| 1 | /* |
| 2 | * This Source Code Form is subject to the terms of the Mozilla Public |
| 3 | * License, v. 2.0. If a copy of the MPL was not distributed with this |
| 4 | * file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 5 | * |
| 6 | * Copyright 1997 - July 2008 CWI, August 2008 - 2019 MonetDB B.V. |
| 7 | */ |
| 8 | |
| 9 | /* |
| 10 | * (author) M Kersten |
| 11 | * Out of order execution |
| 12 | * The alternative is to execute the instructions out of order |
| 13 | * using dataflow dependencies and as an independent process. |
| 14 | * Dataflow processing only works on a code |
| 15 | * sequence that does not include additional (implicit) flow of control |
| 16 | * statements and, ideally, consist of expensive BAT operations. |
| 17 | * The dataflow interpreter selects cheap instructions |
| 18 | * using a simple costfunction based on the size of the BATs involved. |
| 19 | * |
| 20 | * The dataflow portion is identified as a guarded block, |
| 21 | * whose entry is controlled by the function language.dataflow(); |
| 22 | * This way the function can inform the caller to skip the block |
| 23 | * when dataflow execution was performed. |
| 24 | * |
| 25 | * The flow graphs should be organized such that parallel threads can |
| 26 | * access it mostly without expensive locking. |
| 27 | */ |
| 28 | #include "monetdb_config.h" |
| 29 | #include "mal_dataflow.h" |
| 30 | #include "mal_private.h" |
| 31 | #include "mal_runtime.h" |
| 32 | #include "mal_resource.h" |
| 33 | |
| 34 | #define DFLOWpending 0 /* runnable */ |
| 35 | #define DFLOWrunning 1 /* currently in progress */ |
| 36 | #define DFLOWwrapup 2 /* done! */ |
| 37 | #define DFLOWretry 3 /* reschedule */ |
| 38 | #define DFLOWskipped 4 /* due to errors */ |
| 39 | |
| 40 | /* The per instruction status of execution */ |
| 41 | typedef struct FLOWEVENT { |
| 42 | struct DATAFLOW *flow;/* execution context */ |
| 43 | int pc; /* pc in underlying malblock */ |
| 44 | int blocks; /* awaiting for variables */ |
| 45 | sht state; /* of execution */ |
| 46 | lng clk; |
| 47 | sht cost; |
| 48 | lng hotclaim; /* memory foot print of result variables */ |
| 49 | lng argclaim; /* memory foot print of arguments */ |
| 50 | lng maxclaim; /* memory foot print of largest argument, counld be used to indicate result size */ |
| 51 | } *FlowEvent, FlowEventRec; |
| 52 | |
| 53 | typedef struct queue { |
| 54 | int size; /* size of queue */ |
| 55 | int last; /* last element in the queue */ |
| 56 | int exitcount; /* how many threads should exit */ |
| 57 | FlowEvent *data; |
| 58 | MT_Lock l; /* it's a shared resource, ie we need locks */ |
| 59 | MT_Sema s; /* threads wait on empty queues */ |
| 60 | } Queue; |
| 61 | |
| 62 | /* |
| 63 | * The dataflow dependency is administered in a graph list structure. |
| 64 | * For each instruction we keep the list of instructions that |
| 65 | * should be checked for eligibility once we are finished with it. |
| 66 | */ |
| 67 | typedef struct DATAFLOW { |
| 68 | Client cntxt; /* for debugging and client resolution */ |
| 69 | MalBlkPtr mb; /* carry the context */ |
| 70 | MalStkPtr stk; |
| 71 | int start, stop; /* guarded block under consideration*/ |
| 72 | FlowEvent status; /* status of each instruction */ |
| 73 | ATOMIC_PTR_TYPE error; /* error encountered */ |
| 74 | int *nodes; /* dependency graph nodes */ |
| 75 | int *edges; /* dependency graph */ |
| 76 | MT_Lock flowlock; /* lock to protect the above */ |
| 77 | Queue *done; /* instructions handled */ |
| 78 | } *DataFlow, DataFlowRec; |
| 79 | |
| 80 | static struct worker { |
| 81 | MT_Id id; |
| 82 | enum {IDLE, RUNNING, JOINING, EXITED} flag; |
| 83 | ATOMIC_PTR_TYPE cntxt; /* client we do work for (NULL -> any) */ |
| 84 | MT_Sema s; |
| 85 | } workers[THREADS]; |
| 86 | |
| 87 | static Queue *todo = 0; /* pending instructions */ |
| 88 | |
| 89 | static ATOMIC_TYPE exiting = ATOMIC_VAR_INIT(0); |
| 90 | static MT_Lock dataflowLock = MT_LOCK_INITIALIZER("dataflowLock" ); |
| 91 | static void stopMALdataflow(void); |
| 92 | |
| 93 | void |
| 94 | mal_dataflow_reset(void) |
| 95 | { |
| 96 | stopMALdataflow(); |
| 97 | memset((char*) workers, 0, sizeof(workers)); |
| 98 | if( todo) { |
| 99 | GDKfree(todo->data); |
| 100 | MT_lock_destroy(&todo->l); |
| 101 | MT_sema_destroy(&todo->s); |
| 102 | GDKfree(todo); |
| 103 | } |
| 104 | todo = 0; /* pending instructions */ |
| 105 | ATOMIC_SET(&exiting, 0); |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * Calculate the size of the dataflow dependency graph. |
