| 1 | /***************************************************************************** |
| 2 | |
| 3 | Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. |
| 4 | Copyright (c) 2017, 2018, MariaDB Corporation. |
| 5 | |
| 6 | This program is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free Software |
| 8 | Foundation; version 2 of the License. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 12 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License along with |
| 15 | this program; if not, write to the Free Software Foundation, Inc., |
| 16 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
| 17 | |
| 18 | *****************************************************************************/ |
| 19 | |
| 20 | /**************************************************//** |
| 21 | @file trx/trx0purge.cc |
| 22 | Purge old versions |
| 23 | |
| 24 | Created 3/26/1996 Heikki Tuuri |
| 25 | *******************************************************/ |
| 26 | |
| 27 | #include "ha_prototypes.h" |
| 28 | |
| 29 | #include "trx0purge.h" |
| 30 | #include "fsp0fsp.h" |
| 31 | #include "fut0fut.h" |
| 32 | #include "mach0data.h" |
| 33 | #include "mtr0log.h" |
| 34 | #include "os0thread.h" |
| 35 | #include "que0que.h" |
| 36 | #include "row0purge.h" |
| 37 | #include "row0upd.h" |
| 38 | #include "srv0mon.h" |
| 39 | #include "fsp0sysspace.h" |
| 40 | #include "srv0srv.h" |
| 41 | #include "srv0start.h" |
| 42 | #include "sync0sync.h" |
| 43 | #include "trx0rec.h" |
| 44 | #include "trx0roll.h" |
| 45 | #include "trx0rseg.h" |
| 46 | #include "trx0trx.h" |
| 47 | #include <mysql/service_wsrep.h> |
| 48 | |
| 49 | /** Maximum allowable purge history length. <=0 means 'infinite'. */ |
| 50 | ulong srv_max_purge_lag = 0; |
| 51 | |
| 52 | /** Max DML user threads delay in micro-seconds. */ |
| 53 | ulong srv_max_purge_lag_delay = 0; |
| 54 | |
| 55 | /** The global data structure coordinating a purge */ |
| 56 | purge_sys_t purge_sys; |
| 57 | |
| 58 | /** A dummy undo record used as a return value when we have a whole undo log |
| 59 | which needs no purge */ |
| 60 | trx_undo_rec_t trx_purge_dummy_rec; |
| 61 | |
| 62 | #ifdef UNIV_DEBUG |
| 63 | my_bool srv_purge_view_update_only_debug; |
| 64 | #endif /* UNIV_DEBUG */ |
| 65 | |
| 66 | /** Sentinel value */ |
| 67 | static const TrxUndoRsegs NullElement; |
| 68 | |
| 69 | /** Default constructor */ |
| 70 | TrxUndoRsegsIterator::TrxUndoRsegsIterator() |
| 71 | : m_rsegs(NullElement), m_iter(m_rsegs.begin()) |
| 72 | { |
| 73 | } |
| 74 | |
| 75 | /** Sets the next rseg to purge in purge_sys. |
| 76 | Executed in the purge coordinator thread. |
| 77 | @return whether anything is to be purged */ |
| 78 | inline bool TrxUndoRsegsIterator::set_next() |
| 79 | { |
| 80 | mutex_enter(&purge_sys.pq_mutex); |
| 81 | |
| 82 | /* Only purge consumes events from the priority queue, user |
| 83 | threads only produce the events. */ |
| 84 | |
| 85 | /* Check if there are more rsegs to process in the |
| 86 | current element. */ |
| 87 | if (m_iter != m_rsegs.end()) { |
| 88 | /* We are still processing rollback segment from |
| 89 | the same transaction and so expected transaction |
| 90 | number shouldn't increase. Undo the increment of |
| 91 | expected commit done by caller assuming rollback |
| 92 | segments from given transaction are done. */ |
| 93 | purge_sys.tail.commit = (*m_iter)->last_commit; |
| 94 | } else if (!purge_sys.purge_queue.empty()) { |
| 95 | m_rsegs = purge_sys.purge_queue.top(); |
| 96 | purge_sys.purge_queue.pop(); |
| 97 | ut_ad(purge_sys.purge_queue.empty() |
| 98 | || purge_sys.purge_queue.top() != m_rsegs); |
| 99 | m_iter = m_rsegs.begin(); |
| 100 | } else { |
| 101 | /* Queue is empty, reset iterator. */ |
| 102 | purge_sys.rseg = NULL; |
| 103 | mutex_exit(&purge_sys.pq_mutex); |
| 104 | m_rsegs = NullElement; |
| 105 | m_iter = m_rsegs.begin(); |
| 106 | return false; |
| 107 | } |
| 108 | |
| 109 | purge_sys.rseg = *m_iter++; |
| 110 | mutex_exit(&purge_sys.pq_mutex); |
| 111 | mutex_enter(&purge_sys.rseg->mutex); |
| 112 | |
| 113 | ut_a(purge_sys.rseg->last_page_no != FIL_NULL); |
| 114 | ut_ad(purge_sys.rseg->last_trx_no() == m_rsegs.trx_no()); |
| 115 | |
| 116 | /* We assume in purge of externally stored fields that space id is |
| 117 | in the range of UNDO tablespace space ids */ |
| 118 | ut_ad(purge_sys.rseg->space->id == TRX_SYS_SPACE |
| 119 | || srv_is_undo_tablespace(purge_sys.rseg->space->id)); |
| 120 | |
| 121 | ut_a(purge_sys.tail.commit <= purge_sys.rseg->last_commit); |
| 122 | |
| 123 | purge_sys.tail.commit = purge_sys.rseg->last_commit; |
| 124 | purge_sys.hdr_offset = purge_sys.rseg->last_offset; |
| 125 | purge_sys.hdr_page_no = purge_sys.rseg->last_page_no; |
| 126 | |
| 127 | mutex_exit(&purge_sys.rseg->mutex); |
| 128 | |
| 129 | return(true); |
| 130 | } |
| 131 | |
| 132 | /** Build a purge 'query' graph. The actual purge is performed by executing |
| 133 | this query graph. |
| 134 | @return own: the query graph */ |
| 135 | static |
| 136 | que_t* |
| 137 | purge_graph_build() |
| 138 | { |
| 139 | ut_a(srv_n_purge_threads > 0); |
| 140 | |
| 141 | trx_t* trx = trx_create(); |
| 142 | ut_ad(!trx->id); |
| 143 | trx->start_time = ut_time(); |
| 144 | trx->state = TRX_STATE_ACTIVE; |
| 145 | trx->op_info = "purge trx" ; |
| 146 | |
| 147 | mem_heap_t* heap = mem_heap_create(512); |
| 148 | que_fork_t* fork = que_fork_create( |
| 149 | NULL, NULL, QUE_FORK_PURGE, heap); |
| 150 | fork->trx = trx; |
| 151 | |
| 152 | for (ulint i = 0; i < srv_n_purge_threads; ++i) { |
| 153 | que_thr_t* thr = que_thr_create(fork, heap, NULL); |
| 154 | thr->child = row_purge_node_create(thr, heap); |
| 155 | } |
| 156 | |
| 157 | return(fork); |
| 158 | } |
| 159 | |
| 160 | /** Initialise the purge system. */ |
| 161 | void purge_sys_t::create() |
| 162 | { |
| 163 | ut_ad(this == &purge_sys); |
| 164 | ut_ad(!enabled()); |
| 165 | ut_ad(!event); |
| 166 | event= os_event_create(0); |
| 167 | ut_ad(event); |
| 168 | m_paused= 0; |
| 169 | query= purge_graph_build(); |
| 170 | n_submitted= 0; |
| 171 | n_completed= 0; |
| 172 | next_stored= false; |
| 173 | rseg= NULL; |
| 174 | page_no= 0; |
| 175 | offset= 0; |
| 176 | hdr_page_no= 0; |
| 177 | hdr_offset= 0; |
| 178 | rw_lock_create(trx_purge_latch_key, &latch, SYNC_PURGE_LATCH); |
| 179 | mutex_create(LATCH_ID_PURGE_SYS_PQ, &pq_mutex); |
| 180 | undo_trunc.create(); |
| 181 | } |
| 182 | |
| 183 | /** Close the purge subsystem on shutdown. */ |
| 184 | void purge_sys_t::close() |
| 185 | { |
| 186 | ut_ad(this == &purge_sys); |
| 187 | if (!event) return; |
| 188 | |
| 189 | m_enabled= false; |
| 190 | trx_t* trx = query->trx; |
| 191 | que_graph_free(query); |
| 192 | ut_ad(!trx->id); |
| 193 | ut_ad(trx->state == TRX_STATE_ACTIVE); |
| 194 | trx->state= TRX_STATE_NOT_STARTED; |
| 195 | trx_free(trx); |
| 196 | rw_lock_free(&latch); |
| 197 | /* rw_lock_free() already called latch.~rw_lock_t(); tame the |
| 198 | debug assertions when the destructor will be called once more. */ |
| 199 | ut_ad(latch.magic_n == 0); |
| 200 | ut_d(latch.magic_n= RW_LOCK_MAGIC_N); |
| 201 | mutex_free(&pq_mutex); |
| 202 | os_event_destroy(event); |
| 203 | } |
| 204 | |
| 205 | /*================ UNDO LOG HISTORY LIST =============================*/ |
| 206 | |
