1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
3 | #ident "$Id$" |
4 | /*====== |
5 | This file is part of PerconaFT. |
6 | |
7 | |
8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
9 | |
10 | PerconaFT is free software: you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License, version 2, |
12 | as published by the Free Software Foundation. |
13 | |
14 | PerconaFT is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
21 | |
22 | ---------------------------------------- |
23 | |
24 | PerconaFT is free software: you can redistribute it and/or modify |
25 | it under the terms of the GNU Affero General Public License, version 3, |
26 | as published by the Free Software Foundation. |
27 | |
28 | PerconaFT is distributed in the hope that it will be useful, |
29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 | GNU Affero General Public License for more details. |
32 | |
33 | You should have received a copy of the GNU Affero General Public License |
34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
35 | ======= */ |
36 | |
37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
38 | |
39 | #include "portability/toku_race_tools.h" |
40 | |
41 | #include "ft/txn/txn.h" |
42 | #include "locktree/locktree.h" |
43 | #include "locktree/lock_request.h" |
44 | #include "util/dbt.h" |
45 | |
46 | namespace toku { |
47 | |
48 | // initialize a lock request's internals |
49 | void lock_request::create(void) { |
50 | m_txnid = TXNID_NONE; |
51 | m_conflicting_txnid = TXNID_NONE; |
52 | m_start_time = 0; |
53 | m_left_key = nullptr; |
54 | m_right_key = nullptr; |
55 | toku_init_dbt(&m_left_key_copy); |
56 | toku_init_dbt(&m_right_key_copy); |
57 | |
58 | m_type = type::UNKNOWN; |
59 | m_lt = nullptr; |
60 | |
61 | m_complete_r = 0; |
62 | m_state = state::UNINITIALIZED; |
63 | m_info = nullptr; |
64 | |
65 | toku_cond_init(*lock_request_m_wait_cond_key, &m_wait_cond, nullptr); |
66 | |
67 | m_start_test_callback = nullptr; |
68 | m_start_before_pending_test_callback = nullptr; |
69 | m_retry_test_callback = nullptr; |
70 | } |
71 | |
72 | // destroy a lock request. |
73 | void lock_request::destroy(void) { |
74 | invariant(m_state != state::PENDING); |
75 | invariant(m_state != state::DESTROYED); |
76 | m_state = state::DESTROYED; |
77 | toku_destroy_dbt(&m_left_key_copy); |
78 | toku_destroy_dbt(&m_right_key_copy); |
79 | toku_cond_destroy(&m_wait_cond); |
80 | } |
81 | |
82 | // set the lock request parameters. this API allows a lock request to be reused. |
83 | void lock_request::set(locktree *lt, TXNID txnid, const DBT *left_key, const DBT *right_key, lock_request::type lock_type, bool big_txn, void *) { |
84 | invariant(m_state != state::PENDING); |
85 | m_lt = lt; |
86 | m_txnid = txnid; |
87 | m_left_key = left_key; |
88 | m_right_key = right_key; |
89 | toku_destroy_dbt(&m_left_key_copy); |
90 | toku_destroy_dbt(&m_right_key_copy); |
91 | m_type = lock_type; |
92 | m_state = state::INITIALIZED; |
93 | m_info = lt ? lt->get_lock_request_info() : nullptr; |
94 | m_big_txn = big_txn; |
95 | m_extra = extra; |
96 | } |
97 | |
98 | // get rid of any stored left and right key copies and |
99 | // replace them with copies of the given left and right key |
100 | void lock_request::copy_keys() { |
101 | if (!toku_dbt_is_infinite(m_left_key)) { |
102 | toku_clone_dbt(&m_left_key_copy, *m_left_key); |
103 | m_left_key = &m_left_key_copy; |
104 | } |
105 | if (!toku_dbt_is_infinite(m_right_key)) { |
106 | toku_clone_dbt(&m_right_key_copy, *m_right_key); |
107 | m_right_key = &m_right_key_copy; |
108 | } |
109 | } |
110 | |
111 | // what are the conflicts for this pending lock request? |
