| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include "portability/toku_race_tools.h" |
| 40 | |
| 41 | #include "ft/txn/txn.h" |
| 42 | #include "locktree/locktree.h" |
| 43 | #include "locktree/lock_request.h" |
| 44 | #include "util/dbt.h" |
| 45 | |
| 46 | namespace toku { |
| 47 | |
| 48 | // initialize a lock request's internals |
| 49 | void lock_request::create(void) { |
| 50 | m_txnid = TXNID_NONE; |
| 51 | m_conflicting_txnid = TXNID_NONE; |
| 52 | m_start_time = 0; |
| 53 | m_left_key = nullptr; |
| 54 | m_right_key = nullptr; |
| 55 | toku_init_dbt(&m_left_key_copy); |
| 56 | toku_init_dbt(&m_right_key_copy); |
| 57 | |
| 58 | m_type = type::UNKNOWN; |
| 59 | m_lt = nullptr; |
| 60 | |
| 61 | m_complete_r = 0; |
| 62 | m_state = state::UNINITIALIZED; |
| 63 | m_info = nullptr; |
| 64 | |
| 65 | toku_cond_init(*lock_request_m_wait_cond_key, &m_wait_cond, nullptr); |
| 66 | |
| 67 | m_start_test_callback = nullptr; |
| 68 | m_start_before_pending_test_callback = nullptr; |
| 69 | m_retry_test_callback = nullptr; |
| 70 | } |
| 71 | |
| 72 | // destroy a lock request. |
| 73 | void lock_request::destroy(void) { |
| 74 | invariant(m_state != state::PENDING); |
| 75 | invariant(m_state != state::DESTROYED); |
| 76 | m_state = state::DESTROYED; |
| 77 | toku_destroy_dbt(&m_left_key_copy); |
| 78 | toku_destroy_dbt(&m_right_key_copy); |
| 79 | toku_cond_destroy(&m_wait_cond); |
| 80 | } |
| 81 | |
| 82 | // set the lock request parameters. this API allows a lock request to be reused. |
| 83 | void lock_request::set(locktree *lt, TXNID txnid, const DBT *left_key, const DBT *right_key, lock_request::type lock_type, bool big_txn, void *) { |
| 84 | invariant(m_state != state::PENDING); |
| 85 | m_lt = lt; |
| 86 | m_txnid = txnid; |
| 87 | m_left_key = left_key; |
| 88 | m_right_key = right_key; |
| 89 | toku_destroy_dbt(&m_left_key_copy); |
| 90 | toku_destroy_dbt(&m_right_key_copy); |
| 91 | m_type = lock_type; |
| 92 | m_state = state::INITIALIZED; |
| 93 | m_info = lt ? lt->get_lock_request_info() : nullptr; |
| 94 | m_big_txn = big_txn; |
| 95 | m_extra = extra; |
| 96 | } |
| 97 | |
| 98 | // get rid of any stored left and right key copies and |
| 99 | // replace them with copies of the given left and right key |
| 100 | void lock_request::copy_keys() { |
| 101 | if (!toku_dbt_is_infinite(m_left_key)) { |
| 102 | toku_clone_dbt(&m_left_key_copy, *m_left_key); |
| 103 | m_left_key = &m_left_key_copy; |
| 104 | } |
| 105 | if (!toku_dbt_is_infinite(m_right_key)) { |
| 106 | toku_clone_dbt(&m_right_key_copy, *m_right_key); |
| 107 | m_right_key = &m_right_key_copy; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | // what are the conflicts for this pending lock request? |
| 112 | void lock_request::get_conflicts(txnid_set *conflicts) { |
| 113 | invariant(m_state == state::PENDING); |
| 114 | const bool is_write_request = m_type == type::WRITE; |
| 115 | m_lt->get_conflicts(is_write_request, m_txnid, m_left_key, m_right_key, conflicts); |
| 116 | } |
| 117 | |
| 118 | // build a wait-for-graph for this lock request and the given conflict set |
| 119 | // for each transaction B that blocks A's lock request |
| 120 | // if B is blocked then |
| 121 | // add (A,T) to the WFG and if B is new, fill in the WFG from B |
| 122 | void lock_request::build_wait_graph(wfg *wait_graph, const txnid_set &conflicts) { |
| 123 | size_t num_conflicts = conflicts.size(); |
| 124 | for (size_t i = 0; i < num_conflicts; i++) { |
| 125 | TXNID conflicting_txnid = conflicts.get(i); |
| 126 | lock_request *conflicting_request = find_lock_request(conflicting_txnid); |