| 110 | */ |
| 111 | static int |
| 112 | DFLOWgraphSize(MalBlkPtr mb, int start, int stop) |
| 113 | { |
| 114 | int cnt = 0; |
| 115 | int i; |
| 116 | |
| 117 | for (i = start; i < stop; i++) |
| 118 | cnt += getInstrPtr(mb, i)->argc; |
| 119 | return cnt; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * The dataflow execution is confined to a barrier block. |
| 124 | * Within the block there are multiple flows, which, in principle, |
| 125 | * can be executed in parallel. |
| 126 | */ |
| 127 | |
| 128 | static Queue* |
| 129 | q_create(int sz, const char *name) |
| 130 | { |
| 131 | Queue *q = (Queue*)GDKmalloc(sizeof(Queue)); |
| 132 | |
| 133 | if (q == NULL) |
| 134 | return NULL; |
| 135 | *q = (Queue) { |
| 136 | .size = ((sz << 1) >> 1), /* we want a multiple of 2 */ |
| 137 | }; |
| 138 | q->data = (FlowEvent*) GDKmalloc(sizeof(FlowEvent) * q->size); |
| 139 | if (q->data == NULL) { |
| 140 | GDKfree(q); |
| 141 | return NULL; |
| 142 | } |
| 143 | |
| 144 | MT_lock_init(&q->l, name); |
| 145 | MT_sema_init(&q->s, 0, name); |
| 146 | return q; |
| 147 | } |
| 148 | |
| 149 | static void |
| 150 | q_destroy(Queue *q) |
| 151 | { |
| 152 | assert(q); |
| 153 | MT_lock_destroy(&q->l); |
| 154 | MT_sema_destroy(&q->s); |
| 155 | GDKfree(q->data); |
| 156 | GDKfree(q); |
| 157 | } |
| 158 | |
| 159 | /* keep a simple LIFO queue. It won't be a large one, so shuffles of requeue is possible */ |
| 160 | /* we might actually sort it for better scheduling behavior */ |
| 161 | static void |
| 162 | q_enqueue_(Queue *q, FlowEvent d) |
| 163 | { |
| 164 | assert(q); |
| 165 | assert(d); |
| 166 | if (q->last == q->size) { |
| 167 | q->size <<= 1; |
| 168 | q->data = (FlowEvent*) GDKrealloc(q->data, sizeof(FlowEvent) * q->size); |
| 169 | assert(q->data); |
| 170 | } |
| 171 | q->data[q->last++] = d; |
| 172 | } |
| 173 | static void |
| 174 | q_enqueue(Queue *q, FlowEvent d) |
| 175 | { |
| 176 | assert(q); |
| 177 | assert(d); |
| 178 | MT_lock_set(&q->l); |
| 179 | q_enqueue_(q, d); |
| 180 | MT_lock_unset(&q->l); |
| 181 | MT_sema_up(&q->s); |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * A priority queue over the hot claims of memory may |
| 186 | * be more effective. It priorizes those instructions |
| 187 | * that want to use a big recent result |
| 188 | */ |
| 189 | |
| 190 | static void |
| 191 | q_requeue_(Queue *q, FlowEvent d) |
| 192 | { |
| 193 | int i; |
| 194 | |
| 195 | assert(q); |
| 196 | assert(d); |
| 197 | if (q->last == q->size) { |
| 198 | /* enlarge buffer */ |
| 199 | q->size <<= 1; |
| 200 | q->data = (FlowEvent*) GDKrealloc(q->data, sizeof(FlowEvent) * q->size); |
| 201 | assert(q->data); |
| 202 | } |
| 203 | for (i = q->last; i > 0; i--) |
| 204 | q->data[i] = q->data[i - 1]; |
| 205 | q->data[0] = d; |
| 206 | q->last++; |
| 207 | } |
| 208 | static void |
| 209 | q_requeue(Queue *q, FlowEvent d) |
| 210 | { |
| 211 | assert(q); |
| 212 | assert(d); |
| 213 | MT_lock_set(&q->l); |
| 214 | q_requeue_(q, d); |
| 215 | MT_lock_unset(&q->l); |
| 216 | MT_sema_up(&q->s); |
| 217 | } |
| 218 | |
| 219 | static FlowEvent |
| 220 | q_dequeue(Queue *q, Client cntxt) |
| 221 | { |
| 222 | FlowEvent r = NULL, s = NULL; |
| 223 | //int i; |
| 224 | |
| 225 | assert(q); |
| 226 | MT_sema_down(&q->s); |
| 227 | if (ATOMIC_GET(&exiting)) |
| 228 | return NULL; |
| 229 | MT_lock_set(&q->l); |
| 230 | if (cntxt) { |
| 231 | int i, minpc = -1; |
| 232 | |
| 233 | for (i = q->last - 1; i >= 0; i--) { |
| 234 | if (q->data[i]->flow->cntxt == cntxt) { |
| 235 | if (q->last > 1024) { |
| 236 | /* for long "queues", just grab the first eligible |
| 237 | * entry we encounter */ |
| 238 | minpc = i; |
| 239 | break; |
| 240 | } |
| 241 | /* for shorter "queues", find the oldest eligible entry */ |
| 242 | if (minpc < 0) { |
| 243 | minpc = i; |
| 244 | s = q->data[i]; |
| 245 | } |
| 246 | r = q->data[i]; |
| 247 | if (s && r && s->pc > r->pc) { |
| 248 | minpc = i; |
| 249 | s = r; |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | if (minpc >= 0) { |
| 254 | r = q->data[minpc]; |
| 255 | i = minpc; |
| 256 | q->last--; |
| 257 | memmove(q->data + i, q->data + i + 1, (q->last - i) * sizeof(q->data[0])); |
| 258 | } |
| 259 | |
| 260 | MT_lock_unset(&q->l); |
| 261 | return r; |
| 262 | } |
| 263 | if (q->exitcount > 0) { |
| 264 | q->exitcount--; |
| 265 | MT_lock_unset(&q->l); |
| 266 | return NULL; |
| 267 | } |
| 268 | assert(q->last > 0); |
| 269 | if (q->last > 0) { |
