1 | //--------------------------------------------------------------------------------- |
2 | // |
3 | // Little Color Management System |
4 | // Copyright (c) 1998-2013 Marti Maria Saguer |
5 | // |
6 | // Permission is hereby granted, free of charge, to any person obtaining |
7 | // a copy of this software and associated documentation files (the "Software"), |
8 | // to deal in the Software without restriction, including without limitation |
9 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
10 | // and/or sell copies of the Software, and to permit persons to whom the Software |
11 | // is furnished to do so, subject to the following conditions: |
12 | // |
13 | // The above copyright notice and this permission notice shall be included in |
14 | // all copies or substantial portions of the Software. |
15 | // |
16 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
17 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
18 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
19 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
20 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
21 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
22 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
23 | // |
24 | //--------------------------------------------------------------------------------- |
25 | // |
26 | #include "lcms2_internal.h" |
27 | |
28 | // Tone curves are powerful constructs that can contain curves specified in diverse ways. |
29 | // The curve is stored in segments, where each segment can be sampled or specified by parameters. |
30 | // a 16.bit simplification of the *whole* curve is kept for optimization purposes. For float operation, |
31 | // each segment is evaluated separately. Plug-ins may be used to define new parametric schemes, |
32 | // each plug-in may define up to MAX_TYPES_IN_LCMS_PLUGIN functions types. For defining a function, |
33 | // the plug-in should provide the type id, how many parameters each type has, and a pointer to |
34 | // a procedure that evaluates the function. In the case of reverse evaluation, the evaluator will |
35 | // be called with the type id as a negative value, and a sampled version of the reversed curve |
36 | // will be built. |
37 | |
38 | // ----------------------------------------------------------------- Implementation |
39 | // Maxim number of nodes |
40 | #define MAX_NODES_IN_CURVE 4097 |
41 | #define MINUS_INF (-1E22F) |
42 | #define PLUS_INF (+1E22F) |
43 | |
44 | // The list of supported parametric curves |
45 | typedef struct _cmsParametricCurvesCollection_st { |
46 | |
47 | cmsUInt32Number nFunctions; // Number of supported functions in this chunk |
48 | cmsInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN]; // The identification types |
49 | cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN]; // Number of parameters for each function |
50 | |
51 | cmsParametricCurveEvaluator Evaluator; // The evaluator |
52 | |
53 | struct _cmsParametricCurvesCollection_st* Next; // Next in list |
54 | |
55 | } _cmsParametricCurvesCollection; |
56 | |
57 | // This is the default (built-in) evaluator |
58 | static cmsFloat64Number DefaultEvalParametricFn(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R); |
59 | |
60 | // The built-in list |
61 | static _cmsParametricCurvesCollection DefaultCurves = { |
62 | 9, // # of curve types |
63 | { 1, 2, 3, 4, 5, 6, 7, 8, 108 }, // Parametric curve ID |
64 | { 1, 3, 4, 5, 7, 4, 5, 5, 1 }, // Parameters by type |
65 | DefaultEvalParametricFn, // Evaluator |
66 | NULL // Next in chain |
67 | }; |
68 | |
69 | // Duplicates the zone of memory used by the plug-in in the new context |
70 | static |
71 | void DupPluginCurvesList(struct _cmsContext_struct* ctx, |
72 | const struct _cmsContext_struct* src) |
73 | { |
74 | _cmsCurvesPluginChunkType newHead = { NULL }; |
75 | _cmsParametricCurvesCollection* entry; |
76 | _cmsParametricCurvesCollection* Anterior = NULL; |
77 | _cmsCurvesPluginChunkType* head = (_cmsCurvesPluginChunkType*) src->chunks[CurvesPlugin]; |
78 | |
79 | _cmsAssert(head != NULL); |
80 | |
81 | // Walk the list copying all nodes |
82 | for (entry = head->ParametricCurves; |
83 | entry != NULL; |
84 | entry = entry ->Next) { |
85 | |
86 | _cmsParametricCurvesCollection *newEntry = ( _cmsParametricCurvesCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsParametricCurvesCollection)); |
87 | |
88 | if (newEntry == NULL) |
89 | return; |
90 | |
91 | // We want to keep the linked list order, so this is a little bit tricky |
92 | newEntry -> Next = NULL; |
93 | if (Anterior) |
94 | Anterior -> Next = newEntry; |
95 | |
96 | Anterior = newEntry; |
97 | |
98 | if (newHead.ParametricCurves == NULL) |
99 | newHead.ParametricCurves = newEntry; |
100 | } |
101 | |
