| 1 | #include "mupdf/fitz.h" |
| 2 | #include "draw-imp.h" |
| 3 | |
| 4 | #include <assert.h> |
| 5 | #include <math.h> |
| 6 | |
| 7 | enum { MAXN = 2 + FZ_MAX_COLORS }; |
| 8 | |
| 9 | static void paint_scan(fz_pixmap *FZ_RESTRICT pix, int y, int fx0, int fx1, int cx0, int cx1, const int *FZ_RESTRICT v0, const int *FZ_RESTRICT v1, int n) |
| 10 | { |
| 11 | unsigned char *p; |
| 12 | int c[MAXN], dc[MAXN]; |
| 13 | int k, w; |
| 14 | float div, mul; |
| 15 | int x0, x1, pa; |
| 16 | |
| 17 | /* Ensure that fx0 is left edge, and fx1 is right */ |
| 18 | if (fx0 > fx1) |
| 19 | { |
| 20 | const int *v; |
| 21 | int t = fx0; fx0 = fx1; fx1 = t; |
| 22 | v = v0; v0 = v1; v1 = v; |
| 23 | } |
| 24 | else if (fx0 == fx1) |
| 25 | return; |
| 26 | |
| 27 | /* Clip fx0, fx1 to range */ |
| 28 | if (fx0 >= cx1) |
| 29 | return; |
| 30 | if (fx1 <= cx0) |
| 31 | return; |
| 32 | x0 = (fx0 > cx0 ? fx0 : cx0); |
| 33 | x1 = (fx1 < cx1 ? fx1 : cx1); |
| 34 | |
| 35 | w = x1 - x0; |
| 36 | if (w == 0) |
| 37 | return; |
| 38 | |
| 39 | div = 1.0f / (fx1 - fx0); |
| 40 | mul = (x0 - fx0); |
| 41 | for (k = 0; k < n; k++) |
| 42 | { |
| 43 | dc[k] = (v1[k] - v0[k]) * div; |
| 44 | c[k] = v0[k] + dc[k] * mul; |
| 45 | } |
| 46 | |
| 47 | p = pix->samples + ((x0 - pix->x) * pix->n) + ((y - pix->y) * pix->stride); |
| 48 | pa = pix->alpha; |
| 49 | do |
| 50 | { |
| 51 | for (k = 0; k < n; k++) |
| 52 | { |
| 53 | *p++ = c[k]>>16; |
| 54 | c[k] += dc[k]; |
| 55 | } |
| 56 | if (pa) |
| 57 | *p++ = 255; |
| 58 | } |
| 59 | while (--w); |
| 60 | } |
| 61 | |
| 62 | typedef struct edge_data_s edge_data; |
| 63 | |
| 64 | struct edge_data_s |
| 65 | { |
| 66 | float x; |
| 67 | float dx; |
| 68 | int v[2*MAXN]; |
| 69 | }; |
| 70 | |
| 71 | static inline void prepare_edge(const float *FZ_RESTRICT vtop, const float *FZ_RESTRICT vbot, edge_data *FZ_RESTRICT edge, float y, int n) |
| 72 | { |
| 73 | float r = 1.0f / (vbot[1] - vtop[1]); |
| 74 | float t = (y - vtop[1]) * r; |
| 75 | float diff = vbot[0] - vtop[0]; |
| 76 | int i; |
| 77 | |
| 78 | edge->x = vtop[0] + diff * t; |
| 79 | edge->dx = diff * r; |
| 80 | |
| 81 | for (i = 0; i < n; i++) |
| 82 | { |
| 83 | diff = vbot[i+2] - vtop[i+2]; |
| 84 | edge->v[i] = (int)(65536.0f * (vtop[i+2] + diff * t)); |
| 85 | edge->v[i+MAXN] = (int)(65536.0f * diff * r); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | static inline void step_edge(edge_data *edge, int n) |
| 90 | { |
| 91 | int i; |
| 92 | |
| 93 | edge->x += edge->dx; |
| 94 | |
| 95 | for (i = 0; i < n; i++) |
| 96 | { |
| 97 | edge->v[i] += edge->v[i + MAXN]; |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | static void |
| 102 | fz_paint_triangle(fz_pixmap *pix, float *v[3], int n, fz_irect bbox) |
| 103 | { |
| 104 | edge_data e0, e1; |
| 105 | int top, mid, bot; |
| 106 | float y, y1; |
| 107 | int minx, maxx; |
| 108 | |
| 109 | top = bot = 0; |
| 110 | if (v[1][1] < v[0][1]) top = 1; else bot = 1; |
| 111 | if (v[2][1] < v[top][1]) top = 2; |
| 112 | else if (v[2][1] > v[bot][1]) bot = 2; |
