| 1 | #include "mupdf/fitz.h" |
| 2 | |
| 3 | #include <string.h> |
| 4 | #include <errno.h> |
| 5 | #include <math.h> |
| 6 | #include <float.h> |
| 7 | #include <stdlib.h> |
| 8 | |
| 9 | static inline int |
| 10 | fz_tolower(int c) |
| 11 | { |
| 12 | if (c >= 'A' && c <= 'Z') |
| 13 | return c + 32; |
| 14 | return c; |
| 15 | } |
| 16 | |
| 17 | /* |
| 18 | Return strlen(s), if that is less than maxlen, or maxlen if |
| 19 | there is no null byte ('\0') among the first maxlen bytes. |
| 20 | */ |
| 21 | size_t |
| 22 | fz_strnlen(const char *s, size_t n) |
| 23 | { |
| 24 | const char *p = memchr(s, 0, n); |
| 25 | return p ? p - s : n; |
| 26 | } |
| 27 | |
| 28 | int |
| 29 | fz_strncasecmp(const char *a, const char *b, int n) |
| 30 | { |
| 31 | if (!n--) |
| 32 | return 0; |
| 33 | for (; *a && *b && n && (*a == *b || fz_tolower(*a) == fz_tolower(*b)); a++, b++, n--) |
| 34 | ; |
| 35 | return fz_tolower(*a) - fz_tolower(*b); |
| 36 | } |
| 37 | |
| 38 | /* |
| 39 | Case insensitive (ASCII only) string comparison. |
| 40 | */ |
| 41 | int |
| 42 | fz_strcasecmp(const char *a, const char *b) |
| 43 | { |
| 44 | while (fz_tolower(*a) == fz_tolower(*b)) |
| 45 | { |
| 46 | if (*a++ == 0) |
| 47 | return 0; |
| 48 | b++; |
| 49 | } |
| 50 | return fz_tolower(*a) - fz_tolower(*b); |
| 51 | } |
| 52 | |
| 53 | /* |
| 54 | Given a pointer to a C string (or a pointer to NULL) break |
| 55 | it at the first occurrence of a delimiter char (from a given set). |
| 56 | |
| 57 | stringp: Pointer to a C string pointer (or NULL). Updated on exit to |
| 58 | point to the first char of the string after the delimiter that was |
| 59 | found. The string pointed to by stringp will be corrupted by this |
| 60 | call (as the found delimiter will be overwritten by 0). |
| 61 | |
| 62 | delim: A C string of acceptable delimiter characters. |
| 63 | |
| 64 | Returns a pointer to a C string containing the chars of stringp up |
| 65 | to the first delimiter char (or the end of the string), or NULL. |
| 66 | */ |
| 67 | char * |
| 68 | fz_strsep(char **stringp, const char *delim) |
| 69 | { |
| 70 | char *ret = *stringp; |
| 71 | if (!ret) return NULL; |
| 72 | if ((*stringp = strpbrk(*stringp, delim)) != NULL) |
| 73 | *((*stringp)++) = '\0'; |
| 74 | return ret; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | Copy at most n-1 chars of a string into a destination |
| 79 | buffer with null termination, returning the real length of the |
| 80 | initial string (excluding terminator). |
| 81 | |
| 82 | dst: Destination buffer, at least n bytes long. |
| 83 | |
| 84 | src: C string (non-NULL). |
| 85 | |
| 86 | n: Size of dst buffer in bytes. |
| 87 | |
| 88 | Returns the length (excluding terminator) of src. |
| 89 | */ |
| 90 | size_t |
| 91 | fz_strlcpy(char *dst, const char *src, size_t siz) |
| 92 | { |