| 127 | invariant(conflicting_txnid != m_txnid); |
| 128 | invariant(conflicting_request != this); |
| 129 | if (conflicting_request) { |
| 130 | bool already_exists = wait_graph->node_exists(conflicting_txnid); |
| 131 | wait_graph->add_edge(m_txnid, conflicting_txnid); |
| 132 | if (!already_exists) { |
| 133 | // recursively build the wait for graph rooted at the conflicting |
| 134 | // request, given its set of lock conflicts. |
| 135 | txnid_set other_conflicts; |
| 136 | other_conflicts.create(); |
| 137 | conflicting_request->get_conflicts(&other_conflicts); |
| 138 | conflicting_request->build_wait_graph(wait_graph, other_conflicts); |
| 139 | other_conflicts.destroy(); |
| 140 | } |
| 141 | } |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | // returns: true if the current set of lock requests contains |
| 146 | // a deadlock, false otherwise. |
| 147 | bool lock_request::deadlock_exists(const txnid_set &conflicts) { |
| 148 | wfg wait_graph; |
| 149 | wait_graph.create(); |
| 150 | |
| 151 | build_wait_graph(&wait_graph, conflicts); |
| 152 | bool deadlock = wait_graph.cycle_exists_from_txnid(m_txnid); |
| 153 | |
| 154 | wait_graph.destroy(); |
| 155 | return deadlock; |
| 156 | } |
| 157 | |
| 158 | // try to acquire a lock described by this lock request. |
| 159 | int lock_request::start(void) { |
| 160 | int r; |
| 161 | |
| 162 | txnid_set conflicts; |
| 163 | conflicts.create(); |
| 164 | if (m_type == type::WRITE) { |
| 165 | r = m_lt->acquire_write_lock(m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
| 166 | } else { |
| 167 | invariant(m_type == type::READ); |
| 168 | r = m_lt->acquire_read_lock(m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
| 169 | } |
| 170 | |
| 171 | // if the lock is not granted, save it to the set of lock requests |
| 172 | // and check for a deadlock. if there is one, complete it as failed |
| 173 | if (r == DB_LOCK_NOTGRANTED) { |
| 174 | copy_keys(); |
| 175 | m_state = state::PENDING; |
| 176 | m_start_time = toku_current_time_microsec() / 1000; |
| 177 | m_conflicting_txnid = conflicts.get(0); |
| 178 | if (m_start_before_pending_test_callback) |
| 179 | m_start_before_pending_test_callback(); |
| 180 | toku_mutex_lock(&m_info->mutex); |
| 181 | insert_into_lock_requests(); |
| 182 | if (deadlock_exists(conflicts)) { |
| 183 | remove_from_lock_requests(); |
| 184 | r = DB_LOCK_DEADLOCK; |
| 185 | } |
| 186 | toku_mutex_unlock(&m_info->mutex); |
| 187 | if (m_start_test_callback) |
| 188 | m_start_test_callback(); // test callback |
| 189 | } |
| 190 | |
| 191 | if (r != DB_LOCK_NOTGRANTED) { |
| 192 | complete(r); |
| 193 | } |
| 194 | |
| 195 | conflicts.destroy(); |
| 196 | return r; |
| 197 | } |
| 198 | |
| 199 | // sleep on the lock request until it becomes resolved or the wait time has elapsed. |
| 200 | int lock_request::wait(uint64_t wait_time_ms) { |
| 201 | return wait(wait_time_ms, 0, nullptr); |
| 202 | } |
| 203 | |
| 204 | int lock_request::wait(uint64_t wait_time_ms, uint64_t killed_time_ms, int (*killed_callback)(void), |
| 205 | void (*lock_wait_callback)(void *, TXNID, TXNID)) { |
| 206 | uint64_t t_now = toku_current_time_microsec(); |
| 207 | uint64_t t_start = t_now; |
| 208 | uint64_t t_end = t_start + wait_time_ms * 1000; |
| 209 | |
| 210 | toku_mutex_lock(&m_info->mutex); |
| 211 | |
| 212 | // check again, this time locking out other retry calls |
| 213 | if (m_state == state::PENDING) { |
| 214 | GrowableArray<TXNID> conflicts_collector; |
| 215 | conflicts_collector.init(); |
| 216 | retry(&conflicts_collector); |
| 217 | if (m_state == state::PENDING) { |