| 113 | if (v[top][1] == v[bot][1]) return; |
| 114 | |
| 115 | /* Test if the triangle is completely outside the scissor rect */ |
| 116 | if (v[bot][1] < bbox.y0) return; |
| 117 | if (v[top][1] > bbox.y1) return; |
| 118 | |
| 119 | /* Magic! Ensure that mid/top/bot are all different */ |
| 120 | mid = 3^top^bot; |
| 121 | |
| 122 | assert(top != bot && top != mid && mid != bot); |
| 123 | |
| 124 | minx = fz_maxi(bbox.x0, pix->x); |
| 125 | maxx = fz_mini(bbox.x1, pix->x + pix->w); |
| 126 | |
| 127 | y = ceilf(fz_max(bbox.y0, v[top][1])); |
| 128 | y1 = ceilf(fz_min(bbox.y1, v[mid][1])); |
| 129 | |
| 130 | n -= 2; |
| 131 | prepare_edge(v[top], v[bot], &e0, y, n); |
| 132 | if (y < y1) |
| 133 | { |
| 134 | prepare_edge(v[top], v[mid], &e1, y, n); |
| 135 | |
| 136 | do |
| 137 | { |
| 138 | paint_scan(pix, y, (int)e0.x, (int)e1.x, minx, maxx, &e0.v[0], &e1.v[0], n); |
| 139 | step_edge(&e0, n); |
| 140 | step_edge(&e1, n); |
| 141 | y ++; |
| 142 | } |
| 143 | while (y < y1); |
| 144 | } |
| 145 | |
| 146 | y1 = ceilf(fz_min(bbox.y1, v[bot][1])); |
| 147 | if (y < y1) |
| 148 | { |
| 149 | prepare_edge(v[mid], v[bot], &e1, y, n); |
| 150 | |
| 151 | do |
| 152 | { |
| 153 | paint_scan(pix, y, (int)e0.x, (int)e1.x, minx, maxx, &e0.v[0], &e1.v[0], n); |
| 154 | y ++; |
| 155 | if (y >= y1) |
| 156 | break; |
| 157 | step_edge(&e0, n); |
| 158 | step_edge(&e1, n); |
| 159 | } |
| 160 | while (1); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | struct paint_tri_data |
| 165 | { |
| 166 | const fz_shade *shade; |
| 167 | fz_pixmap *dest; |
| 168 | fz_irect bbox; |
| 169 | fz_color_converter cc; |
| 170 | }; |
| 171 | |
| 172 | static void |
| 173 | prepare_mesh_vertex(fz_context *ctx, void *arg, fz_vertex *v, const float *input) |
| 174 | { |
| 175 | struct paint_tri_data *ptd = (struct paint_tri_data *)arg; |
| 176 | const fz_shade *shade = ptd->shade; |
| 177 | fz_pixmap *dest = ptd->dest; |
| 178 | float *output = v->c; |
| 179 | int i; |
| 180 | |
| 181 | if (shade->use_function) |
| 182 | output[0] = input[0] * 255; |
| 183 | else |
| 184 | { |
| 185 | int n = fz_colorspace_n(ctx, dest->colorspace); |
| 186 | int a = dest->alpha; |
| 187 | int m = dest->n - a; |
| 188 | if (ptd->cc.convert) |
| 189 | ptd->cc.convert(ctx, &ptd->cc, input, output); |
| 190 | for (i = 0; i < n; i++) |
| 191 | output[i] *= 255; |
| 192 | for (; i < m; i++) |
| 193 | output[i] = 0; |
| 194 | if (a) |
| 195 | output[i] = 255; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | static void |
| 200 | do_paint_tri(fz_context *ctx, void *arg, fz_vertex *av, fz_vertex *bv, fz_vertex *cv) |
| 201 | { |
| 202 | struct paint_tri_data *ptd = (struct paint_tri_data *)arg; |
| 203 | float *vertices[3]; |
| 204 | fz_pixmap *dest; |
| 205 | |
| 206 | vertices[0] = (float *)av; |
| 207 | vertices[1] = (float *)bv; |
| 208 | vertices[2] = (float *)cv; |
| 209 | |
| 210 | dest = ptd->dest; |
| 211 | fz_paint_triangle(dest, vertices, 2 + dest->n - dest->alpha, ptd->bbox); |
| 212 | } |
| 213 | |
| 214 | /* |