| 270 | /* LIFO favors garbage collection */ |
| 271 | r = q->data[--q->last]; |
| 272 | /* Line coverage test shows it is an expensive loop that is hardly ever leads to adjustment |
| 273 | for(i= q->last-1; r && i>=0; i--){ |
| 274 | s= q->data[i]; |
| 275 | if( s && s->flow && s->flow->stk && |
| 276 | r && r->flow && r->flow->stk && |
| 277 | s->flow->stk->tag < r->flow->stk->tag){ |
| 278 | q->data[i]= r; |
| 279 | r = s; |
| 280 | } |
| 281 | } |
| 282 | */ |
| 283 | q->data[q->last] = 0; |
| 284 | } |
| 285 | /* else: terminating */ |
| 286 | /* try out random draw * |
| 287 | { |
| 288 | int i; |
| 289 | i = rand() % q->last; |
| 290 | r = q->data[i]; |
| 291 | for (i++; i < q->last; i++) |
| 292 | q->data[i - 1] = q->data[i]; |
| 293 | q->last--; i |
| 294 | } |
| 295 | */ |
| 296 | |
| 297 | MT_lock_unset(&q->l); |
| 298 | assert(r); |
| 299 | return r; |
| 300 | } |
| 301 | |
| 302 | /* |
| 303 | * We simply move an instruction into the front of the queue. |
| 304 | * Beware, we assume that variables are assigned a value once, otherwise |
| 305 | * the order may really create errors. |
| 306 | * The order of the instructions should be retained as long as possible. |
| 307 | * Delay processing when we run out of memory. Push the instruction back |
| 308 | * on the end of queue, waiting for another attempt. Problem might become |
| 309 | * that all threads but one are cycling through the queue, each time |
| 310 | * finding an eligible instruction, but without enough space. |
| 311 | * Therefore, we wait for a few milliseconds as an initial punishment. |
| 312 | * |
| 313 | * The process could be refined by checking for cheap operations, |
| 314 | * i.e. those that would require no memory at all (aggr.count) |
| 315 | * This, however, would lead to a dependency to the upper layers, |
| 316 | * because in the kernel we don't know what routines are available |
| 317 | * with this property. Nor do we maintain such properties. |
| 318 | */ |
| 319 | |
| 320 | static void |
| 321 | DFLOWworker(void *T) |
| 322 | { |
| 323 | struct worker *t = (struct worker *) T; |
| 324 | DataFlow flow; |
| 325 | FlowEvent fe = 0, fnxt = 0; |
| 326 | int id = (int) (t - workers); |
| 327 | int tid = THRgettid(); |
| 328 | str error = 0; |
| 329 | int i,last; |
| 330 | lng claim; |
| 331 | Client cntxt; |
| 332 | InstrPtr p; |
| 333 | |
| 334 | #ifdef _MSC_VER |
| 335 | srand((unsigned int) GDKusec()); |
| 336 | #endif |
| 337 | GDKsetbuf(GDKmalloc(GDKMAXERRLEN)); /* where to leave errors */ |
| 338 | if( GDKerrbuf == 0) |
| 339 | fprintf(stderr,"DFLOWworker:Could not allocate GDKerrbuf\n" ); |
| 340 | else |
| 341 | GDKclrerr(); |
| 342 | cntxt = ATOMIC_PTR_GET(&t->cntxt); |
| 343 | if (cntxt) { |
| 344 | /* wait until we are allowed to start working */ |
| 345 | MT_sema_down(&t->s); |
| 346 | } |
| 347 | while (1) { |
| 348 | if (fnxt == 0) { |
| 349 | MT_thread_setworking(NULL); |
| 350 | cntxt = ATOMIC_PTR_GET(&t->cntxt); |
| 351 | fe = q_dequeue(todo, cntxt); |
| 352 | if (fe == NULL) { |
| 353 | if (cntxt) { |
| 354 | /* we're not done yet with work for the current |
| 355 | * client (as far as we know), so give up the CPU |
| 356 | * and let the scheduler enter some more work, but |
| 357 | * first compensate for the down we did in |
| 358 | * dequeue */ |
| 359 | MT_sema_up(&todo->s); |
| 360 | MT_sleep_ms(1); |
| 361 | continue; |
| 362 | } |
| 363 | /* no more work to be done: exit */ |
| 364 | break; |
| 365 | } |
| 366 | if (fe->flow->cntxt && fe->flow->cntxt->mythread) |
| 367 | MT_thread_setworking(fe->flow->cntxt->mythread->name); |
| 368 | } else |
| 369 | fe = fnxt; |
| 370 | if (ATOMIC_GET(&exiting)) { |
| 371 | break; |
| 372 | } |
| 373 | fnxt = 0; |
| 374 | assert(fe); |
| 375 | flow = fe->flow; |
| 376 | assert(flow); |
| 377 | |
| 378 | /* whenever we have a (concurrent) error, skip it */ |
| 379 | if (ATOMIC_PTR_GET(&flow->error)) { |
| 380 | q_enqueue(flow->done, fe); |
| 381 | continue; |
| 382 | } |
| 383 | |
| 384 | p= getInstrPtr(flow->mb,fe->pc); |
| 385 | claim = fe->argclaim; |
| 386 | if (MALadmission_claim(flow->cntxt, flow->mb, flow->stk, p, claim)) { |
| 387 | // never block on deblockdataflow() |
| 388 | if( p->fcn != (MALfcn) deblockdataflow){ |
| 389 | fe->hotclaim = 0; /* don't assume priority anymore */ |
| 390 | fe->maxclaim = 0; |
| 391 | if (todo->last == 0) |
| 392 | MT_sleep_ms(DELAYUNIT); |
| 393 | q_requeue(todo, fe); |
| 394 | continue; |
| 395 | } |
| 396 | } |
| 397 | error = runMALsequence(flow->cntxt, flow->mb, fe->pc, fe->pc + 1, flow->stk, 0, 0); |