| 207 | /** Prepend the history list with an undo log. |
| 208 | Remove the undo log segment from the rseg slot if it is too big for reuse. |
| 209 | @param[in] trx transaction |
| 210 | @param[in,out] undo undo log |
| 211 | @param[in,out] mtr mini-transaction */ |
| 212 | void |
| 213 | trx_purge_add_undo_to_history(const trx_t* trx, trx_undo_t*& undo, mtr_t* mtr) |
| 214 | { |
| 215 | DBUG_PRINT("trx" , ("commit(" TRX_ID_FMT "," TRX_ID_FMT ")" , |
| 216 | trx->id, trx->no)); |
| 217 | ut_ad(undo == trx->rsegs.m_redo.undo |
| 218 | || undo == trx->rsegs.m_redo.old_insert); |
| 219 | trx_rseg_t* rseg = trx->rsegs.m_redo.rseg; |
| 220 | ut_ad(undo->rseg == rseg); |
| 221 | trx_rsegf_t* = trx_rsegf_get( |
| 222 | rseg->space, rseg->page_no, mtr); |
| 223 | page_t* undo_page = trx_undo_set_state_at_finish( |
| 224 | undo, mtr); |
| 225 | trx_ulogf_t* = undo_page + undo->hdr_offset; |
| 226 | |
| 227 | ut_ad(mach_read_from_2(undo_header + TRX_UNDO_NEEDS_PURGE) <= 1); |
| 228 | |
| 229 | if (UNIV_UNLIKELY(mach_read_from_4(TRX_RSEG_FORMAT + rseg_header))) { |
| 230 | /* This database must have been upgraded from |
| 231 | before MariaDB 10.3.5. */ |
| 232 | trx_rseg_format_upgrade(rseg_header, mtr); |
| 233 | } |
| 234 | |
| 235 | if (undo->state != TRX_UNDO_CACHED) { |
| 236 | ulint hist_size; |
| 237 | #ifdef UNIV_DEBUG |
| 238 | trx_usegf_t* seg_header = undo_page + TRX_UNDO_SEG_HDR; |
| 239 | #endif /* UNIV_DEBUG */ |
| 240 | |
| 241 | /* The undo log segment will not be reused */ |
| 242 | ut_a(undo->id < TRX_RSEG_N_SLOTS); |
| 243 | trx_rsegf_set_nth_undo(rseg_header, undo->id, FIL_NULL, mtr); |
| 244 | |
| 245 | MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_USED); |
| 246 | |
| 247 | hist_size = mtr_read_ulint( |
| 248 | rseg_header + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, mtr); |
| 249 | |
| 250 | ut_ad(undo->size == flst_get_len( |
| 251 | seg_header + TRX_UNDO_PAGE_LIST)); |
| 252 | |
| 253 | mlog_write_ulint( |
| 254 | rseg_header + TRX_RSEG_HISTORY_SIZE, |
| 255 | hist_size + undo->size, MLOG_4BYTES, mtr); |
| 256 | |
| 257 | mlog_write_ull(rseg_header + TRX_RSEG_MAX_TRX_ID, |
| 258 | trx_sys.get_max_trx_id(), mtr); |
| 259 | } |
| 260 | |
| 261 | /* Before any transaction-generating background threads or the |
| 262 | purge have been started, recv_recovery_rollback_active() can |
| 263 | start transactions in row_merge_drop_temp_indexes() and |
| 264 | fts_drop_orphaned_tables(), and roll back recovered transactions. |
| 265 | |
| 266 | Arbitrary user transactions may be executed when all the undo log |
| 267 | related background processes (including purge) are disabled due to |
| 268 | innodb_force_recovery=2 or innodb_force_recovery=3. |
| 269 | DROP TABLE may be executed at any innodb_force_recovery level. |
| 270 | |
| 271 | After the purge thread has been given permission to exit, |
| 272 | in fast shutdown, we may roll back transactions (trx->undo_no==0) |
| 273 | in THD::cleanup() invoked from unlink_thd(), and we may also |
| 274 | continue to execute user transactions. */ |
| 275 | ut_ad(srv_undo_sources |
| 276 | || (!purge_sys.enabled() |
| 277 | && (srv_startup_is_before_trx_rollback_phase |
| 278 | || trx_rollback_is_active |
| 279 | || srv_force_recovery >= SRV_FORCE_NO_BACKGROUND)) |
| 280 | || ((trx->undo_no == 0 || trx->mysql_thd |
| 281 | || trx->internal) |
| 282 | && srv_fast_shutdown)); |
| 283 | |
| 284 | #ifdef WITH_WSREP |
| 285 | if (wsrep_is_wsrep_xid(trx->xid)) { |
| 286 | trx_rseg_update_wsrep_checkpoint(rseg_header, trx->xid, mtr); |
| 287 | } |
| 288 | #endif |
| 289 | |
| 290 | if (trx->mysql_log_file_name && *trx->mysql_log_file_name) { |
| 291 | /* Update the latest MySQL binlog name and offset info |
| 292 | in rollback segment header if MySQL binlogging is on |
| 293 | or the database server is a MySQL replication save. */ |
| 294 | trx_rseg_update_binlog_offset(rseg_header, trx, mtr); |
| 295 | } |
| 296 | |
| 297 | /* Add the log as the first in the history list */ |
| 298 | flst_add_first(rseg_header + TRX_RSEG_HISTORY, |
| 299 | undo_header + TRX_UNDO_HISTORY_NODE, mtr); |
| 300 | |
| 301 | mlog_write_ull(undo_header + TRX_UNDO_TRX_NO, trx->no, mtr); |
| 302 | /* This is needed for upgrading old undo log pages from |
| 303 | before MariaDB 10.3.1. */ |
| 304 | if (UNIV_UNLIKELY(!mach_read_from_2(undo_header |
| 305 | + TRX_UNDO_NEEDS_PURGE))) { |
| 306 | mlog_write_ulint(undo_header + TRX_UNDO_NEEDS_PURGE, 1, |
| 307 | MLOG_2BYTES, mtr); |
| 308 | } |
| 309 | |
| 310 | if (rseg->last_page_no == FIL_NULL) { |
| 311 | rseg->last_page_no = undo->hdr_page_no; |
| 312 | rseg->last_offset = undo->hdr_offset; |
| 313 | rseg->set_last_trx_no(trx->no, undo == trx->rsegs.m_redo.undo); |
| 314 | rseg->needs_purge = true; |
| 315 | } |
| 316 | |
| 317 | trx_sys.history_insert(); |
| 318 | |
| 319 | if (undo->state == TRX_UNDO_CACHED) { |
| 320 | UT_LIST_ADD_FIRST(rseg->undo_cached, undo); |
| 321 | MONITOR_INC(MONITOR_NUM_UNDO_SLOT_CACHED); |
| 322 | } else { |
| 323 | ut_ad(undo->state == TRX_UNDO_TO_PURGE); |
| 324 | ut_free(undo); |
| 325 | } |
| 326 | |
| 327 | undo = NULL; |
| 328 | } |
| 329 | |
| 330 | /** Remove undo log header from the history list. |
| 331 | @param[in,out] rseg_hdr rollback segment header |
| 332 | @param[in] log_hdr undo log segment header |
| 333 | @param[in,out] mtr mini transaction. */ |
| 334 | static |
| 335 | void |
| 336 | trx_purge_remove_log_hdr( |
| 337 | trx_rsegf_t* rseg_hdr, |
| 338 | trx_ulogf_t* log_hdr, |
| 339 | mtr_t* mtr) |
| 340 | { |
| 341 | flst_remove(rseg_hdr + TRX_RSEG_HISTORY, |
| 342 | log_hdr + TRX_UNDO_HISTORY_NODE, mtr); |
| 343 | trx_sys.history_remove(); |
| 344 | } |
| 345 | |
| 346 | /** Free an undo log segment, and remove the header from the history list. |
| 347 | @param[in,out] rseg rollback segment |
| 348 | @param[in] hdr_addr file address of log_hdr */ |
| 349 | static |
| 350 | void |
| 351 | trx_purge_free_segment(trx_rseg_t* rseg, fil_addr_t hdr_addr) |
| 352 | { |
| 353 | mtr_t mtr; |
| 354 | trx_rsegf_t* rseg_hdr; |
| 355 | page_t* undo_page; |
| 356 | |
| 357 | mtr.start(); |
| 358 | mutex_enter(&rseg->mutex); |
| 359 | |
| 360 | rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr); |
| 361 | undo_page = trx_undo_page_get( |
| 362 | page_id_t(rseg->space->id, hdr_addr.page), &mtr); |
| 363 | |
| 364 | /* Mark the last undo log totally purged, so that if the |
| 365 | system crashes, the tail of the undo log will not get accessed |
| 366 | again. The list of pages in the undo log tail gets |
| 367 | inconsistent during the freeing of the segment, and therefore |
| 368 | purge should not try to access them again. */ |
| 369 | mlog_write_ulint(undo_page + hdr_addr.boffset + TRX_UNDO_NEEDS_PURGE, |
| 370 | 0, MLOG_2BYTES, &mtr); |
| 371 | |
| 372 | while (!fseg_free_step_not_header( |
| 373 | TRX_UNDO_SEG_HDR + TRX_UNDO_FSEG_HEADER |
| 374 | + undo_page, false, &mtr)) { |
| 375 | mutex_exit(&rseg->mutex); |
| 376 | |
| 377 | mtr.commit(); |
| 378 | mtr.start(); |
| 379 | |
| 380 | mutex_enter(&rseg->mutex); |
| 381 | |
| 382 | rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr); |
| 383 | |
| 384 | undo_page = trx_undo_page_get( |
| 385 | page_id_t(rseg->space->id, hdr_addr.page), &mtr); |
| 386 | } |
| 387 | |
| 388 | /* The page list may now be inconsistent, but the length field |