| 215 | Render a shade to a given pixmap. |
| 216 | |
| 217 | shade: The shade to paint. |
| 218 | |
| 219 | override_cs: NULL, or colorspace to override the shades |
| 220 | inbuilt colorspace. |
| 221 | |
| 222 | ctm: The transform to apply. |
| 223 | |
| 224 | dest: The pixmap to render into. |
| 225 | |
| 226 | color_params: The color rendering settings |
| 227 | |
| 228 | bbox: Pointer to a bounding box to limit the rendering |
| 229 | of the shade. |
| 230 | |
| 231 | op: NULL, or pointer to overprint bitmap. |
| 232 | */ |
| 233 | void |
| 234 | fz_paint_shade(fz_context *ctx, fz_shade *shade, fz_colorspace *colorspace, fz_matrix ctm, fz_pixmap *dest, fz_color_params color_params, fz_irect bbox, const fz_overprint *eop) |
| 235 | { |
| 236 | unsigned char clut[256][FZ_MAX_COLORS]; |
| 237 | fz_pixmap *temp = NULL; |
| 238 | fz_pixmap *conv = NULL; |
| 239 | fz_color_converter cc = { 0 }; |
| 240 | float color[FZ_MAX_COLORS]; |
| 241 | struct paint_tri_data ptd = { 0 }; |
| 242 | int i, k; |
| 243 | fz_matrix local_ctm; |
| 244 | |
| 245 | fz_var(temp); |
| 246 | fz_var(conv); |
| 247 | |
| 248 | if (colorspace == NULL) |
| 249 | colorspace = shade->colorspace; |
| 250 | |
| 251 | fz_try(ctx) |
| 252 | { |
| 253 | local_ctm = fz_concat(shade->matrix, ctm); |
| 254 | |
| 255 | if (shade->use_function) |
| 256 | { |
| 257 | /* We need to use alpha = 1 here, because the shade might not fill the bbox. */ |
| 258 | temp = fz_new_pixmap_with_bbox(ctx, fz_device_gray(ctx), bbox, NULL, 1); |
| 259 | fz_clear_pixmap(ctx, temp); |
| 260 | } |
| 261 | else |
| 262 | { |
| 263 | temp = dest; |
| 264 | } |
| 265 | |
| 266 | ptd.dest = temp; |
| 267 | ptd.shade = shade; |
| 268 | ptd.bbox = bbox; |
| 269 | |
| 270 | if (temp->colorspace) |
| 271 | fz_init_cached_color_converter(ctx, &ptd.cc, colorspace, temp->colorspace, NULL, color_params); |
| 272 | |
| 273 | fz_process_shade(ctx, shade, local_ctm, fz_rect_from_irect(bbox), prepare_mesh_vertex, &do_paint_tri, &ptd); |
| 274 | |
| 275 | if (shade->use_function) |
| 276 | { |
| 277 | /* If the shade is defined in a deviceN (or separation, |
| 278 | * which is the same internally to MuPDF) space, then |
| 279 | * we need to render it in deviceN before painting it |
| 280 | * to the destination. If not, we are free to render it |
| 281 | * direct to the target. */ |
| 282 | if (fz_colorspace_is_device_n(ctx, colorspace)) |
| 283 | { |
| 284 | /* We've drawn it as greyscale, with the values being |
| 285 | * the input to the function. Now make DevN version |
| 286 | * by mapping that greyscale through the function. |
| 287 | * This seems inefficient, but it's actually required, |
| 288 | * because we need to apply the function lookup POST |
| 289 | * interpolation in the do_paint_tri routines, not |
| 290 | * before it to avoid problems with some test files |
| 291 | * (tests/GhentV3.0/061_Shading_x1a.pdf for example). |
| 292 | */ |
| 293 | unsigned char *s = temp->samples; |
| 294 | unsigned char *d; |
| 295 | int hh = temp->h; |
| 296 | int n = fz_colorspace_n(ctx, colorspace); |