| 398 | PARDEBUG fprintf(stderr, "#executed pc= %d wrk= %d claim= " LLFMT "," LLFMT "," LLFMT " %s\n" , |
| 399 | fe->pc, id, claim, fe->hotclaim, fe->maxclaim, error ? error : "" ); |
| 400 | /* release the memory claim */ |
| 401 | MALadmission_release(flow->cntxt, flow->mb, flow->stk, p, claim); |
| 402 | /* update the numa information. keep the thread-id producing the value */ |
| 403 | p= getInstrPtr(flow->mb,fe->pc); |
| 404 | for( i = 0; i < p->argc; i++) |
| 405 | setVarWorker(flow->mb,getArg(p,i),tid); |
| 406 | |
| 407 | MT_lock_set(&flow->flowlock); |
| 408 | fe->state = DFLOWwrapup; |
| 409 | MT_lock_unset(&flow->flowlock); |
| 410 | if (error) { |
| 411 | void *null = NULL; |
| 412 | /* only collect one error (from one thread, needed for stable testing) */ |
| 413 | if (!ATOMIC_PTR_CAS(&flow->error, &null, error)) |
| 414 | freeException(error); |
| 415 | /* after an error we skip the rest of the block */ |
| 416 | q_enqueue(flow->done, fe); |
| 417 | continue; |
| 418 | } |
| 419 | |
| 420 | /* see if you can find an eligible instruction that uses the |
| 421 | * result just produced. Then we can continue with it right away. |
| 422 | * We are just looking forward for the last block, which means we |
| 423 | * are safe from concurrent actions. No other thread can steal it, |
| 424 | * because we hold the logical lock. |
| 425 | * All eligible instructions are queued |
| 426 | */ |
| 427 | { |
| 428 | InstrPtr p = getInstrPtr(flow->mb, fe->pc); |
| 429 | assert(p); |
| 430 | fe->hotclaim = 0; |
| 431 | fe->maxclaim = 0; |
| 432 | |
| 433 | for (i = 0; i < p->retc; i++){ |
| 434 | lng ; |
| 435 | footprint = getMemoryClaim(flow->mb, flow->stk, p, i, FALSE); |
| 436 | fe->hotclaim += footprint; |
| 437 | if( footprint > fe->maxclaim) fe->maxclaim = footprint; |
| 438 | } |
| 439 | } |
| 440 | MT_lock_set(&flow->flowlock); |
| 441 | |
| 442 | for (last = fe->pc - flow->start; last >= 0 && (i = flow->nodes[last]) > 0; last = flow->edges[last]) |
| 443 | if (flow->status[i].state == DFLOWpending && |
| 444 | flow->status[i].blocks == 1) { |
| 445 | flow->status[i].state = DFLOWrunning; |
| 446 | flow->status[i].blocks = 0; |
| 447 | flow->status[i].hotclaim = fe->hotclaim; |
| 448 | flow->status[i].argclaim += fe->hotclaim; |
| 449 | if( flow->status[i].maxclaim < fe->maxclaim) |
| 450 | flow->status[i].maxclaim = fe->maxclaim; |
| 451 | fnxt = flow->status + i; |
| 452 | break; |
| 453 | } |
| 454 | MT_lock_unset(&flow->flowlock); |
| 455 | |
| 456 | q_enqueue(flow->done, fe); |
| 457 | if ( fnxt == 0 && malProfileMode) { |
| 458 | int last; |
| 459 | MT_lock_set(&todo->l); |
| 460 | last = todo->last; |
| 461 | MT_lock_unset(&todo->l); |
| 462 | if (last == 0) |
| 463 | profilerHeartbeatEvent("wait" ); |
| 464 | } |
| 465 | } |
| 466 | GDKfree(GDKerrbuf); |
| 467 | GDKsetbuf(0); |
| 468 | MT_lock_set(&dataflowLock); |
| 469 | t->flag = EXITED; |
| 470 | MT_lock_unset(&dataflowLock); |
| 471 | } |
| 472 | |
| 473 | /* |
| 474 | * Create an interpreter pool. |
| 475 | * One worker will adaptively be available for each client. |
| 476 | * The remainder are taken from the GDKnr_threads argument and |
| 477 | * typically is equal to the number of cores |
| 478 | * The workers are assembled in a local table to enable debugging. |
| 479 | */ |
| 480 | static int |
| 481 | DFLOWinitialize(void) |
| 482 | { |
| 483 | int i, limit; |
| 484 | int created = 0; |
| 485 | static bool first = true; |
| 486 | |
| 487 | MT_lock_set(&mal_contextLock); |
| 488 | if (todo) { |
| 489 | /* somebody else beat us to it */ |
| 490 | MT_lock_unset(&mal_contextLock); |
| 491 | return 0; |
| 492 | } |
| 493 | todo = q_create(2048, "todo" ); |
| 494 | if (todo == NULL) { |
| 495 | MT_lock_unset(&mal_contextLock); |
| 496 | return -1; |
| 497 | } |
| 498 | for (i = 0; i < THREADS; i++) { |
| 499 | char name[16]; |
| 500 | snprintf(name, sizeof(name), "DFLOWsema%d" , i); |
| 501 | MT_sema_init(&workers[i].s, 0, name); |
| 502 | workers[i].flag = IDLE; |
| 503 | if (first) /* only initialize once */ |
| 504 | ATOMIC_PTR_INIT(&workers[i].cntxt, NULL); |
| 505 | } |
| 506 | first = false; |
| 507 | limit = GDKnr_threads ? GDKnr_threads - 1 : 0; |
| 508 | if (limit > THREADS) |
| 509 | limit = THREADS; |
| 510 | MT_lock_set(&dataflowLock); |
| 511 | for (i = 0; i < limit; i++) { |
| 512 | workers[i].flag = RUNNING; |
| 513 | ATOMIC_PTR_SET(&workers[i].cntxt, NULL); |
| 514 | char name[16]; |
| 515 | snprintf(name, sizeof(name), "DFLOWworker%d" , i); |