| 389 | stored in the list base node tells us how big it was before we |
| 390 | started the freeing. */ |
| 391 | |
| 392 | const ulint seg_size = flst_get_len( |
| 393 | TRX_UNDO_SEG_HDR + TRX_UNDO_PAGE_LIST + undo_page); |
| 394 | |
| 395 | /* We may free the undo log segment header page; it must be freed |
| 396 | within the same mtr as the undo log header is removed from the |
| 397 | history list: otherwise, in case of a database crash, the segment |
| 398 | could become inaccessible garbage in the file space. */ |
| 399 | |
| 400 | trx_purge_remove_log_hdr(rseg_hdr, undo_page + hdr_addr.boffset, &mtr); |
| 401 | |
| 402 | do { |
| 403 | |
| 404 | /* Here we assume that a file segment with just the header |
| 405 | page can be freed in a few steps, so that the buffer pool |
| 406 | is not flooded with bufferfixed pages: see the note in |
| 407 | fsp0fsp.cc. */ |
| 408 | |
| 409 | } while (!fseg_free_step(TRX_UNDO_SEG_HDR + TRX_UNDO_FSEG_HEADER |
| 410 | + undo_page, false, &mtr)); |
| 411 | |
| 412 | const ulint hist_size = mach_read_from_4(rseg_hdr |
| 413 | + TRX_RSEG_HISTORY_SIZE); |
| 414 | ut_ad(hist_size >= seg_size); |
| 415 | |
| 416 | mlog_write_ulint(rseg_hdr + TRX_RSEG_HISTORY_SIZE, |
| 417 | hist_size - seg_size, MLOG_4BYTES, &mtr); |
| 418 | |
| 419 | ut_ad(rseg->curr_size >= seg_size); |
| 420 | |
| 421 | rseg->curr_size -= seg_size; |
| 422 | |
| 423 | mutex_exit(&(rseg->mutex)); |
| 424 | |
| 425 | mtr_commit(&mtr); |
| 426 | } |
| 427 | |
| 428 | /** Remove unnecessary history data from a rollback segment. |
| 429 | @param[in,out] rseg rollback segment |
| 430 | @param[in] limit truncate anything before this */ |
| 431 | static |
| 432 | void |
| 433 | trx_purge_truncate_rseg_history( |
| 434 | trx_rseg_t& rseg, |
| 435 | const purge_sys_t::iterator& limit) |
| 436 | { |
| 437 | fil_addr_t hdr_addr; |
| 438 | fil_addr_t prev_hdr_addr; |
| 439 | trx_rsegf_t* rseg_hdr; |
| 440 | page_t* undo_page; |
| 441 | trx_ulogf_t* log_hdr; |
| 442 | trx_usegf_t* seg_hdr; |
| 443 | mtr_t mtr; |
| 444 | trx_id_t undo_trx_no; |
| 445 | |
| 446 | mtr.start(); |
| 447 | ut_ad(rseg.is_persistent()); |
| 448 | mutex_enter(&rseg.mutex); |
| 449 | |
| 450 | rseg_hdr = trx_rsegf_get(rseg.space, rseg.page_no, &mtr); |
| 451 | |
| 452 | hdr_addr = trx_purge_get_log_from_hist( |
| 453 | flst_get_last(rseg_hdr + TRX_RSEG_HISTORY, &mtr)); |
| 454 | loop: |
| 455 | if (hdr_addr.page == FIL_NULL) { |
| 456 | func_exit: |
| 457 | mutex_exit(&rseg.mutex); |
| 458 | mtr.commit(); |
| 459 | return; |
| 460 | } |
| 461 | |
| 462 | undo_page = trx_undo_page_get(page_id_t(rseg.space->id, hdr_addr.page), |
| 463 | &mtr); |
| 464 | |
| 465 | log_hdr = undo_page + hdr_addr.boffset; |
| 466 | |
| 467 | undo_trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); |
| 468 | |
| 469 | if (undo_trx_no >= limit.trx_no()) { |
| 470 | if (undo_trx_no == limit.trx_no()) { |
| 471 | trx_undo_truncate_start( |
| 472 | &rseg, hdr_addr.page, |
| 473 | hdr_addr.boffset, limit.undo_no); |
| 474 | } |
| 475 | |
| 476 | goto func_exit; |
| 477 | } |
| 478 | |
| 479 | prev_hdr_addr = trx_purge_get_log_from_hist( |
| 480 | flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); |
| 481 | |
| 482 | seg_hdr = undo_page + TRX_UNDO_SEG_HDR; |
| 483 | |
| 484 | if ((mach_read_from_2(seg_hdr + TRX_UNDO_STATE) == TRX_UNDO_TO_PURGE) |
| 485 | && (mach_read_from_2(log_hdr + TRX_UNDO_NEXT_LOG) == 0)) { |
| 486 | |
| 487 | /* We can free the whole log segment */ |
| 488 | |
| 489 | mutex_exit(&rseg.mutex); |
| 490 | mtr.commit(); |
| 491 | |
| 492 | /* calls the trx_purge_remove_log_hdr() |
| 493 | inside trx_purge_free_segment(). */ |
| 494 | trx_purge_free_segment(&rseg, hdr_addr); |
| 495 | } else { |
| 496 | /* Remove the log hdr from the rseg history. */ |
| 497 | trx_purge_remove_log_hdr(rseg_hdr, log_hdr, &mtr); |
| 498 | |
| 499 | mutex_exit(&rseg.mutex); |
| 500 | mtr.commit(); |
| 501 | } |
| 502 | |
| 503 | mtr.start(); |
| 504 | mutex_enter(&rseg.mutex); |
| 505 | |
| 506 | rseg_hdr = trx_rsegf_get(rseg.space, rseg.page_no, &mtr); |
| 507 | |
| 508 | hdr_addr = prev_hdr_addr; |
| 509 | |
| 510 | goto loop; |
| 511 | } |
| 512 | |
| 513 | /** UNDO log truncate logger. Needed to track state of truncate during crash. |
| 514 | An auxiliary redo log file undo_<space_id>_trunc.log will created while the |
| 515 | truncate of the UNDO is in progress. This file is required during recovery |
| 516 | to complete the truncate. */ |
| 517 | |
| 518 | namespace undo { |
| 519 | |
| 520 | /** Populate log file name based on space_id |
| 521 | @param[in] space_id id of the undo tablespace. |
| 522 | @return DB_SUCCESS or error code */ |
| 523 | dberr_t populate_log_file_name( |
| 524 | ulint space_id, |
| 525 | char*& log_file_name) |
| 526 | { |
| 527 | ulint log_file_name_sz = |
| 528 | strlen(srv_log_group_home_dir) + 22 + 1 /* NUL */ |
| 529 | + strlen(undo::s_log_prefix) |
| 530 | + strlen(undo::s_log_ext); |
| 531 | |
| 532 | log_file_name = new (std::nothrow) char[log_file_name_sz]; |
| 533 | if (log_file_name == 0) { |
| 534 | return(DB_OUT_OF_MEMORY); |
| 535 | } |
| 536 | |
| 537 | memset(log_file_name, 0, log_file_name_sz); |
| 538 | |
| 539 | strcpy(log_file_name, srv_log_group_home_dir); |
| 540 | ulint log_file_name_len = strlen(log_file_name); |
| 541 | |
| 542 | if (log_file_name[log_file_name_len - 1] |
| 543 | != OS_PATH_SEPARATOR) { |
| 544 | |
| 545 | log_file_name[log_file_name_len] |
| 546 | = OS_PATH_SEPARATOR; |
| 547 | log_file_name_len = strlen(log_file_name); |
| 548 | } |
| 549 | |
| 550 | snprintf(log_file_name + log_file_name_len, |
| 551 | log_file_name_sz - log_file_name_len, |
| 552 | "%s%lu_%s" , undo::s_log_prefix, |
| 553 | (ulong) space_id, s_log_ext); |
| 554 | |
| 555 | return(DB_SUCCESS); |
| 556 | } |
| 557 | |
| 558 | /** Create the truncate log file. |
| 559 | @param[in] space_id id of the undo tablespace to truncate. |
| 560 | @return DB_SUCCESS or error code. */ |
| 561 | dberr_t init(ulint space_id) |
| 562 | { |
| 563 | dberr_t err; |
| 564 | char* log_file_name; |
| 565 | |
| 566 | /* Step-1: Create the log file name using the pre-decided |
| 567 | prefix/suffix and table id of undo tablepsace to truncate. */ |
| 568 | err = populate_log_file_name(space_id, log_file_name); |
| 569 | if (err != DB_SUCCESS) { |
| 570 | return(err); |
| 571 | } |
| 572 | |
| 573 | /* Step-2: Create the log file, open it and write 0 to |
| 574 | indicate init phase. */ |
| 575 | bool ret; |
| 576 | os_file_t handle = os_file_create( |
| 577 | innodb_log_file_key, log_file_name, OS_FILE_CREATE, |
| 578 | OS_FILE_NORMAL, OS_LOG_FILE, srv_read_only_mode, &ret); |
| 579 | if (!ret) { |
| 580 | delete[] log_file_name; |
| 581 | return(DB_IO_ERROR); |
| 582 | } |
| 583 | |
| 584 | ulint sz = srv_page_size; |
| 585 | void* buf = ut_zalloc_nokey(sz + srv_page_size); |
| 586 | if (buf == NULL) { |
| 587 | os_file_close(handle); |
| 588 | delete[] log_file_name; |
| 589 | return(DB_OUT_OF_MEMORY); |
| 590 | } |
| 591 | |
| 592 | byte* log_buf = static_cast<byte*>( |
| 593 | ut_align(buf, srv_page_size)); |
| 594 | |
| 595 | IORequest request(IORequest::WRITE); |
| 596 | |
| 597 | err = os_file_write( |
| 598 | request, log_file_name, handle, log_buf, 0, sz); |
| 599 | |
| 600 | os_file_flush(handle); |