112 | void lock_request::get_conflicts(txnid_set *conflicts) { |
113 | invariant(m_state == state::PENDING); |
114 | const bool is_write_request = m_type == type::WRITE; |
115 | m_lt->get_conflicts(is_write_request, m_txnid, m_left_key, m_right_key, conflicts); |
116 | } |
117 | |
118 | // build a wait-for-graph for this lock request and the given conflict set |
119 | // for each transaction B that blocks A's lock request |
120 | // if B is blocked then |
121 | // add (A,T) to the WFG and if B is new, fill in the WFG from B |
122 | void lock_request::build_wait_graph(wfg *wait_graph, const txnid_set &conflicts) { |
123 | size_t num_conflicts = conflicts.size(); |
124 | for (size_t i = 0; i < num_conflicts; i++) { |
125 | TXNID conflicting_txnid = conflicts.get(i); |
126 | lock_request *conflicting_request = find_lock_request(conflicting_txnid); |
127 | invariant(conflicting_txnid != m_txnid); |
128 | invariant(conflicting_request != this); |
129 | if (conflicting_request) { |
130 | bool already_exists = wait_graph->node_exists(conflicting_txnid); |
131 | wait_graph->add_edge(m_txnid, conflicting_txnid); |
132 | if (!already_exists) { |
133 | // recursively build the wait for graph rooted at the conflicting |
134 | // request, given its set of lock conflicts. |
135 | txnid_set other_conflicts; |
136 | other_conflicts.create(); |
137 | conflicting_request->get_conflicts(&other_conflicts); |
138 | conflicting_request->build_wait_graph(wait_graph, other_conflicts); |
139 | other_conflicts.destroy(); |
140 | } |
141 | } |
142 | } |
143 | } |
144 | |
145 | // returns: true if the current set of lock requests contains |
146 | // a deadlock, false otherwise. |
147 | bool lock_request::deadlock_exists(const txnid_set &conflicts) { |
148 | wfg wait_graph; |
149 | wait_graph.create(); |
150 | |
151 | build_wait_graph(&wait_graph, conflicts); |
152 | bool deadlock = wait_graph.cycle_exists_from_txnid(m_txnid); |
153 | |
154 | wait_graph.destroy(); |
155 | return deadlock; |
156 | } |
157 | |
158 | // try to acquire a lock described by this lock request. |
159 | int lock_request::start(void) { |
160 | int r; |
161 | |
162 | txnid_set conflicts; |
163 | conflicts.create(); |
164 | if (m_type == type::WRITE) { |
165 | r = m_lt->acquire_write_lock(m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
166 | } else { |
167 | invariant(m_type == type::READ); |
168 | r = m_lt->acquire_read_lock(m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
169 | } |
170 | |
171 | // if the lock is not granted, save it to the set of lock requests |
172 | // and check for a deadlock. if there is one, complete it as failed |
173 | if (r == DB_LOCK_NOTGRANTED) { |
174 | copy_keys(); |
175 | m_state = state::PENDING; |
176 | m_start_time = toku_current_time_microsec() / 1000; |
177 | m_conflicting_txnid = conflicts.get(0); |
178 | if (m_start_before_pending_test_callback) |
179 | m_start_before_pending_test_callback(); |
180 | toku_mutex_lock(&m_info->mutex); |
181 | insert_into_lock_requests(); |
182 | if (deadlock_exists(conflicts)) { |
183 | remove_from_lock_requests(); |
184 | r = DB_LOCK_DEADLOCK; |
185 | } |
186 | toku_mutex_unlock(&m_info->mutex); |
187 | if (m_start_test_callback) |
188 | m_start_test_callback(); // test callback |
189 | } |
190 | |
191 | if (r != DB_LOCK_NOTGRANTED) { |
192 | complete(r); |
193 | } |
194 | |
195 | conflicts.destroy(); |
196 | return r; |
197 | } |
198 | |
199 | // sleep on the lock request until it becomes resolved or the wait time has elapsed. |
200 | int lock_request::wait(uint64_t wait_time_ms) { |
201 | return wait(wait_time_ms, 0, nullptr); |
202 | } |
203 | |