| 516 | if ((workers[i].id = THRcreate(DFLOWworker, (void *) &workers[i], MT_THR_JOINABLE, name)) == 0) |
| 517 | workers[i].flag = IDLE; |
| 518 | else |
| 519 | created++; |
| 520 | } |
| 521 | MT_lock_unset(&dataflowLock); |
| 522 | if (created == 0) { |
| 523 | /* no threads created */ |
| 524 | q_destroy(todo); |
| 525 | todo = NULL; |
| 526 | MT_lock_unset(&mal_contextLock); |
| 527 | return -1; |
| 528 | } |
| 529 | MT_lock_unset(&mal_contextLock); |
| 530 | return 0; |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * The dataflow administration is based on administration of |
| 535 | * how many variables are still missing before it can be executed. |
| 536 | * For each instruction we keep a list of instructions whose |
| 537 | * blocking counter should be decremented upon finishing it. |
| 538 | */ |
| 539 | static str |
| 540 | DFLOWinitBlk(DataFlow flow, MalBlkPtr mb, int size) |
| 541 | { |
| 542 | int pc, i, j, k, l, n, etop = 0; |
| 543 | int *assign; |
| 544 | InstrPtr p; |
| 545 | |
| 546 | if (flow == NULL) |
| 547 | throw(MAL, "dataflow" , "DFLOWinitBlk(): Called with flow == NULL" ); |
| 548 | if (mb == NULL) |
| 549 | throw(MAL, "dataflow" , "DFLOWinitBlk(): Called with mb == NULL" ); |
| 550 | PARDEBUG fprintf(stderr, "#Initialize dflow block\n" ); |
| 551 | assign = (int *) GDKzalloc(mb->vtop * sizeof(int)); |
| 552 | if (assign == NULL) |
| 553 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 554 | etop = flow->stop - flow->start; |
| 555 | for (n = 0, pc = flow->start; pc < flow->stop; pc++, n++) { |
| 556 | p = getInstrPtr(mb, pc); |
| 557 | if (p == NULL) { |
| 558 | GDKfree(assign); |
| 559 | throw(MAL, "dataflow" , "DFLOWinitBlk(): getInstrPtr() returned NULL" ); |
| 560 | } |
| 561 | |
| 562 | /* initial state, ie everything can run */ |
| 563 | flow->status[n].flow = flow; |
| 564 | flow->status[n].pc = pc; |
| 565 | flow->status[n].state = DFLOWpending; |
| 566 | flow->status[n].cost = -1; |
| 567 | ATOMIC_PTR_SET(&flow->status[n].flow->error, NULL); |
| 568 | |
| 569 | /* administer flow dependencies */ |
| 570 | for (j = p->retc; j < p->argc; j++) { |
| 571 | /* list of instructions that wake n-th instruction up */ |
| 572 | if (!isVarConstant(mb, getArg(p, j)) && (k = assign[getArg(p, j)])) { |
| 573 | assert(k < pc); /* only dependencies on earlier instructions */ |
| 574 | /* add edge to the target instruction for wakeup call */ |
| 575 | k -= flow->start; |
| 576 | if (flow->nodes[k]) { |
| 577 | /* add wakeup to tail of list */ |
| 578 | for (i = k; flow->edges[i] > 0; i = flow->edges[i]) |
| 579 | ; |
| 580 | flow->nodes[etop] = n; |
| 581 | flow->edges[etop] = -1; |
| 582 | flow->edges[i] = etop; |
| 583 | etop++; |
| 584 | (void) size; |
| 585 | if( etop == size){ |
| 586 | int *tmp; |
| 587 | /* in case of realloc failure, the original |
| 588 | * pointers will be freed by the caller */ |
| 589 | tmp = (int*) GDKrealloc(flow->nodes, sizeof(int) * 2 * size); |
| 590 | if (tmp == NULL) { |
| 591 | GDKfree(assign); |
| 592 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 593 | } |
| 594 | flow->nodes = tmp; |
| 595 | tmp = (int*) GDKrealloc(flow->edges, sizeof(int) * 2 * size); |
| 596 | if (tmp == NULL) { |
| 597 | GDKfree(assign); |
| 598 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 599 | } |
| 600 | flow->edges = tmp; |
| 601 | size *=2; |
| 602 | } |
| 603 | } else { |
| 604 | flow->nodes[k] = n; |
| 605 | flow->edges[k] = -1; |
| 606 | } |
| 607 | |
| 608 | flow->status[n].blocks++; |
| 609 | } |
| 610 | |
| 611 | /* list of instructions to be woken up explicitly */ |
| 612 | if (!isVarConstant(mb, getArg(p, j))) { |
| 613 | /* be careful, watch out for garbage collection interference */ |
| 614 | /* those should be scheduled after all its other uses */ |
| 615 | l = getEndScope(mb, getArg(p, j)); |
| 616 | if (l != pc && l < flow->stop && l > flow->start) { |
| 617 | /* add edge to the target instruction for wakeup call */ |
| 618 | PARDEBUG fprintf(stderr, "#endoflife for %s is %d -> %d\n" , getVarName(mb, getArg(p, j)), n + flow->start, l); |
| 619 | assert(pc < l); /* only dependencies on earlier instructions */ |
| 620 | l -= flow->start; |
| 621 | if (flow->nodes[n]) { |
| 622 | /* add wakeup to tail of list */ |
| 623 | for (i = n; flow->edges[i] > 0; i = flow->edges[i]) |
| 624 | ; |
| 625 | flow->nodes[etop] = l; |
| 626 | flow->edges[etop] = -1; |
| 627 | flow->edges[i] = etop; |
| 628 | etop++; |
| 629 | if( etop == size){ |
| 630 | int *tmp; |
