1 | #include "mupdf/fitz.h" |
2 | |
3 | #include <string.h> |
4 | #include <math.h> |
5 | |
6 | typedef struct fz_mesh_processor_s fz_mesh_processor; |
7 | |
8 | struct fz_mesh_processor_s { |
9 | fz_shade *shade; |
10 | fz_shade_prepare_fn *prepare; |
11 | fz_shade_process_fn *process; |
12 | void *process_arg; |
13 | int ncomp; |
14 | }; |
15 | |
16 | #define SWAP(a,b) {fz_vertex *t = (a); (a) = (b); (b) = t;} |
17 | |
18 | static inline void |
19 | paint_tri(fz_context *ctx, fz_mesh_processor *painter, fz_vertex *v0, fz_vertex *v1, fz_vertex *v2) |
20 | { |
21 | if (painter->process) |
22 | { |
23 | painter->process(ctx, painter->process_arg, v0, v1, v2); |
24 | } |
25 | } |
26 | |
27 | static inline void |
28 | paint_quad(fz_context *ctx, fz_mesh_processor *painter, fz_vertex *v0, fz_vertex *v1, fz_vertex *v2, fz_vertex *v3) |
29 | { |
30 | /* For a quad with corners (in clockwise or anticlockwise order) are |
31 | * v0, v1, v2, v3. We can choose to split in in various different ways. |
32 | * Arbitrarily we can pick v0, v1, v3 for the first triangle. We then |
33 | * have to choose between v1, v2, v3 or v3, v2, v1 (or their equivalent |
34 | * rotations) for the second triangle. |
35 | * |
36 | * v1, v2, v3 has the property that both triangles share the same |
37 | * winding (useful if we were ever doing simple back face culling). |
38 | * |
39 | * v3, v2, v1 has the property that all the 'shared' edges (both |
40 | * within this quad, and with adjacent quads) are walked in the same |
41 | * direction every time. This can be useful in that depending on the |
42 | * implementation/rounding etc walking from A -> B can hit different |
43 | * pixels than walking from B->A. |
44 | * |
45 | * In the event neither of these things matter at the moment, as all |
46 | * the process functions where it matters order the edges from top to |
47 | * bottom before walking them. |
48 | */ |
49 | if (painter->process) |
50 | { |
51 | painter->process(ctx, painter->process_arg, v0, v1, v3); |
52 | painter->process(ctx, painter->process_arg, v3, v2, v1); |
53 | } |
54 | } |
55 | |
56 | static inline void |
57 | fz_prepare_color(fz_context *ctx, fz_mesh_processor *painter, fz_vertex *v, float *c) |
58 | { |
59 | if (painter->prepare) |
60 | { |
61 | painter->prepare(ctx, painter->process_arg, v, c); |
62 | } |
63 | } |
64 | |
65 | static inline void |
66 | fz_prepare_vertex(fz_context *ctx, fz_mesh_processor *painter, fz_vertex *v, fz_matrix ctm, float x, float y, float *c) |
67 | { |
68 | v->p = fz_transform_point_xy(x, y, ctm); |
69 | if (painter->prepare) |
70 | { |
71 | painter->prepare(ctx, painter->process_arg, v, c); |
72 | } |
73 | } |
74 | |
75 | static void |
76 | fz_process_shade_type1(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
77 | { |
78 | float *p = shade->u.f.fn_vals; |
79 | int xdivs = shade->u.f.xdivs; |
80 | int ydivs = shade->u.f.ydivs; |
81 | float x0 = shade->u.f.domain[0][0]; |
82 | float y0 = shade->u.f.domain[0][1]; |
83 | float x1 = shade->u.f.domain[1][0]; |
84 | float y1 = shade->u.f.domain[1][1]; |
85 | int xx, yy; |
86 | float y, yn, x; |
87 | fz_vertex vs[2][2]; |
88 | fz_vertex *v = vs[0]; |
89 | fz_vertex *vn = vs[1]; |
90 | int n = fz_colorspace_n(ctx, shade->colorspace); |
91 | |
92 | ctm = fz_concat(shade->u.f.matrix, ctm); |
93 | |
94 | y = y0; |
95 | for (yy = 0; yy < ydivs; yy++) |
96 | { |
97 | yn = y0 + (y1 - y0) * (yy + 1) / ydivs; |
98 | |
99 | x = x0; |
100 | |
101 | fz_prepare_vertex(ctx, painter, &v[0], ctm, x, y, p); |
102 | p += n; |
103 | fz_prepare_vertex(ctx, painter, &v[1], ctm, x, yn, p + xdivs * n); |
104 | |
105 | for (xx = 0; xx < xdivs; xx++) |
106 | { |
107 | x = x0 + (x1 - x0) * (xx + 1) / xdivs; |
108 | |
109 | fz_prepare_vertex(ctx, painter, &vn[0], ctm, x, y, p); |
110 | p += n; |
111 | fz_prepare_vertex(ctx, painter, &vn[1], ctm, x, yn, p + xdivs * n); |
112 | |
113 | paint_quad(ctx, painter, &v[0], &vn[0], &vn[1], &v[1]); |
114 | SWAP(v,vn); |
115 | } |
116 | y = yn; |
117 | } |
118 | } |
119 | |
120 | #define HUGENUM 32000 /* how far to extend linear/radial shadings */ |
121 | |
122 | static fz_point |
123 | fz_point_on_circle(fz_point p, float r, float theta) |
124 | { |
125 | p.x = p.x + cosf(theta) * r; |
126 | p.y = p.y + sinf(theta) * r; |
127 | return p; |
128 | } |
129 | |
130 | static void |
131 | fz_process_shade_type2(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter, fz_rect scissor) |
132 | { |
133 | fz_point p0, p1, dir; |
134 | fz_vertex v0, v1, v2, v3; |
135 | fz_vertex e0, e1; |
136 | float theta; |
137 | float zero = 0; |
138 | float one = 1; |
139 | float r; |
140 | |
141 | p0.x = shade->u.l_or_r.coords[0][0]; |
142 | p0.y = shade->u.l_or_r.coords[0][1]; |
