templ->mysql_null_byte_offset]) |
3671 | & (byte) templ->mysql_null_bit_mask; |
3672 | } |
3673 | } |
3674 | } |
3675 | |
3676 | /********************************************************************//** |
3677 | Pops a cached row for MySQL from the fetch cache. */ |
3678 | UNIV_INLINE |
3679 | void |
3680 | row_sel_dequeue_cached_row_for_mysql( |
3681 | /*=================================*/ |
3682 | byte* buf, /*!< in/out: buffer where to copy the |
3683 | row */ |
3684 | row_prebuilt_t* prebuilt) /*!< in: prebuilt struct */ |
3685 | { |
3686 | ulint i; |
3687 | const mysql_row_templ_t*templ; |
3688 | const byte* cached_rec; |
3689 | ut_ad(prebuilt->n_fetch_cached > 0); |
3690 | ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len); |
3691 | |
3692 | UNIV_MEM_ASSERT_W(buf, prebuilt->mysql_row_len); |
3693 | |
3694 | cached_rec = prebuilt->fetch_cache[prebuilt->fetch_cache_first]; |
3695 | |
3696 | if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) { |
3697 | row_sel_copy_cached_fields_for_mysql(buf, cached_rec, prebuilt); |
3698 | } else if (prebuilt->mysql_prefix_len > 63) { |
3699 | /* The record is long. Copy it field by field, in case |
3700 | there are some long VARCHAR column of which only a |
3701 | small length is being used. */ |
3702 | UNIV_MEM_INVALID(buf, prebuilt->mysql_prefix_len); |
3703 | |
3704 | /* First copy the NULL bits. */ |
3705 | ut_memcpy(buf, cached_rec, prebuilt->null_bitmap_len); |
3706 | /* Then copy the requested fields. */ |
3707 | |
3708 | for (i = 0; i < prebuilt->n_template; i++) { |
3709 | templ = prebuilt->mysql_template + i; |
3710 | |
3711 | /* Skip virtual columns */ |
3712 | if (templ->is_virtual |
3713 | && !(dict_index_has_virtual(prebuilt->index) |
3714 | && prebuilt->read_just_key)) { |
3715 | continue; |
3716 | } |
3717 | |
3718 | row_sel_copy_cached_field_for_mysql( |
3719 | buf, cached_rec, templ); |
3720 | } |
3721 | } else { |
3722 | ut_memcpy(buf, cached_rec, prebuilt->mysql_prefix_len); |
3723 | } |
3724 | |
3725 | prebuilt->n_fetch_cached--; |
3726 | prebuilt->fetch_cache_first++; |
3727 | |
3728 | if (prebuilt->n_fetch_cached == 0) { |
3729 | prebuilt->fetch_cache_first = 0; |
3730 | } |
3731 | } |
3732 | |
3733 | /********************************************************************//** |
3734 | Initialise the prefetch cache. */ |
3735 | UNIV_INLINE |
3736 | void |
3737 | row_sel_prefetch_cache_init( |
3738 | /*========================*/ |
3739 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
3740 | { |
3741 | ulint i; |
3742 | ulint sz; |
3743 | byte* ptr; |
3744 | |
3745 | /* Reserve space for the magic number. */ |
3746 | sz = UT_ARR_SIZE(prebuilt->fetch_cache) * (prebuilt->mysql_row_len + 8); |
3747 | ptr = static_cast<byte*>(ut_malloc_nokey(sz)); |
3748 | |
3749 | for (i = 0; i < UT_ARR_SIZE(prebuilt->fetch_cache); i++) { |
3750 | |
3751 | /* A user has reported memory corruption in these |
3752 | buffers in Linux. Put magic numbers there to help |
3753 | to track a possible bug. */ |
3754 | |
3755 | mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); |
3756 | ptr += 4; |
3757 | |
3758 | prebuilt->fetch_cache[i] = ptr; |
3759 | ptr += prebuilt->mysql_row_len; |
3760 | |
3761 | mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); |
3762 | ptr += 4; |
3763 | } |
3764 | } |
3765 | |
3766 | /********************************************************************//** |
3767 | Get the last fetch cache buffer from the queue. |
3768 | @return pointer to buffer. */ |
3769 | UNIV_INLINE |
3770 | byte* |
3771 | row_sel_fetch_last_buf( |
3772 | /*===================*/ |
3773 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
3774 | { |
3775 | ut_ad(!prebuilt->templ_contains_blob); |
3776 | ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); |
3777 | |
3778 | if (prebuilt->fetch_cache[0] == NULL) { |
3779 | /* Allocate memory for the fetch cache */ |
3780 | ut_ad(prebuilt->n_fetch_cached == 0); |
3781 | |
3782 | row_sel_prefetch_cache_init(prebuilt); |
3783 | } |
3784 | |
3785 | ut_ad(prebuilt->fetch_cache_first == 0); |
3786 | UNIV_MEM_INVALID(prebuilt->fetch_cache[prebuilt->n_fetch_cached], |
3787 | prebuilt->mysql_row_len); |
3788 | |
3789 | return(prebuilt->fetch_cache[prebuilt->n_fetch_cached]); |
3790 | } |
3791 | |
3792 | /********************************************************************//** |
3793 | Pushes a row for MySQL to the fetch cache. */ |
3794 | UNIV_INLINE |
3795 | void |
3796 | row_sel_enqueue_cache_row_for_mysql( |
3797 | /*================================*/ |
3798 | byte* mysql_rec, /*!< in/out: MySQL record */ |
3799 | row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ |
3800 | { |
3801 | /* For non ICP code path the row should already exist in the |
3802 | next fetch cache slot. */ |
3803 | |
3804 | if (prebuilt->idx_cond != NULL) { |
3805 | byte* dest = row_sel_fetch_last_buf(prebuilt); |
3806 | |
3807 | ut_memcpy(dest, mysql_rec, prebuilt->mysql_row_len); |
3808 | } |
3809 | |
3810 | ++prebuilt->n_fetch_cached; |
3811 | } |
3812 | |
3813 | #ifdef BTR_CUR_HASH_ADAPT |
3814 | /*********************************************************************//** |
3815 | Tries to do a shortcut to fetch a clustered index record with a unique key, |
3816 | using the hash index if possible (not always). We assume that the search |
3817 | mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx, |
3818 | btr search latch has been locked in S-mode if AHI is enabled. |
3819 | @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ |
3820 | static |
3821 | ulint |
3822 | row_sel_try_search_shortcut_for_mysql( |
3823 | /*==================================*/ |
3824 | const rec_t** out_rec,/*!< out: record if found */ |
3825 | row_prebuilt_t* prebuilt,/*!< in: prebuilt struct */ |
3826 | ulint** offsets,/*!< in/out: for rec_get_offsets(*out_rec) */ |
3827 | mem_heap_t** heap, /*!< in/out: heap for rec_get_offsets() */ |
3828 | mtr_t* mtr) /*!< in: started mtr */ |
3829 | { |
3830 | dict_index_t* index = prebuilt->index; |
3831 | const dtuple_t* search_tuple = prebuilt->search_tuple; |
3832 | btr_pcur_t* pcur = prebuilt->pcur; |
3833 | trx_t* trx = prebuilt->trx; |
3834 | const rec_t* rec; |
3835 | |
3836 | ut_ad(dict_index_is_clust(index)); |
3837 | ut_ad(!prebuilt->templ_contains_blob); |
3838 | |
3839 | rw_lock_t* ahi_latch = btr_get_search_latch(index); |
3840 | rw_lock_s_lock(ahi_latch); |
3841 | btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, |
3842 | BTR_SEARCH_LEAF, pcur, ahi_latch, mtr); |
3843 | rec = btr_pcur_get_rec(pcur); |
3844 | |
3845 | if (!page_rec_is_user_rec(rec) || rec_is_default_row(rec, index)) { |
3846 | retry: |
3847 | rw_lock_s_unlock(ahi_latch); |
3848 | return(SEL_RETRY); |
3849 | } |
3850 | |
3851 | /* As the cursor is now placed on a user record after a search with |
3852 | the mode PAGE_CUR_GE, the up_match field in the cursor tells how many |
3853 | fields in the user record matched to the search tuple */ |
3854 | |
3855 | if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) { |
3856 | exhausted: |
3857 | rw_lock_s_unlock(ahi_latch); |
3858 | return(SEL_EXHAUSTED); |
3859 | } |
3860 | |
3861 | /* This is a non-locking consistent read: if necessary, fetch |
3862 | a previous version of the record */ |
3863 | |
3864 | *offsets = rec_get_offsets(rec, index, *offsets, true, |
3865 | ULINT_UNDEFINED, heap); |
3866 | |
3867 | if (!lock_clust_rec_cons_read_sees(rec, index, *offsets, |
3868 | &trx->read_view)) { |
3869 | goto retry; |
3870 | } |
3871 | |
3872 | if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) { |
3873 | /* In delete-marked records, DB_TRX_ID must |
3874 | always refer to an existing undo log record. */ |
3875 | ut_ad(row_get_rec_trx_id(rec, index, *offsets)); |
3876 | goto exhausted; |
3877 | } |
3878 | |
3879 | *out_rec = rec; |
3880 | |
3881 | rw_lock_s_unlock(ahi_latch); |
3882 | return(SEL_FOUND); |
3883 | } |
3884 | #endif /* BTR_CUR_HASH_ADAPT */ |
3885 | |
3886 | /*********************************************************************//** |
3887 | Check a pushed-down index condition. |
3888 | @return ICP_NO_MATCH, ICP_MATCH, or ICP_OUT_OF_RANGE */ |
3889 | static |
3890 | ICP_RESULT |
3891 | row_search_idx_cond_check( |
3892 | /*======================*/ |
3893 | byte* mysql_rec, /*!< out: record |
3894 | in MySQL format (invalid unless |
3895 | prebuilt->idx_cond!=NULL and |
3896 | we return ICP_MATCH) */ |
3897 | row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct |
3898 | for the table handle */ |
3899 | const rec_t* rec, /*!< in: InnoDB record */ |
3900 | const ulint* offsets) /*!< in: rec_get_offsets() */ |
3901 | { |
3902 | ICP_RESULT result; |
3903 | ulint i; |
3904 | |
3905 | ut_ad(rec_offs_validate(rec, prebuilt->index, offsets)); |
3906 | |
3907 | if (!prebuilt->idx_cond) { |
3908 | return(ICP_MATCH); |
3909 | } |
3910 | |
3911 | MONITOR_INC(MONITOR_ICP_ATTEMPTS); |
3912 | |
3913 | /* Convert to MySQL format those fields that are needed for |
3914 | evaluating the index condition. */ |
3915 | |
3916 | if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { |
3917 | mem_heap_empty(prebuilt->blob_heap); |
3918 | } |
3919 | |
3920 | for (i = 0; i < prebuilt->idx_cond_n_cols; i++) { |
3921 | const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; |
3922 | |
3923 | /* Skip virtual columns */ |
3924 | if (templ->is_virtual) { |
3925 | continue; |
3926 | } |
3927 | |
3928 | if (!row_sel_store_mysql_field(mysql_rec, prebuilt, |
3929 | rec, prebuilt->index, offsets, |
3930 | templ->icp_rec_field_no, |
3931 | templ)) { |
3932 | return(ICP_NO_MATCH); |
3933 | } |
3934 | } |
3935 | |
3936 | /* We assume that the index conditions on |
3937 | case-insensitive columns are case-insensitive. The |
3938 | case of such columns may be wrong in a secondary |
3939 | index, if the case of the column has been updated in |
3940 | the past, or a record has been deleted and a record |
3941 | inserted in a different case. */ |
3942 | result = innobase_index_cond(prebuilt->idx_cond); |
3943 | switch (result) { |
3944 | case ICP_MATCH: |
3945 | /* Convert the remaining fields to MySQL format. |
3946 | If this is a secondary index record, we must defer |
3947 | this until we have fetched the clustered index record. */ |
3948 | if (!prebuilt->need_to_access_clustered |
3949 | || dict_index_is_clust(prebuilt->index)) { |