| 631 | /* in case of realloc failure, the original |
| 632 | * pointers will be freed by the caller */ |
| 633 | tmp = (int*) GDKrealloc(flow->nodes, sizeof(int) * 2 * size); |
| 634 | if (tmp == NULL) { |
| 635 | GDKfree(assign); |
| 636 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 637 | } |
| 638 | flow->nodes = tmp; |
| 639 | tmp = (int*) GDKrealloc(flow->edges, sizeof(int) * 2 * size); |
| 640 | if (tmp == NULL) { |
| 641 | GDKfree(assign); |
| 642 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 643 | } |
| 644 | flow->edges = tmp; |
| 645 | size *=2; |
| 646 | } |
| 647 | } else { |
| 648 | flow->nodes[n] = l; |
| 649 | flow->edges[n] = -1; |
| 650 | } |
| 651 | flow->status[l].blocks++; |
| 652 | } |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | for (j = 0; j < p->retc; j++) |
| 657 | assign[getArg(p, j)] = pc; /* ensure recognition of dependency on first instruction and constant */ |
| 658 | } |
| 659 | GDKfree(assign); |
| 660 | PARDEBUG { |
| 661 | for (n = 0; n < flow->stop - flow->start; n++) { |
| 662 | fprintf(stderr, "#[%d] %d: " , flow->start + n, n); |
| 663 | fprintInstruction(stderr, mb, 0, getInstrPtr(mb, n + flow->start), LIST_MAL_ALL); |
| 664 | fprintf(stderr, "#[%d]Dependents block count %d wakeup" , flow->start + n, flow->status[n].blocks); |
| 665 | for (j = n; flow->edges[j]; j = flow->edges[j]) { |
| 666 | fprintf(stderr, "%d " , flow->start + flow->nodes[j]); |
| 667 | if (flow->edges[j] == -1) |
| 668 | break; |
| 669 | } |
| 670 | fprintf(stderr, "\n" ); |
| 671 | } |
| 672 | } |
| 673 | return MAL_SUCCEED; |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * Parallel processing is mostly driven by dataflow, but within this context |
| 678 | * there may be different schemes to take instructions into execution. |
| 679 | * The admission scheme (and wrapup) are the necessary scheduler hooks. |
| 680 | * A scheduler registers the functions needed and should release them |
| 681 | * at the end of the parallel block. |
| 682 | * They take effect after we have ensured that the basic properties for |
| 683 | * execution hold. |
| 684 | */ |
| 685 | /* |
| 686 | static void showFlowEvent(DataFlow flow, int pc) |
| 687 | { |
| 688 | int i; |
| 689 | FlowEvent fe = flow->status; |
| 690 | |
| 691 | fprintf(stderr, "#end of data flow %d done %d \n", pc, flow->stop - flow->start); |
| 692 | for (i = 0; i < flow->stop - flow->start; i++) |
| 693 | if (fe[i].state != DFLOWwrapup && fe[i].pc >= 0) { |
| 694 | fprintf(stderr, "#missed pc %d status %d %d blocks %d", fe[i].state, i, fe[i].pc, fe[i].blocks); |
| 695 | fprintInstruction(stderr, fe[i].flow->mb, 0, getInstrPtr(fe[i].flow->mb, fe[i].pc), LIST_MAL_MAPI); |
| 696 | } |
| 697 | } |
| 698 | */ |
| 699 | |
| 700 | static str |
| 701 | DFLOWscheduler(DataFlow flow, struct worker *w) |
| 702 | { |
| 703 | int last; |
| 704 | int i; |
| 705 | int j; |
| 706 | InstrPtr p; |
| 707 | int tasks=0, actions; |
| 708 | str ret = MAL_SUCCEED; |
| 709 | FlowEvent fe, f = 0; |
| 710 | |
| 711 | if (flow == NULL) |
| 712 | throw(MAL, "dataflow" , "DFLOWscheduler(): Called with flow == NULL" ); |
| 713 | actions = flow->stop - flow->start; |
| 714 | if (actions == 0) |
| 715 | throw(MAL, "dataflow" , "Empty dataflow block" ); |
| 716 | /* initialize the eligible statements */ |
| 717 | fe = flow->status; |
| 718 | |
| 719 | MT_lock_set(&flow->flowlock); |
| 720 | for (i = 0; i < actions; i++) |
| 721 | if (fe[i].blocks == 0) { |
| 722 | p = getInstrPtr(flow->mb,fe[i].pc); |
| 723 | if (p == NULL) { |
| 724 | MT_lock_unset(&flow->flowlock); |
| 725 | throw(MAL, "dataflow" , "DFLOWscheduler(): getInstrPtr(flow->mb,fe[i].pc) returned NULL" ); |
| 726 | } |
| 727 | for (j = p->retc; j < p->argc; j++) |
| 728 | fe[i].argclaim = getMemoryClaim(fe[0].flow->mb, fe[0].flow->stk, p, j, FALSE); |
| 729 | q_enqueue(todo, flow->status + i); |
| 730 | flow->status[i].state = DFLOWrunning; |
| 731 | PARDEBUG fprintf(stderr, "#enqueue pc=%d claim=" LLFMT "\n" , flow->status[i].pc, flow->status[i].argclaim); |
| 732 | } |
| 733 | MT_lock_unset(&flow->flowlock); |
| 734 | MT_sema_up(&w->s); |
| 735 | |
| 736 | PARDEBUG fprintf(stderr, "#run %d instructions in dataflow block\n" , actions); |
| 737 | |
| 738 | while (actions != tasks ) { |
| 739 | f = q_dequeue(flow->done, NULL); |
| 740 | if (ATOMIC_GET(&exiting)) |
| 741 | break; |
| 742 | if (f == NULL) |
| 743 | throw(MAL, "dataflow" , "DFLOWscheduler(): q_dequeue(flow->done) returned NULL" ); |
| 744 | |
| 745 | /* |