| 601 | os_file_close(handle); |
| 602 | |
| 603 | ut_free(buf); |
| 604 | delete[] log_file_name; |
| 605 | |
| 606 | return(err); |
| 607 | } |
| 608 | |
| 609 | /** Mark completion of undo truncate action by writing magic number to |
| 610 | the log file and then removing it from the disk. |
| 611 | If we are going to remove it from disk then why write magic number ? |
| 612 | This is to safeguard from unlink (file-system) anomalies that will keep |
| 613 | the link to the file even after unlink action is successfull and |
| 614 | ref-count = 0. |
| 615 | @param[in] space_id id of the undo tablespace to truncate.*/ |
| 616 | void done( |
| 617 | ulint space_id) |
| 618 | { |
| 619 | dberr_t err; |
| 620 | char* log_file_name; |
| 621 | |
| 622 | /* Step-1: Create the log file name using the pre-decided |
| 623 | prefix/suffix and table id of undo tablepsace to truncate. */ |
| 624 | err = populate_log_file_name(space_id, log_file_name); |
| 625 | if (err != DB_SUCCESS) { |
| 626 | return; |
| 627 | } |
| 628 | |
| 629 | /* Step-2: Open log file and write magic number to |
| 630 | indicate done phase. */ |
| 631 | bool ret; |
| 632 | os_file_t handle = |
| 633 | os_file_create_simple_no_error_handling( |
| 634 | innodb_log_file_key, log_file_name, |
| 635 | OS_FILE_OPEN, OS_FILE_READ_WRITE, |
| 636 | srv_read_only_mode, &ret); |
| 637 | |
| 638 | if (!ret) { |
| 639 | os_file_delete(innodb_log_file_key, log_file_name); |
| 640 | delete[] log_file_name; |
| 641 | return; |
| 642 | } |
| 643 | |
| 644 | ulint sz = srv_page_size; |
| 645 | void* buf = ut_zalloc_nokey(sz + srv_page_size); |
| 646 | if (buf == NULL) { |
| 647 | os_file_close(handle); |
| 648 | os_file_delete(innodb_log_file_key, log_file_name); |
| 649 | delete[] log_file_name; |
| 650 | return; |
| 651 | } |
| 652 | |
| 653 | byte* log_buf = static_cast<byte*>( |
| 654 | ut_align(buf, srv_page_size)); |
| 655 | |
| 656 | mach_write_to_4(log_buf, undo::s_magic); |
| 657 | |
| 658 | IORequest request(IORequest::WRITE); |
| 659 | |
| 660 | err = os_file_write( |
| 661 | request, log_file_name, handle, log_buf, 0, sz); |
| 662 | |
| 663 | ut_ad(err == DB_SUCCESS); |
| 664 | |
| 665 | os_file_flush(handle); |
| 666 | os_file_close(handle); |
| 667 | |
| 668 | ut_free(buf); |
| 669 | os_file_delete(innodb_log_file_key, log_file_name); |
| 670 | delete[] log_file_name; |
| 671 | } |
| 672 | |
| 673 | /** Check if TRUNCATE_DDL_LOG file exist. |
| 674 | @param[in] space_id id of the undo tablespace. |
| 675 | @return true if exist else false. */ |
| 676 | bool is_log_present( |
| 677 | ulint space_id) |
| 678 | { |
| 679 | dberr_t err; |
| 680 | char* log_file_name; |
| 681 | |
| 682 | /* Step-1: Populate log file name. */ |
| 683 | err = populate_log_file_name(space_id, log_file_name); |
| 684 | if (err != DB_SUCCESS) { |
| 685 | return(false); |
| 686 | } |
| 687 | |
| 688 | /* Step-2: Check for existence of the file. */ |
| 689 | bool exist; |
| 690 | os_file_type_t type; |
| 691 | os_file_status(log_file_name, &exist, &type); |
| 692 | |
| 693 | /* Step-3: If file exists, check it for presence of magic |
| 694 | number. If found, then delete the file and report file |
| 695 | doesn't exist as presence of magic number suggest that |
| 696 | truncate action was complete. */ |
| 697 | |
| 698 | if (exist) { |
| 699 | bool ret; |
| 700 | os_file_t handle = |
| 701 | os_file_create_simple_no_error_handling( |
| 702 | innodb_log_file_key, log_file_name, |
| 703 | OS_FILE_OPEN, OS_FILE_READ_WRITE, |
| 704 | srv_read_only_mode, &ret); |
| 705 | if (!ret) { |
| 706 | os_file_delete(innodb_log_file_key, |
| 707 | log_file_name); |
| 708 | delete[] log_file_name; |
| 709 | return(false); |
| 710 | } |
| 711 | |
| 712 | ulint sz = srv_page_size; |
| 713 | void* buf = ut_zalloc_nokey(sz + srv_page_size); |
| 714 | if (buf == NULL) { |
| 715 | os_file_close(handle); |
| 716 | os_file_delete(innodb_log_file_key, |
| 717 | log_file_name); |
| 718 | delete[] log_file_name; |
| 719 | return(false); |
| 720 | } |
| 721 | |
| 722 | byte* log_buf = static_cast<byte*>( |
| 723 | ut_align(buf, srv_page_size)); |
| 724 | |
| 725 | IORequest request(IORequest::READ); |
| 726 | |
| 727 | dberr_t err; |
| 728 | |
| 729 | err = os_file_read(request, handle, log_buf, 0, sz); |
| 730 | |
| 731 | os_file_close(handle); |
| 732 | |
| 733 | if (err != DB_SUCCESS) { |
| 734 | |
| 735 | ib::info() |
| 736 | << "Unable to read '" |
| 737 | << log_file_name << "' : " |
| 738 | << ut_strerr(err); |
| 739 | |
| 740 | os_file_delete( |
| 741 | innodb_log_file_key, log_file_name); |
| 742 | |
| 743 | ut_free(buf); |
| 744 | |
| 745 | delete[] log_file_name; |
| 746 | |
| 747 | return(false); |
| 748 | } |
| 749 | |
| 750 | ulint magic_no = mach_read_from_4(log_buf); |
| 751 | |
| 752 | ut_free(buf); |
| 753 | |
| 754 | if (magic_no == undo::s_magic) { |
| 755 | /* Found magic number. */ |
| 756 | os_file_delete(innodb_log_file_key, |
| 757 | log_file_name); |
| 758 | delete[] log_file_name; |
| 759 | return(false); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | delete[] log_file_name; |
| 764 | |
| 765 | return(exist); |
| 766 | } |
| 767 | }; |
| 768 | |
| 769 | /** Iterate over all the UNDO tablespaces and check if any of the UNDO |
| 770 | tablespace qualifies for TRUNCATE (size > threshold). |
| 771 | @param[in,out] undo_trunc undo truncate tracker */ |
| 772 | static |
| 773 | void |
| 774 | trx_purge_mark_undo_for_truncate( |
| 775 | undo::Truncate* undo_trunc) |
| 776 | { |
| 777 | /* Step-1: If UNDO Tablespace |
| 778 | - already marked for truncate (OR) |
| 779 | - truncate disabled |
| 780 | return immediately else search for qualifying tablespace. */ |
| 781 | if (undo_trunc->is_marked() || !srv_undo_log_truncate) { |
| 782 | return; |
| 783 | } |
| 784 | |
| 785 | /* Step-2: Validation/Qualification checks |
| 786 | a. At-least 2 UNDO tablespaces so even if one UNDO tablespace |
| 787 | is being truncated server can continue to operate. |
| 788 | b. At-least 2 persistent UNDO logs (besides the default rseg-0) |
| 789 | b. At-least 1 UNDO tablespace size > threshold. */ |
| 790 | if (srv_undo_tablespaces_active < 2 || srv_undo_logs < 3) { |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | /* Avoid bias selection and so start the scan from immediate next |
| 795 | of last selected UNDO tablespace for truncate. */ |
| 796 | ulint space_id = undo_trunc->get_scan_start(); |
| 797 | |
| 798 | for (ulint i = 1; i <= srv_undo_tablespaces_active; i++) { |
| 799 | |
| 800 | if (fil_space_get_size(space_id) |
| 801 | > (srv_max_undo_log_size >> srv_page_size_shift)) { |
| 802 | /* Tablespace qualifies for truncate. */ |
| 803 | undo_trunc->mark(space_id); |
| 804 | undo::Truncate::add_space_to_trunc_list(space_id); |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | space_id = ((space_id + 1) % (srv_undo_tablespaces_active + 1)); |
| 809 | if (space_id == 0) { |
| 810 | /* Note: UNDO tablespace ids starts from 1. */ |
| 811 | ++space_id; |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | /* Couldn't make any selection. */ |
| 816 | if (!undo_trunc->is_marked()) { |
| 817 | return; |
| 818 | } |
| 819 | |
| 820 | DBUG_LOG("undo" , |
| 821 | "marking for truncate UNDO tablespace " |
| 822 | << undo_trunc->get_marked_space_id()); |
| 823 | |