| 93 | register char *d = dst; |
| 94 | register const char *s = src; |
| 95 | register size_t n = siz; |
| 96 | |
| 97 | /* Copy as many bytes as will fit */ |
| 98 | if (n != 0 && --n != 0) { |
| 99 | do { |
| 100 | if ((*d++ = *s++) == 0) |
| 101 | break; |
| 102 | } while (--n != 0); |
| 103 | } |
| 104 | |
| 105 | /* Not enough room in dst, add NUL and traverse rest of src */ |
| 106 | if (n == 0) { |
| 107 | if (siz != 0) |
| 108 | *d = '\0'; /* NUL-terminate dst */ |
| 109 | while (*s++) |
| 110 | ; |
| 111 | } |
| 112 | |
| 113 | return(s - src - 1); /* count does not include NUL */ |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | Concatenate 2 strings, with a maximum length. |
| 118 | |
| 119 | dst: pointer to first string in a buffer of n bytes. |
| 120 | |
| 121 | src: pointer to string to concatenate. |
| 122 | |
| 123 | n: Size (in bytes) of buffer that dst is in. |
| 124 | |
| 125 | Returns the real length that a concatenated dst + src would have been |
| 126 | (not including terminator). |
| 127 | */ |
| 128 | size_t |
| 129 | fz_strlcat(char *dst, const char *src, size_t siz) |
| 130 | { |
| 131 | register char *d = dst; |
| 132 | register const char *s = src; |
| 133 | register size_t n = siz; |
| 134 | size_t dlen; |
| 135 | |
| 136 | /* Find the end of dst and adjust bytes left but don't go past end */ |
| 137 | while (*d != '\0' && n-- != 0) |
| 138 | d++; |
| 139 | dlen = d - dst; |
| 140 | n = siz - dlen; |
| 141 | |
| 142 | if (n == 0) |
| 143 | return dlen + strlen(s); |
| 144 | while (*s != '\0') { |
| 145 | if (n != 1) { |
| 146 | *d++ = *s; |
| 147 | n--; |
| 148 | } |
| 149 | s++; |
| 150 | } |
| 151 | *d = '\0'; |
| 152 | |
| 153 | return dlen + (s - src); /* count does not include NUL */ |
| 154 | } |
| 155 | |
| 156 | /* |
| 157 | extract the directory component from a path. |
| 158 | */ |
| 159 | void |
| 160 | fz_dirname(char *dir, const char *path, size_t n) |
| 161 | { |
| 162 | size_t i; |
| 163 | |
| 164 | if (!path || !path[0]) |
| 165 | { |
| 166 | fz_strlcpy(dir, "." , n); |
| 167 | return; |
| 168 | } |
| 169 | |
| 170 | fz_strlcpy(dir, path, n); |
| 171 | |
| 172 | i = strlen(dir); |
| 173 | for(; dir[i] == '/'; --i) if (!i) { fz_strlcpy(dir, "/" , n); return; } |
| 174 | for(; dir[i] != '/'; --i) if (!i) { fz_strlcpy(dir, "." , n); return; } |
| 175 | for(; dir[i] == '/'; --i) if (!i) { fz_strlcpy(dir, "/" , n); return; } |
| 176 | dir[i+1] = 0; |
| 177 | } |
| 178 | |
| 179 | static inline int ishex(int a) |
| 180 | { |
| 181 | return (a >= 'A' && a <= 'F') || |
| 182 | (a >= 'a' && a <= 'f') || |
| 183 | (a >= '0' && a <= '9'); |
| 184 | } |
| 185 | |
| 186 | static inline int tohex(int c) |
| 187 | { |
| 188 | if (c >= '0' && c <= '9') return c - '0'; |
| 189 | if (c >= 'a' && c <= 'f') return c - 'a' + 0xA; |