| 297 | |
| 298 | /* alpha = 1 here for the same reason as earlier */ |
| 299 | conv = fz_new_pixmap_with_bbox(ctx, colorspace, bbox, NULL, 1); |
| 300 | d = conv->samples; |
| 301 | while (hh--) |
| 302 | { |
| 303 | int len = temp->w; |
| 304 | while (len--) |
| 305 | { |
| 306 | int v = *s++; |
| 307 | int a = *s++; |
| 308 | const float *f = shade->function[v]; |
| 309 | for (k = 0; k < n; k++) |
| 310 | *d++ = fz_clampi(255 * f[k], 0, 255); |
| 311 | *d++ = a; |
| 312 | } |
| 313 | d += conv->stride - conv->w * conv->n; |
| 314 | s += temp->stride - temp->w * temp->n; |
| 315 | } |
| 316 | fz_drop_pixmap(ctx, temp); |
| 317 | temp = conv; |
| 318 | conv = NULL; |
| 319 | |
| 320 | /* Now Change from our device_n colorspace into the target colorspace/spots. */ |
| 321 | conv = fz_clone_pixmap_area_with_different_seps(ctx, temp, NULL, dest->colorspace, dest->seps, color_params, NULL); |
| 322 | } |
| 323 | else |
| 324 | { |
| 325 | unsigned char *s = temp->samples; |
| 326 | unsigned char *d; |
| 327 | int da; |
| 328 | int sa = temp->alpha; |
| 329 | int hh = temp->h; |
| 330 | int cn = fz_colorspace_n(ctx, colorspace); |
| 331 | int m = dest->n - dest->alpha; |
| 332 | int n = fz_colorspace_n(ctx, dest->colorspace); |
| 333 | |
| 334 | if (dest->colorspace) |
| 335 | { |
| 336 | fz_find_color_converter(ctx, &cc, colorspace, dest->colorspace, NULL, color_params); |
| 337 | for (i = 0; i < 256; i++) |
| 338 | { |
| 339 | cc.convert(ctx, &cc, shade->function[i], color); |
| 340 | for (k = 0; k < n; k++) |
| 341 | clut[i][k] = color[k] * 255; |
| 342 | for (; k < m; k++) |
| 343 | clut[i][k] = 0; |
| 344 | clut[i][k] = shade->function[i][cn] * 255; |
| 345 | } |
| 346 | fz_drop_color_converter(ctx, &cc); |
| 347 | } |
| 348 | else |
| 349 | { |
| 350 | for (i = 0; i < 256; i++) |
| 351 | { |
| 352 | for (k = 0; k < m; k++) |
| 353 | clut[i][k] = 0; |
| 354 | clut[i][k] = shade->function[i][cn] * 255; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | conv = fz_new_pixmap_with_bbox(ctx, dest->colorspace, bbox, dest->seps, 1); |
| 359 | d = conv->samples; |
| 360 | da = conv->alpha; |
| 361 | while (hh--) |
| 362 | { |
| 363 | int len = temp->w; |
| 364 | while (len--) |
| 365 | { |
| 366 | int v = *s++; |
| 367 | int a = (da ? clut[v][conv->n - 1] : 255); |
| 368 | if (sa) |
| 369 | a = fz_mul255(*s++, a); |
| 370 | for (k = 0; k < conv->n - da; k++) |
| 371 | *d++ = fz_mul255(clut[v][k], a); |
| 372 | if (da) |
| 373 | *d++ = a; |
| 374 | } |
| 375 | d += conv->stride - conv->w * conv->n; |
| 376 | s += temp->stride - temp->w * temp->n; |
| 377 | } |
| 378 | } |
| 379 | fz_paint_pixmap_with_overprint(dest, conv, eop); |
| 380 | } |
| 381 | } |
| 382 | fz_always(ctx) |
| 383 | { |
| 384 | if (shade->use_function) |
| 385 | { |
| 386 | fz_drop_color_converter(ctx, &cc); |
| 387 | fz_drop_pixmap(ctx, temp); |
| 388 | fz_drop_pixmap(ctx, conv); |
| 389 | } |
| 390 | fz_fin_cached_color_converter(ctx, &ptd.cc); |
| 391 | } |
| 392 | fz_catch(ctx) |
| 393 | fz_rethrow(ctx); |
| 394 | } |
| 395 | |