204 | int lock_request::wait(uint64_t wait_time_ms, uint64_t killed_time_ms, int (*killed_callback)(void), |
205 | void (*lock_wait_callback)(void *, TXNID, TXNID)) { |
206 | uint64_t t_now = toku_current_time_microsec(); |
207 | uint64_t t_start = t_now; |
208 | uint64_t t_end = t_start + wait_time_ms * 1000; |
209 | |
210 | toku_mutex_lock(&m_info->mutex); |
211 | |
212 | // check again, this time locking out other retry calls |
213 | if (m_state == state::PENDING) { |
214 | GrowableArray<TXNID> conflicts_collector; |
215 | conflicts_collector.init(); |
216 | retry(&conflicts_collector); |
217 | if (m_state == state::PENDING) { |
218 | report_waits(&conflicts_collector, lock_wait_callback); |
219 | } |
220 | conflicts_collector.deinit(); |
221 | } |
222 | |
223 | while (m_state == state::PENDING) { |
224 | // check if this thread is killed |
225 | if (killed_callback && killed_callback()) { |
226 | remove_from_lock_requests(); |
227 | complete(DB_LOCK_NOTGRANTED); |
228 | continue; |
229 | } |
230 | |
231 | // compute next wait time |
232 | uint64_t t_wait; |
233 | if (killed_time_ms == 0) { |
234 | t_wait = t_end; |
235 | } else { |
236 | t_wait = t_now + killed_time_ms * 1000; |
237 | if (t_wait > t_end) |
238 | t_wait = t_end; |
239 | } |
240 | struct timespec ts = {}; |
241 | ts.tv_sec = t_wait / 1000000; |
242 | ts.tv_nsec = (t_wait % 1000000) * 1000; |
243 | int r = toku_cond_timedwait(&m_wait_cond, &m_info->mutex, &ts); |
244 | invariant(r == 0 || r == ETIMEDOUT); |
245 | |
246 | t_now = toku_current_time_microsec(); |
247 | if (m_state == state::PENDING && (t_now >= t_end)) { |
248 | m_info->counters.timeout_count += 1; |
249 | |
250 | // if we're still pending and we timed out, then remove our |
251 | // request from the set of lock requests and fail. |
252 | remove_from_lock_requests(); |
253 | |
254 | // complete sets m_state to COMPLETE, breaking us out of the loop |
255 | complete(DB_LOCK_NOTGRANTED); |
256 | } |
257 | } |
258 | |
259 | uint64_t t_real_end = toku_current_time_microsec(); |
260 | uint64_t duration = t_real_end - t_start; |
261 | m_info->counters.wait_count += 1; |
262 | m_info->counters.wait_time += duration; |
263 | if (duration >= 1000000) { |
264 | m_info->counters.long_wait_count += 1; |
265 | m_info->counters.long_wait_time += duration; |
266 | } |
267 | toku_mutex_unlock(&m_info->mutex); |
268 | |
269 | invariant(m_state == state::COMPLETE); |
270 | return m_complete_r; |
271 | } |
272 | |
273 | // complete this lock request with the given return value |
274 | void lock_request::complete(int complete_r) { |
275 | m_complete_r = complete_r; |
276 | m_state = state::COMPLETE; |
277 | } |
278 | |
279 | const DBT *lock_request::get_left_key(void) const { |
280 | return m_left_key; |
281 | } |
282 | |
283 | const DBT *lock_request::get_right_key(void) const { |
284 | return m_right_key; |
285 | } |
286 | |
287 | TXNID lock_request::get_txnid(void) const { |
288 | return m_txnid; |
289 | } |
290 | |
291 | uint64_t lock_request::get_start_time(void) const { |
292 | return m_start_time; |
293 | } |
294 | |
295 | TXNID lock_request::get_conflicting_txnid(void) const { |
296 | return m_conflicting_txnid; |
297 | } |
298 | |
299 | int lock_request::retry(GrowableArray<TXNID> *conflicts_collector) { |
300 | invariant(m_state == state::PENDING); |
301 | int r; |
302 | txnid_set conflicts; |
303 | conflicts.create(); |
304 | |
305 | if (m_type == type::WRITE) { |
306 | r = m_lt->acquire_write_lock( |
307 | m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
308 | } else { |
309 | r = m_lt->acquire_read_lock( |
310 | m_txnid, m_left_key, m_right_key, &conflicts, m_big_txn); |