| 824 | /* Step-3: Iterate over all the rsegs of selected UNDO tablespace |
| 825 | and mark them temporarily unavailable for allocation.*/ |
| 826 | for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) { |
| 827 | if (trx_rseg_t* rseg = trx_sys.rseg_array[i]) { |
| 828 | ut_ad(rseg->is_persistent()); |
| 829 | if (rseg->space->id |
| 830 | == undo_trunc->get_marked_space_id()) { |
| 831 | |
| 832 | /* Once set this rseg will not be allocated |
| 833 | to new booting transaction but we will wait |
| 834 | for existing active transaction to finish. */ |
| 835 | rseg->skip_allocation = true; |
| 836 | undo_trunc->add_rseg_to_trunc(rseg); |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | undo::undo_spaces_t undo::Truncate::s_spaces_to_truncate; |
| 843 | |
| 844 | /** Cleanse purge queue to remove the rseg that reside in undo-tablespace |
| 845 | marked for truncate. |
| 846 | @param[in,out] undo_trunc undo truncate tracker */ |
| 847 | static |
| 848 | void |
| 849 | trx_purge_cleanse_purge_queue( |
| 850 | undo::Truncate* undo_trunc) |
| 851 | { |
| 852 | mutex_enter(&purge_sys.pq_mutex); |
| 853 | typedef std::vector<TrxUndoRsegs> purge_elem_list_t; |
| 854 | purge_elem_list_t purge_elem_list; |
| 855 | |
| 856 | /* Remove rseg instances that are in the purge queue before we start |
| 857 | truncate of corresponding UNDO truncate. */ |
| 858 | while (!purge_sys.purge_queue.empty()) { |
| 859 | purge_elem_list.push_back(purge_sys.purge_queue.top()); |
| 860 | purge_sys.purge_queue.pop(); |
| 861 | } |
| 862 | ut_ad(purge_sys.purge_queue.empty()); |
| 863 | |
| 864 | for (purge_elem_list_t::iterator it = purge_elem_list.begin(); |
| 865 | it != purge_elem_list.end(); |
| 866 | ++it) { |
| 867 | |
| 868 | for (TrxUndoRsegs::iterator it2 = it->begin(); |
| 869 | it2 != it->end(); |
| 870 | ++it2) { |
| 871 | |
| 872 | if ((*it2)->space->id |
| 873 | == undo_trunc->get_marked_space_id()) { |
| 874 | it->erase(it2); |
| 875 | break; |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | if (!it->empty()) { |
| 880 | purge_sys.purge_queue.push(*it); |
| 881 | } |
| 882 | } |
| 883 | mutex_exit(&purge_sys.pq_mutex); |
| 884 | } |
| 885 | |
| 886 | /** Iterate over selected UNDO tablespace and check if all the rsegs |
| 887 | that resides in the tablespace are free. |
| 888 | @param[in] limit truncate_limit |
| 889 | @param[in,out] undo_trunc undo truncate tracker */ |
| 890 | static |
| 891 | void |
| 892 | trx_purge_initiate_truncate( |
| 893 | const purge_sys_t::iterator& limit, |
| 894 | undo::Truncate* undo_trunc) |
| 895 | { |
| 896 | /* Step-1: Early check to findout if any of the the UNDO tablespace |
| 897 | is marked for truncate. */ |
| 898 | if (!undo_trunc->is_marked()) { |
| 899 | /* No tablespace marked for truncate yet. */ |
| 900 | return; |
| 901 | } |
| 902 | |
| 903 | /* Step-2: Scan over each rseg and ensure that it doesn't hold any |
| 904 | active undo records. */ |
| 905 | bool all_free = true; |
| 906 | |
| 907 | for (ulint i = 0; i < undo_trunc->rsegs_size() && all_free; ++i) { |
| 908 | |
| 909 | trx_rseg_t* rseg = undo_trunc->get_ith_rseg(i); |
| 910 | |
| 911 | mutex_enter(&rseg->mutex); |
| 912 | |
| 913 | if (rseg->trx_ref_count > 0) { |
| 914 | /* This rseg is still being held by an active |
| 915 | transaction. */ |
| 916 | all_free = false; |
| 917 | mutex_exit(&rseg->mutex); |
| 918 | continue; |
| 919 | } |
| 920 | |
| 921 | ut_ad(rseg->trx_ref_count == 0); |
| 922 | ut_ad(rseg->skip_allocation); |
| 923 | |
| 924 | ulint size_of_rsegs = rseg->curr_size; |
| 925 | |
| 926 | if (size_of_rsegs == 1) { |
| 927 | mutex_exit(&rseg->mutex); |
| 928 | continue; |
| 929 | } else { |
| 930 | |
| 931 | /* There could be cached undo segment. Check if records |
| 932 | in these segments can be purged. Normal purge history |
| 933 | will not touch these cached segment. */ |
| 934 | ulint cached_undo_size = 0; |
| 935 | |
| 936 | for (trx_undo_t* undo = |
| 937 | UT_LIST_GET_FIRST(rseg->undo_cached); |
| 938 | undo != NULL && all_free; |
| 939 | undo = UT_LIST_GET_NEXT(undo_list, undo)) { |
| 940 | |
| 941 | if (limit.trx_no() < undo->trx_id) { |
| 942 | all_free = false; |
| 943 | } else { |
| 944 | cached_undo_size += undo->size; |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | ut_ad(size_of_rsegs >= (cached_undo_size + 1)); |
| 949 | |
| 950 | if (size_of_rsegs > (cached_undo_size + 1)) { |
| 951 | /* There are pages besides cached pages that |
| 952 | still hold active data. */ |
| 953 | all_free = false; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | mutex_exit(&rseg->mutex); |
| 958 | } |
| 959 | |
| 960 | if (!all_free) { |
| 961 | /* rseg still holds active data.*/ |
| 962 | return; |
| 963 | } |
| 964 | |
| 965 | |
| 966 | /* Step-3: Start the actual truncate. |
| 967 | a. log-checkpoint |
| 968 | b. Write the DDL log to protect truncate action from CRASH |
| 969 | c. Remove rseg instance if added to purge queue before we |
| 970 | initiate truncate. |
| 971 | d. Execute actual truncate |
| 972 | e. Remove the DDL log. */ |
| 973 | |
| 974 | /* After truncate if server crashes then redo logging done for this |
| 975 | undo tablespace might not stand valid as tablespace has been |
| 976 | truncated. */ |
| 977 | log_make_checkpoint_at(LSN_MAX, TRUE); |
| 978 | |
| 979 | const ulint space_id = undo_trunc->get_marked_space_id(); |
| 980 | |
| 981 | ib::info() << "Truncating UNDO tablespace " << space_id; |
| 982 | |
| 983 | #ifdef UNIV_DEBUG |
| 984 | dberr_t err = |
| 985 | #endif /* UNIV_DEBUG */ |
| 986 | undo_trunc->start_logging(space_id); |
| 987 | ut_ad(err == DB_SUCCESS); |
| 988 | |
| 989 | DBUG_EXECUTE_IF("ib_undo_trunc_before_truncate" , |
| 990 | ib::info() << "ib_undo_trunc_before_truncate" ; |
| 991 | DBUG_SUICIDE();); |
| 992 | |
| 993 | trx_purge_cleanse_purge_queue(undo_trunc); |
| 994 | |
| 995 | if (!trx_undo_truncate_tablespace(undo_trunc)) { |
| 996 | /* Note: In case of error we don't enable the rsegs |
| 997 | and neither unmark the tablespace so the tablespace |
| 998 | continue to remain inactive. */ |
| 999 | ib::error() << "Failed to truncate UNDO tablespace " |
| 1000 | << space_id; |
| 1001 | return; |
| 1002 | } |
| 1003 | |
| 1004 | if (purge_sys.rseg != NULL |
| 1005 | && purge_sys.rseg->last_page_no == FIL_NULL) { |
| 1006 | /* If purge_sys.rseg is pointing to rseg that was recently |
| 1007 | truncated then move to next rseg element. |
| 1008 | Note: Ideally purge_sys.rseg should be NULL because purge |
| 1009 | should complete processing of all the records but there is |
| 1010 | purge_batch_size that can force the purge loop to exit before |
| 1011 | all the records are purged and in this case purge_sys.rseg |
| 1012 | could point to a valid rseg waiting for next purge cycle. */ |
| 1013 | purge_sys.next_stored = false; |
| 1014 | purge_sys.rseg = NULL; |
| 1015 | } |
| 1016 | |
| 1017 | DBUG_EXECUTE_IF("ib_undo_trunc_before_ddl_log_end" , |
| 1018 | ib::info() << "ib_undo_trunc_before_ddl_log_end" ; |
| 1019 | DBUG_SUICIDE();); |
| 1020 | |
| 1021 | log_make_checkpoint_at(LSN_MAX, TRUE); |
| 1022 | |
| 1023 | undo_trunc->done_logging(space_id); |
| 1024 | |
| 1025 | /* Completed truncate. Now it is safe to re-use the tablespace. */ |
| 1026 | for (ulint i = 0; i < undo_trunc->rsegs_size(); ++i) { |