102 | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsCurvesPluginChunkType)); |
103 | } |
104 | |
105 | // The allocator have to follow the chain |
106 | void _cmsAllocCurvesPluginChunk(struct _cmsContext_struct* ctx, |
107 | const struct _cmsContext_struct* src) |
108 | { |
109 | _cmsAssert(ctx != NULL); |
110 | |
111 | if (src != NULL) { |
112 | |
113 | // Copy all linked list |
114 | DupPluginCurvesList(ctx, src); |
115 | } |
116 | else { |
117 | static _cmsCurvesPluginChunkType CurvesPluginChunk = { NULL }; |
118 | ctx ->chunks[CurvesPlugin] = _cmsSubAllocDup(ctx ->MemPool, &CurvesPluginChunk, sizeof(_cmsCurvesPluginChunkType)); |
119 | } |
120 | } |
121 | |
122 | |
123 | // The linked list head |
124 | _cmsCurvesPluginChunkType _cmsCurvesPluginChunk = { NULL }; |
125 | |
126 | // As a way to install new parametric curves |
127 | cmsBool _cmsRegisterParametricCurvesPlugin(cmsContext ContextID, cmsPluginBase* Data) |
128 | { |
129 | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); |
130 | cmsPluginParametricCurves* Plugin = (cmsPluginParametricCurves*) Data; |
131 | _cmsParametricCurvesCollection* fl; |
132 | |
133 | if (Data == NULL) { |
134 | |
135 | ctx -> ParametricCurves = NULL; |
136 | return TRUE; |
137 | } |
138 | |
139 | fl = (_cmsParametricCurvesCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsParametricCurvesCollection)); |
140 | if (fl == NULL) return FALSE; |
141 | |
142 | // Copy the parameters |
143 | fl ->Evaluator = Plugin ->Evaluator; |
144 | fl ->nFunctions = Plugin ->nFunctions; |
145 | |
146 | // Make sure no mem overwrites |
147 | if (fl ->nFunctions > MAX_TYPES_IN_LCMS_PLUGIN) |
148 | fl ->nFunctions = MAX_TYPES_IN_LCMS_PLUGIN; |
149 | |
150 | // Copy the data |
151 | memmove(fl->FunctionTypes, Plugin ->FunctionTypes, fl->nFunctions * sizeof(cmsUInt32Number)); |
152 | memmove(fl->ParameterCount, Plugin ->ParameterCount, fl->nFunctions * sizeof(cmsUInt32Number)); |
153 | |
154 | // Keep linked list |
155 | fl ->Next = ctx->ParametricCurves; |
156 | ctx->ParametricCurves = fl; |
157 | |
158 | // All is ok |
159 | return TRUE; |
160 | } |
161 | |
162 | |
163 | // Search in type list, return position or -1 if not found |
164 | static |
165 | int IsInSet(int Type, _cmsParametricCurvesCollection* c) |
166 | { |
167 | int i; |
168 | |
169 | for (i=0; i < (int) c ->nFunctions; i++) |
170 | if (abs(Type) == c ->FunctionTypes[i]) return i; |
171 | |
172 | return -1; |
173 | } |
174 | |
175 | |
176 | // Search for the collection which contains a specific type |
177 | static |
178 | _cmsParametricCurvesCollection *GetParametricCurveByType(cmsContext ContextID, int Type, int* index) |
179 | { |
180 | _cmsParametricCurvesCollection* c; |
181 | int Position; |
182 | _cmsCurvesPluginChunkType* ctx = ( _cmsCurvesPluginChunkType*) _cmsContextGetClientChunk(ContextID, CurvesPlugin); |
183 | |
184 | for (c = ctx->ParametricCurves; c != NULL; c = c ->Next) { |
185 | |
186 | Position = IsInSet(Type, c); |
187 | |
188 | if (Position != -1) { |
189 | if (index != NULL) |
190 | *index = Position; |
191 | return c; |
192 | } |
193 | } |
194 | // If none found, revert for defaults |
195 | for (c = &DefaultCurves; c != NULL; c = c ->Next) { |
196 | |
197 | Position = IsInSet(Type, c); |
198 | |
199 | if (Position != -1) { |
200 | if (index != NULL) |
201 | *index = Position; |
202 | return c; |
203 | } |
204 | } |
205 | |
206 | return NULL; |
207 | } |
208 | |
209 | // Low level allocate, which takes care of memory details. nEntries may be zero, and in this case |
210 | // no optimation curve is computed. nSegments may also be zero in the inverse case, where only the |
211 | // optimization curve is given. Both features simultaneously is an error |
212 | static |
213 | cmsToneCurve* AllocateToneCurveStruct(cmsContext ContextID, cmsUInt32Number nEntries, |
214 | cmsUInt32Number nSegments, const cmsCurveSegment* Segments, |
215 | const cmsUInt16Number* Values) |
216 | { |
217 | cmsToneCurve* p; |
218 | cmsUInt32Number i; |
219 | |
220 | // We allow huge tables, which are then restricted for smoothing operations |
221 | if (nEntries > 65530) { |
222 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve of more than 65530 entries" ); |
223 | return NULL; |
224 | } |
225 | |
226 | if (nEntries == 0 && nSegments == 0) { |
227 | cmsSignalError(ContextID, cmsERROR_RANGE, "Couldn't create tone curve with zero segments and no table" ); |
228 | return NULL; |
229 | } |
230 | |
231 | // Allocate all required pointers, etc. |
232 | p = (cmsToneCurve*) _cmsMallocZero(ContextID, sizeof(cmsToneCurve)); |
233 | if (!p) return NULL; |
234 | |
235 | // In this case, there are no segments |
236 | if (nSegments == 0) { |
237 | p ->Segments = NULL; |
238 | p ->Evals = NULL; |
239 | } |
240 | else { |