311 | } |
312 | |
313 | // if the acquisition succeeded then remove ourselves from the |
314 | // set of lock requests, complete, and signal the waiting thread. |
315 | if (r == 0) { |
316 | remove_from_lock_requests(); |
317 | complete(r); |
318 | if (m_retry_test_callback) |
319 | m_retry_test_callback(); // test callback |
320 | toku_cond_broadcast(&m_wait_cond); |
321 | } else { |
322 | m_conflicting_txnid = conflicts.get(0); |
323 | add_conflicts_to_waits(&conflicts, conflicts_collector); |
324 | } |
325 | conflicts.destroy(); |
326 | |
327 | return r; |
328 | } |
329 | |
330 | void lock_request::retry_all_lock_requests( |
331 | locktree *lt, |
332 | void (*lock_wait_callback)(void *, TXNID, TXNID), |
333 | void (*after_retry_all_test_callback)(void)) { |
334 | lt_lock_request_info *info = lt->get_lock_request_info(); |
335 | |
336 | // if there are no pending lock requests than there is nothing to do |
337 | // the unlocked data race on pending_is_empty is OK since lock requests |
338 | // are retried after added to the pending set. |
339 | if (info->pending_is_empty) |
340 | return; |
341 | |
342 | // get my retry generation (post increment of retry_want) |
343 | unsigned long long my_retry_want = (info->retry_want += 1); |
344 | |
345 | toku_mutex_lock(&info->retry_mutex); |
346 | |
347 | GrowableArray<TXNID> conflicts_collector; |
348 | conflicts_collector.init(); |
349 | |
350 | // here is the group retry algorithm. |
351 | // get the latest retry_want count and use it as the generation number of |
352 | // this retry operation. if this retry generation is > the last retry |
353 | // generation, then do the lock retries. otherwise, no lock retries |
354 | // are needed. |
355 | if ((my_retry_want - 1) == info->retry_done) { |
356 | for (;;) { |
357 | if (!info->running_retry) { |
358 | info->running_retry = true; |
359 | info->retry_done = info->retry_want; |
360 | toku_mutex_unlock(&info->retry_mutex); |
361 | retry_all_lock_requests_info(info, &conflicts_collector); |
362 | if (after_retry_all_test_callback) |
363 | after_retry_all_test_callback(); |
364 | toku_mutex_lock(&info->retry_mutex); |
365 | info->running_retry = false; |
366 | toku_cond_broadcast(&info->retry_cv); |
367 | break; |
368 | } else { |
369 | toku_cond_wait(&info->retry_cv, &info->retry_mutex); |
370 | } |
371 | } |
372 | } |
373 | toku_mutex_unlock(&info->retry_mutex); |
374 | |
375 | report_waits(&conflicts_collector, lock_wait_callback); |
376 | conflicts_collector.deinit(); |
377 | } |
378 | |
379 | void lock_request::retry_all_lock_requests_info(lt_lock_request_info *info, GrowableArray<TXNID> *collector) { |
380 | toku_mutex_lock(&info->mutex); |
381 | // retry all of the pending lock requests. |
382 | for (size_t i = 0; i < info->pending_lock_requests.size();) { |
383 | lock_request *request; |
384 | int r = info->pending_lock_requests.fetch(i, &request); |
385 | invariant_zero(r); |
386 | |
387 | // retry the lock request. if it didn't succeed, |
388 | // move on to the next lock request. otherwise |
389 | // the request is gone from the list so we may |
390 | // read the i'th entry for the next one. |
391 | r = request->retry(collector); |
392 | if (r != 0) { |
393 | i++; |
394 | } |
395 | } |
396 | |
397 | // future threads should only retry lock requests if some still exist |
398 | info->should_retry_lock_requests = info->pending_lock_requests.size() > 0; |
399 | toku_mutex_unlock(&info->mutex); |
400 | } |
401 | |
402 | void lock_request::add_conflicts_to_waits(txnid_set *conflicts, |
403 | GrowableArray<TXNID> *wait_conflicts) { |
404 | size_t num_conflicts = conflicts->size(); |