143 | p1.x = shade->u.l_or_r.coords[1][0]; |
144 | p1.y = shade->u.l_or_r.coords[1][1]; |
145 | dir.x = p0.y - p1.y; |
146 | dir.y = p1.x - p0.x; |
147 | p0 = fz_transform_point(p0, ctm); |
148 | p1 = fz_transform_point(p1, ctm); |
149 | dir = fz_transform_vector(dir, ctm); |
150 | theta = atan2f(dir.y, dir.x); |
151 | |
152 | if (fz_is_infinite_rect(scissor)) { |
153 | r = HUGENUM; /* Not ideal, but it'll do for now */ |
154 | } else { |
155 | float x = p0.x - scissor.x0; |
156 | float y = p0.y - scissor.y0; |
157 | if (x < scissor.x1 - p0.x) |
158 | x = scissor.x1 - p0.x; |
159 | if (x < p0.x - scissor.x1) |
160 | x = p0.x - scissor.x1; |
161 | if (x < scissor.x1 - p1.x) |
162 | x = scissor.x1 - p1.x; |
163 | if (y < scissor.y1 - p0.y) |
164 | y = scissor.y1 - p0.y; |
165 | if (y < p0.y - scissor.y1) |
166 | y = p0.y - scissor.y1; |
167 | if (y < scissor.y1 - p1.y) |
168 | y = scissor.y1 - p1.y; |
169 | r = x+y; |
170 | } |
171 | v0.p = fz_point_on_circle(p0, r, theta); |
172 | v1.p = fz_point_on_circle(p1, r, theta); |
173 | v2.p.x = 2*p0.x - v0.p.x; |
174 | v2.p.y = 2*p0.y - v0.p.y; |
175 | v3.p.x = 2*p1.x - v1.p.x; |
176 | v3.p.y = 2*p1.y - v1.p.y; |
177 | |
178 | fz_prepare_color(ctx, painter, &v0, &zero); |
179 | fz_prepare_color(ctx, painter, &v1, &one); |
180 | fz_prepare_color(ctx, painter, &v2, &zero); |
181 | fz_prepare_color(ctx, painter, &v3, &one); |
182 | |
183 | paint_quad(ctx, painter, &v0, &v2, &v3, &v1); |
184 | |
185 | if (shade->u.l_or_r.extend[0] || shade->u.l_or_r.extend[1]) { |
186 | float d = fabsf(p1.x - p0.x); |
187 | float e = fabsf(p1.y - p0.y); |
188 | if (d < e) |
189 | d = e; |
190 | if (d != 0) |
191 | r /= d; |
192 | } |
193 | if (shade->u.l_or_r.extend[0]) |
194 | { |
195 | e0.p.x = v0.p.x - (p1.x - p0.x) * r; |
196 | e0.p.y = v0.p.y - (p1.y - p0.y) * r; |
197 | fz_prepare_color(ctx, painter, &e0, &zero); |
198 | |
199 | e1.p.x = v2.p.x - (p1.x - p0.x) * r; |
200 | e1.p.y = v2.p.y - (p1.y - p0.y) * r; |
201 | fz_prepare_color(ctx, painter, &e1, &zero); |
202 | |
203 | paint_quad(ctx, painter, &e0, &v0, &v2, &e1); |
204 | } |
205 | |
206 | if (shade->u.l_or_r.extend[1]) |
207 | { |
208 | e0.p.x = v1.p.x + (p1.x - p0.x) * r; |
209 | e0.p.y = v1.p.y + (p1.y - p0.y) * r; |
210 | fz_prepare_color(ctx, painter, &e0, &one); |
211 | |
212 | e1.p.x = v3.p.x + (p1.x - p0.x) * r; |
213 | e1.p.y = v3.p.y + (p1.y - p0.y) * r; |
214 | fz_prepare_color(ctx, painter, &e1, &one); |
215 | |
216 | paint_quad(ctx, painter, &e0, &v1, &v3, &e1); |
217 | } |
218 | } |
219 | |
220 | static void |
221 | fz_paint_annulus(fz_context *ctx, fz_matrix ctm, |
222 | fz_point p0, float r0, float c0, |
223 | fz_point p1, float r1, float c1, |
224 | int count, |
225 | fz_mesh_processor *painter) |
226 | { |
227 | fz_vertex t0, t1, t2, t3, b0, b1, b2, b3; |
228 | float theta, step, a, b; |
229 | int i; |
230 | |
231 | theta = atan2f(p1.y - p0.y, p1.x - p0.x); |
232 | step = FZ_PI / count; |
233 | |
234 | a = 0; |
235 | for (i = 1; i <= count; i++) |
236 | { |
237 | b = i * step; |
238 | |
239 | t0.p = fz_transform_point(fz_point_on_circle(p0, r0, theta + a), ctm); |
240 | t1.p = fz_transform_point(fz_point_on_circle(p0, r0, theta + b), ctm); |
241 | t2.p = fz_transform_point(fz_point_on_circle(p1, r1, theta + a), ctm); |
242 | t3.p = fz_transform_point(fz_point_on_circle(p1, r1, theta + b), ctm); |
243 | b0.p = fz_transform_point(fz_point_on_circle(p0, r0, theta - a), ctm); |
244 | b1.p = fz_transform_point(fz_point_on_circle(p0, r0, theta - b), ctm); |
245 | b2.p = fz_transform_point(fz_point_on_circle(p1, r1, theta - a), ctm); |
246 | b3.p = fz_transform_point(fz_point_on_circle(p1, r1, theta - b), ctm); |
247 | |
248 | fz_prepare_color(ctx, painter, &t0, &c0); |
249 | fz_prepare_color(ctx, painter, &t1, &c0); |
250 | fz_prepare_color(ctx, painter, &t2, &c1); |
251 | fz_prepare_color(ctx, painter, &t3, &c1); |
252 | fz_prepare_color(ctx, painter, &b0, &c0); |
253 | fz_prepare_color(ctx, painter, &b1, &c0); |
254 | fz_prepare_color(ctx, painter, &b2, &c1); |
255 | fz_prepare_color(ctx, painter, &b3, &c1); |
256 | |
257 | paint_quad(ctx, painter, &t0, &t2, &t3, &t1); |
258 | paint_quad(ctx, painter, &b0, &b2, &b3, &b1); |
259 | |
260 | a = b; |
261 | } |
262 | } |
263 | |
264 | static void |
265 | fz_process_shade_type3(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
266 | { |
267 | fz_point p0, p1; |
268 | float r0, r1; |
269 | fz_point e; |
270 | float er, rs; |
271 | int count; |
272 | |
273 | p0.x = shade->u.l_or_r.coords[0][0]; |
274 | p0.y = shade->u.l_or_r.coords[0][1]; |
275 | r0 = shade->u.l_or_r.coords[0][2]; |
276 | |
277 | p1.x = shade->u.l_or_r.coords[1][0]; |