| 746 | * When an instruction is finished we have to reduce the blocked |
| 747 | * counter for all dependent instructions. for those where it |
| 748 | * drops to zero we can scheduler it we do it here instead of the scheduler |
| 749 | */ |
| 750 | |
| 751 | MT_lock_set(&flow->flowlock); |
| 752 | tasks++; |
| 753 | for (last = f->pc - flow->start; last >= 0 && (i = flow->nodes[last]) > 0; last = flow->edges[last]) |
| 754 | if (flow->status[i].state == DFLOWpending) { |
| 755 | flow->status[i].argclaim += f->hotclaim; |
| 756 | if (flow->status[i].blocks == 1 ) { |
| 757 | flow->status[i].state = DFLOWrunning; |
| 758 | flow->status[i].blocks--; |
| 759 | q_enqueue(todo, flow->status + i); |
| 760 | PARDEBUG fprintf(stderr, "#enqueue pc=%d claim= " LLFMT "\n" , flow->status[i].pc, flow->status[i].argclaim); |
| 761 | } else { |
| 762 | flow->status[i].blocks--; |
| 763 | } |
| 764 | } |
| 765 | MT_lock_unset(&flow->flowlock); |
| 766 | } |
| 767 | /* release the worker from its specific task (turn it into a |
| 768 | * generic worker) */ |
| 769 | ATOMIC_PTR_SET(&w->cntxt, NULL); |
| 770 | /* wrap up errors */ |
| 771 | assert(flow->done->last == 0); |
| 772 | if ((ret = ATOMIC_PTR_XCG(&flow->error, NULL)) != NULL ) { |
| 773 | PARDEBUG fprintf(stderr, "#errors encountered %s " , ret); |
| 774 | } |
| 775 | return ret; |
| 776 | } |
| 777 | |
| 778 | /* We create a pool of GDKnr_threads-1 generic workers, that is, |
| 779 | * workers that will take on jobs from any clients. In addition, we |
| 780 | * create a single specific worker per client (i.e. each time we enter |
| 781 | * here). This specific worker will only do work for the client for |
| 782 | * which it was started. In this way we can guarantee that there will |
| 783 | * always be progress for the client, even if all other workers are |
| 784 | * doing something big. |
| 785 | * |
| 786 | * When all jobs for a client have been done (there are no more |
| 787 | * entries for the client in the queue), the specific worker turns |
| 788 | * itself into a generic worker. At the same time, we signal that one |
| 789 | * generic worker should exit and this function returns. In this way |
| 790 | * we make sure that there are once again GDKnr_threads-1 generic |
| 791 | * workers. */ |
| 792 | str |
| 793 | runMALdataflow(Client cntxt, MalBlkPtr mb, int startpc, int stoppc, MalStkPtr stk) |
| 794 | { |
| 795 | DataFlow flow = NULL; |
| 796 | str msg = MAL_SUCCEED; |
| 797 | int size; |
| 798 | bit *ret; |
| 799 | int i; |
| 800 | |
| 801 | #ifdef DEBUG_FLOW |
| 802 | fprintf(stderr, "#runMALdataflow for block %d - %d\n" , startpc, stoppc); |
| 803 | fprintFunction(stderr, mb, 0, LIST_ALL); |
| 804 | #endif |
| 805 | |
| 806 | /* in debugging mode we should not start multiple threads */ |
| 807 | if (stk == NULL) |
| 808 | throw(MAL, "dataflow" , "runMALdataflow(): Called with stk == NULL" ); |
| 809 | ret = getArgReference_bit(stk,getInstrPtr(mb,startpc),0); |
| 810 | *ret = FALSE; |
| 811 | if (stk->cmd) { |
| 812 | *ret = TRUE; |
| 813 | return MAL_SUCCEED; |
| 814 | } |
| 815 | |
| 816 | assert(stoppc > startpc); |
| 817 | |
| 818 | /* check existence of workers */ |
| 819 | if (todo == NULL) { |
| 820 | /* create thread pool */ |
| 821 | if (GDKnr_threads <= 1 || DFLOWinitialize() < 0) { |
| 822 | /* no threads created, run serially */ |
| 823 | *ret = TRUE; |
| 824 | return MAL_SUCCEED; |
| 825 | } |
| 826 | } |
| 827 | assert(todo); |
| 828 | /* in addition, create one more worker that will only execute |
| 829 | * tasks for the current client to compensate for our waiting |
| 830 | * until all work is done */ |
| 831 | MT_lock_set(&dataflowLock); |
| 832 | /* join with already exited threads */ |
| 833 | { |
| 834 | int joined; |
| 835 | do { |
| 836 | joined = 0; |
| 837 | for (i = 0; i < THREADS; i++) { |
| 838 | if (workers[i].flag == EXITED) { |
| 839 | workers[i].flag = JOINING; |
| 840 | ATOMIC_PTR_SET(&workers[i].cntxt, NULL); |
| 841 | joined = 1; |
| 842 | MT_lock_unset(&dataflowLock); |
| 843 | MT_join_thread(workers[i].id); |
| 844 | MT_lock_set(&dataflowLock); |
| 845 | workers[i].flag = IDLE; |
| 846 | } |
| 847 | } |
| 848 | } while (joined); |
| 849 | } |
| 850 | for (i = 0; i < THREADS; i++) { |
| 851 | if (workers[i].flag == IDLE) { |
| 852 | /* only create specific worker if we are not doing a |
| 853 | * recursive call */ |
| 854 | if (stk->calldepth > 1) { |
| 855 | int j; |
| 856 | MT_Id pid = MT_getpid(); |
| 857 | |
| 858 | /* doing a recursive call: copy specificity from |