241 | p ->Segments = (cmsCurveSegment*) _cmsCalloc(ContextID, nSegments, sizeof(cmsCurveSegment)); |
242 | if (p ->Segments == NULL) goto Error; |
243 | |
244 | p ->Evals = (cmsParametricCurveEvaluator*) _cmsCalloc(ContextID, nSegments, sizeof(cmsParametricCurveEvaluator)); |
245 | if (p ->Evals == NULL) goto Error; |
246 | } |
247 | |
248 | p -> nSegments = nSegments; |
249 | |
250 | // This 16-bit table contains a limited precision representation of the whole curve and is kept for |
251 | // increasing xput on certain operations. |
252 | if (nEntries == 0) { |
253 | p ->Table16 = NULL; |
254 | } |
255 | else { |
256 | p ->Table16 = (cmsUInt16Number*) _cmsCalloc(ContextID, nEntries, sizeof(cmsUInt16Number)); |
257 | if (p ->Table16 == NULL) goto Error; |
258 | } |
259 | |
260 | p -> nEntries = nEntries; |
261 | |
262 | // Initialize members if requested |
263 | if (Values != NULL && (nEntries > 0)) { |
264 | |
265 | for (i=0; i < nEntries; i++) |
266 | p ->Table16[i] = Values[i]; |
267 | } |
268 | |
269 | // Initialize the segments stuff. The evaluator for each segment is located and a pointer to it |
270 | // is placed in advance to maximize performance. |
271 | if (Segments != NULL && (nSegments > 0)) { |
272 | |
273 | _cmsParametricCurvesCollection *c; |
274 | |
275 | p ->SegInterp = (cmsInterpParams**) _cmsCalloc(ContextID, nSegments, sizeof(cmsInterpParams*)); |
276 | if (p ->SegInterp == NULL) goto Error; |
277 | |
278 | for (i=0; i < nSegments; i++) { |
279 | |
280 | // Type 0 is a special marker for table-based curves |
281 | if (Segments[i].Type == 0) |
282 | p ->SegInterp[i] = _cmsComputeInterpParams(ContextID, Segments[i].nGridPoints, 1, 1, NULL, CMS_LERP_FLAGS_FLOAT); |
283 | |
284 | memmove(&p ->Segments[i], &Segments[i], sizeof(cmsCurveSegment)); |
285 | |
286 | if (Segments[i].Type == 0 && Segments[i].SampledPoints != NULL) |
287 | p ->Segments[i].SampledPoints = (cmsFloat32Number*) _cmsDupMem(ContextID, Segments[i].SampledPoints, sizeof(cmsFloat32Number) * Segments[i].nGridPoints); |
288 | else |
289 | p ->Segments[i].SampledPoints = NULL; |
290 | |
291 | |
292 | c = GetParametricCurveByType(ContextID, Segments[i].Type, NULL); |
293 | if (c != NULL) |
294 | p ->Evals[i] = c ->Evaluator; |
295 | } |
296 | } |
297 | |
298 | p ->InterpParams = _cmsComputeInterpParams(ContextID, p ->nEntries, 1, 1, p->Table16, CMS_LERP_FLAGS_16BITS); |
299 | if (p->InterpParams != NULL) |
300 | return p; |
301 | |
302 | Error: |
303 | if (p->SegInterp) _cmsFree(ContextID, p->SegInterp); |
304 | if (p -> Segments) _cmsFree(ContextID, p ->Segments); |
305 | if (p -> Evals) _cmsFree(ContextID, p -> Evals); |
306 | if (p ->Table16) _cmsFree(ContextID, p ->Table16); |
307 | _cmsFree(ContextID, p); |
308 | return NULL; |
309 | } |
310 | |
311 | |
312 | // Parametric Fn using floating point |
313 | static |
314 | cmsFloat64Number DefaultEvalParametricFn(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[], cmsFloat64Number R) |
315 | { |
316 | cmsFloat64Number e, Val, disc; |
317 | cmsUNUSED_PARAMETER(ContextID); |
318 | |
319 | switch (Type) { |
320 | |
321 | // X = Y ^ Gamma |
322 | case 1: |
323 | if (R < 0) { |
324 | |
325 | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) |
326 | Val = R; |
327 | else |
328 | Val = 0; |
329 | } |
330 | else |
331 | Val = pow(R, Params[0]); |
332 | break; |
333 | |
334 | // Type 1 Reversed: X = Y ^1/gamma |
335 | case -1: |
336 | if (R < 0) { |
337 | |
338 | if (fabs(Params[0] - 1.0) < MATRIX_DET_TOLERANCE) |
339 | Val = R; |
340 | else |
341 | Val = 0; |
342 | } |
343 | else |
344 | { |
345 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) |
346 | Val = PLUS_INF; |
347 | else |
348 | Val = pow(R, 1 / Params[0]); |
349 | } |
350 | break; |
351 | |
352 | // CIE 122-1966 |
353 | // Y = (aX + b)^Gamma | X >= -b/a |
354 | // Y = 0 | else |
355 | case 2: |
356 | { |
357 | |
358 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
359 | { |
360 | Val = 0; |
361 | } |
362 | else |
363 | { |
364 | disc = -Params[2] / Params[1]; |
365 | |
366 | if (R >= disc) { |
367 | |
368 | e = Params[1] * R + Params[2]; |
369 | |
370 | if (e > 0) |
371 | Val = pow(e, Params[0]); |
372 | else |
373 | Val = 0; |
374 | } |
375 | else |
376 | Val = 0; |
377 | } |
378 | } |
379 | break; |
380 | |
381 | // Type 2 Reversed |
382 | // X = (Y ^1/g - b) / a |
383 | case -2: |
384 | { |
385 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
386 | fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
387 | { |
388 | Val = 0; |
389 | } |
390 | else |
391 | { |
392 | if (R < 0) |
393 | Val = 0; |
394 | else |
395 | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; |
396 | |
397 | if (Val < 0) |
398 | Val = 0; |
399 | } |
400 | } |
401 | break; |
402 | |
403 | |
404 | // IEC 61966-3 |