3950 | if (!row_sel_store_mysql_rec( |
3951 | mysql_rec, prebuilt, rec, NULL, false, |
3952 | prebuilt->index, offsets)) { |
3953 | ut_ad(dict_index_is_clust(prebuilt->index)); |
3954 | return(ICP_NO_MATCH); |
3955 | } |
3956 | } |
3957 | MONITOR_INC(MONITOR_ICP_MATCH); |
3958 | return(result); |
3959 | case ICP_NO_MATCH: |
3960 | MONITOR_INC(MONITOR_ICP_NO_MATCH); |
3961 | return(result); |
3962 | case ICP_OUT_OF_RANGE: |
3963 | MONITOR_INC(MONITOR_ICP_OUT_OF_RANGE); |
3964 | return(result); |
3965 | case ICP_ERROR: |
3966 | case ICP_ABORTED_BY_USER: |
3967 | return(result); |
3968 | } |
3969 | |
3970 | ut_error; |
3971 | return(result); |
3972 | } |
3973 | |
3974 | /** Extract virtual column data from a virtual index record and fill a dtuple |
3975 | @param[in] rec the virtual (secondary) index record |
3976 | @param[in] index the virtual index |
3977 | @param[in,out] vrow the dtuple where data extract to |
3978 | @param[in] heap memory heap to allocate memory |
3979 | */ |
3980 | static |
3981 | void |
3982 | row_sel_fill_vrow( |
3983 | const rec_t* rec, |
3984 | dict_index_t* index, |
3985 | const dtuple_t** vrow, |
3986 | mem_heap_t* heap) |
3987 | { |
3988 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
3989 | ulint* offsets = offsets_; |
3990 | rec_offs_init(offsets_); |
3991 | |
3992 | ut_ad(!(*vrow)); |
3993 | ut_ad(heap); |
3994 | ut_ad(!dict_index_is_clust(index)); |
3995 | ut_ad(!index->is_instant()); |
3996 | ut_ad(page_rec_is_leaf(rec)); |
3997 | |
3998 | offsets = rec_get_offsets(rec, index, offsets, true, |
3999 | ULINT_UNDEFINED, &heap); |
4000 | |
4001 | *vrow = dtuple_create_with_vcol( |
4002 | heap, 0, dict_table_get_n_v_cols(index->table)); |
4003 | |
4004 | /* Initialize all virtual row's mtype to DATA_MISSING */ |
4005 | dtuple_init_v_fld(*vrow); |
4006 | |
4007 | for (ulint i = 0; i < dict_index_get_n_fields(index); i++) { |
4008 | const dict_field_t* field; |
4009 | const dict_col_t* col; |
4010 | |
4011 | field = dict_index_get_nth_field(index, i); |
4012 | col = dict_field_get_col(field); |
4013 | |
4014 | if (col->is_virtual()) { |
4015 | const byte* data; |
4016 | ulint len; |
4017 | |
4018 | data = rec_get_nth_field(rec, offsets, i, &len); |
4019 | |
4020 | const dict_v_col_t* vcol = reinterpret_cast< |
4021 | const dict_v_col_t*>(col); |
4022 | |
4023 | dfield_t* dfield = dtuple_get_nth_v_field( |
4024 | *vrow, vcol->v_pos); |
4025 | dfield_set_data(dfield, data, len); |
4026 | dict_col_copy_type(col, dfield_get_type(dfield)); |
4027 | } |
4028 | } |
4029 | } |
4030 | |
4031 | /** Return the record field length in characters. |
4032 | @param[in] col table column of the field |
4033 | @param[in] field_no field number |
4034 | @param[in] rec physical record |
4035 | @param[in] offsets field offsets in the physical record |
4036 | @return field length in characters. */ |
4037 | static |
4038 | size_t |
4039 | rec_field_len_in_chars( |
4040 | const dict_col_t* col, |
4041 | const ulint field_no, |
4042 | const rec_t* rec, |
4043 | const ulint* offsets) |
4044 | { |
4045 | const ulint cset = dtype_get_charset_coll(col->prtype); |
4046 | const CHARSET_INFO* cs = all_charsets[cset]; |
4047 | ulint rec_field_len; |
4048 | const char* rec_field = reinterpret_cast<const char *>( |
4049 | rec_get_nth_field( |
4050 | rec, offsets, field_no, &rec_field_len)); |
4051 | |
4052 | if (UNIV_UNLIKELY(!cs)) { |
4053 | ib::warn() << "Missing collation " << cset; |
4054 | return SIZE_T_MAX; |
4055 | } |
4056 | |
4057 | return(cs->cset->numchars(cs, rec_field, rec_field + rec_field_len)); |
4058 | } |
4059 | |
4060 | /** Avoid the clustered index lookup if all the following conditions |
4061 | are true: |
4062 | 1) all columns are in secondary index |
4063 | 2) all values for columns that are prefix-only indexes are shorter |
4064 | than the prefix size. This optimization can avoid many IOs for certain schemas. |
4065 | @return true, to avoid clustered index lookup. */ |
4066 | static |
4067 | bool row_search_with_covering_prefix( |
4068 | row_prebuilt_t* prebuilt, |
4069 | const rec_t* rec, |
4070 | const ulint* offsets) |
4071 | { |
4072 | const dict_index_t* index = prebuilt->index; |
4073 | ut_ad(!dict_index_is_clust(index)); |
4074 | |
4075 | if (!srv_prefix_index_cluster_optimization) { |
4076 | return false; |
4077 | } |
4078 | |
4079 | /** Optimization only applicable if there the number of secondary index |
4080 | fields are greater than or equal to number of clustered index fields. */ |
4081 | if (prebuilt->n_template > index->n_fields) { |
4082 | return false; |
4083 | } |
4084 | |
4085 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
4086 | mysql_row_templ_t* templ = prebuilt->mysql_template + i; |
4087 | ulint j = templ->rec_prefix_field_no; |
4088 | |
4089 | /** Condition (1) : is the field in the index. */ |
4090 | if (j == ULINT_UNDEFINED) { |
4091 | return false; |
4092 | } |
4093 | |
4094 | /** Condition (2): If this is a prefix index then |
4095 | row's value size shorter than prefix length. */ |
4096 | |
4097 | if (!templ->rec_field_is_prefix) { |
4098 | continue; |
4099 | } |
4100 | |
4101 | ulint rec_size = rec_offs_nth_size(offsets, j); |
4102 | const dict_field_t* field = dict_index_get_nth_field(index, j); |
4103 | ulint max_chars = field->prefix_len / templ->mbmaxlen; |
4104 | |
4105 | ut_a(field->prefix_len > 0); |
4106 | |
4107 | if (rec_size < max_chars) { |
4108 | /* Record in bytes shorter than the index |
4109 | prefix length in char. */ |
4110 | continue; |
4111 | } |
4112 | |
4113 | if (rec_size * templ->mbminlen >= field->prefix_len) { |
4114 | /* Shortest representation string by the |
4115 | byte length of the record is longer than the |
4116 | maximum possible index prefix. */ |
4117 | return false; |
4118 | } |
4119 | |
4120 | size_t num_chars = rec_field_len_in_chars( |
4121 | field->col, j, rec, offsets); |
4122 | |
4123 | if (num_chars >= max_chars) { |
4124 | /* No of chars to store the record exceeds |
4125 | the index prefix character length. */ |
4126 | return false; |
4127 | } |
4128 | } |
4129 | |
4130 | /* If prefix index optimization condition satisfied then |
4131 | for all columns above, use rec_prefix_field_no instead of |
4132 | rec_field_no, and skip the clustered lookup below. */ |
4133 | for (ulint i = 0; i < prebuilt->n_template; i++) { |
4134 | mysql_row_templ_t* templ = prebuilt->mysql_template + i; |
4135 | templ->rec_field_no = templ->rec_prefix_field_no; |
4136 | ut_a(templ->rec_field_no != ULINT_UNDEFINED); |
4137 | } |
4138 | |
4139 | srv_stats.n_sec_rec_cluster_reads_avoided.inc(); |
4140 | return true; |
4141 | } |
4142 | |
4143 | /** Searches for rows in the database using cursor. |
4144 | Function is mainly used for tables that are shared across connections and |
4145 | so it employs technique that can help re-construct the rows that |
4146 | transaction is suppose to see. |
4147 | It also has optimization such as pre-caching the rows, using AHI, etc. |
4148 | |
4149 | @param[out] buf buffer for the fetched row in MySQL format |
4150 | @param[in] mode search mode PAGE_CUR_L |
4151 | @param[in,out] prebuilt prebuilt struct for the table handler; |
4152 | this contains the info to search_tuple, |
4153 | index; if search tuple contains 0 field then |
4154 | we position the cursor at start or the end of |
4155 | index, depending on 'mode' |
4156 | @param[in] match_mode 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX |
4157 | @param[in] direction 0 or ROW_SEL_NEXT or ROW_SEL_PREV; |
4158 | Note: if this is != 0, then prebuilt must has a |
4159 | pcur with stored position! In opening of a |
4160 | cursor 'direction' should be 0. |
4161 | @return DB_SUCCESS or error code */ |
4162 | dberr_t |
4163 | row_search_mvcc( |
4164 | byte* buf, |
4165 | page_cur_mode_t mode, |
4166 | row_prebuilt_t* prebuilt, |
4167 | ulint match_mode, |
4168 | ulint direction) |
4169 | { |
4170 | DBUG_ENTER("row_search_mvcc" ); |
4171 | DBUG_ASSERT(prebuilt->index->table == prebuilt->table); |
4172 | |
4173 | dict_index_t* index = prebuilt->index; |
4174 | ibool comp = dict_table_is_comp(prebuilt->table); |
4175 | const dtuple_t* search_tuple = prebuilt->search_tuple; |
4176 | btr_pcur_t* pcur = prebuilt->pcur; |
4177 | trx_t* trx = prebuilt->trx; |
4178 | dict_index_t* clust_index; |
4179 | que_thr_t* thr; |
4180 | const rec_t* UNINIT_VAR(rec); |
4181 | const dtuple_t* vrow = NULL; |
4182 | const rec_t* result_rec = NULL; |
4183 | const rec_t* clust_rec; |
4184 | dberr_t err = DB_SUCCESS; |
4185 | ibool unique_search = FALSE; |
4186 | ibool = FALSE; |
4187 | ibool moves_up = FALSE; |
4188 | ibool set_also_gap_locks = TRUE; |
4189 | /* if the query is a plain locking SELECT, and the isolation level |
4190 | is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */ |
4191 | ibool did_semi_consistent_read = FALSE; |
4192 | /* if the returned record was locked and we did a semi-consistent |
4193 | read (fetch the newest committed version), then this is set to |
4194 | TRUE */ |
4195 | ulint next_offs; |
4196 | ibool same_user_rec; |
4197 | mtr_t mtr; |
4198 | mem_heap_t* heap = NULL; |
4199 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
4200 | ulint* offsets = offsets_; |
4201 | ibool table_lock_waited = FALSE; |
4202 | byte* next_buf = 0; |
4203 | bool spatial_search = false; |
4204 | |
4205 | rec_offs_init(offsets_); |
4206 | |
4207 | ut_ad(index && pcur && search_tuple); |
4208 | ut_a(prebuilt->magic_n == ROW_PREBUILT_ALLOCATED); |
4209 | ut_a(prebuilt->magic_n2 == ROW_PREBUILT_ALLOCATED); |
4210 | |
4211 | /* We don't support FTS queries from the HANDLER interfaces, because |
4212 | we implemented FTS as reversed inverted index with auxiliary tables. |
4213 | So anything related to traditional index query would not apply to |
4214 | it. */ |
4215 | if (prebuilt->index->type & DICT_FTS) { |
4216 | DBUG_RETURN(DB_END_OF_INDEX); |
4217 | } |
4218 | |
4219 | ut_ad(!sync_check_iterate(sync_check())); |
4220 | |
4221 | if (!prebuilt->table->space) { |
4222 | DBUG_RETURN(DB_TABLESPACE_DELETED); |
4223 | } else if (!prebuilt->table->is_readable()) { |
4224 | DBUG_RETURN(prebuilt->table->space |
4225 | ? DB_DECRYPTION_FAILED |
4226 | : DB_TABLESPACE_NOT_FOUND); |
4227 | } else if (!prebuilt->index_usable) { |
4228 | DBUG_RETURN(DB_MISSING_HISTORY); |