| 218 | report_waits(&conflicts_collector, lock_wait_callback); |
| 219 | } |
| 220 | conflicts_collector.deinit(); |
| 221 | } |
| 222 | |
| 223 | while (m_state == state::PENDING) { |
| 224 | // check if this thread is killed |
| 225 | if (killed_callback && killed_callback()) { |
| 226 | remove_from_lock_requests(); |
| 227 | complete(DB_LOCK_NOTGRANTED); |
| 228 | continue; |
| 229 | } |
| 230 | |
| 231 | // compute next wait time |
| 232 | uint64_t t_wait; |
| 233 | if (killed_time_ms == 0) { |
| 234 | t_wait = t_end; |
| 235 | } else { |
| 236 | t_wait = t_now + killed_time_ms * 1000; |
| 237 | if (t_wait > t_end) |
| 238 | t_wait = t_end; |
| 239 | } |
| 240 | struct timespec ts = {}; |
| 241 | ts.tv_sec = t_wait / 1000000; |
| 242 | ts.tv_nsec = (t_wait % 1000000) * 1000; |
| 243 | int r = toku_cond_timedwait(&m_wait_cond, &m_info->mutex, &ts); |
| 244 | invariant(r == 0 || r == ETIMEDOUT); |
| 245 | |
| 246 | t_now = toku_current_time_microsec(); |
| 247 | if (m_state == state::PENDING && (t_now >= t_end)) { |
| 248 | m_info->counters.timeout_count += 1; |
| 249 | |
| 250 | // if we're still pending and we timed out, then remove our |
| 251 | // request from the set of lock requests and fail. |
| 252 | remove_from_lock_requests(); |
| 253 | |
| 254 | // complete sets m_state to COMPLETE, breaking us out of the loop |
| 255 | complete(DB_LOCK_NOTGRANTED); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | uint64_t t_real_end = toku_current_time_microsec(); |
| 260 | uint64_t duration = t_real_end - t_start; |
| 261 | m_info->counters.wait_count += 1; |
| 262 | m_info->counters.wait_time += duration; |
| 263 | if (duration >= 1000000) { |
| 264 | m_info->counters.long_wait_count += 1; |
| 265 | m_info->counters.long_wait_time += duration; |
| 266 | } |
| 267 | toku_mutex_unlock(&m_info->mutex); |
| 268 | |
| 269 | invariant(m_state == state::COMPLETE); |
| 270 | return m_complete_r; |
| 271 | } |
| 272 | |
| 273 | // complete this lock request with the given return value |
| 274 | void lock_request::complete(int complete_r) { |
| 275 | m_complete_r = complete_r; |
| 276 | m_state = state::COMPLETE; |
| 277 | } |
| 278 | |
| 279 | const DBT *lock_request::get_left_key(void) const { |
| 280 | return m_left_key; |
| 281 | } |
| 282 | |
| 283 | const DBT *lock_request::get_right_key(void) const { |
| 284 | return m_right_key; |
| 285 | } |
| 286 | |
| 287 | TXNID lock_request::get_txnid(void) const { |
| 288 | return m_txnid; |
| 289 | } |
| 290 | |
| 291 | uint64_t lock_request::get_start_time(void) const { |
| 292 | return m_start_time; |
| 293 | } |
| 294 | |
| 295 | TXNID lock_request::get_conflicting_txnid(void) const { |
| 296 | return m_conflicting_txnid; |
| 297 | } |
| 298 | |
| 299 | int lock_request::retry(GrowableArray<TXNID> *conflicts_collector) { |
| 300 | invariant(m_state == state::PENDING); |
| 301 | int r; |
| 302 | txnid_set conflicts; |
| 303 | conflicts.create(); |
| 304 | |
| 305 | if (m_type == type::WRITE) { |
| 306 | r = m_lt->acquire_write_lock( |
| 307 | m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
| 308 | } else { |
| 309 | r = m_lt->acquire_read_lock( |
| 310 | m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
| 311 | } |
| 312 | |
| 313 | // if the acquisition succeeded then remove ourselves from the |
| 314 | // set of lock requests, complete, and signal the waiting thread. |
| 315 | if (r == 0) { |
| 316 | remove_from_lock_requests(); |
| 317 | complete(r); |
| 318 | if (m_retry_test_callback) |
| 319 | m_retry_test_callback(); // test callback |
| 320 | toku_cond_broadcast(&m_wait_cond); |
| 321 | } else { |
| 322 | m_conflicting_txnid = conflicts.get(0); |