405 | // Y = (aX + b)^Gamma | X <= -b/a |
406 | // Y = c | else |
407 | case 3: |
408 | { |
409 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
410 | { |
411 | Val = 0; |
412 | } |
413 | else |
414 | { |
415 | disc = -Params[2] / Params[1]; |
416 | if (disc < 0) |
417 | disc = 0; |
418 | |
419 | if (R >= disc) { |
420 | |
421 | e = Params[1] * R + Params[2]; |
422 | |
423 | if (e > 0) |
424 | Val = pow(e, Params[0]) + Params[3]; |
425 | else |
426 | Val = 0; |
427 | } |
428 | else |
429 | Val = Params[3]; |
430 | } |
431 | } |
432 | break; |
433 | |
434 | |
435 | // Type 3 reversed |
436 | // X=((Y-c)^1/g - b)/a | (Y>=c) |
437 | // X=-b/a | (Y<c) |
438 | case -3: |
439 | { |
440 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
441 | { |
442 | Val = 0; |
443 | } |
444 | else |
445 | { |
446 | if (R >= Params[3]) { |
447 | |
448 | e = R - Params[3]; |
449 | |
450 | if (e > 0) |
451 | Val = (pow(e, 1 / Params[0]) - Params[2]) / Params[1]; |
452 | else |
453 | Val = 0; |
454 | } |
455 | else { |
456 | Val = -Params[2] / Params[1]; |
457 | } |
458 | } |
459 | } |
460 | break; |
461 | |
462 | |
463 | // IEC 61966-2.1 (sRGB) |
464 | // Y = (aX + b)^Gamma | X >= d |
465 | // Y = cX | X < d |
466 | case 4: |
467 | if (R >= Params[4]) { |
468 | |
469 | e = Params[1]*R + Params[2]; |
470 | |
471 | if (e > 0) |
472 | Val = pow(e, Params[0]); |
473 | else |
474 | Val = 0; |
475 | } |
476 | else |
477 | Val = R * Params[3]; |
478 | break; |
479 | |
480 | // Type 4 reversed |
481 | // X=((Y^1/g-b)/a) | Y >= (ad+b)^g |
482 | // X=Y/c | Y< (ad+b)^g |
483 | case -4: |
484 | { |
485 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
486 | fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
487 | fabs(Params[3]) < MATRIX_DET_TOLERANCE) |
488 | { |
489 | Val = 0; |
490 | } |
491 | else |
492 | { |
493 | e = Params[1] * Params[4] + Params[2]; |
494 | if (e < 0) |
495 | disc = 0; |
496 | else |
497 | disc = pow(e, Params[0]); |
498 | |
499 | if (R >= disc) { |
500 | |
501 | Val = (pow(R, 1.0 / Params[0]) - Params[2]) / Params[1]; |
502 | } |
503 | else { |
504 | Val = R / Params[3]; |
505 | } |
506 | } |
507 | } |
508 | break; |
509 | |
510 | |
511 | // Y = (aX + b)^Gamma + e | X >= d |
512 | // Y = cX + f | X < d |
513 | case 5: |
514 | if (R >= Params[4]) { |
515 | |
516 | e = Params[1]*R + Params[2]; |
517 | |
518 | if (e > 0) |
519 | Val = pow(e, Params[0]) + Params[5]; |
520 | else |
521 | Val = Params[5]; |
522 | } |
523 | else |
524 | Val = R*Params[3] + Params[6]; |
525 | break; |
526 | |
527 | |
528 | // Reversed type 5 |
529 | // X=((Y-e)1/g-b)/a | Y >=(ad+b)^g+e), cd+f |
530 | // X=(Y-f)/c | else |
531 | case -5: |
532 | { |
533 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
534 | fabs(Params[3]) < MATRIX_DET_TOLERANCE) |
535 | { |
536 | Val = 0; |
537 | } |
538 | else |
539 | { |
540 | disc = Params[3] * Params[4] + Params[6]; |
541 | if (R >= disc) { |
542 | |
543 | e = R - Params[5]; |
544 | if (e < 0) |
545 | Val = 0; |
546 | else |
547 | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; |
548 | } |
549 | else { |
550 | Val = (R - Params[6]) / Params[3]; |
551 | } |
552 | } |
553 | } |
554 | break; |
555 | |
556 | |
557 | // Types 6,7,8 comes from segmented curves as described in ICCSpecRevision_02_11_06_Float.pdf |
558 | // Type 6 is basically identical to type 5 without d |
559 | |
560 | // Y = (a * X + b) ^ Gamma + c |
561 | case 6: |
562 | e = Params[1]*R + Params[2]; |
563 | |
564 | if (e < 0) |
565 | Val = Params[3]; |
566 | else |
567 | Val = pow(e, Params[0]) + Params[3]; |
568 | break; |
569 | |
570 | // ((Y - c) ^1/Gamma - b) / a |
571 | case -6: |
572 | { |
573 | if (fabs(Params[1]) < MATRIX_DET_TOLERANCE) |
574 | { |
575 | Val = 0; |
576 | } |
577 | else |
578 | { |
579 | e = R - Params[3]; |
580 | if (e < 0) |
581 | Val = 0; |
582 | else |
583 | Val = (pow(e, 1.0 / Params[0]) - Params[2]) / Params[1]; |
584 | } |
585 | } |
586 | break; |
587 | |
588 | |
589 | // Y = a * log (b * X^Gamma + c) + d |
590 | case 7: |
591 | |
592 | e = Params[2] * pow(R, Params[0]) + Params[3]; |
593 | if (e <= 0) |
594 | Val = Params[4]; |
595 | else |
596 | Val = Params[1]*log10(e) + Params[4]; |
597 | break; |
598 | |
599 | // (Y - d) / a = log(b * X ^Gamma + c) |
600 | // pow(10, (Y-d) / a) = b * X ^Gamma + c |
601 | // pow((pow(10, (Y-d) / a) - c) / b, 1/g) = X |
602 | case -7: |
603 | { |
604 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
605 | fabs(Params[1]) < MATRIX_DET_TOLERANCE || |
606 | fabs(Params[2]) < MATRIX_DET_TOLERANCE) |
607 | { |
608 | Val = 0; |
609 | } |
610 | else |
611 | { |
612 | Val = pow((pow(10.0, (R - Params[4]) / Params[1]) - Params[3]) / Params[2], 1.0 / Params[0]); |
613 | } |
614 | } |
615 | break; |
616 | |
617 | |