4229 | } else if (prebuilt->index->is_corrupted()) { |
4230 | DBUG_RETURN(DB_CORRUPTION); |
4231 | } |
4232 | |
4233 | /* We need to get the virtual column values stored in secondary |
4234 | index key, if this is covered index scan or virtual key read is |
4235 | requested. */ |
4236 | bool need_vrow = dict_index_has_virtual(prebuilt->index) |
4237 | && (prebuilt->read_just_key |
4238 | || prebuilt->m_read_virtual_key); |
4239 | |
4240 | /* Reset the new record lock info if srv_locks_unsafe_for_binlog |
4241 | is set or session is using a READ COMMITED isolation level. Then |
4242 | we are able to remove the record locks set here on an individual |
4243 | row. */ |
4244 | prebuilt->new_rec_locks = 0; |
4245 | |
4246 | /*-------------------------------------------------------------*/ |
4247 | /* PHASE 1: Try to pop the row from the prefetch cache */ |
4248 | |
4249 | if (UNIV_UNLIKELY(direction == 0)) { |
4250 | trx->op_info = "starting index read" ; |
4251 | |
4252 | prebuilt->n_rows_fetched = 0; |
4253 | prebuilt->n_fetch_cached = 0; |
4254 | prebuilt->fetch_cache_first = 0; |
4255 | |
4256 | if (prebuilt->sel_graph == NULL) { |
4257 | /* Build a dummy select query graph */ |
4258 | row_prebuild_sel_graph(prebuilt); |
4259 | } |
4260 | } else { |
4261 | trx->op_info = "fetching rows" ; |
4262 | |
4263 | if (prebuilt->n_rows_fetched == 0) { |
4264 | prebuilt->fetch_direction = direction; |
4265 | } |
4266 | |
4267 | if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) { |
4268 | if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) { |
4269 | ut_error; |
4270 | /* TODO: scrollable cursor: restore cursor to |
4271 | the place of the latest returned row, |
4272 | or better: prevent caching for a scroll |
4273 | cursor! */ |
4274 | } |
4275 | |
4276 | prebuilt->n_rows_fetched = 0; |
4277 | prebuilt->n_fetch_cached = 0; |
4278 | prebuilt->fetch_cache_first = 0; |
4279 | |
4280 | } else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) { |
4281 | row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); |
4282 | |
4283 | prebuilt->n_rows_fetched++; |
4284 | |
4285 | err = DB_SUCCESS; |
4286 | goto func_exit; |
4287 | } |
4288 | |
4289 | if (prebuilt->fetch_cache_first > 0 |
4290 | && prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) { |
4291 | |
4292 | /* The previous returned row was popped from the fetch |
4293 | cache, but the cache was not full at the time of the |
4294 | popping: no more rows can exist in the result set */ |
4295 | |
4296 | err = DB_RECORD_NOT_FOUND; |
4297 | goto func_exit; |
4298 | } |
4299 | |
4300 | prebuilt->n_rows_fetched++; |
4301 | |
4302 | if (prebuilt->n_rows_fetched > 1000000000) { |
4303 | /* Prevent wrap-over */ |
4304 | prebuilt->n_rows_fetched = 500000000; |
4305 | } |
4306 | |
4307 | mode = pcur->search_mode; |
4308 | } |
4309 | |
4310 | /* In a search where at most one record in the index may match, we |
4311 | can use a LOCK_REC_NOT_GAP type record lock when locking a |
4312 | non-delete-marked matching record. |
4313 | |
4314 | Note that in a unique secondary index there may be different |
4315 | delete-marked versions of a record where only the primary key |
4316 | values differ: thus in a secondary index we must use next-key |
4317 | locks when locking delete-marked records. */ |
4318 | |
4319 | if (match_mode == ROW_SEL_EXACT |
4320 | && dict_index_is_unique(index) |
4321 | && dtuple_get_n_fields(search_tuple) |
4322 | == dict_index_get_n_unique(index) |
4323 | && (dict_index_is_clust(index) |
4324 | || !dtuple_contains_null(search_tuple))) { |
4325 | |
4326 | /* Note above that a UNIQUE secondary index can contain many |
4327 | rows with the same key value if one of the columns is the SQL |
4328 | null. A clustered index under MySQL can never contain null |
4329 | columns because we demand that all the columns in primary key |
4330 | are non-null. */ |
4331 | |
4332 | unique_search = TRUE; |
4333 | |
4334 | /* Even if the condition is unique, MySQL seems to try to |
4335 | retrieve also a second row if a primary key contains more than |
4336 | 1 column. Return immediately if this is not a HANDLER |
4337 | command. */ |
4338 | |
4339 | if (UNIV_UNLIKELY(direction != 0 |
4340 | && !prebuilt->used_in_HANDLER)) { |
4341 | |
4342 | err = DB_RECORD_NOT_FOUND; |
4343 | goto func_exit; |
4344 | } |
4345 | } |
4346 | |
4347 | /* We don't support sequencial scan for Rtree index, because it |
4348 | is no meaning to do so. */ |
4349 | if (dict_index_is_spatial(index) |
4350 | && !RTREE_SEARCH_MODE(mode)) { |
4351 | err = DB_END_OF_INDEX; |
4352 | goto func_exit; |
4353 | } |
4354 | |
4355 | mtr.start(); |
4356 | |
4357 | #ifdef BTR_CUR_HASH_ADAPT |
4358 | /*-------------------------------------------------------------*/ |
4359 | /* PHASE 2: Try fast adaptive hash index search if possible */ |
4360 | |
4361 | /* Next test if this is the special case where we can use the fast |
4362 | adaptive hash index to try the search. Since we must release the |
4363 | search system latch when we retrieve an externally stored field, we |
4364 | cannot use the adaptive hash index in a search in the case the row |
4365 | may be long and there may be externally stored fields */ |
4366 | |
4367 | if (UNIV_UNLIKELY(direction == 0) |
4368 | && unique_search |
4369 | && btr_search_enabled |
4370 | && dict_index_is_clust(index) |
4371 | && !prebuilt->templ_contains_blob |
4372 | && !prebuilt->used_in_HANDLER |
4373 | && (prebuilt->mysql_row_len < srv_page_size / 8)) { |
4374 | |
4375 | mode = PAGE_CUR_GE; |
4376 | |
4377 | if (prebuilt->select_lock_type == LOCK_NONE |
4378 | && trx->isolation_level > TRX_ISO_READ_UNCOMMITTED |
4379 | && trx->read_view.is_open()) { |
4380 | |
4381 | /* This is a SELECT query done as a consistent read, |
4382 | and the read view has already been allocated: |
4383 | let us try a search shortcut through the hash |
4384 | index. */ |
4385 | |
4386 | switch (row_sel_try_search_shortcut_for_mysql( |
4387 | &rec, prebuilt, &offsets, &heap, |
4388 | &mtr)) { |
4389 | case SEL_FOUND: |
4390 | /* At this point, rec is protected by |
4391 | a page latch that was acquired by |
4392 | row_sel_try_search_shortcut_for_mysql(). |
4393 | The latch will not be released until |
4394 | mtr.commit(). */ |
4395 | ut_ad(!rec_get_deleted_flag(rec, comp)); |
4396 | |
4397 | if (prebuilt->idx_cond) { |
4398 | switch (row_search_idx_cond_check( |
4399 | buf, prebuilt, |
4400 | rec, offsets)) { |
4401 | case ICP_NO_MATCH: |
4402 | case ICP_OUT_OF_RANGE: |
4403 | case ICP_ABORTED_BY_USER: |
4404 | case ICP_ERROR: |
4405 | goto shortcut_mismatch; |
4406 | case ICP_MATCH: |
4407 | goto shortcut_match; |
4408 | } |
4409 | } |
4410 | |
4411 | if (!row_sel_store_mysql_rec( |
4412 | buf, prebuilt, |
4413 | rec, NULL, false, index, |
4414 | offsets)) { |
4415 | /* Only fresh inserts may contain |
4416 | incomplete externally stored |
4417 | columns. Pretend that such |
4418 | records do not exist. Such |
4419 | records may only be accessed |
4420 | at the READ UNCOMMITTED |
4421 | isolation level or when |
4422 | rolling back a recovered |
4423 | transaction. Rollback happens |
4424 | at a lower level, not here. */ |
4425 | |
4426 | /* Proceed as in case SEL_RETRY. */ |
4427 | break; |
4428 | } |
4429 | |
4430 | shortcut_match: |
4431 | mtr.commit(); |
4432 | |
4433 | /* NOTE that we do NOT store the cursor |
4434 | position */ |
4435 | err = DB_SUCCESS; |
4436 | goto func_exit; |
4437 | |
4438 | case SEL_EXHAUSTED: |
4439 | shortcut_mismatch: |
4440 | mtr.commit(); |
4441 | /* NOTE that we do NOT store the cursor |
4442 | position */ |
4443 | err = DB_RECORD_NOT_FOUND; |
4444 | goto func_exit; |
4445 | |
4446 | case SEL_RETRY: |
4447 | break; |
4448 | |
4449 | default: |
4450 | ut_ad(0); |
4451 | } |
4452 | |
4453 | mtr.commit(); |
4454 | mtr.start(); |
4455 | } |
4456 | } |
4457 | #endif /* BTR_CUR_HASH_ADAPT */ |
4458 | |
4459 | /*-------------------------------------------------------------*/ |
4460 | /* PHASE 3: Open or restore index cursor position */ |
4461 | |
4462 | spatial_search = dict_index_is_spatial(index) |
4463 | && mode >= PAGE_CUR_CONTAIN; |
4464 | |
4465 | /* The state of a running trx can only be changed by the |
4466 | thread that is currently serving the transaction. Because we |
4467 | are that thread, we can read trx->state without holding any |
4468 | mutex. */ |
4469 | ut_ad(prebuilt->sql_stat_start |
4470 | || trx->state == TRX_STATE_ACTIVE |
4471 | || (prebuilt->table->no_rollback() |
4472 | && trx->state == TRX_STATE_NOT_STARTED)); |
4473 | |
4474 | ut_ad(!trx_is_started(trx) || trx->state == TRX_STATE_ACTIVE); |
4475 | |
4476 | ut_ad(prebuilt->sql_stat_start |
4477 | || prebuilt->select_lock_type != LOCK_NONE |
4478 | || trx->read_view.is_open() |
4479 | || prebuilt->table->no_rollback() |
4480 | || srv_read_only_mode); |
4481 | |
4482 | if (trx->isolation_level <= TRX_ISO_READ_COMMITTED |
4483 | && prebuilt->select_lock_type != LOCK_NONE |
4484 | && trx->mysql_thd != NULL |
4485 | && thd_is_select(trx->mysql_thd)) { |
4486 | /* It is a plain locking SELECT and the isolation |
4487 | level is low: do not lock gaps */ |
4488 | |
4489 | set_also_gap_locks = FALSE; |
4490 | } |
4491 | |
4492 | /* Note that if the search mode was GE or G, then the cursor |
4493 | naturally moves upward (in fetch next) in alphabetical order, |
4494 | otherwise downward */ |
4495 | |
4496 | if (UNIV_UNLIKELY(direction == 0)) { |
4497 | if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G |
4498 | || mode >= PAGE_CUR_CONTAIN) { |
4499 | moves_up = TRUE; |
4500 | } |
4501 | } else if (direction == ROW_SEL_NEXT) { |
4502 | moves_up = TRUE; |
4503 | } |
4504 | |
4505 | thr = que_fork_get_first_thr(prebuilt->sel_graph); |
4506 | |
4507 | que_thr_move_to_run_state_for_mysql(thr, trx); |
4508 | |
4509 | clust_index = dict_table_get_first_index(prebuilt->table); |
4510 | |
4511 | /* Do some start-of-statement preparations */ |
4512 | |
4513 | if (prebuilt->table->no_rollback()) { |
4514 | /* NO_ROLLBACK tables do not support MVCC or locking. */ |
4515 | prebuilt->select_lock_type = LOCK_NONE; |
4516 | prebuilt->sql_stat_start = FALSE; |
4517 | } else if (!prebuilt->sql_stat_start) { |
4518 | /* No need to set an intention lock or assign a read view */ |
4519 | ut_a(prebuilt->select_lock_type != LOCK_NONE |