| 323 | add_conflicts_to_waits(&conflicts, conflicts_collector); |
| 324 | } |
| 325 | conflicts.destroy(); |
| 326 | |
| 327 | return r; |
| 328 | } |
| 329 | |
| 330 | void lock_request::retry_all_lock_requests( |
| 331 | locktree *lt, |
| 332 | void (*lock_wait_callback)(void *, TXNID, TXNID), |
| 333 | void (*after_retry_all_test_callback)(void)) { |
| 334 | lt_lock_request_info *info = lt->get_lock_request_info(); |
| 335 | |
| 336 | // if there are no pending lock requests than there is nothing to do |
| 337 | // the unlocked data race on pending_is_empty is OK since lock requests |
| 338 | // are retried after added to the pending set. |
| 339 | if (info->pending_is_empty) |
| 340 | return; |
| 341 | |
| 342 | // get my retry generation (post increment of retry_want) |
| 343 | unsigned long long my_retry_want = (info->retry_want += 1); |
| 344 | |
| 345 | toku_mutex_lock(&info->retry_mutex); |
| 346 | |
| 347 | GrowableArray<TXNID> conflicts_collector; |
| 348 | conflicts_collector.init(); |
| 349 | |
| 350 | // here is the group retry algorithm. |
| 351 | // get the latest retry_want count and use it as the generation number of |
| 352 | // this retry operation. if this retry generation is > the last retry |
| 353 | // generation, then do the lock retries. otherwise, no lock retries |
| 354 | // are needed. |
| 355 | if ((my_retry_want - 1) == info->retry_done) { |
| 356 | for (;;) { |
| 357 | if (!info->running_retry) { |
| 358 | info->running_retry = true; |
| 359 | info->retry_done = info->retry_want; |
| 360 | toku_mutex_unlock(&info->retry_mutex); |
| 361 | retry_all_lock_requests_info(info, &conflicts_collector); |
| 362 | if (after_retry_all_test_callback) |
| 363 | after_retry_all_test_callback(); |
| 364 | toku_mutex_lock(&info->retry_mutex); |
| 365 | info->running_retry = false; |
| 366 | toku_cond_broadcast(&info->retry_cv); |
| 367 | break; |
| 368 | } else { |
| 369 | toku_cond_wait(&info->retry_cv, &info->retry_mutex); |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | toku_mutex_unlock(&info->retry_mutex); |
| 374 | |
| 375 | report_waits(&conflicts_collector, lock_wait_callback); |
| 376 | conflicts_collector.deinit(); |
| 377 | } |
| 378 | |
| 379 | void lock_request::retry_all_lock_requests_info(lt_lock_request_info *info, GrowableArray<TXNID> *collector) { |
| 380 | toku_mutex_lock(&info->mutex); |
| 381 | // retry all of the pending lock requests. |
| 382 | for (size_t i = 0; i < info->pending_lock_requests.size();) { |
| 383 | lock_request *request; |
| 384 | int r = info->pending_lock_requests.fetch(i, &request); |
| 385 | invariant_zero(r); |
| 386 | |
| 387 | // retry the lock request. if it didn't succeed, |
| 388 | // move on to the next lock request. otherwise |
| 389 | // the request is gone from the list so we may |
| 390 | // read the i'th entry for the next one. |
| 391 | r = request->retry(collector); |
| 392 | if (r != 0) { |
| 393 | i++; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | // future threads should only retry lock requests if some still exist |
| 398 | info->should_retry_lock_requests = info->pending_lock_requests.size() > 0; |
| 399 | toku_mutex_unlock(&info->mutex); |
| 400 | } |
| 401 | |
| 402 | void lock_request::add_conflicts_to_waits(txnid_set *conflicts, |
| 403 | GrowableArray<TXNID> *wait_conflicts) { |
| 404 | size_t num_conflicts = conflicts->size(); |
| 405 | for (size_t i = 0; i < num_conflicts; i++) { |
| 406 | wait_conflicts->push(m_txnid); |
| 407 | wait_conflicts->push(conflicts->get(i)); |
| 408 | } |
| 409 | } |
| 410 | |
| 411 | void lock_request::report_waits(GrowableArray<TXNID> *wait_conflicts, |