618 | //Y = a * b^(c*X+d) + e |
619 | case 8: |
620 | Val = (Params[0] * pow(Params[1], Params[2] * R + Params[3]) + Params[4]); |
621 | break; |
622 | |
623 | |
624 | // Y = (log((y-e) / a) / log(b) - d ) / c |
625 | // a=0, b=1, c=2, d=3, e=4, |
626 | case -8: |
627 | |
628 | disc = R - Params[4]; |
629 | if (disc < 0) Val = 0; |
630 | else |
631 | { |
632 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE || |
633 | fabs(Params[2]) < MATRIX_DET_TOLERANCE) |
634 | { |
635 | Val = 0; |
636 | } |
637 | else |
638 | { |
639 | Val = (log(disc / Params[0]) / log(Params[1]) - Params[3]) / Params[2]; |
640 | } |
641 | } |
642 | break; |
643 | |
644 | // S-Shaped: (1 - (1-x)^1/g)^1/g |
645 | case 108: |
646 | if (fabs(Params[0]) < MATRIX_DET_TOLERANCE) |
647 | Val = 0; |
648 | else |
649 | Val = pow(1.0 - pow(1 - R, 1/Params[0]), 1/Params[0]); |
650 | break; |
651 | |
652 | // y = (1 - (1-x)^1/g)^1/g |
653 | // y^g = (1 - (1-x)^1/g) |
654 | // 1 - y^g = (1-x)^1/g |
655 | // (1 - y^g)^g = 1 - x |
656 | // 1 - (1 - y^g)^g |
657 | case -108: |
658 | Val = 1 - pow(1 - pow(R, Params[0]), Params[0]); |
659 | break; |
660 | |
661 | default: |
662 | // Unsupported parametric curve. Should never reach here |
663 | return 0; |
664 | } |
665 | |
666 | return Val; |
667 | } |
668 | |
669 | // Evaluate a segmented function for a single value. Return -Inf if no valid segment found . |
670 | // If fn type is 0, perform an interpolation on the table |
671 | static |
672 | cmsFloat64Number EvalSegmentedFn(cmsContext ContextID, const cmsToneCurve *g, cmsFloat64Number R) |
673 | { |
674 | int i; |
675 | cmsFloat32Number Out32; |
676 | cmsFloat64Number Out; |
677 | |
678 | for (i = (int) g->nSegments - 1; i >= 0; --i) { |
679 | |
680 | // Check for domain |
681 | if ((R > g->Segments[i].x0) && (R <= g->Segments[i].x1)) { |
682 | |
683 | // Type == 0 means segment is sampled |
684 | if (g->Segments[i].Type == 0) { |
685 | |
686 | cmsFloat32Number R1 = (cmsFloat32Number)(R - g->Segments[i].x0) / (g->Segments[i].x1 - g->Segments[i].x0); |
687 | |
688 | // Setup the table (TODO: clean that) |
689 | g->SegInterp[i]->Table = g->Segments[i].SampledPoints; |
690 | |
691 | g->SegInterp[i]->Interpolation.LerpFloat(ContextID, &R1, &Out32, g->SegInterp[i]); |
692 | Out = (cmsFloat64Number) Out32; |
693 | |
694 | } |
695 | else { |
696 | Out = g->Evals[i](ContextID, g->Segments[i].Type, g->Segments[i].Params, R); |
697 | } |
698 | |
699 | if (isinf(Out)) |
700 | return PLUS_INF; |
701 | else |
702 | { |
703 | if (isinf(-Out)) |
704 | return MINUS_INF; |
705 | } |
706 | |
707 | return Out; |
708 | } |
709 | } |
710 | |
711 | return MINUS_INF; |
712 | } |
713 | |
714 | // Access to estimated low-res table |
715 | cmsUInt32Number CMSEXPORT cmsGetToneCurveEstimatedTableEntries(cmsContext ContextID, const cmsToneCurve* t) |
716 | { |
717 | cmsUNUSED_PARAMETER(ContextID); |
718 | _cmsAssert(t != NULL); |
719 | return t ->nEntries; |
720 | } |
721 | |
722 | const cmsUInt16Number* CMSEXPORT cmsGetToneCurveEstimatedTable(cmsContext ContextID, const cmsToneCurve* t) |
723 | { |
724 | cmsUNUSED_PARAMETER(ContextID); |
725 | _cmsAssert(t != NULL); |
726 | return t ->Table16; |
727 | } |
728 | |
729 | |
730 | // Create an empty gamma curve, by using tables. This specifies only the limited-precision part, and leaves the |
731 | // floating point description empty. |
732 | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurve16(cmsContext ContextID, cmsUInt32Number nEntries, const cmsUInt16Number Values[]) |
733 | { |
734 | return AllocateToneCurveStruct(ContextID, nEntries, 0, NULL, Values); |
735 | } |
736 | |
737 | static |
738 | cmsUInt32Number EntriesByGamma(cmsFloat64Number Gamma) |
739 | { |
740 | if (fabs(Gamma - 1.0) < 0.001) return 2; |
741 | return 4096; |
742 | } |
743 | |
744 | |
745 | // Create a segmented gamma, fill the table |
746 | cmsToneCurve* CMSEXPORT cmsBuildSegmentedToneCurve(cmsContext ContextID, |
747 | cmsUInt32Number nSegments, const cmsCurveSegment Segments[]) |
748 | { |
749 | cmsUInt32Number i; |
750 | cmsFloat64Number R, Val; |
751 | cmsToneCurve* g; |
752 | cmsUInt32Number nGridPoints = 4096; |
753 | |
754 | _cmsAssert(Segments != NULL); |
755 | |
756 | // Optimizatin for identity curves. |
757 | if (nSegments == 1 && Segments[0].Type == 1) { |
758 | |
759 | nGridPoints = EntriesByGamma(Segments[0].Params[0]); |
760 | } |
761 | |
762 | g = AllocateToneCurveStruct(ContextID, nGridPoints, nSegments, Segments, NULL); |
763 | if (g == NULL) return NULL; |
764 | |
765 | // Once we have the floating point version, we can approximate a 16 bit table of 4096 entries |
766 | // for performance reasons. This table would normally not be used except on 8/16 bits transforms. |
767 | for (i = 0; i < nGridPoints; i++) { |
768 | |
