1 | /* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved. |
2 | |
3 | This program is free software; you can redistribute it and/or modify |
4 | it under the terms of the GNU General Public License as published by |
5 | the Free Software Foundation; version 2 of the License. |
6 | |
7 | This program is distributed in the hope that it will be useful, |
8 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
9 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
10 | GNU General Public License for more details. |
11 | |
12 | You should have received a copy of the GNU General Public License |
13 | along with this program; if not, write to the Free Software Foundation, |
14 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */ |
15 | |
16 | /** |
17 | @file storage/perfschema/pfs_digest.h |
18 | Statement Digest data structures (implementation). |
19 | */ |
20 | |
21 | /* |
22 | This code needs extra visibility in the lexer structures |
23 | */ |
24 | |
25 | #define MYSQL_LEX 1 |
26 | |
27 | #include "my_global.h" |
28 | #include "my_sys.h" |
29 | #include "pfs_instr.h" |
30 | #include "pfs_digest.h" |
31 | #include "pfs_global.h" |
32 | #include "table_helper.h" |
33 | #include "sql_lex.h" |
34 | #include "sql_get_diagnostics.h" |
35 | #include "sql_string.h" |
36 | #include <string.h> |
37 | |
38 | size_t digest_max= 0; |
39 | ulong digest_lost= 0; |
40 | |
41 | /** EVENTS_STATEMENTS_HISTORY_LONG circular buffer. */ |
42 | PFS_statements_digest_stat *statements_digest_stat_array= NULL; |
43 | static unsigned char *statements_digest_token_array= NULL; |
44 | /** Consumer flag for table EVENTS_STATEMENTS_SUMMARY_BY_DIGEST. */ |
45 | bool flag_statements_digest= true; |
46 | /** |
47 | Current index in Stat array where new record is to be inserted. |
48 | index 0 is reserved for "all else" case when entire array is full. |
49 | */ |
50 | volatile uint32 PFS_ALIGNED digest_monotonic_index; |
51 | bool digest_full= false; |
52 | |
53 | LF_HASH digest_hash; |
54 | static bool digest_hash_inited= false; |
55 | |
56 | /** |
57 | Initialize table EVENTS_STATEMENTS_SUMMARY_BY_DIGEST. |
58 | @param param performance schema sizing |
59 | */ |
60 | int init_digest(const PFS_global_param *param) |
61 | { |
62 | /* |
63 | Allocate memory for statements_digest_stat_array based on |
64 | performance_schema_digests_size values |
65 | */ |
66 | digest_max= param->m_digest_sizing; |
67 | digest_lost= 0; |
68 | PFS_atomic::store_u32(& digest_monotonic_index, 1); |
69 | digest_full= false; |
70 | |
71 | if (digest_max == 0) |
72 | return 0; |
73 | |
74 | statements_digest_stat_array= |
75 | PFS_MALLOC_ARRAY(digest_max, |
76 | sizeof(PFS_statements_digest_stat), |
77 | PFS_statements_digest_stat, |
78 | MYF(MY_ZEROFILL)); |
79 | |
80 | if (unlikely(statements_digest_stat_array == NULL)) |
81 | { |
82 | cleanup_digest(); |
83 | return 1; |
84 | } |
85 | |
86 | if (pfs_max_digest_length > 0) |
87 | { |
88 | /* Size of each digest array. */ |
89 | size_t digest_memory_size= pfs_max_digest_length * sizeof(unsigned char); |
90 | |
91 | statements_digest_token_array= |
92 | PFS_MALLOC_ARRAY(digest_max, |
93 | digest_memory_size, |
94 | unsigned char, |
95 | MYF(MY_ZEROFILL)); |
96 | |
97 | if (unlikely(statements_digest_token_array == NULL)) |
98 | { |
99 | cleanup_digest(); |
100 | return 1; |
101 | } |
102 | } |
103 | |
104 | for (size_t index= 0; index < digest_max; index++) |
105 | { |
106 | statements_digest_stat_array[index].reset_data(statements_digest_token_array |
107 | + index * pfs_max_digest_length, pfs_max_digest_length); |
108 | } |
109 | |
110 | /* Set record[0] as allocated. */ |
111 | statements_digest_stat_array[0].m_lock.set_allocated(); |
112 | |
113 | return 0; |
114 | } |
115 | |
116 | /** Cleanup table EVENTS_STATEMENTS_SUMMARY_BY_DIGEST. */ |
117 | void cleanup_digest(void) |
118 | { |
119 | /* Free memory allocated to statements_digest_stat_array. */ |
120 | pfs_free(statements_digest_stat_array); |
121 | pfs_free(statements_digest_token_array); |
122 | statements_digest_stat_array= NULL; |