4520 | || srv_read_only_mode || trx->read_view.is_open()); |
4521 | } else { |
4522 | prebuilt->sql_stat_start = FALSE; |
4523 | trx_start_if_not_started(trx, false); |
4524 | |
4525 | if (prebuilt->select_lock_type == LOCK_NONE) { |
4526 | trx->read_view.open(trx); |
4527 | } else { |
4528 | wait_table_again: |
4529 | err = lock_table(0, prebuilt->table, |
4530 | prebuilt->select_lock_type == LOCK_S |
4531 | ? LOCK_IS : LOCK_IX, thr); |
4532 | |
4533 | if (err != DB_SUCCESS) { |
4534 | |
4535 | table_lock_waited = TRUE; |
4536 | goto lock_table_wait; |
4537 | } |
4538 | } |
4539 | } |
4540 | |
4541 | /* Open or restore index cursor position */ |
4542 | |
4543 | if (UNIV_LIKELY(direction != 0)) { |
4544 | if (spatial_search) { |
4545 | /* R-Tree access does not need to do |
4546 | cursor position and resposition */ |
4547 | goto next_rec; |
4548 | } |
4549 | |
4550 | bool need_to_process = sel_restore_position_for_mysql( |
4551 | &same_user_rec, BTR_SEARCH_LEAF, |
4552 | pcur, moves_up, &mtr); |
4553 | |
4554 | if (UNIV_UNLIKELY(need_to_process)) { |
4555 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
4556 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
4557 | /* We did a semi-consistent read, |
4558 | but the record was removed in |
4559 | the meantime. */ |
4560 | prebuilt->row_read_type |
4561 | = ROW_READ_TRY_SEMI_CONSISTENT; |
4562 | } |
4563 | } else if (UNIV_LIKELY(prebuilt->row_read_type |
4564 | != ROW_READ_DID_SEMI_CONSISTENT)) { |
4565 | |
4566 | /* The cursor was positioned on the record |
4567 | that we returned previously. If we need |
4568 | to repeat a semi-consistent read as a |
4569 | pessimistic locking read, the record |
4570 | cannot be skipped. */ |
4571 | |
4572 | goto next_rec; |
4573 | } |
4574 | |
4575 | } else if (dtuple_get_n_fields(search_tuple) > 0) { |
4576 | pcur->btr_cur.thr = thr; |
4577 | |
4578 | if (dict_index_is_spatial(index)) { |
4579 | bool need_pred_lock; |
4580 | |
4581 | need_pred_lock = (set_also_gap_locks |
4582 | && !(srv_locks_unsafe_for_binlog |
4583 | || trx->isolation_level |
4584 | <= TRX_ISO_READ_COMMITTED) |
4585 | && prebuilt->select_lock_type |
4586 | != LOCK_NONE); |
4587 | |
4588 | if (!prebuilt->rtr_info) { |
4589 | prebuilt->rtr_info = rtr_create_rtr_info( |
4590 | need_pred_lock, true, |
4591 | btr_pcur_get_btr_cur(pcur), index); |
4592 | prebuilt->rtr_info->search_tuple = search_tuple; |
4593 | prebuilt->rtr_info->search_mode = mode; |
4594 | rtr_info_update_btr(btr_pcur_get_btr_cur(pcur), |
4595 | prebuilt->rtr_info); |
4596 | } else { |
4597 | rtr_info_reinit_in_cursor( |
4598 | btr_pcur_get_btr_cur(pcur), |
4599 | index, need_pred_lock); |
4600 | prebuilt->rtr_info->search_tuple = search_tuple; |
4601 | prebuilt->rtr_info->search_mode = mode; |
4602 | } |
4603 | } |
4604 | |
4605 | err = btr_pcur_open_with_no_init(index, search_tuple, mode, |
4606 | BTR_SEARCH_LEAF, |
4607 | pcur, 0, &mtr); |
4608 | |
4609 | if (err != DB_SUCCESS) { |
4610 | rec = NULL; |
4611 | goto lock_wait_or_error; |
4612 | } |
4613 | |
4614 | pcur->trx_if_known = trx; |
4615 | |
4616 | rec = btr_pcur_get_rec(pcur); |
4617 | ut_ad(page_rec_is_leaf(rec)); |
4618 | |
4619 | if (!moves_up |
4620 | && !page_rec_is_supremum(rec) |
4621 | && set_also_gap_locks |
4622 | && !(srv_locks_unsafe_for_binlog |
4623 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
4624 | && prebuilt->select_lock_type != LOCK_NONE |
4625 | && !dict_index_is_spatial(index)) { |
4626 | |
4627 | /* Try to place a gap lock on the next index record |
4628 | to prevent phantoms in ORDER BY ... DESC queries */ |
4629 | const rec_t* next_rec = page_rec_get_next_const(rec); |
4630 | |
4631 | offsets = rec_get_offsets(next_rec, index, offsets, |
4632 | true, |
4633 | ULINT_UNDEFINED, &heap); |
4634 | err = sel_set_rec_lock(pcur, |
4635 | next_rec, index, offsets, |
4636 | prebuilt->select_lock_type, |
4637 | LOCK_GAP, thr, &mtr); |
4638 | |
4639 | switch (err) { |
4640 | case DB_SUCCESS_LOCKED_REC: |
4641 | err = DB_SUCCESS; |
4642 | /* fall through */ |
4643 | case DB_SUCCESS: |
4644 | break; |
4645 | default: |
4646 | goto lock_wait_or_error; |
4647 | } |
4648 | } |
4649 | } else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) { |
4650 | err = btr_pcur_open_at_index_side( |
4651 | mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF, |
4652 | pcur, false, 0, &mtr); |
4653 | |
4654 | if (err != DB_SUCCESS) { |
4655 | if (err == DB_DECRYPTION_FAILED) { |
4656 | ib_push_warning(trx->mysql_thd, |
4657 | DB_DECRYPTION_FAILED, |
4658 | "Table %s is encrypted but encryption service or" |
4659 | " used key_id is not available. " |
4660 | " Can't continue reading table." , |
4661 | prebuilt->table->name); |
4662 | index->table->file_unreadable = true; |
4663 | } |
4664 | rec = NULL; |
4665 | goto lock_wait_or_error; |
4666 | } |
4667 | } |
4668 | |
4669 | rec_loop: |
4670 | DEBUG_SYNC_C("row_search_rec_loop" ); |
4671 | if (trx_is_interrupted(trx)) { |
4672 | if (!spatial_search) { |
4673 | btr_pcur_store_position(pcur, &mtr); |
4674 | } |
4675 | err = DB_INTERRUPTED; |
4676 | goto normal_return; |
4677 | } |
4678 | |
4679 | /*-------------------------------------------------------------*/ |
4680 | /* PHASE 4: Look for matching records in a loop */ |
4681 | |
4682 | rec = btr_pcur_get_rec(pcur); |
4683 | |
4684 | if (!index->table->is_readable()) { |
4685 | err = DB_DECRYPTION_FAILED; |
4686 | goto lock_wait_or_error; |
4687 | } |
4688 | |
4689 | ut_ad(!!page_rec_is_comp(rec) == comp); |
4690 | ut_ad(page_rec_is_leaf(rec)); |
4691 | |
4692 | if (page_rec_is_infimum(rec)) { |
4693 | |
4694 | /* The infimum record on a page cannot be in the result set, |
4695 | and neither can a record lock be placed on it: we skip such |
4696 | a record. */ |
4697 | |
4698 | goto next_rec; |
4699 | } |
4700 | |
4701 | if (page_rec_is_supremum(rec)) { |
4702 | |
4703 | if (set_also_gap_locks |
4704 | && !(srv_locks_unsafe_for_binlog |
4705 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
4706 | && prebuilt->select_lock_type != LOCK_NONE |
4707 | && !dict_index_is_spatial(index)) { |
4708 | |
4709 | /* Try to place a lock on the index record */ |
4710 | |
4711 | /* If innodb_locks_unsafe_for_binlog option is used |
4712 | or this session is using a READ COMMITTED or lower isolation |
4713 | level we do not lock gaps. Supremum record is really |
4714 | a gap and therefore we do not set locks there. */ |
4715 | |
4716 | offsets = rec_get_offsets(rec, index, offsets, true, |
4717 | ULINT_UNDEFINED, &heap); |
4718 | err = sel_set_rec_lock(pcur, |
4719 | rec, index, offsets, |
4720 | prebuilt->select_lock_type, |
4721 | LOCK_ORDINARY, thr, &mtr); |
4722 | |
4723 | switch (err) { |
4724 | case DB_SUCCESS_LOCKED_REC: |
4725 | err = DB_SUCCESS; |
4726 | /* fall through */ |
4727 | case DB_SUCCESS: |
4728 | break; |
4729 | default: |
4730 | goto lock_wait_or_error; |
4731 | } |
4732 | } |
4733 | |
4734 | /* A page supremum record cannot be in the result set: skip |
4735 | it now that we have placed a possible lock on it */ |
4736 | |
4737 | goto next_rec; |
4738 | } |
4739 | |
4740 | /*-------------------------------------------------------------*/ |
4741 | /* Do sanity checks in case our cursor has bumped into page |
4742 | corruption */ |
4743 | |
4744 | if (comp) { |
4745 | if (rec_get_info_bits(rec, true) & REC_INFO_MIN_REC_FLAG) { |
4746 | /* Skip the 'default row' pseudo-record. */ |
4747 | ut_ad(index->is_instant()); |
4748 | goto next_rec; |
4749 | } |
4750 | |
4751 | next_offs = rec_get_next_offs(rec, TRUE); |
4752 | if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) { |
4753 | |
4754 | goto wrong_offs; |
4755 | } |
4756 | } else { |
4757 | if (rec_get_info_bits(rec, false) & REC_INFO_MIN_REC_FLAG) { |
4758 | /* Skip the 'default row' pseudo-record. */ |
4759 | ut_ad(index->is_instant()); |
4760 | goto next_rec; |
4761 | } |
4762 | |
4763 | next_offs = rec_get_next_offs(rec, FALSE); |
4764 | if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) { |
4765 | |
4766 | goto wrong_offs; |
4767 | } |
4768 | } |
4769 | |
4770 | if (UNIV_UNLIKELY(next_offs >= srv_page_size - PAGE_DIR)) { |
4771 | |
4772 | wrong_offs: |
4773 | if (srv_force_recovery == 0 || moves_up == FALSE) { |
4774 | ib::error() << "Rec address " |
4775 | << static_cast<const void*>(rec) |
4776 | << ", buf block fix count " |
4777 | << btr_cur_get_block( |
4778 | btr_pcur_get_btr_cur(pcur))->page |
4779 | .buf_fix_count; |
4780 | |
4781 | ib::error() << "Index corruption: rec offs " |
4782 | << page_offset(rec) << " next offs " |
4783 | << next_offs << ", page no " |
4784 | << page_get_page_no(page_align(rec)) |
4785 | << ", index " << index->name |
4786 | << " of table " << index->table->name |
4787 | << ". Run CHECK TABLE. You may need to" |
4788 | " restore from a backup, or dump + drop +" |
4789 | " reimport the table." ; |
4790 | ut_ad(0); |
4791 | err = DB_CORRUPTION; |
4792 | |
4793 | goto lock_wait_or_error; |
4794 | } else { |
4795 | /* The user may be dumping a corrupt table. Jump |
4796 | over the corruption to recover as much as possible. */ |
4797 | |
4798 | ib::info() << "Index corruption: rec offs " |
4799 | << page_offset(rec) << " next offs " |
4800 | << next_offs << ", page no " |
4801 | << page_get_page_no(page_align(rec)) |
4802 | << ", index " << index->name |
4803 | << " of table " << index->table->name |
4804 | << ". We try to skip the rest of the page." ; |
4805 | |
4806 | btr_pcur_move_to_last_on_page(pcur, &mtr); |
4807 | |
4808 | goto next_rec; |
4809 | } |
4810 | } |
4811 | /*-------------------------------------------------------------*/ |
4812 | |
4813 | /* Calculate the 'offsets' associated with 'rec' */ |
4814 | |
4815 | ut_ad(fil_page_index_page_check(btr_pcur_get_page(pcur))); |
4816 | ut_ad(btr_page_get_index_id(btr_pcur_get_page(pcur)) == index->id); |
4817 | |
4818 | offsets = rec_get_offsets(rec, index, offsets, true, |
4819 | ULINT_UNDEFINED, &heap); |
4820 | |
4821 | if (UNIV_UNLIKELY(srv_force_recovery > 0)) { |
4822 | if (!rec_validate(rec, offsets) |
4823 | || !btr_index_rec_validate(rec, index, FALSE)) { |
4824 | |
4825 | ib::error() << "Index corruption: rec offs " |
4826 | << page_offset(rec) << " next offs " |
4827 | << next_offs << ", page no " |
4828 | << page_get_page_no(page_align(rec)) |
4829 | << ", index " << index->name |