| 190 | if (c >= 'A' && c <= 'F') return c - 'A' + 0xA; |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | decode url escapes. |
| 196 | */ |
| 197 | char * |
| 198 | fz_urldecode(char *url) |
| 199 | { |
| 200 | char *s = url; |
| 201 | char *p = url; |
| 202 | while (*s) |
| 203 | { |
| 204 | int c = (unsigned char) *s++; |
| 205 | if (c == '%' && ishex(s[0]) && ishex(s[1])) |
| 206 | { |
| 207 | int a = tohex(*s++); |
| 208 | int b = tohex(*s++); |
| 209 | *p++ = a << 4 | b; |
| 210 | } |
| 211 | else |
| 212 | { |
| 213 | *p++ = c; |
| 214 | } |
| 215 | } |
| 216 | *p = 0; |
| 217 | return url; |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | create output file name using a template. |
| 222 | |
| 223 | If the path contains %[0-9]*d, the first such pattern will be replaced |
| 224 | with the page number. If the template does not contain such a pattern, the page |
| 225 | number will be inserted before the filename extension. If the template does not have |
| 226 | a filename extension, the page number will be added to the end. |
| 227 | */ |
| 228 | void |
| 229 | fz_format_output_path(fz_context *ctx, char *path, size_t size, const char *fmt, int page) |
| 230 | { |
| 231 | const char *s, *p; |
| 232 | char num[40]; |
| 233 | int i, n; |
| 234 | int z = 0; |
| 235 | |
| 236 | for (i = 0; page; page /= 10) |
| 237 | num[i++] = '0' + page % 10; |
| 238 | num[i] = 0; |
| 239 | |
| 240 | s = p = strchr(fmt, '%'); |
| 241 | if (p) |
| 242 | { |
| 243 | ++p; |
| 244 | while (*p >= '0' && *p <= '9') |
| 245 | z = z * 10 + (*p++ - '0'); |
| 246 | } |
| 247 | if (p && *p == 'd') |
| 248 | { |
| 249 | ++p; |
| 250 | } |
| 251 | else |
| 252 | { |
| 253 | s = p = strrchr(fmt, '.'); |
| 254 | if (!p) |
| 255 | s = p = fmt + strlen(fmt); |
| 256 | } |
| 257 | |
| 258 | if (z < 1) |
| 259 | z = 1; |
| 260 | while (i < z && i < sizeof num) |
| 261 | num[i++] = '0'; |
| 262 | n = s - fmt; |
| 263 | if (n + i + strlen(p) >= size) |
| 264 | fz_throw(ctx, FZ_ERROR_GENERIC, "path name buffer overflow" ); |
| 265 | memcpy(path, fmt, n); |
| 266 | while (i > 0) |
| 267 | path[n++] = num[--i]; |
| 268 | fz_strlcpy(path + n, p, size - n); |
| 269 | } |
| 270 | |
| 271 | #define SEP(x) ((x)=='/' || (x) == 0) |
| 272 | |
| 273 | /* |
| 274 | rewrite path to the shortest string that names the same path. |
| 275 | |
| 276 | Eliminates multiple and trailing slashes, interprets "." and "..". |
| 277 | Overwrites the string in place. |
| 278 | */ |
| 279 | char * |
| 280 | fz_cleanname(char *name) |
| 281 | { |
| 282 | char *p, *q, *dotdot; |
| 283 | int rooted; |
| 284 | |
| 285 | rooted = name[0] == '/'; |
| 286 | |
| 287 | /* |
| 288 | * invariants: |
| 289 | * p points at beginning of path element we're considering. |
| 290 | * q points just past the last path element we wrote (no slash). |
| 291 | * dotdot points just past the point where .. cannot backtrack |