123 | statements_digest_token_array= NULL; |
124 | } |
125 | |
126 | C_MODE_START |
127 | static uchar *digest_hash_get_key(const uchar *entry, size_t *length, |
128 | my_bool) |
129 | { |
130 | const PFS_statements_digest_stat * const *typed_entry; |
131 | const PFS_statements_digest_stat *digest; |
132 | const void *result; |
133 | typed_entry= reinterpret_cast<const PFS_statements_digest_stat*const*>(entry); |
134 | DBUG_ASSERT(typed_entry != NULL); |
135 | digest= *typed_entry; |
136 | DBUG_ASSERT(digest != NULL); |
137 | *length= sizeof (PFS_digest_key); |
138 | result= & digest->m_digest_key; |
139 | return const_cast<uchar*> (reinterpret_cast<const uchar*> (result)); |
140 | } |
141 | C_MODE_END |
142 | |
143 | |
144 | /** |
145 | Initialize the digest hash. |
146 | @return 0 on success |
147 | */ |
148 | int init_digest_hash(void) |
149 | { |
150 | if ((! digest_hash_inited) && (digest_max > 0)) |
151 | { |
152 | lf_hash_init(&digest_hash, sizeof(PFS_statements_digest_stat*), |
153 | LF_HASH_UNIQUE, 0, 0, digest_hash_get_key, |
154 | &my_charset_bin); |
155 | /* digest_hash.size= digest_max; */ |
156 | digest_hash_inited= true; |
157 | } |
158 | return 0; |
159 | } |
160 | |
161 | void cleanup_digest_hash(void) |
162 | { |
163 | if (digest_hash_inited) |
164 | { |
165 | lf_hash_destroy(&digest_hash); |
166 | digest_hash_inited= false; |
167 | } |
168 | } |
169 | |
170 | static LF_PINS* get_digest_hash_pins(PFS_thread *thread) |
171 | { |
172 | if (unlikely(thread->m_digest_hash_pins == NULL)) |
173 | { |
174 | if (!digest_hash_inited) |
175 | return NULL; |
176 | thread->m_digest_hash_pins= lf_hash_get_pins(&digest_hash); |
177 | } |
178 | return thread->m_digest_hash_pins; |
179 | } |
180 | |
181 | PFS_statement_stat* |
182 | find_or_create_digest(PFS_thread *thread, |
183 | const sql_digest_storage *digest_storage, |
184 | const char *schema_name, |
185 | uint schema_name_length) |
186 | { |
187 | DBUG_ASSERT(digest_storage != NULL); |
188 | |
189 | if (statements_digest_stat_array == NULL) |
190 | return NULL; |
191 | |
192 | if (digest_storage->m_byte_count <= 0) |
193 | return NULL; |
194 | |
195 | LF_PINS *pins= get_digest_hash_pins(thread); |
196 | if (unlikely(pins == NULL)) |
197 | return NULL; |
198 | |
199 | /* |
200 | Note: the LF_HASH key is a block of memory, |
201 | make sure to clean unused bytes, |
202 | so that memcmp() can compare keys. |
203 | */ |
204 | PFS_digest_key hash_key; |
205 | memset(& hash_key, 0, sizeof(hash_key)); |
206 | /* Compute MD5 Hash of the tokens received. */ |
207 | compute_digest_md5(digest_storage, hash_key.m_md5); |
208 | memcpy((void*)& digest_storage->m_md5, &hash_key.m_md5, MD5_HASH_SIZE); |
209 | /* Add the current schema to the key */ |
210 | hash_key.m_schema_name_length= schema_name_length; |
211 | if (schema_name_length > 0) |
212 | memcpy(hash_key.m_schema_name, schema_name, schema_name_length); |
213 | |
214 | int res; |
215 | uint retry_count= 0; |
216 | const uint retry_max= 3; |
217 | size_t safe_index; |
218 | size_t attempts= 0; |
219 | PFS_statements_digest_stat **entry; |
220 | PFS_statements_digest_stat *pfs= NULL; |
221 | |
222 | ulonglong now= my_hrtime().val; |
223 | |
224 | search: |
225 | |
226 | /* Lookup LF_HASH using this new key. */ |
227 | entry= reinterpret_cast<PFS_statements_digest_stat**> |
228 | (lf_hash_search(&digest_hash, pins, |
229 | &hash_key, sizeof(PFS_digest_key))); |
230 | |
231 | if (entry && (entry != MY_ERRPTR)) |
232 | { |
233 | /* If digest already exists, update stats and return. */ |
234 | pfs= *entry; |
235 | pfs->m_last_seen= now; |
236 | lf_hash_search_unpin(pins); |
237 | return & pfs->m_stat; |
238 | } |
239 | |
240 | lf_hash_search_unpin(pins); |
241 | |
242 | if (digest_full) |
243 | { |
244 | /* digest_stat array is full. Add stat at index 0 and return. */ |
245 | pfs= &statements_digest_stat_array[0]; |
246 | digest_lost++; |
247 | |
248 | if (pfs->m_first_seen == 0) |
249 | pfs->m_first_seen= now; |
250 | pfs->m_last_seen= now; |
251 | return & pfs->m_stat; |