405 | for (size_t i = 0; i < num_conflicts; i++) { |
406 | wait_conflicts->push(m_txnid); |
407 | wait_conflicts->push(conflicts->get(i)); |
408 | } |
409 | } |
410 | |
411 | void lock_request::report_waits(GrowableArray<TXNID> *wait_conflicts, |
412 | void (*lock_wait_callback)(void *, TXNID, TXNID)) { |
413 | if (!lock_wait_callback) |
414 | return; |
415 | size_t num_conflicts = wait_conflicts->get_size(); |
416 | for (size_t i = 0; i < num_conflicts; i += 2) { |
417 | TXNID blocked_txnid = wait_conflicts->fetch_unchecked(i); |
418 | TXNID blocking_txnid = wait_conflicts->fetch_unchecked(i+1); |
419 | (*lock_wait_callback)(nullptr, blocked_txnid, blocking_txnid); |
420 | } |
421 | } |
422 | |
423 | void *lock_request::(void) const { |
424 | return m_extra; |
425 | } |
426 | |
427 | void lock_request::kill_waiter(void) { |
428 | remove_from_lock_requests(); |
429 | complete(DB_LOCK_NOTGRANTED); |
430 | toku_cond_broadcast(&m_wait_cond); |
431 | } |
432 | |
433 | void lock_request::kill_waiter(locktree *lt, void *) { |
434 | lt_lock_request_info *info = lt->get_lock_request_info(); |
435 | toku_mutex_lock(&info->mutex); |
436 | for (size_t i = 0; i < info->pending_lock_requests.size(); i++) { |
437 | lock_request *request; |
438 | int r = info->pending_lock_requests.fetch(i, &request); |
439 | if (r == 0 && request->get_extra() == extra) { |
440 | request->kill_waiter(); |
441 | break; |
442 | } |
443 | } |
444 | toku_mutex_unlock(&info->mutex); |
445 | } |
446 | |
447 | // find another lock request by txnid. must hold the mutex. |
448 | lock_request *lock_request::find_lock_request(const TXNID &txnid) { |
449 | lock_request *request; |
450 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>(txnid, &request, nullptr); |
451 | if (r != 0) { |
452 | request = nullptr; |
453 | } |
454 | return request; |
455 | } |
456 | |
457 | // insert this lock request into the locktree's set. must hold the mutex. |
458 | void lock_request::insert_into_lock_requests(void) { |
459 | uint32_t idx; |
460 | lock_request *request; |
461 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>( |
462 | m_txnid, &request, &idx); |
463 | invariant(r == DB_NOTFOUND); |
464 | r = m_info->pending_lock_requests.insert_at(this, idx); |
465 | invariant_zero(r); |
466 | m_info->pending_is_empty = false; |
467 | } |
468 | |
469 | // remove this lock request from the locktree's set. must hold the mutex. |
470 | void lock_request::remove_from_lock_requests(void) { |
471 | uint32_t idx; |
472 | lock_request *request; |
473 | int r = m_info->pending_lock_requests.find_zero<TXNID, find_by_txnid>( |
474 | m_txnid, &request, &idx); |
475 | invariant_zero(r); |
476 | invariant(request == this); |
477 | r = m_info->pending_lock_requests.delete_at(idx); |
478 | invariant_zero(r); |
479 | if (m_info->pending_lock_requests.size() == 0) |
480 | m_info->pending_is_empty = true; |
481 | } |
482 | |
483 | int lock_request::find_by_txnid(lock_request *const &request, |
484 | const TXNID &txnid) { |
485 | TXNID request_txnid = request->m_txnid; |
486 | if (request_txnid < txnid) { |
487 | return -1; |
488 | } else if (request_txnid == txnid) { |
489 | return 0; |
490 | } else { |
491 | return 1; |
492 | } |
493 | } |
494 | |
495 | void lock_request::set_start_test_callback(void (*f)(void)) { |
496 | m_start_test_callback = f; |
497 | } |
498 | |
499 | void lock_request::set_start_before_pending_test_callback(void (*f)(void)) { |
500 | m_start_before_pending_test_callback = f; |
501 | } |
502 | |
503 | void lock_request::set_retry_test_callback(void (*f)(void)) { |
504 | m_retry_test_callback = f; |
505 | } |
506 | |
507 | } /* namespace toku */ |
508 | |