| 859 | * current worker to new worker */ |
| 860 | ATOMIC_PTR_SET(&workers[i].cntxt, NULL); |
| 861 | for (j = 0; j < THREADS; j++) { |
| 862 | if (workers[j].flag == RUNNING && workers[j].id == pid) { |
| 863 | ATOMIC_PTR_SET(&workers[i].cntxt, |
| 864 | ATOMIC_PTR_GET(&workers[j].cntxt)); |
| 865 | break; |
| 866 | } |
| 867 | } |
| 868 | } else { |
| 869 | /* not doing a recursive call: create specific worker */ |
| 870 | ATOMIC_PTR_SET(&workers[i].cntxt, cntxt); |
| 871 | } |
| 872 | workers[i].flag = RUNNING; |
| 873 | char name[16]; |
| 874 | snprintf(name, sizeof(name), "DFLOWworker%d" , i); |
| 875 | if ((workers[i].id = THRcreate(DFLOWworker, (void *) &workers[i], MT_THR_JOINABLE, name)) == 0) { |
| 876 | /* cannot start new thread, run serially */ |
| 877 | *ret = TRUE; |
| 878 | workers[i].flag = IDLE; |
| 879 | MT_lock_unset(&dataflowLock); |
| 880 | return MAL_SUCCEED; |
| 881 | } |
| 882 | break; |
| 883 | } |
| 884 | } |
| 885 | MT_lock_unset(&dataflowLock); |
| 886 | if (i == THREADS) { |
| 887 | /* no empty thread slots found, run serially */ |
| 888 | *ret = TRUE; |
| 889 | return MAL_SUCCEED; |
| 890 | } |
| 891 | |
| 892 | flow = (DataFlow)GDKzalloc(sizeof(DataFlowRec)); |
| 893 | if (flow == NULL) |
| 894 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 895 | |
| 896 | flow->cntxt = cntxt; |
| 897 | flow->mb = mb; |
| 898 | flow->stk = stk; |
| 899 | |
| 900 | /* keep real block count, exclude brackets */ |
| 901 | flow->start = startpc + 1; |
| 902 | flow->stop = stoppc; |
| 903 | |
| 904 | flow->done = q_create(stoppc- startpc+1, "flow->done" ); |
| 905 | if (flow->done == NULL) { |
| 906 | GDKfree(flow); |
| 907 | throw(MAL, "dataflow" , "runMALdataflow(): Failed to create flow->done queue" ); |
| 908 | } |
| 909 | |
| 910 | flow->status = (FlowEvent)GDKzalloc((stoppc - startpc + 1) * sizeof(FlowEventRec)); |
| 911 | if (flow->status == NULL) { |
| 912 | q_destroy(flow->done); |
| 913 | GDKfree(flow); |
| 914 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 915 | } |
| 916 | size = DFLOWgraphSize(mb, startpc, stoppc); |
| 917 | size += stoppc - startpc; |
| 918 | flow->nodes = (int*)GDKzalloc(sizeof(int) * size); |
| 919 | if (flow->nodes == NULL) { |
| 920 | GDKfree(flow->status); |
| 921 | q_destroy(flow->done); |
| 922 | GDKfree(flow); |
| 923 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 924 | } |
| 925 | flow->edges = (int*)GDKzalloc(sizeof(int) * size); |
| 926 | if (flow->edges == NULL) { |
| 927 | GDKfree(flow->nodes); |
| 928 | GDKfree(flow->status); |
| 929 | q_destroy(flow->done); |
| 930 | GDKfree(flow); |
| 931 | throw(MAL, "dataflow" , SQLSTATE(HY001) MAL_MALLOC_FAIL); |
| 932 | } |
| 933 | MT_lock_init(&flow->flowlock, "flow->flowlock" ); |
| 934 | ATOMIC_PTR_INIT(&flow->error, NULL); |
| 935 | msg = DFLOWinitBlk(flow, mb, size); |
| 936 | |
| 937 | if (msg == MAL_SUCCEED) |
| 938 | msg = DFLOWscheduler(flow, &workers[i]); |
| 939 | |
| 940 | GDKfree(flow->status); |
| 941 | GDKfree(flow->edges); |
| 942 | GDKfree(flow->nodes); |
| 943 | q_destroy(flow->done); |
| 944 | MT_lock_destroy(&flow->flowlock); |
| 945 | ATOMIC_PTR_DESTROY(&flow->error); |
| 946 | GDKfree(flow); |
| 947 | |
| 948 | /* we created one worker, now tell one worker to exit again */ |
| 949 | MT_lock_set(&todo->l); |
| 950 | todo->exitcount++; |
| 951 | MT_lock_unset(&todo->l); |
| 952 | MT_sema_up(&todo->s); |
| 953 | |
| 954 | return msg; |
| 955 | } |
| 956 | |
| 957 | str |
| 958 | deblockdataflow( Client cntxt, MalBlkPtr mb, MalStkPtr stk, InstrPtr pci) |
| 959 | { |
| 960 | int *ret = getArgReference_int(stk,pci,0); |
| 961 | int *val = getArgReference_int(stk,pci,1); |
| 962 | (void) cntxt; |
| 963 | (void) mb; |
| 964 | *ret = *val; |
| 965 | return MAL_SUCCEED; |
| 966 | } |
| 967 | |
| 968 | static void |
| 969 | stopMALdataflow(void) |
| 970 | { |
| 971 | int i; |
| 972 | |
| 973 | ATOMIC_SET(&exiting, 1); |
| 974 | if (todo) { |
| 975 | MT_lock_set(&dataflowLock); |
| 976 | for (i = 0; i < THREADS; i++) |
| 977 | if (workers[i].flag == RUNNING) |
| 978 | MT_sema_up(&todo->s); |
| 979 | for (i = 0; i < THREADS; i++) { |
| 980 | if (workers[i].flag != IDLE && workers[i].flag != JOINING) { |
| 981 | workers[i].flag = JOINING; |
| 982 | MT_lock_unset(&dataflowLock); |
| 983 | MT_join_thread(workers[i].id); |
| 984 | MT_lock_set(&dataflowLock); |
| 985 | } |
| 986 | workers[i].flag = IDLE; |
| 987 | MT_sema_destroy(&workers[i].s); |
| 988 | } |
| 989 | MT_lock_unset(&dataflowLock); |
| 990 | } |
| 991 | } |
| 992 | |