| 1027 | trx_rseg_t* rseg = undo_trunc->get_ith_rseg(i); |
| 1028 | rseg->skip_allocation = false; |
| 1029 | } |
| 1030 | |
| 1031 | ib::info() << "Truncated UNDO tablespace " << space_id; |
| 1032 | |
| 1033 | undo_trunc->reset(); |
| 1034 | undo::Truncate::clear_trunc_list(); |
| 1035 | |
| 1036 | DBUG_EXECUTE_IF("ib_undo_trunc_trunc_done" , |
| 1037 | ib::info() << "ib_undo_trunc_trunc_done" ; |
| 1038 | DBUG_SUICIDE();); |
| 1039 | } |
| 1040 | |
| 1041 | /** |
| 1042 | Removes unnecessary history data from rollback segments. NOTE that when this |
| 1043 | function is called, the caller must not have any latches on undo log pages! |
| 1044 | */ |
| 1045 | static void trx_purge_truncate_history() |
| 1046 | { |
| 1047 | ut_ad(purge_sys.head <= purge_sys.tail); |
| 1048 | purge_sys_t::iterator& head = purge_sys.head.commit |
| 1049 | ? purge_sys.head : purge_sys.tail; |
| 1050 | |
| 1051 | if (head.trx_no() >= purge_sys.view.low_limit_no()) { |
| 1052 | /* This is sometimes necessary. TODO: find out why. */ |
| 1053 | head.reset_trx_no(purge_sys.view.low_limit_no()); |
| 1054 | head.undo_no = 0; |
| 1055 | } |
| 1056 | |
| 1057 | for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) { |
| 1058 | if (trx_rseg_t* rseg = trx_sys.rseg_array[i]) { |
| 1059 | ut_ad(rseg->id == i); |
| 1060 | trx_purge_truncate_rseg_history(*rseg, head); |
| 1061 | } |
| 1062 | } |
| 1063 | |
| 1064 | /* UNDO tablespace truncate. We will try to truncate as much as we |
| 1065 | can (greedy approach). This will ensure when the server is idle we |
| 1066 | try and truncate all the UNDO tablespaces. */ |
| 1067 | for (ulint i = srv_undo_tablespaces_active; i--; ) { |
| 1068 | trx_purge_mark_undo_for_truncate(&purge_sys.undo_trunc); |
| 1069 | trx_purge_initiate_truncate(head, &purge_sys.undo_trunc); |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | /***********************************************************************//** |
| 1074 | Updates the last not yet purged history log info in rseg when we have purged |
| 1075 | a whole undo log. Advances also purge_sys.purge_trx_no past the purged log. */ |
| 1076 | static |
| 1077 | void |
| 1078 | trx_purge_rseg_get_next_history_log( |
| 1079 | /*================================*/ |
| 1080 | trx_rseg_t* rseg, /*!< in: rollback segment */ |
| 1081 | ulint* n_pages_handled)/*!< in/out: number of UNDO pages |
| 1082 | handled */ |
| 1083 | { |
| 1084 | page_t* undo_page; |
| 1085 | trx_ulogf_t* log_hdr; |
| 1086 | fil_addr_t prev_log_addr; |
| 1087 | trx_id_t trx_no; |
| 1088 | mtr_t mtr; |
| 1089 | |
| 1090 | mutex_enter(&(rseg->mutex)); |
| 1091 | |
| 1092 | ut_a(rseg->last_page_no != FIL_NULL); |
| 1093 | |
| 1094 | purge_sys.tail.commit = rseg->last_commit + 1; |
| 1095 | purge_sys.tail.undo_no = 0; |
| 1096 | purge_sys.next_stored = false; |
| 1097 | |
| 1098 | mtr_start(&mtr); |
| 1099 | |
| 1100 | undo_page = trx_undo_page_get_s_latched( |
| 1101 | page_id_t(rseg->space->id, rseg->last_page_no), &mtr); |
| 1102 | |
| 1103 | log_hdr = undo_page + rseg->last_offset; |
| 1104 | |
| 1105 | /* Increase the purge page count by one for every handled log */ |
| 1106 | |
| 1107 | (*n_pages_handled)++; |
| 1108 | |
| 1109 | prev_log_addr = trx_purge_get_log_from_hist( |
| 1110 | flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); |
| 1111 | |
| 1112 | if (prev_log_addr.page == FIL_NULL) { |
| 1113 | /* No logs left in the history list */ |
| 1114 | |
| 1115 | rseg->last_page_no = FIL_NULL; |
| 1116 | |
| 1117 | mutex_exit(&(rseg->mutex)); |
| 1118 | mtr_commit(&mtr); |
| 1119 | return; |
| 1120 | } |
| 1121 | |
| 1122 | mutex_exit(&rseg->mutex); |
| 1123 | |
| 1124 | mtr_commit(&mtr); |
| 1125 | |
| 1126 | /* Read the previous log header. */ |
| 1127 | mtr_start(&mtr); |
| 1128 | |
| 1129 | log_hdr = trx_undo_page_get_s_latched(page_id_t(rseg->space->id, |
| 1130 | prev_log_addr.page), |
| 1131 | &mtr) |
| 1132 | + prev_log_addr.boffset; |
| 1133 | |
| 1134 | trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); |
| 1135 | unsigned purge = mach_read_from_2(log_hdr + TRX_UNDO_NEEDS_PURGE); |
| 1136 | ut_ad(purge <= 1); |
| 1137 | |
| 1138 | mtr_commit(&mtr); |
| 1139 | |
| 1140 | mutex_enter(&(rseg->mutex)); |
| 1141 | |
| 1142 | rseg->last_page_no = prev_log_addr.page; |
| 1143 | rseg->last_offset = prev_log_addr.boffset; |
| 1144 | rseg->set_last_trx_no(trx_no, purge != 0); |
| 1145 | rseg->needs_purge = purge != 0; |
| 1146 | |
| 1147 | /* Purge can also produce events, however these are already ordered |
| 1148 | in the rollback segment and any user generated event will be greater |
| 1149 | than the events that Purge produces. ie. Purge can never produce |
| 1150 | events from an empty rollback segment. */ |
| 1151 | |
| 1152 | mutex_enter(&purge_sys.pq_mutex); |
| 1153 | |
| 1154 | purge_sys.purge_queue.push(*rseg); |
| 1155 | |
| 1156 | mutex_exit(&purge_sys.pq_mutex); |
| 1157 | |
| 1158 | mutex_exit(&rseg->mutex); |
| 1159 | } |
| 1160 | |
| 1161 | /** Position the purge sys "iterator" on the undo record to use for purging. */ |
| 1162 | static |
| 1163 | void |
| 1164 | trx_purge_read_undo_rec() |
| 1165 | { |
| 1166 | ulint offset; |
| 1167 | ulint page_no; |
| 1168 | ib_uint64_t undo_no; |
| 1169 | |
| 1170 | purge_sys.hdr_offset = purge_sys.rseg->last_offset; |
| 1171 | page_no = purge_sys.hdr_page_no = purge_sys.rseg->last_page_no; |
| 1172 | |
| 1173 | if (purge_sys.rseg->needs_purge) { |
| 1174 | mtr_t mtr; |
| 1175 | mtr.start(); |
| 1176 | if (trx_undo_rec_t* undo_rec = trx_undo_get_first_rec( |
| 1177 | purge_sys.rseg->space, purge_sys.hdr_page_no, |
| 1178 | purge_sys.hdr_offset, RW_S_LATCH, &mtr)) { |
| 1179 | |
| 1180 | offset = page_offset(undo_rec); |
| 1181 | undo_no = trx_undo_rec_get_undo_no(undo_rec); |
| 1182 | page_no = page_get_page_no(page_align(undo_rec)); |
| 1183 | } else { |
| 1184 | offset = 0; |
| 1185 | undo_no = 0; |
| 1186 | } |
| 1187 | |
| 1188 | mtr.commit(); |
| 1189 | } else { |
| 1190 | offset = 0; |
| 1191 | undo_no = 0; |
| 1192 | } |
| 1193 | |
| 1194 | purge_sys.offset = offset; |
| 1195 | purge_sys.page_no = page_no; |
| 1196 | purge_sys.tail.undo_no = undo_no; |
| 1197 | |
| 1198 | purge_sys.next_stored = true; |
| 1199 | } |
| 1200 | |
| 1201 | /***********************************************************************//** |
| 1202 | Chooses the next undo log to purge and updates the info in purge_sys. This |
| 1203 | function is used to initialize purge_sys when the next record to purge is |
| 1204 | not known, and also to update the purge system info on the next record when |
| 1205 | purge has handled the whole undo log for a transaction. */ |
| 1206 | static |
| 1207 | void |
| 1208 | trx_purge_choose_next_log(void) |
| 1209 | /*===========================*/ |
| 1210 | { |
| 1211 | ut_ad(!purge_sys.next_stored); |
| 1212 | |
| 1213 | if (purge_sys.rseg_iter.set_next()) { |
| 1214 | trx_purge_read_undo_rec(); |
| 1215 | } else { |
| 1216 | /* There is nothing to do yet. */ |
| 1217 | os_thread_yield(); |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | /***********************************************************************//** |
| 1222 | Gets the next record to purge and updates the info in the purge system. |
| 1223 | @return copy of an undo log record or pointer to the dummy undo log record */ |