769 | R = (cmsFloat64Number) i / (nGridPoints-1); |
770 | |
771 | Val = EvalSegmentedFn(ContextID, g, R); |
772 | |
773 | // Round and saturate |
774 | g ->Table16[i] = _cmsQuickSaturateWord(Val * 65535.0); |
775 | } |
776 | |
777 | return g; |
778 | } |
779 | |
780 | // Use a segmented curve to store the floating point table |
781 | cmsToneCurve* CMSEXPORT cmsBuildTabulatedToneCurveFloat(cmsContext ContextID, cmsUInt32Number nEntries, const cmsFloat32Number values[]) |
782 | { |
783 | cmsCurveSegment Seg[3]; |
784 | |
785 | // A segmented tone curve should have function segments in the first and last positions |
786 | // Initialize segmented curve part up to 0 to constant value = samples[0] |
787 | Seg[0].x0 = MINUS_INF; |
788 | Seg[0].x1 = 0; |
789 | Seg[0].Type = 6; |
790 | |
791 | Seg[0].Params[0] = 1; |
792 | Seg[0].Params[1] = 0; |
793 | Seg[0].Params[2] = 0; |
794 | Seg[0].Params[3] = values[0]; |
795 | Seg[0].Params[4] = 0; |
796 | |
797 | // From zero to 1 |
798 | Seg[1].x0 = 0; |
799 | Seg[1].x1 = 1.0; |
800 | Seg[1].Type = 0; |
801 | |
802 | Seg[1].nGridPoints = nEntries; |
803 | Seg[1].SampledPoints = (cmsFloat32Number*) values; |
804 | |
805 | // Final segment is constant = lastsample |
806 | Seg[2].x0 = 1.0; |
807 | Seg[2].x1 = PLUS_INF; |
808 | Seg[2].Type = 6; |
809 | |
810 | Seg[2].Params[0] = 1; |
811 | Seg[2].Params[1] = 0; |
812 | Seg[2].Params[2] = 0; |
813 | Seg[2].Params[3] = values[nEntries-1]; |
814 | Seg[2].Params[4] = 0; |
815 | |
816 | |
817 | return cmsBuildSegmentedToneCurve(ContextID, 3, Seg); |
818 | } |
819 | |
820 | // Parametric curves |
821 | // |
822 | // Parameters goes as: Curve, a, b, c, d, e, f |
823 | // Type is the ICC type +1 |
824 | // if type is negative, then the curve is analytically inverted |
825 | cmsToneCurve* CMSEXPORT cmsBuildParametricToneCurve(cmsContext ContextID, cmsInt32Number Type, const cmsFloat64Number Params[]) |
826 | { |
827 | cmsCurveSegment Seg0; |
828 | int Pos = 0; |
829 | cmsUInt32Number size; |
830 | _cmsParametricCurvesCollection* c = GetParametricCurveByType(ContextID, Type, &Pos); |
831 | |
832 | _cmsAssert(Params != NULL); |
833 | |
834 | if (c == NULL) { |
835 | cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Invalid parametric curve type %d" , Type); |
836 | return NULL; |
837 | } |
838 | |
839 | memset(&Seg0, 0, sizeof(Seg0)); |
840 | |
841 | Seg0.x0 = MINUS_INF; |
842 | Seg0.x1 = PLUS_INF; |
843 | Seg0.Type = Type; |
844 | |
845 | size = c->ParameterCount[Pos] * sizeof(cmsFloat64Number); |
846 | memmove(Seg0.Params, Params, size); |
847 | |
848 | return cmsBuildSegmentedToneCurve(ContextID, 1, &Seg0); |
849 | } |
850 | |
851 | |
852 | |
853 | // Build a gamma table based on gamma constant |
854 | cmsToneCurve* CMSEXPORT cmsBuildGamma(cmsContext ContextID, cmsFloat64Number Gamma) |
855 | { |
856 | return cmsBuildParametricToneCurve(ContextID, 1, &Gamma); |
857 | } |
858 | |
859 | |
860 | // Free all memory taken by the gamma curve |
861 | void CMSEXPORT cmsFreeToneCurve(cmsContext ContextID, cmsToneCurve* Curve) |
862 | { |
863 | if (Curve == NULL) return; |
864 | |
865 | _cmsFreeInterpParams(ContextID, Curve ->InterpParams); |
866 | |
867 | if (Curve -> Table16) |
868 | _cmsFree(ContextID, Curve ->Table16); |
869 | |
870 | if (Curve ->Segments) { |
871 | |
872 | cmsUInt32Number i; |
873 | |
874 | for (i=0; i < Curve ->nSegments; i++) { |
875 | |
876 | if (Curve ->Segments[i].SampledPoints) { |
877 | _cmsFree(ContextID, Curve ->Segments[i].SampledPoints); |
878 | } |
879 | |
880 | if (Curve ->SegInterp[i] != 0) |
881 | _cmsFreeInterpParams(ContextID, Curve->SegInterp[i]); |
882 | } |
883 | |
884 | _cmsFree(ContextID, Curve ->Segments); |
885 | _cmsFree(ContextID, Curve ->SegInterp); |
886 | } |
887 | |
888 | if (Curve -> Evals) |
889 | _cmsFree(ContextID, Curve -> Evals); |
890 | |
891 | if (Curve) _cmsFree(ContextID, Curve); |
892 | } |
893 | |
894 | // Utility function, free 3 gamma tables |
895 | void CMSEXPORT cmsFreeToneCurveTriple(cmsContext ContextID, cmsToneCurve* Curve[3]) |
896 | { |
897 | |
898 | _cmsAssert(Curve != NULL); |
899 | |
900 | if (Curve[0] != NULL) cmsFreeToneCurve(ContextID, Curve[0]); |
901 | if (Curve[1] != NULL) cmsFreeToneCurve(ContextID, Curve[1]); |
902 | if (Curve[2] != NULL) cmsFreeToneCurve(ContextID, Curve[2]); |
903 | |
904 | Curve[0] = Curve[1] = Curve[2] = NULL; |
905 | } |
906 | |
907 | |
908 | // Duplicate a gamma table |
909 | cmsToneCurve* CMSEXPORT cmsDupToneCurve(cmsContext ContextID, const cmsToneCurve* In) |
910 | { |
911 | if (In == NULL) return NULL; |
912 | |
913 | return AllocateToneCurveStruct(ContextID, In ->nEntries, In ->nSegments, In ->Segments, In ->Table16); |
914 | } |
915 | |
916 | // Joins two curves for X and Y. Curves should be monotonic. |