| 292 | * any further (no slash). |
| 293 | */ |
| 294 | p = q = dotdot = name + rooted; |
| 295 | while (*p) |
| 296 | { |
| 297 | if(p[0] == '/') /* null element */ |
| 298 | p++; |
| 299 | else if (p[0] == '.' && SEP(p[1])) |
| 300 | p += 1; /* don't count the separator in case it is nul */ |
| 301 | else if (p[0] == '.' && p[1] == '.' && SEP(p[2])) |
| 302 | { |
| 303 | p += 2; |
| 304 | if (q > dotdot) /* can backtrack */ |
| 305 | { |
| 306 | while(--q > dotdot && *q != '/') |
| 307 | ; |
| 308 | } |
| 309 | else if (!rooted) /* /.. is / but ./../ is .. */ |
| 310 | { |
| 311 | if (q != name) |
| 312 | *q++ = '/'; |
| 313 | *q++ = '.'; |
| 314 | *q++ = '.'; |
| 315 | dotdot = q; |
| 316 | } |
| 317 | } |
| 318 | else /* real path element */ |
| 319 | { |
| 320 | if (q != name+rooted) |
| 321 | *q++ = '/'; |
| 322 | while ((*q = *p) != '/' && *q != 0) |
| 323 | p++, q++; |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | if (q == name) /* empty string is really "." */ |
| 328 | *q++ = '.'; |
| 329 | *q = '\0'; |
| 330 | return name; |
| 331 | } |
| 332 | |
| 333 | enum |
| 334 | { |
| 335 | UTFmax = 4, /* maximum bytes per rune */ |
| 336 | Runesync = 0x80, /* cannot represent part of a UTF sequence (<) */ |
| 337 | Runeself = 0x80, /* rune and UTF sequences are the same (<) */ |
| 338 | Runeerror = 0xFFFD, /* decoding error in UTF */ |
| 339 | Runemax = 0x10FFFF, /* maximum rune value */ |
| 340 | }; |
| 341 | |
| 342 | enum |
| 343 | { |
| 344 | Bit1 = 7, |
| 345 | Bitx = 6, |
| 346 | Bit2 = 5, |
| 347 | Bit3 = 4, |
| 348 | Bit4 = 3, |
| 349 | Bit5 = 2, |
| 350 | |
| 351 | T1 = ((1<<(Bit1+1))-1) ^ 0xFF, /* 0000 0000 */ |
| 352 | Tx = ((1<<(Bitx+1))-1) ^ 0xFF, /* 1000 0000 */ |
| 353 | T2 = ((1<<(Bit2+1))-1) ^ 0xFF, /* 1100 0000 */ |
| 354 | T3 = ((1<<(Bit3+1))-1) ^ 0xFF, /* 1110 0000 */ |
| 355 | T4 = ((1<<(Bit4+1))-1) ^ 0xFF, /* 1111 0000 */ |
| 356 | T5 = ((1<<(Bit5+1))-1) ^ 0xFF, /* 1111 1000 */ |
| 357 | |
| 358 | Rune1 = (1<<(Bit1+0*Bitx))-1, /* 0000 0000 0111 1111 */ |
| 359 | Rune2 = (1<<(Bit2+1*Bitx))-1, /* 0000 0111 1111 1111 */ |
| 360 | Rune3 = (1<<(Bit3+2*Bitx))-1, /* 1111 1111 1111 1111 */ |
| 361 | Rune4 = (1<<(Bit4+3*Bitx))-1, /* 0001 1111 1111 1111 1111 1111 */ |
| 362 | |
| 363 | Maskx = (1<<Bitx)-1, /* 0011 1111 */ |
| 364 | Testx = Maskx ^ 0xFF, /* 1100 0000 */ |
| 365 | |
| 366 | Bad = Runeerror, |
| 367 | }; |
| 368 | |
| 369 | /* |
| 370 | UTF8 decode a single rune from a sequence of chars. |
| 371 | |
| 372 | rune: Pointer to an int to assign the decoded 'rune' to. |
| 373 | |
| 374 | str: Pointer to a UTF8 encoded string. |
| 375 | |
| 376 | Returns the number of bytes consumed. |
| 377 | */ |
| 378 | int |
| 379 | fz_chartorune(int *rune, const char *str) |
| 380 | { |
| 381 | int c, c1, c2, c3; |
| 382 | int l; |
| 383 | |
| 384 | /* |
| 385 | * one character sequence |