278 | p1.y = shade->u.l_or_r.coords[1][1]; |
279 | r1 = shade->u.l_or_r.coords[1][2]; |
280 | |
281 | /* number of segments for a half-circle */ |
282 | count = 4 * sqrtf(fz_matrix_expansion(ctm) * fz_max(r0, r1)); |
283 | if (count < 3) |
284 | count = 3; |
285 | if (count > 1024) |
286 | count = 1024; |
287 | |
288 | if (shade->u.l_or_r.extend[0]) |
289 | { |
290 | if (r0 < r1) |
291 | rs = r0 / (r0 - r1); |
292 | else |
293 | rs = -HUGENUM; |
294 | |
295 | e.x = p0.x + (p1.x - p0.x) * rs; |
296 | e.y = p0.y + (p1.y - p0.y) * rs; |
297 | er = r0 + (r1 - r0) * rs; |
298 | |
299 | fz_paint_annulus(ctx, ctm, e, er, 0, p0, r0, 0, count, painter); |
300 | } |
301 | |
302 | fz_paint_annulus(ctx, ctm, p0, r0, 0, p1, r1, 1, count, painter); |
303 | |
304 | if (shade->u.l_or_r.extend[1]) |
305 | { |
306 | if (r0 > r1) |
307 | rs = r1 / (r1 - r0); |
308 | else |
309 | rs = -HUGENUM; |
310 | |
311 | e.x = p1.x + (p0.x - p1.x) * rs; |
312 | e.y = p1.y + (p0.y - p1.y) * rs; |
313 | er = r1 + (r0 - r1) * rs; |
314 | |
315 | fz_paint_annulus(ctx, ctm, p1, r1, 1, e, er, 1, count, painter); |
316 | } |
317 | } |
318 | |
319 | static inline float read_sample(fz_context *ctx, fz_stream *stream, int bits, float min, float max) |
320 | { |
321 | /* we use pow(2,x) because (1<<x) would overflow the math on 32-bit samples */ |
322 | float bitscale = 1 / (powf(2, bits) - 1); |
323 | return min + fz_read_bits(ctx, stream, bits) * (max - min) * bitscale; |
324 | } |
325 | |
326 | static void |
327 | fz_process_shade_type4(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
328 | { |
329 | fz_stream *stream = fz_open_compressed_buffer(ctx, shade->buffer); |
330 | fz_vertex v[4]; |
331 | fz_vertex *va = &v[0]; |
332 | fz_vertex *vb = &v[1]; |
333 | fz_vertex *vc = &v[2]; |
334 | fz_vertex *vd = &v[3]; |
335 | int flag, i, ncomp = painter->ncomp; |
336 | int bpflag = shade->u.m.bpflag; |
337 | int bpcoord = shade->u.m.bpcoord; |
338 | int bpcomp = shade->u.m.bpcomp; |
339 | float x0 = shade->u.m.x0; |
340 | float x1 = shade->u.m.x1; |
341 | float y0 = shade->u.m.y0; |
342 | float y1 = shade->u.m.y1; |
343 | const float *c0 = shade->u.m.c0; |
344 | const float *c1 = shade->u.m.c1; |
345 | float x, y, c[FZ_MAX_COLORS]; |
346 | int first_triangle = 1; |
347 | |
348 | fz_try(ctx) |
349 | { |
350 | while (!fz_is_eof_bits(ctx, stream)) |
351 | { |
352 | flag = fz_read_bits(ctx, stream, bpflag); |
353 | x = read_sample(ctx, stream, bpcoord, x0, x1); |
354 | y = read_sample(ctx, stream, bpcoord, y0, y1); |
355 | for (i = 0; i < ncomp; i++) |
356 | c[i] = read_sample(ctx, stream, bpcomp, c0[i], c1[i]); |
357 | fz_prepare_vertex(ctx, painter, vd, ctm, x, y, c); |
358 | |
359 | if (first_triangle) |
360 | { |
361 | if (flag != 0) |
362 | { |
363 | fz_warn(ctx, "ignoring non-zero edge flags for first vertex in mesh" ); |
364 | flag = 0; |
365 | } |
366 | first_triangle = 0; |
367 | } |
368 | |
369 | switch (flag) |
370 | { |
371 | default: |
372 | fz_warn(ctx, "ignoring out of range edge flag in mesh" ); |
373 | /* fallthrough */ |
374 | |
375 | case 0: /* start new triangle */ |
376 | SWAP(va, vd); |
377 | |
378 | fz_read_bits(ctx, stream, bpflag); |
379 | x = read_sample(ctx, stream, bpcoord, x0, x1); |
380 | y = read_sample(ctx, stream, bpcoord, y0, y1); |
381 | for (i = 0; i < ncomp; i++) |
382 | c[i] = read_sample(ctx, stream, bpcomp, c0[i], c1[i]); |
383 | fz_prepare_vertex(ctx, painter, vb, ctm, x, y, c); |
384 | |
385 | fz_read_bits(ctx, stream, bpflag); |
386 | x = read_sample(ctx, stream, bpcoord, x0, x1); |
387 | y = read_sample(ctx, stream, bpcoord, y0, y1); |
388 | for (i = 0; i < ncomp; i++) |
389 | c[i] = read_sample(ctx, stream, bpcomp, c0[i], c1[i]); |
390 | fz_prepare_vertex(ctx, painter, vc, ctm, x, y, c); |
391 | |
392 | paint_tri(ctx, painter, va, vb, vc); |
393 | break; |
394 | |
395 | case 1: /* Vb, Vc, Vd */ |
396 | SWAP(va, vb); |
397 | SWAP(vb, vc); |
398 | SWAP(vc, vd); |
399 | paint_tri(ctx, painter, va, vb, vc); |
400 | break; |
401 | |
402 | case 2: /* Va, Vc, Vd */ |
403 | SWAP(vb, vc); |
404 | SWAP(vc, vd); |
405 | paint_tri(ctx, painter, va, vb, vc); |
406 | break; |
407 | } |
408 | } |
409 | } |
410 | fz_always(ctx) |
411 | { |
412 | fz_drop_stream(ctx, stream); |
413 | } |
414 | fz_catch(ctx) |
415 | { |
416 | fz_rethrow(ctx); |
417 | } |
418 | } |
419 | |
420 | static void |
421 | fz_process_shade_type5(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
422 | { |
423 | fz_stream *stream = fz_open_compressed_buffer(ctx, shade->buffer); |
424 | fz_vertex *buf = NULL; |
425 | fz_vertex *ref = NULL; |
426 | int first; |
427 | int ncomp = painter->ncomp; |
428 | int i, k; |
429 | int vprow = shade->u.m.vprow; |
430 | int bpcoord = shade->u.m.bpcoord; |