252 | } |
253 | |
254 | while (++attempts <= digest_max) |
255 | { |
256 | safe_index= PFS_atomic::add_u32(& digest_monotonic_index, 1) % digest_max; |
257 | if (safe_index == 0) |
258 | { |
259 | /* Record [0] is reserved. */ |
260 | continue; |
261 | } |
262 | |
263 | /* Add a new record in digest stat array. */ |
264 | DBUG_ASSERT(safe_index < digest_max); |
265 | pfs= &statements_digest_stat_array[safe_index]; |
266 | |
267 | if (pfs->m_lock.is_free()) |
268 | { |
269 | if (pfs->m_lock.free_to_dirty()) |
270 | { |
271 | /* Copy digest hash/LF Hash search key. */ |
272 | memcpy(& pfs->m_digest_key, &hash_key, sizeof(PFS_digest_key)); |
273 | |
274 | /* |
275 | Copy digest storage to statement_digest_stat_array so that it could be |
276 | used later to generate digest text. |
277 | */ |
278 | pfs->m_digest_storage.copy(digest_storage); |
279 | |
280 | pfs->m_first_seen= now; |
281 | pfs->m_last_seen= now; |
282 | |
283 | res= lf_hash_insert(&digest_hash, pins, &pfs); |
284 | if (likely(res == 0)) |
285 | { |
286 | pfs->m_lock.dirty_to_allocated(); |
287 | return & pfs->m_stat; |
288 | } |
289 | |
290 | pfs->m_lock.dirty_to_free(); |
291 | |
292 | if (res > 0) |
293 | { |
294 | /* Duplicate insert by another thread */ |
295 | if (++retry_count > retry_max) |
296 | { |
297 | /* Avoid infinite loops */ |
298 | digest_lost++; |
299 | return NULL; |
300 | } |
301 | goto search; |
302 | } |
303 | |
304 | /* OOM in lf_hash_insert */ |
305 | digest_lost++; |
306 | return NULL; |
307 | } |
308 | } |
309 | } |
310 | |
311 | /* The digest array is now full. */ |
312 | digest_full= true; |
313 | pfs= &statements_digest_stat_array[0]; |
314 | |
315 | if (pfs->m_first_seen == 0) |
316 | pfs->m_first_seen= now; |
317 | pfs->m_last_seen= now; |
318 | return & pfs->m_stat; |
319 | } |
320 | |
321 | void purge_digest(PFS_thread* thread, PFS_digest_key *hash_key) |
322 | { |
323 | LF_PINS *pins= get_digest_hash_pins(thread); |
324 | if (unlikely(pins == NULL)) |
325 | return; |
326 | |
327 | PFS_statements_digest_stat **entry; |
328 | |
329 | /* Lookup LF_HASH using this new key. */ |
330 | entry= reinterpret_cast<PFS_statements_digest_stat**> |
331 | (lf_hash_search(&digest_hash, pins, |
332 | hash_key, sizeof(PFS_digest_key))); |
333 | |
334 | if (entry && (entry != MY_ERRPTR)) |
335 | { |
336 | lf_hash_delete(&digest_hash, pins, |
337 | hash_key, sizeof(PFS_digest_key)); |
338 | } |
339 | lf_hash_search_unpin(pins); |
340 | return; |
341 | } |
342 | |
343 | void PFS_statements_digest_stat::reset_data(unsigned char *token_array, size_t length) |
344 | { |
345 | m_lock.set_dirty(); |
346 | m_digest_storage.reset(token_array, length); |
347 | m_stat.reset(); |
348 | m_first_seen= 0; |
349 | m_last_seen= 0; |
350 | m_lock.dirty_to_free(); |
351 | } |
352 | |
353 | void PFS_statements_digest_stat::reset_index(PFS_thread *thread) |
354 | { |
355 | /* Only remove entries that exists in the HASH index. */ |
356 | if (m_digest_storage.m_byte_count > 0) |
357 | { |
358 | purge_digest(thread, & m_digest_key); |
359 | } |
360 | } |
361 | |
362 | void reset_esms_by_digest() |
363 | { |
364 | if (statements_digest_stat_array == NULL) |
365 | return; |
366 | |
367 | PFS_thread *thread= PFS_thread::get_current_thread(); |
368 | if (unlikely(thread == NULL)) |
369 | return; |
370 | |
371 | /* Reset statements_digest_stat_array. */ |
372 | for (size_t index= 0; index < digest_max; index++) |
373 | { |
374 | statements_digest_stat_array[index].reset_index(thread); |
375 | statements_digest_stat_array[index].reset_data(statements_digest_token_array + index * pfs_max_digest_length, pfs_max_digest_length); |
376 | } |
377 | |
378 | /* Mark record[0] as allocated again. */ |
379 | statements_digest_stat_array[0].m_lock.set_allocated(); |
380 | |
381 | /* |
382 | Reset index which indicates where the next calculated digest information |
383 | to be inserted in statements_digest_stat_array. |
384 | */ |
385 | PFS_atomic::store_u32(& digest_monotonic_index, 1); |
386 | digest_full= false; |
387 | } |
388 | |
389 | |