| 386 | * 00000-0007F => T1 |
| 387 | */ |
| 388 | c = *(const unsigned char*)str; |
| 389 | if(c < Tx) { |
| 390 | *rune = c; |
| 391 | return 1; |
| 392 | } |
| 393 | |
| 394 | /* |
| 395 | * two character sequence |
| 396 | * 0080-07FF => T2 Tx |
| 397 | */ |
| 398 | c1 = *(const unsigned char*)(str+1) ^ Tx; |
| 399 | if(c1 & Testx) |
| 400 | goto bad; |
| 401 | if(c < T3) { |
| 402 | if(c < T2) |
| 403 | goto bad; |
| 404 | l = ((c << Bitx) | c1) & Rune2; |
| 405 | if(l <= Rune1) |
| 406 | goto bad; |
| 407 | *rune = l; |
| 408 | return 2; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * three character sequence |
| 413 | * 0800-FFFF => T3 Tx Tx |
| 414 | */ |
| 415 | c2 = *(const unsigned char*)(str+2) ^ Tx; |
| 416 | if(c2 & Testx) |
| 417 | goto bad; |
| 418 | if(c < T4) { |
| 419 | l = ((((c << Bitx) | c1) << Bitx) | c2) & Rune3; |
| 420 | if(l <= Rune2) |
| 421 | goto bad; |
| 422 | *rune = l; |
| 423 | return 3; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * four character sequence (21-bit value) |
| 428 | * 10000-1FFFFF => T4 Tx Tx Tx |
| 429 | */ |
| 430 | c3 = *(const unsigned char*)(str+3) ^ Tx; |
| 431 | if (c3 & Testx) |
| 432 | goto bad; |
| 433 | if (c < T5) { |
| 434 | l = ((((((c << Bitx) | c1) << Bitx) | c2) << Bitx) | c3) & Rune4; |
| 435 | if (l <= Rune3) |
| 436 | goto bad; |
| 437 | *rune = l; |
| 438 | return 4; |
| 439 | } |
| 440 | /* |
| 441 | * Support for 5-byte or longer UTF-8 would go here, but |
| 442 | * since we don't have that, we'll just fall through to bad. |
| 443 | */ |
| 444 | |
| 445 | /* |
| 446 | * bad decoding |
| 447 | */ |
| 448 | bad: |
| 449 | *rune = Bad; |
| 450 | return 1; |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | UTF8 encode a rune to a sequence of chars. |
| 455 | |
| 456 | str: Pointer to a place to put the UTF8 encoded character. |
| 457 | |
| 458 | rune: Pointer to a 'rune'. |
| 459 | |
| 460 | Returns the number of bytes the rune took to output. |
| 461 | */ |
| 462 | int |
| 463 | fz_runetochar(char *str, int rune) |
| 464 | { |
| 465 | /* Runes are signed, so convert to unsigned for range check. */ |
| 466 | unsigned int c = (unsigned int)rune; |
| 467 | |
| 468 | /* |
| 469 | * one character sequence |
| 470 | * 00000-0007F => 00-7F |
| 471 | */ |
| 472 | if(c <= Rune1) { |
| 473 | str[0] = c; |
| 474 | return 1; |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * two character sequence |
| 479 | * 0080-07FF => T2 Tx |
| 480 | */ |
| 481 | if(c <= Rune2) { |
| 482 | str[0] = T2 | (c >> 1*Bitx); |
| 483 | str[1] = Tx | (c & Maskx); |
| 484 | return 2; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * If the Rune is out of range, convert it to the error rune. |
| 489 | * Do this test here because the error rune encodes to three bytes. |
| 490 | * Doing it earlier would duplicate work, since an out of range |