431 | int bpcomp = shade->u.m.bpcomp; |
432 | float x0 = shade->u.m.x0; |
433 | float x1 = shade->u.m.x1; |
434 | float y0 = shade->u.m.y0; |
435 | float y1 = shade->u.m.y1; |
436 | const float *c0 = shade->u.m.c0; |
437 | const float *c1 = shade->u.m.c1; |
438 | float x, y, c[FZ_MAX_COLORS]; |
439 | |
440 | fz_var(buf); |
441 | fz_var(ref); |
442 | |
443 | fz_try(ctx) |
444 | { |
445 | ref = fz_malloc_array(ctx, vprow, fz_vertex); |
446 | buf = fz_malloc_array(ctx, vprow, fz_vertex); |
447 | first = 1; |
448 | |
449 | while (!fz_is_eof_bits(ctx, stream)) |
450 | { |
451 | for (i = 0; i < vprow; i++) |
452 | { |
453 | x = read_sample(ctx, stream, bpcoord, x0, x1); |
454 | y = read_sample(ctx, stream, bpcoord, y0, y1); |
455 | for (k = 0; k < ncomp; k++) |
456 | c[k] = read_sample(ctx, stream, bpcomp, c0[k], c1[k]); |
457 | fz_prepare_vertex(ctx, painter, &buf[i], ctm, x, y, c); |
458 | } |
459 | |
460 | if (!first) |
461 | for (i = 0; i < vprow - 1; i++) |
462 | paint_quad(ctx, painter, &ref[i], &ref[i+1], &buf[i+1], &buf[i]); |
463 | |
464 | SWAP(ref,buf); |
465 | first = 0; |
466 | } |
467 | } |
468 | fz_always(ctx) |
469 | { |
470 | fz_free(ctx, ref); |
471 | fz_free(ctx, buf); |
472 | fz_drop_stream(ctx, stream); |
473 | } |
474 | fz_catch(ctx) |
475 | { |
476 | fz_rethrow(ctx); |
477 | } |
478 | } |
479 | |
480 | /* Subdivide and tessellate tensor-patches */ |
481 | |
482 | typedef struct tensor_patch_s tensor_patch; |
483 | |
484 | struct tensor_patch_s |
485 | { |
486 | fz_point pole[4][4]; |
487 | float color[4][FZ_MAX_COLORS]; |
488 | }; |
489 | |
490 | static void |
491 | triangulate_patch(fz_context *ctx, fz_mesh_processor *painter, tensor_patch p) |
492 | { |
493 | fz_vertex v0, v1, v2, v3; |
494 | |
495 | v0.p = p.pole[0][0]; |
496 | v1.p = p.pole[0][3]; |
497 | v2.p = p.pole[3][3]; |
498 | v3.p = p.pole[3][0]; |
499 | |
500 | fz_prepare_color(ctx, painter, &v0, p.color[0]); |
501 | fz_prepare_color(ctx, painter, &v1, p.color[1]); |
502 | fz_prepare_color(ctx, painter, &v2, p.color[2]); |
503 | fz_prepare_color(ctx, painter, &v3, p.color[3]); |
504 | |
505 | paint_quad(ctx, painter, &v0, &v1, &v2, &v3); |
506 | } |
507 | |
508 | static inline void midcolor(float *c, float *c1, float *c2, int n) |
509 | { |
510 | int i; |
511 | for (i = 0; i < n; i++) |
512 | c[i] = (c1[i] + c2[i]) * 0.5f; |
513 | } |
514 | |
515 | static void |
516 | split_curve(fz_point *pole, fz_point *q0, fz_point *q1, int polestep) |
517 | { |
518 | /* |
519 | split bezier curve given by control points pole[0]..pole[3] |
520 | using de casteljau algo at midpoint and build two new |
521 | bezier curves q0[0]..q0[3] and q1[0]..q1[3]. all indices |
522 | should be multiplies by polestep == 1 for vertical bezier |
523 | curves in patch and == 4 for horizontal bezier curves due |
524 | to C's multi-dimensional matrix memory layout. |
525 | */ |
526 | |
527 | float x12 = (pole[1 * polestep].x + pole[2 * polestep].x) * 0.5f; |
528 | float y12 = (pole[1 * polestep].y + pole[2 * polestep].y) * 0.5f; |
529 | |
530 | q0[1 * polestep].x = (pole[0 * polestep].x + pole[1 * polestep].x) * 0.5f; |
531 | q0[1 * polestep].y = (pole[0 * polestep].y + pole[1 * polestep].y) * 0.5f; |
532 | q1[2 * polestep].x = (pole[2 * polestep].x + pole[3 * polestep].x) * 0.5f; |
533 | q1[2 * polestep].y = (pole[2 * polestep].y + pole[3 * polestep].y) * 0.5f; |
534 | |
535 | q0[2 * polestep].x = (q0[1 * polestep].x + x12) * 0.5f; |
536 | q0[2 * polestep].y = (q0[1 * polestep].y + y12) * 0.5f; |
537 | q1[1 * polestep].x = (x12 + q1[2 * polestep].x) * 0.5f; |
538 | q1[1 * polestep].y = (y12 + q1[2 * polestep].y) * 0.5f; |
539 | |
540 | q0[3 * polestep].x = (q0[2 * polestep].x + q1[1 * polestep].x) * 0.5f; |
541 | q0[3 * polestep].y = (q0[2 * polestep].y + q1[1 * polestep].y) * 0.5f; |
542 | q1[0 * polestep].x = (q0[2 * polestep].x + q1[1 * polestep].x) * 0.5f; |
543 | q1[0 * polestep].y = (q0[2 * polestep].y + q1[1 * polestep].y) * 0.5f; |
544 | |
545 | q0[0 * polestep].x = pole[0 * polestep].x; |
546 | q0[0 * polestep].y = pole[0 * polestep].y; |
547 | q1[3 * polestep].x = pole[3 * polestep].x; |
548 | q1[3 * polestep].y = pole[3 * polestep].y; |
549 | } |
550 | |
551 | static void |
552 | split_stripe(tensor_patch *p, tensor_patch *s0, tensor_patch *s1, int n) |
553 | { |
554 | /* |
555 | split all horizontal bezier curves in patch, |
556 | creating two new patches with half the width. |
557 | */ |
558 | split_curve(&p->pole[0][0], &s0->pole[0][0], &s1->pole[0][0], 4); |
559 | split_curve(&p->pole[0][1], &s0->pole[0][1], &s1->pole[0][1], 4); |
560 | split_curve(&p->pole[0][2], &s0->pole[0][2], &s1->pole[0][2], 4); |
561 | split_curve(&p->pole[0][3], &s0->pole[0][3], &s1->pole[0][3], 4); |