| 412 | void (*lock_wait_callback)(void *, TXNID, TXNID)) { |
| 413 | if (!lock_wait_callback) |
| 414 | return; |
| 415 | size_t num_conflicts = wait_conflicts->get_size(); |
| 416 | for (size_t i = 0; i < num_conflicts; i += 2) { |
| 417 | TXNID blocked_txnid = wait_conflicts->fetch_unchecked(i); |
| 418 | TXNID blocking_txnid = wait_conflicts->fetch_unchecked(i+1); |
| 419 | (*lock_wait_callback)(nullptr, blocked_txnid, blocking_txnid); |
| 420 | } |
| 421 | } |
| 422 | |
| 423 | void *lock_request::(void) const { |
| 424 | return m_extra; |
| 425 | } |
| 426 | |
| 427 | void lock_request::kill_waiter(void) { |
| 428 | remove_from_lock_requests(); |
| 429 | complete(DB_LOCK_NOTGRANTED); |
| 430 | toku_cond_broadcast(&m_wait_cond); |
| 431 | } |
| 432 | |
| 433 | void lock_request::kill_waiter(locktree *lt, void *) { |
| 434 | lt_lock_request_info *info = lt->get_lock_request_info(); |
| 435 | toku_mutex_lock(&info->mutex); |
| 436 | for (size_t i = 0; i < info->pending_lock_requests.size(); i++) { |
| 437 | lock_request *request; |
| 438 | int r = info->pending_lock_requests.fetch(i, &request); |
| 439 | if (r == 0 && request->get_extra() == extra) { |
| 440 | request->kill_waiter(); |
| 441 | break; |
| 442 | } |
| 443 | } |
| 444 | toku_mutex_unlock(&info->mutex); |
| 445 | } |
| 446 | |
| 447 | // find another lock request by txnid. must hold the mutex. |
| 448 | lock_request *lock_request::find_lock_request(const TXNID &txnid) { |
| 449 | lock_request *request; |
| 450 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>(txnid, &request, nullptr); |
| 451 | if (r != 0) { |
| 452 | request = nullptr; |
| 453 | } |
| 454 | return request; |
| 455 | } |
| 456 | |
| 457 | // insert this lock request into the locktree's set. must hold the mutex. |
| 458 | void lock_request::insert_into_lock_requests(void) { |
| 459 | uint32_t idx; |
| 460 | lock_request *request; |
| 461 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>( |
| 462 | m_txnid, &request, &idx); |
| 463 | invariant(r == DB_NOTFOUND); |
| 464 | r = m_info->pending_lock_requests.insert_at(this, idx); |
| 465 | invariant_zero(r); |
| 466 | m_info->pending_is_empty = false; |
| 467 | } |
| 468 | |
| 469 | // remove this lock request from the locktree's set. must hold the mutex. |
| 470 | void lock_request::remove_from_lock_requests(void) { |
| 471 | uint32_t idx; |
| 472 | lock_request *request; |
| 473 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>( |
| 474 | m_txnid, &request, &idx); |
| 475 | invariant_zero(r); |
| 476 | invariant(request == this); |
| 477 | r = m_info->pending_lock_requests.delete_at(idx); |
| 478 | invariant_zero(r); |
| 479 | if (m_info->pending_lock_requests.size() == 0) |
| 480 | m_info->pending_is_empty = true; |
| 481 | } |
| 482 | |
| 483 | int lock_request::find_by_txnid(lock_request *const &request, |
| 484 | const TXNID &txnid) { |
| 485 | TXNID request_txnid = request->m_txnid; |
| 486 | if (request_txnid < txnid) { |
| 487 | return -1; |
| 488 | } else if (request_txnid == txnid) { |
| 489 | return 0; |
| 490 | } else { |
| 491 | return 1; |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | void lock_request::set_start_test_callback(void (*f)(void)) { |
| 496 | m_start_test_callback = f; |
| 497 | } |
| 498 | |
| 499 | void lock_request::set_start_before_pending_test_callback(void (*f)(void)) { |
| 500 | m_start_before_pending_test_callback = f; |
| 501 | } |
| 502 | |
| 503 | void lock_request::set_retry_test_callback(void (*f)(void)) { |
| 504 | m_retry_test_callback = f; |
| 505 | } |
| 506 | |
| 507 | } /* namespace toku */ |
| 508 | |