| 491 | * Rune wouldn't have fit in one or two bytes. |
| 492 | */ |
| 493 | if (c > Runemax) |
| 494 | c = Runeerror; |
| 495 | |
| 496 | /* |
| 497 | * three character sequence |
| 498 | * 0800-FFFF => T3 Tx Tx |
| 499 | */ |
| 500 | if (c <= Rune3) { |
| 501 | str[0] = T3 | (c >> 2*Bitx); |
| 502 | str[1] = Tx | ((c >> 1*Bitx) & Maskx); |
| 503 | str[2] = Tx | (c & Maskx); |
| 504 | return 3; |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | * four character sequence (21-bit value) |
| 509 | * 10000-1FFFFF => T4 Tx Tx Tx |
| 510 | */ |
| 511 | str[0] = T4 | (c >> 3*Bitx); |
| 512 | str[1] = Tx | ((c >> 2*Bitx) & Maskx); |
| 513 | str[2] = Tx | ((c >> 1*Bitx) & Maskx); |
| 514 | str[3] = Tx | (c & Maskx); |
| 515 | return 4; |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | Count how many chars are required to represent a rune. |
| 520 | |
| 521 | rune: The rune to encode. |
| 522 | |
| 523 | Returns the number of bytes required to represent this run in UTF8. |
| 524 | */ |
| 525 | int |
| 526 | fz_runelen(int c) |
| 527 | { |
| 528 | char str[10]; |
| 529 | return fz_runetochar(str, c); |
| 530 | } |
| 531 | |
| 532 | /* |
| 533 | Count how many runes the UTF-8 encoded string |
| 534 | consists of. |
| 535 | |
| 536 | s: The UTF-8 encoded, NUL-terminated text string. |
| 537 | |
| 538 | Returns the number of runes in the string. |
| 539 | */ |
| 540 | int |
| 541 | fz_utflen(const char *s) |
| 542 | { |
| 543 | int c, n, rune; |
| 544 | n = 0; |
| 545 | for(;;) { |
| 546 | c = *(const unsigned char*)s; |
| 547 | if(c < Runeself) { |
| 548 | if(c == 0) |
| 549 | return n; |
| 550 | s++; |
| 551 | } else |
| 552 | s += fz_chartorune(&rune, s); |
| 553 | n++; |
| 554 | } |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | Range checking atof |
| 560 | */ |
| 561 | float fz_atof(const char *s) |
| 562 | { |
| 563 | float result; |
| 564 | |
| 565 | if (s == NULL) |
| 566 | return 0; |
| 567 | |
| 568 | errno = 0; |
| 569 | result = fz_strtof(s, NULL); |
| 570 | if ((errno == ERANGE && result == 0) || isnan(result)) |
| 571 | /* Return 1.0 on underflow, as it's a small known value that won't cause a divide by 0. */ |
| 572 | return 1; |
| 573 | result = fz_clamp(result, -FLT_MAX, FLT_MAX); |
| 574 | return result; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | atoi that copes with NULL |
| 579 | */ |
| 580 | int fz_atoi(const char *s) |
| 581 | { |
| 582 | if (s == NULL) |
| 583 | return 0; |
| 584 | return atoi(s); |
| 585 | } |
| 586 | |
| 587 | int64_t fz_atoi64(const char *s) |
| 588 | { |
| 589 | if (s == NULL) |
| 590 | return 0; |
| 591 | return atoll(s); |
| 592 | } |
| 593 | |
| 594 | /* |
| 595 | Check and parse string into page ranges: |
| 596 | ( ','? ([0-9]+|'N') ( '-' ([0-9]+|N) )? )+ |
| 597 | */ |
| 598 | int fz_is_page_range(fz_context *ctx, const char *s) |