562 | |
563 | /* interpolate the colors for the two new patches. */ |
564 | memcpy(s0->color[0], p->color[0], n * sizeof(s0->color[0][0])); |
565 | memcpy(s0->color[1], p->color[1], n * sizeof(s0->color[1][0])); |
566 | midcolor(s0->color[2], p->color[1], p->color[2], n); |
567 | midcolor(s0->color[3], p->color[0], p->color[3], n); |
568 | |
569 | memcpy(s1->color[0], s0->color[3], n * sizeof(s1->color[0][0])); |
570 | memcpy(s1->color[1], s0->color[2], n * sizeof(s1->color[1][0])); |
571 | memcpy(s1->color[2], p->color[2], n * sizeof(s1->color[2][0])); |
572 | memcpy(s1->color[3], p->color[3], n * sizeof(s1->color[3][0])); |
573 | } |
574 | |
575 | static void |
576 | draw_stripe(fz_context *ctx, fz_mesh_processor *painter, tensor_patch *p, int depth) |
577 | { |
578 | tensor_patch s0, s1; |
579 | |
580 | /* split patch into two half-height patches */ |
581 | split_stripe(p, &s0, &s1, painter->ncomp); |
582 | |
583 | depth--; |
584 | if (depth == 0) |
585 | { |
586 | /* if no more subdividing, draw two new patches... */ |
587 | triangulate_patch(ctx, painter, s1); |
588 | triangulate_patch(ctx, painter, s0); |
589 | } |
590 | else |
591 | { |
592 | /* ...otherwise, continue subdividing. */ |
593 | draw_stripe(ctx, painter, &s1, depth); |
594 | draw_stripe(ctx, painter, &s0, depth); |
595 | } |
596 | } |
597 | |
598 | static void |
599 | split_patch(tensor_patch *p, tensor_patch *s0, tensor_patch *s1, int n) |
600 | { |
601 | /* |
602 | split all vertical bezier curves in patch, |
603 | creating two new patches with half the height. |
604 | */ |
605 | split_curve(p->pole[0], s0->pole[0], s1->pole[0], 1); |
606 | split_curve(p->pole[1], s0->pole[1], s1->pole[1], 1); |
607 | split_curve(p->pole[2], s0->pole[2], s1->pole[2], 1); |
608 | split_curve(p->pole[3], s0->pole[3], s1->pole[3], 1); |
609 | |
610 | /* interpolate the colors for the two new patches. */ |
611 | memcpy(s0->color[0], p->color[0], n * sizeof(s0->color[0][0])); |
612 | midcolor(s0->color[1], p->color[0], p->color[1], n); |
613 | midcolor(s0->color[2], p->color[2], p->color[3], n); |
614 | memcpy(s0->color[3], p->color[3], n * sizeof(s0->color[3][0])); |
615 | |
616 | memcpy(s1->color[0], s0->color[1], n * sizeof(s1->color[0][0])); |
617 | memcpy(s1->color[1], p->color[1], n * sizeof(s1->color[1][0])); |
618 | memcpy(s1->color[2], p->color[2], n * sizeof(s1->color[2][0])); |
619 | memcpy(s1->color[3], s0->color[2], n * sizeof(s1->color[3][0])); |
620 | } |
621 | |
622 | static void |
623 | draw_patch(fz_context *ctx, fz_mesh_processor *painter, tensor_patch *p, int depth, int origdepth) |
624 | { |
625 | tensor_patch s0, s1; |
626 | |
627 | /* split patch into two half-width patches */ |
628 | split_patch(p, &s0, &s1, painter->ncomp); |
629 | |
630 | depth--; |
631 | if (depth == 0) |
632 | { |
633 | /* if no more subdividing, draw two new patches... */ |
634 | draw_stripe(ctx, painter, &s0, origdepth); |
635 | draw_stripe(ctx, painter, &s1, origdepth); |
636 | } |
637 | else |
638 | { |
639 | /* ...otherwise, continue subdividing. */ |
640 | draw_patch(ctx, painter, &s0, depth, origdepth); |
641 | draw_patch(ctx, painter, &s1, depth, origdepth); |
642 | } |
643 | } |
644 | |
645 | static fz_point |
646 | compute_tensor_interior( |
647 | fz_point a, fz_point b, fz_point c, fz_point d, |
648 | fz_point e, fz_point f, fz_point g, fz_point h) |
649 | { |
650 | fz_point pt; |
651 | |
652 | /* see equations at page 330 in pdf 1.7 */ |
653 | |
654 | pt.x = -4 * a.x; |
655 | pt.x += 6 * (b.x + c.x); |
656 | pt.x += -2 * (d.x + e.x); |
657 | pt.x += 3 * (f.x + g.x); |
658 | pt.x += -1 * h.x; |
659 | pt.x /= 9; |
660 | |
661 | pt.y = -4 * a.y; |
662 | pt.y += 6 * (b.y + c.y); |
663 | pt.y += -2 * (d.y + e.y); |
664 | pt.y += 3 * (f.y + g.y); |
665 | pt.y += -1 * h.y; |
666 | pt.y /= 9; |
667 | |
668 | return pt; |
669 | } |
670 | |
671 | static void |
672 | make_tensor_patch(tensor_patch *p, int type, fz_point *pt) |
673 | { |
674 | if (type == 6) |
675 | { |
676 | /* see control point stream order at page 325 in pdf 1.7 */ |
677 | |
678 | p->pole[0][0] = pt[0]; |
679 | p->pole[0][1] = pt[1]; |
680 | p->pole[0][2] = pt[2]; |
681 | p->pole[0][3] = pt[3]; |
682 | p->pole[1][3] = pt[4]; |
683 | p->pole[2][3] = pt[5]; |
684 | p->pole[3][3] = pt[6]; |
685 | p->pole[3][2] = pt[7]; |
686 | p->pole[3][1] = pt[8]; |
687 | p->pole[3][0] = pt[9]; |
688 | p->pole[2][0] = pt[10]; |
689 | p->pole[1][0] = pt[11]; |
690 | |
691 | /* see equations at page 330 in pdf 1.7 */ |
692 | |
693 | p->pole[1][1] = compute_tensor_interior( |
694 | p->pole[0][0], p->pole[0][1], p->pole[1][0], p->pole[0][3], |
695 | p->pole[3][0], p->pole[3][1], p->pole[1][3], p->pole[3][3]); |