| 1224 | static |
| 1225 | trx_undo_rec_t* |
| 1226 | trx_purge_get_next_rec( |
| 1227 | /*===================*/ |
| 1228 | ulint* n_pages_handled,/*!< in/out: number of UNDO pages |
| 1229 | handled */ |
| 1230 | mem_heap_t* heap) /*!< in: memory heap where copied */ |
| 1231 | { |
| 1232 | trx_undo_rec_t* rec; |
| 1233 | trx_undo_rec_t* rec_copy; |
| 1234 | trx_undo_rec_t* rec2; |
| 1235 | page_t* undo_page; |
| 1236 | page_t* page; |
| 1237 | ulint offset; |
| 1238 | ulint page_no; |
| 1239 | ulint space; |
| 1240 | mtr_t mtr; |
| 1241 | |
| 1242 | ut_ad(purge_sys.next_stored); |
| 1243 | ut_ad(purge_sys.tail.trx_no() < purge_sys.view.low_limit_no()); |
| 1244 | |
| 1245 | space = purge_sys.rseg->space->id; |
| 1246 | page_no = purge_sys.page_no; |
| 1247 | offset = purge_sys.offset; |
| 1248 | |
| 1249 | if (offset == 0) { |
| 1250 | /* It is the dummy undo log record, which means that there is |
| 1251 | no need to purge this undo log */ |
| 1252 | |
| 1253 | trx_purge_rseg_get_next_history_log( |
| 1254 | purge_sys.rseg, n_pages_handled); |
| 1255 | |
| 1256 | /* Look for the next undo log and record to purge */ |
| 1257 | |
| 1258 | trx_purge_choose_next_log(); |
| 1259 | |
| 1260 | return(&trx_purge_dummy_rec); |
| 1261 | } |
| 1262 | |
| 1263 | mtr_start(&mtr); |
| 1264 | |
| 1265 | undo_page = trx_undo_page_get_s_latched(page_id_t(space, page_no), |
| 1266 | &mtr); |
| 1267 | |
| 1268 | rec = undo_page + offset; |
| 1269 | |
| 1270 | rec2 = trx_undo_page_get_next_rec(rec, purge_sys.hdr_page_no, |
| 1271 | purge_sys.hdr_offset); |
| 1272 | |
| 1273 | if (rec2 == NULL) { |
| 1274 | rec2 = trx_undo_get_next_rec(rec, purge_sys.hdr_page_no, |
| 1275 | purge_sys.hdr_offset, &mtr); |
| 1276 | } |
| 1277 | |
| 1278 | if (rec2 == NULL) { |
| 1279 | mtr_commit(&mtr); |
| 1280 | |
| 1281 | trx_purge_rseg_get_next_history_log( |
| 1282 | purge_sys.rseg, n_pages_handled); |
| 1283 | |
| 1284 | /* Look for the next undo log and record to purge */ |
| 1285 | |
| 1286 | trx_purge_choose_next_log(); |
| 1287 | |
| 1288 | mtr_start(&mtr); |
| 1289 | |
| 1290 | undo_page = trx_undo_page_get_s_latched( |
| 1291 | page_id_t(space, page_no), &mtr); |
| 1292 | |
| 1293 | rec = undo_page + offset; |
| 1294 | } else { |
| 1295 | page = page_align(rec2); |
| 1296 | |
| 1297 | purge_sys.offset = ulint(rec2 - page); |
| 1298 | purge_sys.page_no = page_get_page_no(page); |
| 1299 | purge_sys.tail.undo_no = trx_undo_rec_get_undo_no(rec2); |
| 1300 | |
| 1301 | if (undo_page != page) { |
| 1302 | /* We advance to a new page of the undo log: */ |
| 1303 | (*n_pages_handled)++; |
| 1304 | } |
| 1305 | } |
| 1306 | |
| 1307 | rec_copy = trx_undo_rec_copy(rec, heap); |
| 1308 | |
| 1309 | mtr_commit(&mtr); |
| 1310 | |
| 1311 | return(rec_copy); |
| 1312 | } |
| 1313 | |
| 1314 | /********************************************************************//** |
| 1315 | Fetches the next undo log record from the history list to purge. It must be |
| 1316 | released with the corresponding release function. |
| 1317 | @return copy of an undo log record or pointer to trx_purge_dummy_rec, |
| 1318 | if the whole undo log can skipped in purge; NULL if none left */ |
| 1319 | static MY_ATTRIBUTE((warn_unused_result)) |
| 1320 | trx_undo_rec_t* |
| 1321 | trx_purge_fetch_next_rec( |
| 1322 | /*=====================*/ |
| 1323 | roll_ptr_t* roll_ptr, /*!< out: roll pointer to undo record */ |
| 1324 | ulint* n_pages_handled,/*!< in/out: number of UNDO log pages |
| 1325 | handled */ |
| 1326 | mem_heap_t* heap) /*!< in: memory heap where copied */ |
| 1327 | { |
| 1328 | if (!purge_sys.next_stored) { |
| 1329 | trx_purge_choose_next_log(); |
| 1330 | |
| 1331 | if (!purge_sys.next_stored) { |
| 1332 | DBUG_PRINT("ib_purge" , |
| 1333 | ("no logs left in the history list" )); |
| 1334 | return(NULL); |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | if (purge_sys.tail.trx_no() >= purge_sys.view.low_limit_no()) { |
| 1339 | |
| 1340 | return(NULL); |
| 1341 | } |
| 1342 | |
| 1343 | /* fprintf(stderr, "Thread %lu purging trx %llu undo record %llu\n", |
| 1344 | os_thread_get_curr_id(), iter->trx_no, iter->undo_no); */ |
| 1345 | |
| 1346 | *roll_ptr = trx_undo_build_roll_ptr( |
| 1347 | /* row_purge_record_func() will later set |
| 1348 | ROLL_PTR_INSERT_FLAG for TRX_UNDO_INSERT_REC */ |
| 1349 | false, |
| 1350 | purge_sys.rseg->id, |
| 1351 | purge_sys.page_no, purge_sys.offset); |
| 1352 | |
| 1353 | /* The following call will advance the stored values of the |
| 1354 | purge iterator. */ |
| 1355 | |
| 1356 | return(trx_purge_get_next_rec(n_pages_handled, heap)); |
| 1357 | } |
| 1358 | |
| 1359 | /** Run a purge batch. |
| 1360 | @param n_purge_threads number of purge threads |
| 1361 | @return number of undo log pages handled in the batch */ |
| 1362 | static |
| 1363 | ulint |
| 1364 | trx_purge_attach_undo_recs(ulint n_purge_threads) |
| 1365 | { |
| 1366 | que_thr_t* thr; |
| 1367 | ulint i = 0; |
| 1368 | ulint n_pages_handled = 0; |
| 1369 | ulint n_thrs = UT_LIST_GET_LEN(purge_sys.query->thrs); |
| 1370 | |
| 1371 | ut_a(n_purge_threads > 0); |
| 1372 | |
| 1373 | purge_sys.head = purge_sys.tail; |
| 1374 | |
| 1375 | /* Debug code to validate some pre-requisites and reset done flag. */ |
| 1376 | for (thr = UT_LIST_GET_FIRST(purge_sys.query->thrs); |
| 1377 | thr != NULL && i < n_purge_threads; |
| 1378 | thr = UT_LIST_GET_NEXT(thrs, thr), ++i) { |
| 1379 | |
| 1380 | purge_node_t* node; |
| 1381 | |
| 1382 | /* Get the purge node. */ |
| 1383 | node = (purge_node_t*) thr->child; |
| 1384 | |
| 1385 | ut_a(que_node_get_type(node) == QUE_NODE_PURGE); |
| 1386 | ut_a(node->undo_recs == NULL); |
| 1387 | ut_a(node->done); |
| 1388 | |
| 1389 | node->done = FALSE; |
| 1390 | } |
| 1391 | |
| 1392 | /* There should never be fewer nodes than threads, the inverse |
| 1393 | however is allowed because we only use purge threads as needed. */ |
| 1394 | ut_a(i == n_purge_threads); |
| 1395 | |
| 1396 | /* Fetch and parse the UNDO records. The UNDO records are added |
| 1397 | to a per purge node vector. */ |
| 1398 | thr = UT_LIST_GET_FIRST(purge_sys.query->thrs); |
| 1399 | ut_a(n_thrs > 0 && thr != NULL); |
| 1400 | |
| 1401 | ut_ad(purge_sys.head <= purge_sys.tail); |
| 1402 | |
| 1403 | i = 0; |
| 1404 | |
| 1405 | const ulint batch_size = srv_purge_batch_size; |
| 1406 | |
| 1407 | for (;;) { |
| 1408 | purge_node_t* node; |
| 1409 | trx_purge_rec_t* purge_rec; |
| 1410 | |
| 1411 | ut_a(!thr->is_active); |
| 1412 | |
| 1413 | /* Get the purge node. */ |
| 1414 | node = (purge_node_t*) thr->child; |
| 1415 | ut_a(que_node_get_type(node) == QUE_NODE_PURGE); |
| 1416 | |
| 1417 | purge_rec = static_cast<trx_purge_rec_t*>( |
| 1418 | mem_heap_zalloc(node->heap, sizeof(*purge_rec))); |
| 1419 | |
| 1420 | /* Track the max {trx_id, undo_no} for truncating the |
| 1421 | UNDO logs once we have purged the records. */ |
| 1422 | |
| 1423 | if (purge_sys.head <= purge_sys.tail) { |
| 1424 | purge_sys.head = purge_sys.tail; |
| 1425 | } |
| 1426 | |
| 1427 | /* Fetch the next record, and advance the purge_sys.tail. */ |
| 1428 | purge_rec->undo_rec = trx_purge_fetch_next_rec( |
| 1429 | &purge_rec->roll_ptr, &n_pages_handled, node->heap); |
| 1430 | |
| 1431 | if (purge_rec->undo_rec != NULL) { |
| 1432 | |
| 1433 | if (node->undo_recs == NULL) { |