917 | // We want to get |
918 | // |
919 | // y = Y^-1(X(t)) |
920 | // |
921 | cmsToneCurve* CMSEXPORT cmsJoinToneCurve(cmsContext ContextID, |
922 | const cmsToneCurve* X, |
923 | const cmsToneCurve* Y, cmsUInt32Number nResultingPoints) |
924 | { |
925 | cmsToneCurve* out = NULL; |
926 | cmsToneCurve* Yreversed = NULL; |
927 | cmsFloat32Number t, x; |
928 | cmsFloat32Number* Res = NULL; |
929 | cmsUInt32Number i; |
930 | |
931 | |
932 | _cmsAssert(X != NULL); |
933 | _cmsAssert(Y != NULL); |
934 | |
935 | Yreversed = cmsReverseToneCurveEx(ContextID, nResultingPoints, Y); |
936 | if (Yreversed == NULL) goto Error; |
937 | |
938 | Res = (cmsFloat32Number*) _cmsCalloc(ContextID, nResultingPoints, sizeof(cmsFloat32Number)); |
939 | if (Res == NULL) goto Error; |
940 | |
941 | //Iterate |
942 | for (i=0; i < nResultingPoints; i++) { |
943 | |
944 | t = (cmsFloat32Number) i / (nResultingPoints-1); |
945 | x = cmsEvalToneCurveFloat(ContextID, X, t); |
946 | Res[i] = cmsEvalToneCurveFloat(ContextID, Yreversed, x); |
947 | } |
948 | |
949 | // Allocate space for output |
950 | out = cmsBuildTabulatedToneCurveFloat(ContextID, nResultingPoints, Res); |
951 | |
952 | Error: |
953 | |
954 | if (Res != NULL) _cmsFree(ContextID, Res); |
955 | if (Yreversed != NULL) cmsFreeToneCurve(ContextID, Yreversed); |
956 | |
957 | return out; |
958 | } |
959 | |
960 | |
961 | |
962 | // Get the surrounding nodes. This is tricky on non-monotonic tables |
963 | static |
964 | int GetInterval(cmsFloat64Number In, const cmsUInt16Number LutTable[], const struct _cms_interp_struc* p) |
965 | { |
966 | int i; |
967 | int y0, y1; |
968 | |
969 | // A 1 point table is not allowed |
970 | if (p -> Domain[0] < 1) return -1; |
971 | |
972 | // Let's see if ascending or descending. |
973 | if (LutTable[0] < LutTable[p ->Domain[0]]) { |
974 | |
975 | // Table is overall ascending |
976 | for (i = (int) p->Domain[0] - 1; i >= 0; --i) { |
977 | |
978 | y0 = LutTable[i]; |
979 | y1 = LutTable[i+1]; |
980 | |
981 | if (y0 <= y1) { // Increasing |
982 | if (In >= y0 && In <= y1) return i; |
983 | } |
984 | else |
985 | if (y1 < y0) { // Decreasing |
986 | if (In >= y1 && In <= y0) return i; |
987 | } |
988 | } |
989 | } |
990 | else { |
991 | // Table is overall descending |
992 | for (i=0; i < (int) p -> Domain[0]; i++) { |
993 | |
994 | y0 = LutTable[i]; |
995 | y1 = LutTable[i+1]; |
996 | |
997 | if (y0 <= y1) { // Increasing |
998 | if (In >= y0 && In <= y1) return i; |
999 | } |
1000 | else |
1001 | if (y1 < y0) { // Decreasing |
1002 | if (In >= y1 && In <= y0) return i; |
1003 | } |
1004 | } |
1005 | } |
1006 | |
1007 | return -1; |
1008 | } |
1009 | |
1010 | // Reverse a gamma table |
1011 | cmsToneCurve* CMSEXPORT cmsReverseToneCurveEx(cmsContext ContextID, cmsUInt32Number nResultSamples, const cmsToneCurve* InCurve) |
1012 | { |
1013 | cmsToneCurve *out; |
1014 | cmsFloat64Number a = 0, b = 0, y, x1, y1, x2, y2; |
1015 | int i, j; |
1016 | int Ascending; |
1017 | |
1018 | _cmsAssert(InCurve != NULL); |
1019 | |
1020 | // Try to reverse it analytically whatever possible |
1021 | |
1022 | if (InCurve ->nSegments == 1 && InCurve ->Segments[0].Type > 0 && |
1023 | /* InCurve -> Segments[0].Type <= 5 */ |
1024 | GetParametricCurveByType(ContextID, InCurve ->Segments[0].Type, NULL) != NULL) { |
1025 | |
1026 | return cmsBuildParametricToneCurve(ContextID, |
1027 | -(InCurve -> Segments[0].Type), |
1028 | InCurve -> Segments[0].Params); |
1029 | } |
1030 | |
1031 | // Nope, reverse the table. |
1032 | out = cmsBuildTabulatedToneCurve16(ContextID, nResultSamples, NULL); |
1033 | if (out == NULL) |
1034 | return NULL; |
1035 | |
1036 | // We want to know if this is an ascending or descending table |
1037 | Ascending = !cmsIsToneCurveDescending(ContextID, InCurve); |
1038 | |
1039 | // Iterate across Y axis |
1040 | for (i=0; i < (int) nResultSamples; i++) { |
1041 | |
1042 | y = (cmsFloat64Number) i * 65535.0 / (nResultSamples - 1); |
1043 | |
1044 | // Find interval in which y is within. |
1045 | j = GetInterval(y, InCurve->Table16, InCurve->InterpParams); |
1046 | if (j >= 0) { |
1047 | |
1048 | |
1049 | // Get limits of interval |
1050 | x1 = InCurve ->Table16[j]; |
1051 | x2 = InCurve ->Table16[j+1]; |
1052 | |
1053 | y1 = (cmsFloat64Number) (j * 65535.0) / (InCurve ->nEntries - 1); |
1054 | y2 = (cmsFloat64Number) ((j+1) * 65535.0 ) / (InCurve ->nEntries - 1); |
1055 | |
1056 | // If collapsed, then use any |
1057 | if (x1 == x2) { |
1058 | |
1059 | out ->Table16[i] = _cmsQuickSaturateWord(Ascending ? y2 : y1); |
1060 | continue; |
1061 | |
1062 | } else { |
1063 | |
1064 | // Interpolate |
1065 | a = (y2 - y1) / (x2 - x1); |
1066 | b = y2 - a * x2; |
1067 | } |
1068 | } |
1069 | |
1070 | out ->Table16[i] = _cmsQuickSaturateWord(a* y + b); |