696 | |
697 | p->pole[1][2] = compute_tensor_interior( |
698 | p->pole[0][3], p->pole[0][2], p->pole[1][3], p->pole[0][0], |
699 | p->pole[3][3], p->pole[3][2], p->pole[1][0], p->pole[3][0]); |
700 | |
701 | p->pole[2][1] = compute_tensor_interior( |
702 | p->pole[3][0], p->pole[3][1], p->pole[2][0], p->pole[3][3], |
703 | p->pole[0][0], p->pole[0][1], p->pole[2][3], p->pole[0][3]); |
704 | |
705 | p->pole[2][2] = compute_tensor_interior( |
706 | p->pole[3][3], p->pole[3][2], p->pole[2][3], p->pole[3][0], |
707 | p->pole[0][3], p->pole[0][2], p->pole[2][0], p->pole[0][0]); |
708 | } |
709 | else if (type == 7) |
710 | { |
711 | /* see control point stream order at page 330 in pdf 1.7 */ |
712 | |
713 | p->pole[0][0] = pt[0]; |
714 | p->pole[0][1] = pt[1]; |
715 | p->pole[0][2] = pt[2]; |
716 | p->pole[0][3] = pt[3]; |
717 | p->pole[1][3] = pt[4]; |
718 | p->pole[2][3] = pt[5]; |
719 | p->pole[3][3] = pt[6]; |
720 | p->pole[3][2] = pt[7]; |
721 | p->pole[3][1] = pt[8]; |
722 | p->pole[3][0] = pt[9]; |
723 | p->pole[2][0] = pt[10]; |
724 | p->pole[1][0] = pt[11]; |
725 | p->pole[1][1] = pt[12]; |
726 | p->pole[1][2] = pt[13]; |
727 | p->pole[2][2] = pt[14]; |
728 | p->pole[2][1] = pt[15]; |
729 | } |
730 | } |
731 | |
732 | /* FIXME: Nasty */ |
733 | #define SUBDIV 3 /* how many levels to subdivide patches */ |
734 | |
735 | static void |
736 | fz_process_shade_type6(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
737 | { |
738 | fz_stream *stream = fz_open_compressed_buffer(ctx, shade->buffer); |
739 | float color_storage[2][4][FZ_MAX_COLORS]; |
740 | fz_point point_storage[2][12]; |
741 | int store = 0; |
742 | int ncomp = painter->ncomp; |
743 | int i, k; |
744 | int bpflag = shade->u.m.bpflag; |
745 | int bpcoord = shade->u.m.bpcoord; |
746 | int bpcomp = shade->u.m.bpcomp; |
747 | float x0 = shade->u.m.x0; |
748 | float x1 = shade->u.m.x1; |
749 | float y0 = shade->u.m.y0; |
750 | float y1 = shade->u.m.y1; |
751 | const float *c0 = shade->u.m.c0; |
752 | const float *c1 = shade->u.m.c1; |
753 | |
754 | fz_try(ctx) |
755 | { |
756 | float (*prevc)[FZ_MAX_COLORS] = NULL; |
757 | fz_point *prevp = NULL; |
758 | while (!fz_is_eof_bits(ctx, stream)) |
759 | { |
760 | float (*c)[FZ_MAX_COLORS] = color_storage[store]; |
761 | fz_point *v = point_storage[store]; |
762 | int startcolor; |
763 | int startpt; |
764 | int flag; |
765 | tensor_patch patch; |
766 | |
767 | flag = fz_read_bits(ctx, stream, bpflag); |
768 | |
769 | if (flag == 0) |
770 | { |
771 | startpt = 0; |
772 | startcolor = 0; |
773 | } |
774 | else |
775 | { |
776 | startpt = 4; |
777 | startcolor = 2; |
778 | } |
779 | |
780 | for (i = startpt; i < 12; i++) |
781 | { |
782 | v[i].x = read_sample(ctx, stream, bpcoord, x0, x1); |
783 | v[i].y = read_sample(ctx, stream, bpcoord, y0, y1); |
784 | v[i] = fz_transform_point(v[i], ctm); |
785 | } |
786 | |
787 | for (i = startcolor; i < 4; i++) |
788 | { |
789 | for (k = 0; k < ncomp; k++) |
790 | c[i][k] = read_sample(ctx, stream, bpcomp, c0[k], c1[k]); |
791 | } |
792 | |
793 | if (flag == 0) |
794 | { |
795 | } |
796 | else if (flag == 1 && prevc) |
797 | { |
798 | v[0] = prevp[3]; |
799 | v[1] = prevp[4]; |
800 | v[2] = prevp[5]; |
801 | v[3] = prevp[6]; |
802 | memcpy(c[0], prevc[1], ncomp * sizeof(float)); |
803 | memcpy(c[1], prevc[2], ncomp * sizeof(float)); |
804 | } |
805 | else if (flag == 2 && prevc) |
806 | { |
807 | v[0] = prevp[6]; |
808 | v[1] = prevp[7]; |
809 | v[2] = prevp[8]; |
810 | v[3] = prevp[9]; |
811 | memcpy(c[0], prevc[2], ncomp * sizeof(float)); |
812 | memcpy(c[1], prevc[3], ncomp * sizeof(float)); |
813 | } |
814 | else if (flag == 3 && prevc) |
815 | { |
816 | v[0] = prevp[ 9]; |
817 | v[1] = prevp[10]; |
818 | v[2] = prevp[11]; |
819 | v[3] = prevp[ 0]; |
820 | memcpy(c[0], prevc[3], ncomp * sizeof(float)); |
821 | memcpy(c[1], prevc[0], ncomp * sizeof(float)); |
822 | } |
823 | else |
824 | continue; |
825 | |
826 | make_tensor_patch(&patch, 6, v); |
827 | |
828 | for (i = 0; i < 4; i++) |
829 | memcpy(patch.color[i], c[i], ncomp * sizeof(float)); |
830 | |
831 | draw_patch(ctx, painter, &patch, SUBDIV, SUBDIV); |
832 | |
833 | prevp = v; |
834 | prevc = c; |
835 | store ^= 1; |
836 | } |
837 | } |
838 | fz_always(ctx) |
839 | { |
840 | fz_drop_stream(ctx, stream); |
841 | } |
842 | fz_catch(ctx) |
843 | { |
844 | fz_rethrow(ctx); |
845 | } |
846 | } |
847 | |
848 | static void |
849 | fz_process_shade_type7(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_mesh_processor *painter) |
850 | { |
851 | fz_stream *stream = fz_open_compressed_buffer(ctx, shade->buffer); |
852 | int bpflag = shade->u.m.bpflag; |
853 | int bpcoord = shade->u.m.bpcoord; |