| 1434 | node->undo_recs = ib_vector_create( |
| 1435 | ib_heap_allocator_create(node->heap), |
| 1436 | sizeof(trx_purge_rec_t), |
| 1437 | batch_size); |
| 1438 | } else { |
| 1439 | ut_a(!ib_vector_is_empty(node->undo_recs)); |
| 1440 | } |
| 1441 | |
| 1442 | ib_vector_push(node->undo_recs, purge_rec); |
| 1443 | |
| 1444 | if (n_pages_handled >= batch_size) { |
| 1445 | |
| 1446 | break; |
| 1447 | } |
| 1448 | } else { |
| 1449 | break; |
| 1450 | } |
| 1451 | |
| 1452 | thr = UT_LIST_GET_NEXT(thrs, thr); |
| 1453 | |
| 1454 | if (!(++i % n_purge_threads)) { |
| 1455 | thr = UT_LIST_GET_FIRST(purge_sys.query->thrs); |
| 1456 | } |
| 1457 | |
| 1458 | ut_a(thr != NULL); |
| 1459 | } |
| 1460 | |
| 1461 | ut_ad(purge_sys.head <= purge_sys.tail); |
| 1462 | |
| 1463 | return(n_pages_handled); |
| 1464 | } |
| 1465 | |
| 1466 | /*******************************************************************//** |
| 1467 | Calculate the DML delay required. |
| 1468 | @return delay in microseconds or ULINT_MAX */ |
| 1469 | static |
| 1470 | ulint |
| 1471 | trx_purge_dml_delay(void) |
| 1472 | /*=====================*/ |
| 1473 | { |
| 1474 | /* Determine how much data manipulation language (DML) statements |
| 1475 | need to be delayed in order to reduce the lagging of the purge |
| 1476 | thread. */ |
| 1477 | ulint delay = 0; /* in microseconds; default: no delay */ |
| 1478 | |
| 1479 | /* If purge lag is set (ie. > 0) then calculate the new DML delay. |
| 1480 | Note: we do a dirty read of the trx_sys_t data structure here, |
| 1481 | without holding trx_sys.mutex. */ |
| 1482 | |
| 1483 | if (srv_max_purge_lag > 0) { |
| 1484 | float ratio; |
| 1485 | |
| 1486 | ratio = float(trx_sys.history_size()) / srv_max_purge_lag; |
| 1487 | |
| 1488 | if (ratio > 1.0) { |
| 1489 | /* If the history list length exceeds the |
| 1490 | srv_max_purge_lag, the data manipulation |
| 1491 | statements are delayed by at least 5000 |
| 1492 | microseconds. */ |
| 1493 | delay = (ulint) ((ratio - .5) * 10000); |
| 1494 | } |
| 1495 | |
| 1496 | if (delay > srv_max_purge_lag_delay) { |
| 1497 | delay = srv_max_purge_lag_delay; |
| 1498 | } |
| 1499 | |
| 1500 | MONITOR_SET(MONITOR_DML_PURGE_DELAY, delay); |
| 1501 | } |
| 1502 | |
| 1503 | return(delay); |
| 1504 | } |
| 1505 | |
| 1506 | /** Wait for pending purge jobs to complete. */ |
| 1507 | static |
| 1508 | void |
| 1509 | trx_purge_wait_for_workers_to_complete() |
| 1510 | { |
| 1511 | /* Ensure that the work queue empties out. */ |
| 1512 | while (my_atomic_loadlint(&purge_sys.n_completed) |
| 1513 | != purge_sys.n_submitted) { |
| 1514 | |
| 1515 | if (srv_get_task_queue_length() > 0) { |
| 1516 | srv_release_threads(SRV_WORKER, 1); |
| 1517 | } |
| 1518 | |
| 1519 | os_thread_yield(); |
| 1520 | } |
| 1521 | |
| 1522 | /* There should be no outstanding tasks as long |
| 1523 | as the worker threads are active. */ |
| 1524 | ut_a(srv_get_task_queue_length() == 0); |
| 1525 | } |
| 1526 | |
| 1527 | /*******************************************************************//** |
| 1528 | This function runs a purge batch. |
| 1529 | @return number of undo log pages handled in the batch */ |
| 1530 | ulint |
| 1531 | trx_purge( |
| 1532 | /*======*/ |
| 1533 | ulint n_purge_threads, /*!< in: number of purge tasks |
| 1534 | to submit to the work queue */ |
| 1535 | bool truncate) /*!< in: truncate history if true */ |
| 1536 | { |
| 1537 | que_thr_t* thr = NULL; |
| 1538 | ulint n_pages_handled; |
| 1539 | |
| 1540 | ut_a(n_purge_threads > 0); |
| 1541 | |
| 1542 | srv_dml_needed_delay = trx_purge_dml_delay(); |
| 1543 | |
| 1544 | /* The number of tasks submitted should be completed. */ |
| 1545 | ut_a(purge_sys.n_submitted |
| 1546 | == my_atomic_loadlint(&purge_sys.n_completed)); |
| 1547 | |
| 1548 | rw_lock_x_lock(&purge_sys.latch); |
| 1549 | trx_sys.clone_oldest_view(); |
| 1550 | rw_lock_x_unlock(&purge_sys.latch); |
| 1551 | |
| 1552 | #ifdef UNIV_DEBUG |
| 1553 | if (srv_purge_view_update_only_debug) { |
| 1554 | return(0); |
| 1555 | } |
| 1556 | #endif /* UNIV_DEBUG */ |
| 1557 | |
| 1558 | /* Fetch the UNDO recs that need to be purged. */ |
| 1559 | n_pages_handled = trx_purge_attach_undo_recs(n_purge_threads); |
| 1560 | purge_sys.n_submitted += n_purge_threads; |
| 1561 | |
| 1562 | /* Submit tasks to workers queue if using multi-threaded purge. */ |
| 1563 | for (ulint i = n_purge_threads; --i; ) { |
| 1564 | thr = que_fork_scheduler_round_robin(purge_sys.query, thr); |
| 1565 | ut_a(thr); |
| 1566 | srv_que_task_enqueue_low(thr); |
| 1567 | } |
| 1568 | |
| 1569 | thr = que_fork_scheduler_round_robin(purge_sys.query, thr); |
| 1570 | |
| 1571 | que_run_threads(thr); |
| 1572 | |
| 1573 | my_atomic_addlint(&purge_sys.n_completed, 1); |
| 1574 | |
| 1575 | if (n_purge_threads > 1) { |
| 1576 | trx_purge_wait_for_workers_to_complete(); |
| 1577 | } |
| 1578 | |
| 1579 | ut_a(purge_sys.n_submitted |
| 1580 | == my_atomic_loadlint(&purge_sys.n_completed)); |
| 1581 | |
| 1582 | if (truncate) { |
| 1583 | trx_purge_truncate_history(); |
| 1584 | } |
| 1585 | |
| 1586 | MONITOR_INC_VALUE(MONITOR_PURGE_INVOKED, 1); |
| 1587 | MONITOR_INC_VALUE(MONITOR_PURGE_N_PAGE_HANDLED, n_pages_handled); |
| 1588 | |
| 1589 | return(n_pages_handled); |
| 1590 | } |
| 1591 | |
| 1592 | /** Stop purge during FLUSH TABLES FOR EXPORT */ |
| 1593 | void purge_sys_t::stop() |
| 1594 | { |
| 1595 | rw_lock_x_lock(&latch); |
| 1596 | |
| 1597 | if (!enabled_latched()) |
| 1598 | { |
| 1599 | /* Shutdown must have been initiated during FLUSH TABLES FOR EXPORT. */ |
| 1600 | ut_ad(!srv_undo_sources); |
| 1601 | rw_lock_x_unlock(&latch); |
| 1602 | return; |
| 1603 | } |
| 1604 | |
| 1605 | ut_ad(srv_n_purge_threads > 0); |
| 1606 | |
| 1607 | if (0 == my_atomic_add32_explicit(&m_paused, 1, MY_MEMORY_ORDER_RELAXED)) |
| 1608 | { |
| 1609 | /* We need to wakeup the purge thread in case it is suspended, so |
| 1610 | that it can acknowledge the state change. */ |
| 1611 | const int64_t sig_count = os_event_reset(event); |
| 1612 | rw_lock_x_unlock(&latch); |
| 1613 | ib::info() << "Stopping purge" ; |
| 1614 | srv_purge_wakeup(); |
| 1615 | /* Wait for purge coordinator to signal that it is suspended. */ |
| 1616 | os_event_wait_low(event, sig_count); |
| 1617 | MONITOR_ATOMIC_INC(MONITOR_PURGE_STOP_COUNT); |
| 1618 | return; |
| 1619 | } |
| 1620 | |
| 1621 | rw_lock_x_unlock(&latch); |
| 1622 | |
| 1623 | if (running()) |
| 1624 | { |
| 1625 | ib::info() << "Waiting for purge to stop" ; |
| 1626 | while (running()) |
| 1627 | os_thread_sleep(10000); |
| 1628 | } |
| 1629 | } |
| 1630 | |
| 1631 | /** Resume purge at UNLOCK TABLES after FLUSH TABLES FOR EXPORT */ |
| 1632 | void purge_sys_t::resume() |
| 1633 | { |
| 1634 | if (!enabled()) |
| 1635 | { |
| 1636 | /* Shutdown must have been initiated during FLUSH TABLES FOR EXPORT. */ |
| 1637 | ut_ad(!srv_undo_sources); |
| 1638 | return; |
| 1639 | } |
| 1640 | |
| 1641 | int32_t paused= my_atomic_add32_explicit(&m_paused, -1, |
| 1642 | MY_MEMORY_ORDER_RELAXED); |
| 1643 | ut_a(paused); |
| 1644 | |
| 1645 | if (paused == 1) |
| 1646 | { |
| 1647 | ib::info() << "Resuming purge" ; |
| 1648 | srv_purge_wakeup(); |
| 1649 | MONITOR_ATOMIC_INC(MONITOR_PURGE_RESUME_COUNT); |
| 1650 | } |
| 1651 | } |
| 1652 | |