4830 | << " of table " << index->table->name |
4831 | << ". We try to skip the record." ; |
4832 | |
4833 | goto next_rec; |
4834 | } |
4835 | } |
4836 | |
4837 | /* Note that we cannot trust the up_match value in the cursor at this |
4838 | place because we can arrive here after moving the cursor! Thus |
4839 | we have to recompare rec and search_tuple to determine if they |
4840 | match enough. */ |
4841 | |
4842 | if (match_mode == ROW_SEL_EXACT) { |
4843 | /* Test if the index record matches completely to search_tuple |
4844 | in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */ |
4845 | |
4846 | /* fputs("Comparing rec and search tuple\n", stderr); */ |
4847 | |
4848 | if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) { |
4849 | |
4850 | if (set_also_gap_locks |
4851 | && !(srv_locks_unsafe_for_binlog |
4852 | || trx->isolation_level |
4853 | <= TRX_ISO_READ_COMMITTED) |
4854 | && prebuilt->select_lock_type != LOCK_NONE |
4855 | && !dict_index_is_spatial(index)) { |
4856 | |
4857 | /* Try to place a gap lock on the index |
4858 | record only if innodb_locks_unsafe_for_binlog |
4859 | option is not set or this session is not |
4860 | using a READ COMMITTED or lower isolation level. */ |
4861 | |
4862 | err = sel_set_rec_lock( |
4863 | pcur, |
4864 | rec, index, offsets, |
4865 | prebuilt->select_lock_type, LOCK_GAP, |
4866 | thr, &mtr); |
4867 | |
4868 | switch (err) { |
4869 | case DB_SUCCESS_LOCKED_REC: |
4870 | case DB_SUCCESS: |
4871 | break; |
4872 | default: |
4873 | goto lock_wait_or_error; |
4874 | } |
4875 | } |
4876 | |
4877 | btr_pcur_store_position(pcur, &mtr); |
4878 | |
4879 | /* The found record was not a match, but may be used |
4880 | as NEXT record (index_next). Set the relative position |
4881 | to BTR_PCUR_BEFORE, to reflect that the position of |
4882 | the persistent cursor is before the found/stored row |
4883 | (pcur->old_rec). */ |
4884 | ut_ad(pcur->rel_pos == BTR_PCUR_ON); |
4885 | pcur->rel_pos = BTR_PCUR_BEFORE; |
4886 | |
4887 | err = DB_RECORD_NOT_FOUND; |
4888 | goto normal_return; |
4889 | } |
4890 | |
4891 | } else if (match_mode == ROW_SEL_EXACT_PREFIX) { |
4892 | |
4893 | if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) { |
4894 | |
4895 | if (set_also_gap_locks |
4896 | && !(srv_locks_unsafe_for_binlog |
4897 | || trx->isolation_level |
4898 | <= TRX_ISO_READ_COMMITTED) |
4899 | && prebuilt->select_lock_type != LOCK_NONE |
4900 | && !dict_index_is_spatial(index)) { |
4901 | |
4902 | /* Try to place a gap lock on the index |
4903 | record only if innodb_locks_unsafe_for_binlog |
4904 | option is not set or this session is not |
4905 | using a READ COMMITTED or lower isolation level. */ |
4906 | |
4907 | err = sel_set_rec_lock( |
4908 | pcur, |
4909 | rec, index, offsets, |
4910 | prebuilt->select_lock_type, LOCK_GAP, |
4911 | thr, &mtr); |
4912 | |
4913 | switch (err) { |
4914 | case DB_SUCCESS_LOCKED_REC: |
4915 | case DB_SUCCESS: |
4916 | break; |
4917 | default: |
4918 | goto lock_wait_or_error; |
4919 | } |
4920 | } |
4921 | |
4922 | btr_pcur_store_position(pcur, &mtr); |
4923 | |
4924 | /* The found record was not a match, but may be used |
4925 | as NEXT record (index_next). Set the relative position |
4926 | to BTR_PCUR_BEFORE, to reflect that the position of |
4927 | the persistent cursor is before the found/stored row |
4928 | (pcur->old_rec). */ |
4929 | ut_ad(pcur->rel_pos == BTR_PCUR_ON); |
4930 | pcur->rel_pos = BTR_PCUR_BEFORE; |
4931 | |
4932 | err = DB_RECORD_NOT_FOUND; |
4933 | goto normal_return; |
4934 | } |
4935 | } |
4936 | |
4937 | /* We are ready to look at a possible new index entry in the result |
4938 | set: the cursor is now placed on a user record */ |
4939 | |
4940 | if (prebuilt->select_lock_type != LOCK_NONE) { |
4941 | /* Try to place a lock on the index record; note that delete |
4942 | marked records are a special case in a unique search. If there |
4943 | is a non-delete marked record, then it is enough to lock its |
4944 | existence with LOCK_REC_NOT_GAP. */ |
4945 | |
4946 | /* If innodb_locks_unsafe_for_binlog option is used |
4947 | or this session is using a READ COMMITED isolation |
4948 | level we lock only the record, i.e., next-key locking is |
4949 | not used. */ |
4950 | |
4951 | ulint lock_type; |
4952 | |
4953 | if (srv_locks_unsafe_for_binlog |
4954 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { |
4955 | /* At READ COMMITTED or READ UNCOMMITTED |
4956 | isolation levels, do not lock committed |
4957 | delete-marked records. */ |
4958 | if (!rec_get_deleted_flag(rec, comp)) { |
4959 | goto no_gap_lock; |
4960 | } |
4961 | if (index == clust_index) { |
4962 | trx_id_t trx_id = row_get_rec_trx_id( |
4963 | rec, index, offsets); |
4964 | /* In delete-marked records, DB_TRX_ID must |
4965 | always refer to an existing undo log record. */ |
4966 | ut_ad(trx_id); |
4967 | if (!trx_sys.is_registered(trx, trx_id)) { |
4968 | /* The clustered index record |
4969 | was delete-marked in a committed |
4970 | transaction. Ignore the record. */ |
4971 | goto locks_ok_del_marked; |
4972 | } |
4973 | } else if (trx_t* t = row_vers_impl_x_locked( |
4974 | trx, rec, index, offsets)) { |
4975 | /* The record belongs to an active |
4976 | transaction. We must acquire a lock. */ |
4977 | t->release_reference(); |
4978 | } else { |
4979 | /* The secondary index record does not |
4980 | point to a delete-marked clustered index |
4981 | record that belongs to an active transaction. |
4982 | Ignore the secondary index record, because |
4983 | it is not locked. */ |
4984 | goto next_rec; |
4985 | } |
4986 | |
4987 | goto no_gap_lock; |
4988 | } |
4989 | |
4990 | if (!set_also_gap_locks |
4991 | || (unique_search && !rec_get_deleted_flag(rec, comp)) |
4992 | || dict_index_is_spatial(index)) { |
4993 | |
4994 | goto no_gap_lock; |
4995 | } else { |
4996 | lock_type = LOCK_ORDINARY; |
4997 | } |
4998 | |
4999 | /* If we are doing a 'greater or equal than a primary key |
5000 | value' search from a clustered index, and we find a record |
5001 | that has that exact primary key value, then there is no need |
5002 | to lock the gap before the record, because no insert in the |
5003 | gap can be in our search range. That is, no phantom row can |
5004 | appear that way. |
5005 | |
5006 | An example: if col1 is the primary key, the search is WHERE |
5007 | col1 >= 100, and we find a record where col1 = 100, then no |
5008 | need to lock the gap before that record. */ |
5009 | |
5010 | if (index == clust_index |
5011 | && mode == PAGE_CUR_GE |
5012 | && direction == 0 |
5013 | && dtuple_get_n_fields_cmp(search_tuple) |
5014 | == dict_index_get_n_unique(index) |
5015 | && 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) { |
5016 | no_gap_lock: |
5017 | lock_type = LOCK_REC_NOT_GAP; |
5018 | } |
5019 | |
5020 | err = sel_set_rec_lock(pcur, |
5021 | rec, index, offsets, |
5022 | prebuilt->select_lock_type, |
5023 | lock_type, thr, &mtr); |
5024 | |
5025 | switch (err) { |
5026 | const rec_t* old_vers; |
5027 | case DB_SUCCESS_LOCKED_REC: |
5028 | if (srv_locks_unsafe_for_binlog |
5029 | || trx->isolation_level |
5030 | <= TRX_ISO_READ_COMMITTED) { |
5031 | /* Note that a record of |
5032 | prebuilt->index was locked. */ |
5033 | prebuilt->new_rec_locks = 1; |
5034 | } |
5035 | err = DB_SUCCESS; |
5036 | /* fall through */ |
5037 | case DB_SUCCESS: |
5038 | break; |
5039 | case DB_LOCK_WAIT: |
5040 | /* Lock wait for R-tree should already |
5041 | be handled in sel_set_rtr_rec_lock() */ |
5042 | ut_ad(!dict_index_is_spatial(index)); |
5043 | /* Never unlock rows that were part of a conflict. */ |
5044 | prebuilt->new_rec_locks = 0; |
5045 | |
5046 | if (UNIV_LIKELY(prebuilt->row_read_type |
5047 | != ROW_READ_TRY_SEMI_CONSISTENT) |
5048 | || unique_search |
5049 | || index != clust_index) { |
5050 | |
5051 | goto lock_wait_or_error; |
5052 | } |
5053 | |
5054 | /* The following call returns 'offsets' |
5055 | associated with 'old_vers' */ |
5056 | row_sel_build_committed_vers_for_mysql( |
5057 | clust_index, prebuilt, rec, |
5058 | &offsets, &heap, &old_vers, need_vrow ? &vrow : NULL, |
5059 | &mtr); |
5060 | |
5061 | /* Check whether it was a deadlock or not, if not |
5062 | a deadlock and the transaction had to wait then |
5063 | release the lock it is waiting on. */ |
5064 | |
5065 | err = lock_trx_handle_wait(trx); |
5066 | |
5067 | switch (err) { |
5068 | case DB_SUCCESS: |
5069 | /* The lock was granted while we were |
5070 | searching for the last committed version. |
5071 | Do a normal locking read. */ |
5072 | |
5073 | offsets = rec_get_offsets( |
5074 | rec, index, offsets, true, |
5075 | ULINT_UNDEFINED, &heap); |
5076 | goto locks_ok; |
5077 | case DB_DEADLOCK: |
5078 | goto lock_wait_or_error; |
5079 | case DB_LOCK_WAIT: |
5080 | ut_ad(!dict_index_is_spatial(index)); |
5081 | err = DB_SUCCESS; |
5082 | break; |
5083 | default: |
5084 | ut_error; |
5085 | } |
5086 | |
5087 | if (old_vers == NULL) { |
5088 | /* The row was not yet committed */ |
5089 | |
5090 | goto next_rec; |
5091 | } |
5092 | |
5093 | did_semi_consistent_read = TRUE; |
5094 | rec = old_vers; |
5095 | break; |
5096 | case DB_RECORD_NOT_FOUND: |
5097 | if (dict_index_is_spatial(index)) { |
5098 | goto next_rec; |
5099 | } else { |
5100 | goto lock_wait_or_error; |
5101 | } |
5102 | |
5103 | default: |
5104 | |
5105 | goto lock_wait_or_error; |
5106 | } |
5107 | } else { |
5108 | /* This is a non-locking consistent read: if necessary, fetch |
5109 | a previous version of the record */ |
5110 | |
5111 | if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED |
5112 | || prebuilt->table->no_rollback()) { |
5113 | |
5114 | /* Do nothing: we let a non-locking SELECT read the |
5115 | latest version of the record */ |
5116 | |
5117 | } else if (index == clust_index) { |
5118 | |
5119 | /* Fetch a previous version of the row if the current |
5120 | one is not visible in the snapshot; if we have a very |
5121 | high force recovery level set, we try to avoid crashes |
5122 | by skipping this lookup */ |
5123 | |
5124 | if (!lock_clust_rec_cons_read_sees( |
5125 | rec, index, offsets, &trx->read_view)) { |
5126 | ut_ad(srv_force_recovery |
5127 | < SRV_FORCE_NO_UNDO_LOG_SCAN); |
5128 | rec_t* old_vers; |
5129 | /* The following call returns 'offsets' |
5130 | associated with 'old_vers' */ |