854 | int bpcomp = shade->u.m.bpcomp; |
855 | float x0 = shade->u.m.x0; |
856 | float x1 = shade->u.m.x1; |
857 | float y0 = shade->u.m.y0; |
858 | float y1 = shade->u.m.y1; |
859 | const float *c0 = shade->u.m.c0; |
860 | const float *c1 = shade->u.m.c1; |
861 | float color_storage[2][4][FZ_MAX_COLORS]; |
862 | fz_point point_storage[2][16]; |
863 | int store = 0; |
864 | int ncomp = painter->ncomp; |
865 | int i, k; |
866 | float (*prevc)[FZ_MAX_COLORS] = NULL; |
867 | fz_point (*prevp) = NULL; |
868 | |
869 | fz_try(ctx) |
870 | { |
871 | while (!fz_is_eof_bits(ctx, stream)) |
872 | { |
873 | float (*c)[FZ_MAX_COLORS] = color_storage[store]; |
874 | fz_point *v = point_storage[store]; |
875 | int startcolor; |
876 | int startpt; |
877 | int flag; |
878 | tensor_patch patch; |
879 | |
880 | flag = fz_read_bits(ctx, stream, bpflag); |
881 | |
882 | if (flag == 0) |
883 | { |
884 | startpt = 0; |
885 | startcolor = 0; |
886 | } |
887 | else |
888 | { |
889 | startpt = 4; |
890 | startcolor = 2; |
891 | } |
892 | |
893 | for (i = startpt; i < 16; i++) |
894 | { |
895 | v[i].x = read_sample(ctx, stream, bpcoord, x0, x1); |
896 | v[i].y = read_sample(ctx, stream, bpcoord, y0, y1); |
897 | v[i] = fz_transform_point(v[i], ctm); |
898 | } |
899 | |
900 | for (i = startcolor; i < 4; i++) |
901 | { |
902 | for (k = 0; k < ncomp; k++) |
903 | c[i][k] = read_sample(ctx, stream, bpcomp, c0[k], c1[k]); |
904 | } |
905 | |
906 | if (flag == 0) |
907 | { |
908 | } |
909 | else if (flag == 1 && prevc) |
910 | { |
911 | v[0] = prevp[3]; |
912 | v[1] = prevp[4]; |
913 | v[2] = prevp[5]; |
914 | v[3] = prevp[6]; |
915 | memcpy(c[0], prevc[1], ncomp * sizeof(float)); |
916 | memcpy(c[1], prevc[2], ncomp * sizeof(float)); |
917 | } |
918 | else if (flag == 2 && prevc) |
919 | { |
920 | v[0] = prevp[6]; |
921 | v[1] = prevp[7]; |
922 | v[2] = prevp[8]; |
923 | v[3] = prevp[9]; |
924 | memcpy(c[0], prevc[2], ncomp * sizeof(float)); |
925 | memcpy(c[1], prevc[3], ncomp * sizeof(float)); |
926 | } |
927 | else if (flag == 3 && prevc) |
928 | { |
929 | v[0] = prevp[ 9]; |
930 | v[1] = prevp[10]; |
931 | v[2] = prevp[11]; |
932 | v[3] = prevp[ 0]; |
933 | memcpy(c[0], prevc[3], ncomp * sizeof(float)); |
934 | memcpy(c[1], prevc[0], ncomp * sizeof(float)); |
935 | } |
936 | else |
937 | continue; /* We have no patch! */ |
938 | |
939 | make_tensor_patch(&patch, 7, v); |
940 | |
941 | for (i = 0; i < 4; i++) |
942 | memcpy(patch.color[i], c[i], ncomp * sizeof(float)); |
943 | |
944 | draw_patch(ctx, painter, &patch, SUBDIV, SUBDIV); |
945 | |
946 | prevp = v; |
947 | prevc = c; |
948 | store ^= 1; |
949 | } |
950 | } |
951 | fz_always(ctx) |
952 | { |
953 | fz_drop_stream(ctx, stream); |
954 | } |
955 | fz_catch(ctx) |
956 | { |
957 | fz_rethrow(ctx); |
958 | } |
959 | } |
960 | |
961 | /* |
962 | Process a shade, using supplied callback |
963 | functions. This decomposes the shading to a mesh (even ones |
964 | that are not natively meshes, such as linear or radial |
965 | shadings), and processes triangles from those meshes. |
966 | |
967 | shade: The shade to process. |
968 | |
969 | ctm: The transform to use |
970 | |
971 | prepare: Callback function to 'prepare' each vertex. |
972 | This function is passed an array of floats, and populates |
973 | a fz_vertex structure. |
974 | |
975 | process: This function is passed 3 pointers to vertex |
976 | structures, and actually performs the processing (typically |
977 | filling the area between the vertexes). |
978 | |
979 | process_arg: An opaque argument passed through from caller |
980 | to callback functions. |
981 | */ |
982 | void |
983 | fz_process_shade(fz_context *ctx, fz_shade *shade, fz_matrix ctm, fz_rect scissor, |
984 | fz_shade_prepare_fn *prepare, fz_shade_process_fn *process, void *process_arg) |
985 | { |
986 | fz_mesh_processor painter; |
987 | |
988 | painter.shade = shade; |
989 | painter.prepare = prepare; |
990 | painter.process = process; |
991 | painter.process_arg = process_arg; |
992 | painter.ncomp = (shade->use_function > 0 ? 1 : fz_colorspace_n(ctx, shade->colorspace)); |
993 | |
994 | if (shade->type == FZ_FUNCTION_BASED) |
995 | fz_process_shade_type1(ctx, shade, ctm, &painter); |
996 | else if (shade->type == FZ_LINEAR) |
997 | fz_process_shade_type2(ctx, shade, ctm, &painter, scissor); |
998 | else if (shade->type == FZ_RADIAL) |
999 | fz_process_shade_type3(ctx, shade, ctm, &painter); |
1000 | else if (shade->type == FZ_MESH_TYPE4) |
1001 | fz_process_shade_type4(ctx, shade, ctm, &painter); |
1002 | else if (shade->type == FZ_MESH_TYPE5) |
1003 | fz_process_shade_type5(ctx, shade, ctm, &painter); |
1004 | else if (shade->type == FZ_MESH_TYPE6) |