| 599 | { |
| 600 | /* TODO: check the actual syntax... */ |
| 601 | while (*s) |
| 602 | { |
| 603 | if ((*s < '0' || *s > '9') && *s != 'N' && *s != '-' && *s != ',') |
| 604 | return 0; |
| 605 | s++; |
| 606 | } |
| 607 | return 1; |
| 608 | } |
| 609 | |
| 610 | const char *fz_parse_page_range(fz_context *ctx, const char *s, int *a, int *b, int n) |
| 611 | { |
| 612 | if (!s || !s[0]) |
| 613 | return NULL; |
| 614 | |
| 615 | if (s[0] == ',') |
| 616 | s += 1; |
| 617 | |
| 618 | if (s[0] == 'N') |
| 619 | { |
| 620 | *a = n; |
| 621 | s += 1; |
| 622 | } |
| 623 | else |
| 624 | *a = strtol(s, (char**)&s, 10); |
| 625 | |
| 626 | if (s[0] == '-') |
| 627 | { |
| 628 | if (s[1] == 'N') |
| 629 | { |
| 630 | *b = n; |
| 631 | s += 2; |
| 632 | } |
| 633 | else |
| 634 | *b = strtol(s+1, (char**)&s, 10); |
| 635 | } |
| 636 | else |
| 637 | *b = *a; |
| 638 | |
| 639 | *a = fz_clampi(*a, 1, n); |
| 640 | *b = fz_clampi(*b, 1, n); |
| 641 | |
| 642 | return s; |
| 643 | } |
| 644 | |
| 645 | /* memmem from musl */ |
| 646 | |
| 647 | #define MAX(a,b) ((a)>(b)?(a):(b)) |
| 648 | |
| 649 | #define BITOP(a,b,op) \ |
| 650 | ((a)[(size_t)(b)/(8*sizeof *(a))] op (size_t)1<<((size_t)(b)%(8*sizeof *(a)))) |
| 651 | |
| 652 | static char *twobyte_memmem(const unsigned char *h, size_t k, const unsigned char *n) |
| 653 | { |
| 654 | uint16_t nw = n[0]<<8 | n[1], hw = h[0]<<8 | h[1]; |
| 655 | for (h++, k--; k; k--, hw = hw<<8 | *++h) |
| 656 | if (hw == nw) return (char *)h-1; |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | static char *threebyte_memmem(const unsigned char *h, size_t k, const unsigned char *n) |
| 661 | { |
| 662 | uint32_t nw = n[0]<<24 | n[1]<<16 | n[2]<<8; |
| 663 | uint32_t hw = h[0]<<24 | h[1]<<16 | h[2]<<8; |
| 664 | for (h+=2, k-=2; k; k--, hw = (hw|*++h)<<8) |
| 665 | if (hw == nw) return (char *)h-2; |
| 666 | return 0; |
| 667 | } |
| 668 | |
| 669 | static char *fourbyte_memmem(const unsigned char *h, size_t k, const unsigned char *n) |
| 670 | { |
| 671 | uint32_t nw = n[0]<<24 | n[1]<<16 | n[2]<<8 | n[3]; |
| 672 | uint32_t hw = h[0]<<24 | h[1]<<16 | h[2]<<8 | h[3]; |
| 673 | for (h+=3, k-=3; k; k--, hw = hw<<8 | *++h) |
| 674 | if (hw == nw) return (char *)h-3; |
| 675 | return 0; |
| 676 | } |
| 677 | |
| 678 | static char *twoway_memmem(const unsigned char *h, const unsigned char *z, const unsigned char *n, size_t l) |
| 679 | { |
| 680 | size_t i, ip, jp, k, p, ms, p0, mem, mem0; |
| 681 | size_t byteset[32 / sizeof(size_t)] = { 0 }; |
| 682 | size_t shift[256]; |
| 683 | |
| 684 | /* Computing length of needle and fill shift table */ |
| 685 | for (i=0; i<l; i++) |
| 686 | BITOP(byteset, n[i], |=), shift[n[i]] = i+1; |
| 687 | |
| 688 | /* Compute maximal suffix */ |
| 689 | ip = -1; jp = 0; k = p = 1; |
| 690 | while (jp+k<l) { |
| 691 | if (n[ip+k] == n[jp+k]) { |