5131 | err = row_sel_build_prev_vers_for_mysql( |
5132 | &trx->read_view, clust_index, |
5133 | prebuilt, rec, &offsets, &heap, |
5134 | &old_vers, need_vrow ? &vrow : NULL, |
5135 | &mtr); |
5136 | |
5137 | if (err != DB_SUCCESS) { |
5138 | |
5139 | goto lock_wait_or_error; |
5140 | } |
5141 | |
5142 | if (old_vers == NULL) { |
5143 | /* The row did not exist yet in |
5144 | the read view */ |
5145 | |
5146 | goto next_rec; |
5147 | } |
5148 | |
5149 | rec = old_vers; |
5150 | } |
5151 | } else { |
5152 | /* We are looking into a non-clustered index, |
5153 | and to get the right version of the record we |
5154 | have to look also into the clustered index: this |
5155 | is necessary, because we can only get the undo |
5156 | information via the clustered index record. */ |
5157 | |
5158 | ut_ad(!dict_index_is_clust(index)); |
5159 | |
5160 | if (!srv_read_only_mode |
5161 | && !lock_sec_rec_cons_read_sees( |
5162 | rec, index, &trx->read_view)) { |
5163 | /* We should look at the clustered index. |
5164 | However, as this is a non-locking read, |
5165 | we can skip the clustered index lookup if |
5166 | the condition does not match the secondary |
5167 | index entry. */ |
5168 | switch (row_search_idx_cond_check( |
5169 | buf, prebuilt, rec, offsets)) { |
5170 | case ICP_NO_MATCH: |
5171 | goto next_rec; |
5172 | case ICP_OUT_OF_RANGE: |
5173 | case ICP_ABORTED_BY_USER: |
5174 | case ICP_ERROR: |
5175 | err = DB_RECORD_NOT_FOUND; |
5176 | goto idx_cond_failed; |
5177 | case ICP_MATCH: |
5178 | goto requires_clust_rec; |
5179 | } |
5180 | |
5181 | ut_error; |
5182 | } |
5183 | } |
5184 | } |
5185 | |
5186 | locks_ok: |
5187 | /* NOTE that at this point rec can be an old version of a clustered |
5188 | index record built for a consistent read. We cannot assume after this |
5189 | point that rec is on a buffer pool page. Functions like |
5190 | page_rec_is_comp() cannot be used! */ |
5191 | |
5192 | if (rec_get_deleted_flag(rec, comp)) { |
5193 | locks_ok_del_marked: |
5194 | /* In delete-marked records, DB_TRX_ID must |
5195 | always refer to an existing undo log record. */ |
5196 | ut_ad(index != clust_index |
5197 | || row_get_rec_trx_id(rec, index, offsets)); |
5198 | |
5199 | /* The record is delete-marked: we can skip it */ |
5200 | |
5201 | /* This is an optimization to skip setting the next key lock |
5202 | on the record that follows this delete-marked record. This |
5203 | optimization works because of the unique search criteria |
5204 | which precludes the presence of a range lock between this |
5205 | delete marked record and the record following it. |
5206 | |
5207 | For now this is applicable only to clustered indexes while |
5208 | doing a unique search except for HANDLER queries because |
5209 | HANDLER allows NEXT and PREV even in unique search on |
5210 | clustered index. There is scope for further optimization |
5211 | applicable to unique secondary indexes. Current behaviour is |
5212 | to widen the scope of a lock on an already delete marked record |
5213 | if the same record is deleted twice by the same transaction */ |
5214 | if (index == clust_index && unique_search |
5215 | && !prebuilt->used_in_HANDLER) { |
5216 | |
5217 | err = DB_RECORD_NOT_FOUND; |
5218 | |
5219 | goto normal_return; |
5220 | } |
5221 | |
5222 | goto next_rec; |
5223 | } |
5224 | |
5225 | /* Check if the record matches the index condition. */ |
5226 | switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) { |
5227 | case ICP_NO_MATCH: |
5228 | if (did_semi_consistent_read) { |
5229 | row_unlock_for_mysql(prebuilt, TRUE); |
5230 | } |
5231 | goto next_rec; |
5232 | case ICP_OUT_OF_RANGE: |
5233 | case ICP_ABORTED_BY_USER: |
5234 | case ICP_ERROR: |
5235 | err = DB_RECORD_NOT_FOUND; |
5236 | goto idx_cond_failed; |
5237 | case ICP_MATCH: |
5238 | break; |
5239 | } |
5240 | |
5241 | if (index != clust_index && prebuilt->need_to_access_clustered) { |
5242 | if (row_search_with_covering_prefix(prebuilt, rec, offsets)) { |
5243 | goto use_covering_index; |
5244 | } |
5245 | requires_clust_rec: |
5246 | ut_ad(index != clust_index); |
5247 | /* We use a 'goto' to the preceding label if a consistent |
5248 | read of a secondary index record requires us to look up old |
5249 | versions of the associated clustered index record. */ |
5250 | |
5251 | ut_ad(rec_offs_validate(rec, index, offsets)); |
5252 | |
5253 | /* It was a non-clustered index and we must fetch also the |
5254 | clustered index record */ |
5255 | |
5256 | mtr_has_extra_clust_latch = TRUE; |
5257 | |
5258 | ut_ad(!vrow); |
5259 | /* The following call returns 'offsets' associated with |
5260 | 'clust_rec'. Note that 'clust_rec' can be an old version |
5261 | built for a consistent read. */ |
5262 | |
5263 | err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec, |
5264 | thr, &clust_rec, |
5265 | &offsets, &heap, |
5266 | need_vrow ? &vrow : NULL, |
5267 | &mtr); |
5268 | switch (err) { |
5269 | case DB_SUCCESS: |
5270 | if (clust_rec == NULL) { |
5271 | /* The record did not exist in the read view */ |
5272 | ut_ad(prebuilt->select_lock_type == LOCK_NONE |
5273 | || dict_index_is_spatial(index)); |
5274 | |
5275 | goto next_rec; |
5276 | } |
5277 | break; |
5278 | case DB_SUCCESS_LOCKED_REC: |
5279 | ut_a(clust_rec != NULL); |
5280 | if (srv_locks_unsafe_for_binlog |
5281 | || trx->isolation_level |
5282 | <= TRX_ISO_READ_COMMITTED) { |
5283 | /* Note that the clustered index record |
5284 | was locked. */ |
5285 | prebuilt->new_rec_locks = 2; |
5286 | } |
5287 | err = DB_SUCCESS; |
5288 | break; |
5289 | default: |
5290 | vrow = NULL; |
5291 | goto lock_wait_or_error; |
5292 | } |
5293 | |
5294 | if (rec_get_deleted_flag(clust_rec, comp)) { |
5295 | |
5296 | /* The record is delete marked: we can skip it */ |
5297 | |
5298 | if ((srv_locks_unsafe_for_binlog |
5299 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
5300 | && prebuilt->select_lock_type != LOCK_NONE) { |
5301 | |
5302 | /* No need to keep a lock on a delete-marked |
5303 | record if we do not want to use next-key |
5304 | locking. */ |
5305 | |
5306 | row_unlock_for_mysql(prebuilt, TRUE); |
5307 | } |
5308 | |
5309 | goto next_rec; |
5310 | } |
5311 | |
5312 | if (need_vrow && !vrow) { |
5313 | if (!heap) { |
5314 | heap = mem_heap_create(100); |
5315 | } |
5316 | row_sel_fill_vrow(rec, index, &vrow, heap); |
5317 | } |
5318 | |
5319 | result_rec = clust_rec; |
5320 | ut_ad(rec_offs_validate(result_rec, clust_index, offsets)); |
5321 | |
5322 | if (prebuilt->idx_cond) { |
5323 | /* Convert the record to MySQL format. We were |
5324 | unable to do this in row_search_idx_cond_check(), |
5325 | because the condition is on the secondary index |
5326 | and the requested column is in the clustered index. |
5327 | We convert all fields, including those that |
5328 | may have been used in ICP, because the |
5329 | secondary index may contain a column prefix |
5330 | rather than the full column. Also, as noted |
5331 | in Bug #56680, the column in the secondary |
5332 | index may be in the wrong case, and the |
5333 | authoritative case is in result_rec, the |
5334 | appropriate version of the clustered index record. */ |
5335 | if (!row_sel_store_mysql_rec( |
5336 | buf, prebuilt, result_rec, vrow, |
5337 | true, clust_index, offsets)) { |
5338 | goto next_rec; |
5339 | } |
5340 | } |
5341 | } else { |
5342 | use_covering_index: |
5343 | result_rec = rec; |
5344 | } |
5345 | |
5346 | /* We found a qualifying record 'result_rec'. At this point, |
5347 | 'offsets' are associated with 'result_rec'. */ |
5348 | |
5349 | ut_ad(rec_offs_validate(result_rec, |
5350 | result_rec != rec ? clust_index : index, |
5351 | offsets)); |
5352 | ut_ad(!rec_get_deleted_flag(result_rec, comp)); |
5353 | |
5354 | /* Decide whether to prefetch extra rows. |
5355 | At this point, the clustered index record is protected |
5356 | by a page latch that was acquired when pcur was positioned. |
5357 | The latch will not be released until mtr.commit(). */ |
5358 | |
5359 | if ((match_mode == ROW_SEL_EXACT |
5360 | || prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD) |
5361 | && prebuilt->select_lock_type == LOCK_NONE |
5362 | && !prebuilt->m_no_prefetch |
5363 | && !prebuilt->templ_contains_blob |
5364 | && !prebuilt->clust_index_was_generated |
5365 | && !prebuilt->used_in_HANDLER |
5366 | && prebuilt->template_type != ROW_MYSQL_DUMMY_TEMPLATE |
5367 | && !prebuilt->in_fts_query) { |
5368 | |
5369 | /* Inside an update, for example, we do not cache rows, |
5370 | since we may use the cursor position to do the actual |
5371 | update, that is why we require ...lock_type == LOCK_NONE. |
5372 | Since we keep space in prebuilt only for the BLOBs of |
5373 | a single row, we cannot cache rows in the case there |
5374 | are BLOBs in the fields to be fetched. In HANDLER we do |
5375 | not cache rows because there the cursor is a scrollable |
5376 | cursor. */ |
5377 | |
5378 | ut_a(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); |
5379 | |
5380 | /* We only convert from InnoDB row format to MySQL row |
5381 | format when ICP is disabled. */ |
5382 | |
5383 | if (!prebuilt->idx_cond) { |
5384 | |
5385 | /* We use next_buf to track the allocation of buffers |
5386 | where we store and enqueue the buffers for our |
5387 | pre-fetch optimisation. |
5388 | |
5389 | If next_buf == 0 then we store the converted record |
5390 | directly into the MySQL record buffer (buf). If it is |
5391 | != 0 then we allocate a pre-fetch buffer and store the |
5392 | converted record there. |
5393 | |
5394 | If the conversion fails and the MySQL record buffer |
5395 | was not written to then we reset next_buf so that |
5396 | we can re-use the MySQL record buffer in the next |
5397 | iteration. */ |
5398 | |
5399 | next_buf = next_buf |
5400 | ? row_sel_fetch_last_buf(prebuilt) : buf; |
5401 | |
5402 | if (!row_sel_store_mysql_rec( |
5403 | next_buf, prebuilt, result_rec, vrow, |
5404 | result_rec != rec, |
5405 | result_rec != rec ? clust_index : index, |
5406 | offsets)) { |
5407 | |
5408 | if (next_buf == buf) { |
5409 | ut_a(prebuilt->n_fetch_cached == 0); |
5410 | next_buf = 0; |
5411 | } |
5412 | |
5413 | /* Only fresh inserts may contain incomplete |
5414 | externally stored columns. Pretend that such |
5415 | records do not exist. Such records may only be |