1005 | fz_process_shade_type6(ctx, shade, ctm, &painter); |
1006 | else if (shade->type == FZ_MESH_TYPE7) |
1007 | fz_process_shade_type7(ctx, shade, ctm, &painter); |
1008 | else |
1009 | fz_throw(ctx, FZ_ERROR_GENERIC, "Unexpected mesh type %d\n" , shade->type); |
1010 | } |
1011 | |
1012 | static fz_rect |
1013 | fz_bound_mesh_type1(fz_context *ctx, fz_shade *shade) |
1014 | { |
1015 | fz_rect bbox; |
1016 | bbox.x0 = shade->u.f.domain[0][0]; |
1017 | bbox.y0 = shade->u.f.domain[0][1]; |
1018 | bbox.x1 = shade->u.f.domain[1][0]; |
1019 | bbox.y1 = shade->u.f.domain[1][1]; |
1020 | return fz_transform_rect(bbox, shade->u.f.matrix); |
1021 | } |
1022 | |
1023 | static fz_rect |
1024 | fz_bound_mesh_type2(fz_context *ctx, fz_shade *shade) |
1025 | { |
1026 | /* FIXME: If axis aligned and not extended, the bbox may only be |
1027 | * infinite in one direction */ |
1028 | return fz_infinite_rect; |
1029 | } |
1030 | |
1031 | static fz_rect |
1032 | fz_bound_mesh_type3(fz_context *ctx, fz_shade *shade) |
1033 | { |
1034 | fz_rect bbox; |
1035 | fz_point p0, p1; |
1036 | float r0, r1; |
1037 | |
1038 | r0 = shade->u.l_or_r.coords[0][2]; |
1039 | r1 = shade->u.l_or_r.coords[1][2]; |
1040 | |
1041 | if (shade->u.l_or_r.extend[0]) |
1042 | { |
1043 | if (r0 >= r1) |
1044 | return fz_infinite_rect; |
1045 | } |
1046 | |
1047 | if (shade->u.l_or_r.extend[1]) |
1048 | { |
1049 | if (r0 <= r1) |
1050 | return fz_infinite_rect; |
1051 | } |
1052 | |
1053 | p0.x = shade->u.l_or_r.coords[0][0]; |
1054 | p0.y = shade->u.l_or_r.coords[0][1]; |
1055 | p1.x = shade->u.l_or_r.coords[1][0]; |
1056 | p1.y = shade->u.l_or_r.coords[1][1]; |
1057 | |
1058 | bbox.x0 = p0.x - r0; bbox.y0 = p0.y - r0; |
1059 | bbox.x1 = p0.x + r0; bbox.y1 = p0.x + r0; |
1060 | if (bbox.x0 > p1.x - r1) |
1061 | bbox.x0 = p1.x - r1; |
1062 | if (bbox.x1 < p1.x + r1) |
1063 | bbox.x1 = p1.x + r1; |
1064 | if (bbox.y0 > p1.y - r1) |
1065 | bbox.y0 = p1.y - r1; |
1066 | if (bbox.y1 < p1.y + r1) |
1067 | bbox.y1 = p1.y + r1; |
1068 | return bbox; |
1069 | } |
1070 | |
1071 | static fz_rect |
1072 | fz_bound_mesh_type4567(fz_context *ctx, fz_shade *shade) |
1073 | { |
1074 | fz_rect bbox; |
1075 | bbox.x0 = shade->u.m.x0; |
1076 | bbox.y0 = shade->u.m.y0; |
1077 | bbox.x1 = shade->u.m.x1; |
1078 | bbox.y1 = shade->u.m.y1; |
1079 | return bbox; |
1080 | } |
1081 | |
1082 | static fz_rect |
1083 | fz_bound_mesh(fz_context *ctx, fz_shade *shade) |
1084 | { |
1085 | if (shade->type == FZ_FUNCTION_BASED) |
1086 | return fz_bound_mesh_type1(ctx, shade); |
1087 | else if (shade->type == FZ_LINEAR) |
1088 | return fz_bound_mesh_type2(ctx, shade); |
1089 | else if (shade->type == FZ_RADIAL) |
1090 | return fz_bound_mesh_type3(ctx, shade); |
1091 | else if (shade->type == FZ_MESH_TYPE4 || |
1092 | shade->type == FZ_MESH_TYPE5 || |
1093 | shade->type == FZ_MESH_TYPE6 || |
1094 | shade->type == FZ_MESH_TYPE7) |
1095 | return fz_bound_mesh_type4567(ctx, shade); |
1096 | else |
1097 | fz_throw(ctx, FZ_ERROR_GENERIC, "Unexpected mesh type %d\n" , shade->type); |
1098 | } |
1099 | |
1100 | fz_shade * |
1101 | fz_keep_shade(fz_context *ctx, fz_shade *shade) |
1102 | { |
1103 | return fz_keep_storable(ctx, &shade->storable); |
1104 | } |
1105 | |
1106 | /* |
1107 | Internal function to destroy a |
1108 | shade. Only exposed for use with the fz_store. |
1109 | |
1110 | shade: The reference to destroy. |
1111 | */ |
1112 | void |
1113 | fz_drop_shade_imp(fz_context *ctx, fz_storable *shade_) |
1114 | { |
1115 | fz_shade *shade = (fz_shade *)shade_; |
1116 | |
1117 | fz_drop_colorspace(ctx, shade->colorspace); |
1118 | if (shade->type == FZ_FUNCTION_BASED) |
1119 | fz_free(ctx, shade->u.f.fn_vals); |
1120 | fz_drop_compressed_buffer(ctx, shade->buffer); |
1121 | fz_free(ctx, shade); |
1122 | } |
1123 | |
1124 | void |
1125 | fz_drop_shade(fz_context *ctx, fz_shade *shade) |
1126 | { |
1127 | fz_drop_storable(ctx, &shade->storable); |
1128 | } |
1129 | |
1130 | /* |
1131 | Bound a given shading. |
1132 | |
1133 | shade: The shade to bound. |
1134 | |
1135 | ctm: The transform to apply to the shade before bounding. |
1136 | |
1137 | r: Pointer to storage to put the bounds in. |
1138 | |
1139 | Returns r, updated to contain the bounds for the shading. |
1140 | */ |
1141 | fz_rect |
1142 | fz_bound_shade(fz_context *ctx, fz_shade *shade, fz_matrix ctm) |
1143 | { |
1144 | ctm = fz_concat(shade->matrix, ctm); |
1145 | if (shade->type != FZ_LINEAR && shade->type != FZ_RADIAL) |
1146 | { |
1147 | fz_rect rect = fz_bound_mesh(ctx, shade); |
1148 | rect = fz_intersect_rect(rect, shade->bbox); |
1149 | return fz_transform_rect(rect, ctm); |
1150 | } |
1151 | return fz_transform_rect(shade->bbox, ctm); |
1152 | } |
1153 | |