| 692 | if (k == p) { |
| 693 | jp += p; |
| 694 | k = 1; |
| 695 | } else k++; |
| 696 | } else if (n[ip+k] > n[jp+k]) { |
| 697 | jp += k; |
| 698 | k = 1; |
| 699 | p = jp - ip; |
| 700 | } else { |
| 701 | ip = jp++; |
| 702 | k = p = 1; |
| 703 | } |
| 704 | } |
| 705 | ms = ip; |
| 706 | p0 = p; |
| 707 | |
| 708 | /* And with the opposite comparison */ |
| 709 | ip = -1; jp = 0; k = p = 1; |
| 710 | while (jp+k<l) { |
| 711 | if (n[ip+k] == n[jp+k]) { |
| 712 | if (k == p) { |
| 713 | jp += p; |
| 714 | k = 1; |
| 715 | } else k++; |
| 716 | } else if (n[ip+k] < n[jp+k]) { |
| 717 | jp += k; |
| 718 | k = 1; |
| 719 | p = jp - ip; |
| 720 | } else { |
| 721 | ip = jp++; |
| 722 | k = p = 1; |
| 723 | } |
| 724 | } |
| 725 | if (ip+1 > ms+1) ms = ip; |
| 726 | else p = p0; |
| 727 | |
| 728 | /* Periodic needle? */ |
| 729 | if (memcmp(n, n+p, ms+1)) { |
| 730 | mem0 = 0; |
| 731 | p = MAX(ms, l-ms-1) + 1; |
| 732 | } else mem0 = l-p; |
| 733 | mem = 0; |
| 734 | |
| 735 | /* Search loop */ |
| 736 | for (;;) { |
| 737 | /* If remainder of haystack is shorter than needle, done */ |
| 738 | if (z-h < l) return 0; |
| 739 | |
| 740 | /* Check last byte first; advance by shift on mismatch */ |
| 741 | if (BITOP(byteset, h[l-1], &)) { |
| 742 | k = l-shift[h[l-1]]; |
| 743 | if (k) { |
| 744 | if (mem0 && mem && k < p) k = l-p; |
| 745 | h += k; |
| 746 | mem = 0; |
| 747 | continue; |
| 748 | } |
| 749 | } else { |
| 750 | h += l; |
| 751 | mem = 0; |
| 752 | continue; |
| 753 | } |
| 754 | |
| 755 | /* Compare right half */ |
| 756 | for (k=MAX(ms+1,mem); k<l && n[k] == h[k]; k++); |
| 757 | if (k < l) { |
| 758 | h += k-ms; |
| 759 | mem = 0; |
| 760 | continue; |
| 761 | } |
| 762 | /* Compare left half */ |
| 763 | for (k=ms+1; k>mem && n[k-1] == h[k-1]; k--); |
| 764 | if (k <= mem) return (char *)h; |
| 765 | h += p; |
| 766 | mem = mem0; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | /* |
| 771 | Find the start of the first occurrence of the substring needle in haystack. |
| 772 | */ |
| 773 | void *fz_memmem(const void *h0, size_t k, const void *n0, size_t l) |
| 774 | { |
| 775 | const unsigned char *h = h0, *n = n0; |
| 776 | |
| 777 | /* Return immediately on empty needle */ |
| 778 | if (!l) return (void *)h; |
| 779 | |
| 780 | /* Return immediately when needle is longer than haystack */ |
| 781 | if (k<l) return 0; |
| 782 | |
| 783 | /* Use faster algorithms for short needles */ |
| 784 | h = memchr(h0, *n, k); |
| 785 | if (!h || l==1) return (void *)h; |
| 786 | k -= h - (const unsigned char *)h0; |
| 787 | if (k<l) return 0; |
| 788 | if (l==2) return twobyte_memmem(h, k, n); |
| 789 | if (l==3) return threebyte_memmem(h, k, n); |
| 790 | if (l==4) return fourbyte_memmem(h, k, n); |
| 791 | |
| 792 | return twoway_memmem(h, h+k, n, l); |
| 793 | } |
| 794 | |