5416 | accessed at the READ UNCOMMITTED isolation |
5417 | level or when rolling back a recovered |
5418 | transaction. Rollback happens at a lower |
5419 | level, not here. */ |
5420 | goto next_rec; |
5421 | } |
5422 | |
5423 | if (next_buf != buf) { |
5424 | row_sel_enqueue_cache_row_for_mysql( |
5425 | next_buf, prebuilt); |
5426 | } |
5427 | } else { |
5428 | row_sel_enqueue_cache_row_for_mysql(buf, prebuilt); |
5429 | } |
5430 | |
5431 | if (prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE) { |
5432 | goto next_rec; |
5433 | } |
5434 | |
5435 | } else { |
5436 | if (UNIV_UNLIKELY |
5437 | (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE)) { |
5438 | /* CHECK TABLE: fetch the row */ |
5439 | |
5440 | if (result_rec != rec |
5441 | && !prebuilt->need_to_access_clustered) { |
5442 | /* We used 'offsets' for the clust |
5443 | rec, recalculate them for 'rec' */ |
5444 | offsets = rec_get_offsets(rec, index, offsets, |
5445 | true, |
5446 | ULINT_UNDEFINED, |
5447 | &heap); |
5448 | result_rec = rec; |
5449 | } |
5450 | |
5451 | memcpy(buf + 4, result_rec |
5452 | - rec_offs_extra_size(offsets), |
5453 | rec_offs_size(offsets)); |
5454 | mach_write_to_4(buf, |
5455 | rec_offs_extra_size(offsets) + 4); |
5456 | } else if (!prebuilt->idx_cond) { |
5457 | /* The record was not yet converted to MySQL format. */ |
5458 | if (!row_sel_store_mysql_rec( |
5459 | buf, prebuilt, result_rec, vrow, |
5460 | result_rec != rec, |
5461 | result_rec != rec ? clust_index : index, |
5462 | offsets)) { |
5463 | /* Only fresh inserts may contain |
5464 | incomplete externally stored |
5465 | columns. Pretend that such records do |
5466 | not exist. Such records may only be |
5467 | accessed at the READ UNCOMMITTED |
5468 | isolation level or when rolling back a |
5469 | recovered transaction. Rollback |
5470 | happens at a lower level, not here. */ |
5471 | goto next_rec; |
5472 | } |
5473 | } |
5474 | |
5475 | if (prebuilt->clust_index_was_generated) { |
5476 | row_sel_store_row_id_to_prebuilt( |
5477 | prebuilt, result_rec, |
5478 | result_rec == rec ? index : clust_index, |
5479 | offsets); |
5480 | } |
5481 | } |
5482 | |
5483 | /* From this point on, 'offsets' are invalid. */ |
5484 | |
5485 | /* We have an optimization to save CPU time: if this is a consistent |
5486 | read on a unique condition on the clustered index, then we do not |
5487 | store the pcur position, because any fetch next or prev will anyway |
5488 | return 'end of file'. Exceptions are locking reads and the MySQL |
5489 | HANDLER command where the user can move the cursor with PREV or NEXT |
5490 | even after a unique search. */ |
5491 | |
5492 | err = DB_SUCCESS; |
5493 | |
5494 | idx_cond_failed: |
5495 | if (!unique_search |
5496 | || !dict_index_is_clust(index) |
5497 | || direction != 0 |
5498 | || prebuilt->select_lock_type != LOCK_NONE |
5499 | || prebuilt->used_in_HANDLER) { |
5500 | |
5501 | /* Inside an update always store the cursor position */ |
5502 | |
5503 | if (!spatial_search) { |
5504 | btr_pcur_store_position(pcur, &mtr); |
5505 | } |
5506 | } |
5507 | |
5508 | goto normal_return; |
5509 | |
5510 | next_rec: |
5511 | /* Reset the old and new "did semi-consistent read" flags. */ |
5512 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
5513 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
5514 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
5515 | } |
5516 | did_semi_consistent_read = FALSE; |
5517 | prebuilt->new_rec_locks = 0; |
5518 | vrow = NULL; |
5519 | |
5520 | /*-------------------------------------------------------------*/ |
5521 | /* PHASE 5: Move the cursor to the next index record */ |
5522 | |
5523 | /* NOTE: For moves_up==FALSE, the mini-transaction will be |
5524 | committed and restarted every time when switching b-tree |
5525 | pages. For moves_up==TRUE in index condition pushdown, we can |
5526 | scan an entire secondary index tree within a single |
5527 | mini-transaction. As long as the prebuilt->idx_cond does not |
5528 | match, we do not need to consult the clustered index or |
5529 | return records to MySQL, and thus we can avoid repositioning |
5530 | the cursor. What prevents us from buffer-fixing all leaf pages |
5531 | within the mini-transaction is the btr_leaf_page_release() |
5532 | call in btr_pcur_move_to_next_page(). Only the leaf page where |
5533 | the cursor is positioned will remain buffer-fixed. |
5534 | For R-tree spatial search, we also commit the mini-transaction |
5535 | each time */ |
5536 | |
5537 | if (spatial_search) { |
5538 | /* No need to do store restore for R-tree */ |
5539 | mtr.commit(); |
5540 | mtr.start(); |
5541 | mtr_has_extra_clust_latch = FALSE; |
5542 | } else if (mtr_has_extra_clust_latch) { |
5543 | /* If we have extra cluster latch, we must commit |
5544 | mtr if we are moving to the next non-clustered |
5545 | index record, because we could break the latching |
5546 | order if we would access a different clustered |
5547 | index page right away without releasing the previous. */ |
5548 | |
5549 | btr_pcur_store_position(pcur, &mtr); |
5550 | mtr.commit(); |
5551 | mtr_has_extra_clust_latch = FALSE; |
5552 | |
5553 | mtr.start(); |
5554 | |
5555 | if (sel_restore_position_for_mysql(&same_user_rec, |
5556 | BTR_SEARCH_LEAF, |
5557 | pcur, moves_up, &mtr)) { |
5558 | goto rec_loop; |
5559 | } |
5560 | } |
5561 | |
5562 | if (moves_up) { |
5563 | bool move; |
5564 | |
5565 | if (spatial_search) { |
5566 | move = rtr_pcur_move_to_next( |
5567 | search_tuple, mode, pcur, 0, &mtr); |
5568 | } else { |
5569 | move = btr_pcur_move_to_next(pcur, &mtr); |
5570 | } |
5571 | |
5572 | if (!move) { |
5573 | not_moved: |
5574 | if (!spatial_search) { |
5575 | btr_pcur_store_position(pcur, &mtr); |
5576 | } |
5577 | |
5578 | if (match_mode != 0) { |
5579 | err = DB_RECORD_NOT_FOUND; |
5580 | } else { |
5581 | err = DB_END_OF_INDEX; |
5582 | } |
5583 | |
5584 | goto normal_return; |
5585 | } |
5586 | } else { |
5587 | if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) { |
5588 | goto not_moved; |
5589 | } |
5590 | } |
5591 | |
5592 | goto rec_loop; |
5593 | |
5594 | lock_wait_or_error: |
5595 | /* Reset the old and new "did semi-consistent read" flags. */ |
5596 | if (UNIV_UNLIKELY(prebuilt->row_read_type |
5597 | == ROW_READ_DID_SEMI_CONSISTENT)) { |
5598 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
5599 | } |
5600 | did_semi_consistent_read = FALSE; |
5601 | |
5602 | /*-------------------------------------------------------------*/ |
5603 | if (!dict_index_is_spatial(index)) { |
5604 | if (rec) { |
5605 | btr_pcur_store_position(pcur, &mtr); |
5606 | } |
5607 | } |
5608 | |
5609 | lock_table_wait: |
5610 | mtr.commit(); |
5611 | mtr_has_extra_clust_latch = FALSE; |
5612 | |
5613 | trx->error_state = err; |
5614 | |
5615 | /* The following is a patch for MySQL */ |
5616 | |
5617 | if (thr->is_active) { |
5618 | que_thr_stop_for_mysql(thr); |
5619 | } |
5620 | |
5621 | thr->lock_state = QUE_THR_LOCK_ROW; |
5622 | |
5623 | if (row_mysql_handle_errors(&err, trx, thr, NULL)) { |
5624 | /* It was a lock wait, and it ended */ |
5625 | |
5626 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
5627 | mtr.start(); |
5628 | |
5629 | /* Table lock waited, go try to obtain table lock |
5630 | again */ |
5631 | if (table_lock_waited) { |
5632 | table_lock_waited = FALSE; |
5633 | |
5634 | goto wait_table_again; |
5635 | } |
5636 | |
5637 | if (!dict_index_is_spatial(index)) { |
5638 | sel_restore_position_for_mysql( |
5639 | &same_user_rec, BTR_SEARCH_LEAF, pcur, |
5640 | moves_up, &mtr); |
5641 | } |
5642 | |
5643 | if ((srv_locks_unsafe_for_binlog |
5644 | || trx->isolation_level <= TRX_ISO_READ_COMMITTED) |
5645 | && !same_user_rec) { |
5646 | |
5647 | /* Since we were not able to restore the cursor |
5648 | on the same user record, we cannot use |
5649 | row_unlock_for_mysql() to unlock any records, and |
5650 | we must thus reset the new rec lock info. Since |
5651 | in lock0lock.cc we have blocked the inheriting of gap |
5652 | X-locks, we actually do not have any new record locks |
5653 | set in this case. |
5654 | |
5655 | Note that if we were able to restore on the 'same' |
5656 | user record, it is still possible that we were actually |
5657 | waiting on a delete-marked record, and meanwhile |
5658 | it was removed by purge and inserted again by some |
5659 | other user. But that is no problem, because in |
5660 | rec_loop we will again try to set a lock, and |
5661 | new_rec_lock_info in trx will be right at the end. */ |
5662 | |
5663 | prebuilt->new_rec_locks = 0; |
5664 | } |
5665 | |
5666 | mode = pcur->search_mode; |
5667 | |
5668 | goto rec_loop; |
5669 | } |
5670 | |
5671 | thr->lock_state = QUE_THR_LOCK_NOLOCK; |
5672 | |
5673 | goto func_exit; |
5674 | |
5675 | normal_return: |
5676 | /*-------------------------------------------------------------*/ |
5677 | { |
5678 | /* handler_index_cond_check() may pull TR_table search |
5679 | which initates another row_search_mvcc(). */ |
5680 | ulint n_active_thrs= trx->lock.n_active_thrs; |
5681 | trx->lock.n_active_thrs= 1; |
5682 | que_thr_stop_for_mysql_no_error(thr, trx); |
5683 | trx->lock.n_active_thrs= n_active_thrs - 1; |
5684 | } |
5685 | |
5686 | mtr.commit(); |
5687 | |
5688 | DEBUG_SYNC_C("row_search_for_mysql_before_return" ); |
5689 | |
5690 | if (prebuilt->idx_cond != 0) { |
5691 | |
5692 | /* When ICP is active we don't write to the MySQL buffer |
5693 | directly, only to buffers that are enqueued in the pre-fetch |
5694 | queue. We need to dequeue the first buffer and copy the contents |
5695 | to the record buffer that was passed in by MySQL. */ |
5696 | |
5697 | if (prebuilt->n_fetch_cached > 0) { |
5698 | row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); |
5699 | err = DB_SUCCESS; |
5700 | } |
5701 | |
5702 | } else if (next_buf != 0) { |
5703 | |
5704 | /* We may or may not have enqueued some buffers to the |
5705 | pre-fetch queue, but we definitely wrote to the record |
5706 | buffer passed to use by MySQL. */ |
5707 | |
5708 | DEBUG_SYNC_C("row_search_cached_row" ); |
5709 | err = DB_SUCCESS; |
5710 | } |
5711 | |
5712 | #ifdef UNIV_DEBUG |
5713 | if (dict_index_is_spatial(index) && err != DB_SUCCESS |
5714 | && err != DB_END_OF_INDEX && err != DB_INTERRUPTED) { |
5715 | rtr_node_path_t* path = pcur->btr_cur.rtr_info->path; |
5716 | |
5717 | ut_ad(path->empty()); |
5718 | } |
5719 | #endif |
5720 | |
5721 | func_exit: |
5722 | trx->op_info = "" ; |
5723 | if (heap != NULL) { |
5724 | mem_heap_free(heap); |
5725 | } |
5726 | |
5727 | /* Set or reset the "did semi-consistent read" flag on return. |
5728 | The flag did_semi_consistent_read is set if and only if |
5729 | the record being returned was fetched with a semi-consistent read. */ |
5730 | ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS |
5731 | || !did_semi_consistent_read); |
5732 | |
5733 | if (prebuilt->row_read_type != ROW_READ_WITH_LOCKS) { |
5734 | if (did_semi_consistent_read) { |
5735 | prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT; |
5736 | } else { |
5737 | prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; |
5738 | } |
5739 | } |
5740 | |
5741 | ut_ad(!sync_check_iterate(sync_check())); |
5742 | |
5743 | DEBUG_SYNC_C("innodb_row_search_for_mysql_exit" ); |
5744 | |
5745 | DBUG_RETURN(err); |
5746 | } |
5747 | |
5748 | /********************************************************************//** |
5749 | Count rows in a R-Tree leaf level. |
5750 | @return DB_SUCCESS if successful */ |
5751 | dberr_t |
5752 | row_count_rtree_recs( |
5753 | /*=================*/ |
5754 | row_prebuilt_t* prebuilt, /*!< in: prebuilt struct for the |
5755 | table handle; this contains the info |
5756 | of search_tuple, index; if search |
5757 | tuple contains 0 fields then we |
5758 | position the cursor at the start or |
5759 | the end of the index, depending on |
5760 | 'mode' */ |
5761 | ulint* n_rows) /*!< out: number of entries |
5762 | seen in the consistent read */ |
5763 | { |
5764 | dict_index_t* index = prebuilt->index; |
5765 | dberr_t ret = DB_SUCCESS; |
5766 | mtr_t mtr; |
5767 | mem_heap_t* heap; |
5768 | dtuple_t* entry; |
5769 | dtuple_t* search_entry = prebuilt->search_tuple; |
5770 | ulint entry_len; |
5771 | ulint i; |
5772 | byte* buf; |
5773 | |
5774 | ut_a(dict_index_is_spatial(index)); |
5775 | |
5776 | *n_rows = 0; |
5777 | |
5778 | heap = mem_heap_create(256); |
5779 | |
5780 | /* Build a search tuple. */ |
5781 | entry_len = dict_index_get_n_fields(index); |
5782 | entry = dtuple_create(heap, entry_len); |
5783 | |
5784 | for (i = 0; i < entry_len; i++) { |
5785 | const dict_field_t* ind_field |
5786 | = dict_index_get_nth_field(index, i); |
5787 | const dict_col_t* col |
5788 | = ind_field->col; |
5789 | dfield_t* dfield |
5790 | = dtuple_get_nth_field(entry, i); |
5791 | |
5792 | if (i == 0) { |
5793 | double* mbr; |
5794 | double tmp_mbr[SPDIMS * 2]; |
5795 | |
5796 | dfield->type.mtype = DATA_GEOMETRY; |
5797 | dfield->type.prtype |= DATA_GIS_MBR; |
5798 | |
5799 | /* Allocate memory for mbr field */ |
5800 | mbr = static_cast<double*> |
5801 | (mem_heap_alloc(heap, DATA_MBR_LEN)); |
5802 | |
5803 | /* Set mbr field data. */ |
5804 | dfield_set_data(dfield, mbr, DATA_MBR_LEN); |
5805 | |
5806 | for (uint j = 0; j < SPDIMS; j++) { |
5807 | tmp_mbr[j * 2] = DBL_MAX; |
5808 | tmp_mbr[j * 2 + 1] = -DBL_MAX; |
5809 | } |
5810 | dfield_write_mbr(dfield, tmp_mbr); |
5811 | continue; |
5812 | } |
5813 | |
5814 | dfield->type.mtype = col->mtype; |
5815 | dfield->type.prtype = col->prtype; |
5816 | |
5817 | } |
5818 | |
5819 | prebuilt->search_tuple = entry; |
5820 | |
5821 | ulint bufsize = std::max<ulint>(srv_page_size, |
5822 | prebuilt->mysql_row_len); |
5823 | buf = static_cast<byte*>(ut_malloc_nokey(bufsize)); |
5824 | |
5825 | ulint cnt = 1000; |
5826 | |
5827 | ret = row_search_for_mysql(buf, PAGE_CUR_WITHIN, prebuilt, 0, 0); |
5828 | loop: |
5829 | /* Check thd->killed every 1,000 scanned rows */ |
5830 | if (--cnt == 0) { |
5831 | if (trx_is_interrupted(prebuilt->trx)) { |
5832 | ret = DB_INTERRUPTED; |
5833 | goto func_exit; |
5834 | } |
5835 | cnt = 1000; |
5836 | } |
5837 | |
5838 | switch (ret) { |
5839 | case DB_SUCCESS: |
5840 | break; |
5841 | case DB_DEADLOCK: |
5842 | case DB_LOCK_TABLE_FULL: |
5843 | case DB_LOCK_WAIT_TIMEOUT: |
5844 | case DB_INTERRUPTED: |
5845 | goto func_exit; |
5846 | default: |
5847 | /* fall through (this error is ignored by CHECK TABLE) */ |
5848 | case DB_END_OF_INDEX: |
5849 | ret = DB_SUCCESS; |
5850 | func_exit: |
5851 | prebuilt->search_tuple = search_entry; |
5852 | ut_free(buf); |
5853 | mem_heap_free(heap); |
5854 | |
5855 | return(ret); |
5856 | } |
5857 | |
5858 | *n_rows = *n_rows + 1; |
5859 | |
5860 | ret = row_search_for_mysql( |
5861 | buf, PAGE_CUR_WITHIN, prebuilt, 0, ROW_SEL_NEXT); |
5862 | |
5863 | goto loop; |
5864 | } |
5865 | |
5866 | /*******************************************************************//** |
5867 | Checks if MySQL at the moment is allowed for this table to retrieve a |
5868 | consistent read result, or store it to the query cache. |
5869 | @return whether storing or retrieving from the query cache is permitted */ |
5870 | bool |
5871 | row_search_check_if_query_cache_permitted( |
5872 | /*======================================*/ |
5873 | trx_t* trx, /*!< in: transaction object */ |
5874 | const char* norm_name) /*!< in: concatenation of database name, |
5875 | '/' char, table name */ |
5876 | { |
5877 | dict_table_t* table = dict_table_open_on_name( |
5878 | norm_name, FALSE, FALSE, DICT_ERR_IGNORE_NONE); |
5879 | |
5880 | if (table == NULL) { |
5881 | |
5882 | return(false); |
5883 | } |
5884 | |
5885 | /* Start the transaction if it is not started yet */ |
5886 | |
5887 | trx_start_if_not_started(trx, false); |
5888 | |
5889 | /* If there are locks on the table or some trx has invalidated the |
5890 | cache before this transaction started then this transaction cannot |
5891 | read/write from/to the cache. |
5892 | |
5893 | If a read view has not been created for the transaction then it doesn't |
5894 | really matter what this transaction sees. If a read view was created |
5895 | then the view low_limit_id is the max trx id that this transaction |
5896 | saw at the time of the read view creation. */ |
5897 | |
5898 | const bool ret = lock_table_get_n_locks(table) == 0 |
5899 | && ((trx->id != 0 && trx->id >= table->query_cache_inv_id) |
5900 | || !trx->read_view.is_open() |
5901 | || trx->read_view.low_limit_id() |
5902 | >= table->query_cache_inv_id); |
5903 | if (ret) { |
5904 | /* If the isolation level is high, assign a read view for the |
5905 | transaction if it does not yet have one */ |
5906 | |
5907 | if (trx->isolation_level >= TRX_ISO_REPEATABLE_READ) { |
5908 | trx->read_view.open(trx); |
5909 | } |
5910 | } |
5911 | |
5912 | dict_table_close(table, FALSE, FALSE); |
5913 | |
5914 | return(ret); |
5915 | } |
5916 | |
5917 | /*******************************************************************//** |
5918 | Read the AUTOINC column from the current row. If the value is less than |
5919 | 0 and the type is not unsigned then we reset the value to 0. |
5920 | @return value read from the column */ |
5921 | static |
5922 | ib_uint64_t |
5923 | row_search_autoinc_read_column( |
5924 | /*===========================*/ |
5925 | dict_index_t* index, /*!< in: index to read from */ |
5926 | const rec_t* rec, /*!< in: current rec */ |
5927 | ulint col_no, /*!< in: column number */ |
5928 | ulint mtype, /*!< in: column main type */ |
5929 | ibool unsigned_type) /*!< in: signed or unsigned flag */ |
5930 | { |
5931 | ulint len; |
5932 | const byte* data; |
5933 | ib_uint64_t value; |
5934 | mem_heap_t* heap = NULL; |
5935 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
5936 | ulint* offsets = offsets_; |
5937 | |
5938 | rec_offs_init(offsets_); |
5939 | ut_ad(page_rec_is_leaf(rec)); |
5940 | |
5941 | offsets = rec_get_offsets(rec, index, offsets, true, |
5942 | col_no + 1, &heap); |
5943 | |
5944 | if (rec_offs_nth_sql_null(offsets, col_no)) { |
5945 | /* There is no non-NULL value in the auto-increment column. */ |
5946 | value = 0; |
5947 | goto func_exit; |
5948 | } |
5949 | |
5950 | data = rec_get_nth_field(rec, offsets, col_no, &len); |
5951 | |
5952 | value = row_parse_int(data, len, mtype, unsigned_type); |
5953 | |
5954 | func_exit: |
5955 | if (UNIV_LIKELY_NULL(heap)) { |
5956 | mem_heap_free(heap); |
5957 | } |
5958 | |
5959 | return(value); |
5960 | } |
5961 | |
5962 | /** Get the maximum and non-delete-marked record in an index. |
5963 | @param[in] index index tree |
5964 | @param[in,out] mtr mini-transaction (may be committed and restarted) |
5965 | @return maximum record, page s-latched in mtr |
5966 | @retval NULL if there are no records, or if all of them are delete-marked */ |
5967 | static |
5968 | const rec_t* |
5969 | row_search_get_max_rec( |
5970 | dict_index_t* index, |
5971 | mtr_t* mtr) |
5972 | { |
5973 | btr_pcur_t pcur; |
5974 | const rec_t* rec; |
5975 | /* Open at the high/right end (false), and init cursor */ |
5976 | btr_pcur_open_at_index_side( |
5977 | false, index, BTR_SEARCH_LEAF, &pcur, true, 0, mtr); |
5978 | |
5979 | do { |
5980 | const page_t* page; |
5981 | |
5982 | page = btr_pcur_get_page(&pcur); |
5983 | rec = page_find_rec_max_not_deleted(page); |
5984 | |
5985 | if (page_rec_is_user_rec(rec)) { |
5986 | break; |
5987 | } else { |
5988 | rec = NULL; |
5989 | } |
5990 | btr_pcur_move_before_first_on_page(&pcur); |
5991 | } while (btr_pcur_move_to_prev(&pcur, mtr)); |
5992 | |
5993 | btr_pcur_close(&pcur); |
5994 | |
5995 | ut_ad(!rec |
5996 | || !(rec_get_info_bits(rec, dict_table_is_comp(index->table)) |
5997 | & (REC_INFO_MIN_REC_FLAG | REC_INFO_DELETED_FLAG))); |
5998 | return(rec); |
5999 | } |
6000 | |
6001 | /** Read the max AUTOINC value from an index. |
6002 | @param[in] index index starting with an AUTO_INCREMENT column |
6003 | @return the largest AUTO_INCREMENT value |
6004 | @retval 0 if no records were found */ |
6005 | ib_uint64_t |
6006 | row_search_max_autoinc(dict_index_t* index) |
6007 | { |
6008 | const dict_field_t* dfield = dict_index_get_nth_field(index, 0); |
6009 | |
6010 | ib_uint64_t value = 0; |
6011 | |
6012 | mtr_t mtr; |
6013 | mtr.start(); |
6014 | |
6015 | if (const rec_t* rec = row_search_get_max_rec(index, &mtr)) { |
6016 | value = row_search_autoinc_read_column( |
6017 | index, rec, 0, |
6018 | dfield->col->mtype, |
6019 | dfield->col->prtype & DATA_UNSIGNED); |
6020 | } |
6021 | |
6022 | mtr.commit(); |
6023 | return(value); |
6024 | } |
6025 | |