1071 | } |
1072 | |
1073 | |
1074 | return out; |
1075 | } |
1076 | |
1077 | // Reverse a gamma table |
1078 | cmsToneCurve* CMSEXPORT cmsReverseToneCurve(cmsContext ContextID, const cmsToneCurve* InGamma) |
1079 | { |
1080 | _cmsAssert(InGamma != NULL); |
1081 | |
1082 | return cmsReverseToneCurveEx(ContextID, 4096, InGamma); |
1083 | } |
1084 | |
1085 | // From: Eilers, P.H.C. (1994) Smoothing and interpolation with finite |
1086 | // differences. in: Graphic Gems IV, Heckbert, P.S. (ed.), Academic press. |
1087 | // |
1088 | // Smoothing and interpolation with second differences. |
1089 | // |
1090 | // Input: weights (w), data (y): vector from 1 to m. |
1091 | // Input: smoothing parameter (lambda), length (m). |
1092 | // Output: smoothed vector (z): vector from 1 to m. |
1093 | |
1094 | static |
1095 | cmsBool smooth2(cmsContext ContextID, cmsFloat32Number w[], cmsFloat32Number y[], |
1096 | cmsFloat32Number z[], cmsFloat32Number lambda, int m) |
1097 | { |
1098 | int i, i1, i2; |
1099 | cmsFloat32Number *c, *d, *e; |
1100 | cmsBool st; |
1101 | |
1102 | |
1103 | c = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1104 | d = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1105 | e = (cmsFloat32Number*) _cmsCalloc(ContextID, MAX_NODES_IN_CURVE, sizeof(cmsFloat32Number)); |
1106 | |
1107 | if (c != NULL && d != NULL && e != NULL) { |
1108 | |
1109 | |
1110 | d[1] = w[1] + lambda; |
1111 | c[1] = -2 * lambda / d[1]; |
1112 | e[1] = lambda /d[1]; |
1113 | z[1] = w[1] * y[1]; |
1114 | d[2] = w[2] + 5 * lambda - d[1] * c[1] * c[1]; |
1115 | c[2] = (-4 * lambda - d[1] * c[1] * e[1]) / d[2]; |
1116 | e[2] = lambda / d[2]; |
1117 | z[2] = w[2] * y[2] - c[1] * z[1]; |
1118 | |
1119 | for (i = 3; i < m - 1; i++) { |
1120 | i1 = i - 1; i2 = i - 2; |
1121 | d[i]= w[i] + 6 * lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1122 | c[i] = (-4 * lambda -d[i1] * c[i1] * e[i1])/ d[i]; |
1123 | e[i] = lambda / d[i]; |
1124 | z[i] = w[i] * y[i] - c[i1] * z[i1] - e[i2] * z[i2]; |
1125 | } |
1126 | |
1127 | i1 = m - 2; i2 = m - 3; |
1128 | |
1129 | d[m - 1] = w[m - 1] + 5 * lambda -c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1130 | c[m - 1] = (-2 * lambda - d[i1] * c[i1] * e[i1]) / d[m - 1]; |
1131 | z[m - 1] = w[m - 1] * y[m - 1] - c[i1] * z[i1] - e[i2] * z[i2]; |
1132 | i1 = m - 1; i2 = m - 2; |
1133 | |
1134 | d[m] = w[m] + lambda - c[i1] * c[i1] * d[i1] - e[i2] * e[i2] * d[i2]; |
1135 | z[m] = (w[m] * y[m] - c[i1] * z[i1] - e[i2] * z[i2]) / d[m]; |
1136 | z[m - 1] = z[m - 1] / d[m - 1] - c[m - 1] * z[m]; |
1137 | |
1138 | for (i = m - 2; 1<= i; i--) |
1139 | z[i] = z[i] / d[i] - c[i] * z[i + 1] - e[i] * z[i + 2]; |
1140 | |
1141 | st = TRUE; |
1142 | } |
1143 | else st = FALSE; |
1144 | |
1145 | if (c != NULL) _cmsFree(ContextID, c); |
1146 | if (d != NULL) _cmsFree(ContextID, d); |
1147 | if (e != NULL) _cmsFree(ContextID, e); |
1148 | |
1149 | return st; |
1150 | } |
1151 | |
1152 | // Smooths a curve sampled at regular intervals. |
1153 | cmsBool CMSEXPORT cmsSmoothToneCurve(cmsContext ContextID, cmsToneCurve* Tab, cmsFloat64Number lambda) |
1154 | { |
1155 | cmsBool SuccessStatus = TRUE; |
1156 | cmsFloat32Number *w, *y, *z; |
1157 | cmsUInt32Number i, nItems, Zeros, Poles; |
1158 | |
1159 | if (Tab != NULL && Tab->InterpParams != NULL) |
1160 | { |
1161 | if (!cmsIsToneCurveLinear(ContextID, Tab)) // Only non-linear curves need smoothing |
1162 | { |
1163 | nItems = Tab->nEntries; |
1164 | if (nItems < MAX_NODES_IN_CURVE) |
1165 | { |
1166 | // Allocate one more item than needed |
1167 | w = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1168 | y = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1169 | z = (cmsFloat32Number *)_cmsCalloc(ContextID, nItems + 1, sizeof(cmsFloat32Number)); |
1170 | |
1171 | if (w != NULL && y != NULL && z != NULL) // Ensure no memory allocation failure |
1172 | { |
1173 | memset(w, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1174 | memset(y, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1175 | memset(z, 0, (nItems + 1) * sizeof(cmsFloat32Number)); |
1176 | |
1177 | for (i = 0; i < nItems; i++) |
1178 | { |
1179 | y[i + 1] = (cmsFloat32Number)Tab->Table16[i]; |
1180 | w[i + 1] = 1.0; |
1181 | } |
1182 | |
1183 | if (smooth2(ContextID, w, y, z, (cmsFloat32Number)lambda, (int)nItems)) |
1184 | { |
1185 | // Do some reality - checking... |
1186 | |
1187 | Zeros = Poles = 0; |
1188 | for (i = nItems; i > 1; --i) |
1189 | { |
1190 | if (z[i] == 0.) Zeros++; |
1191 | if (z[i] >= 65535.) Poles++; |
1192 | if (z[i] < z[i - 1]) |
1193 | { |
1194 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Non-Monotonic." ); |
1195 | SuccessStatus = FALSE; |
1196 | break; |
1197 | } |
1198 | } |
1199 | |
1200 | if (SuccessStatus && Zeros > (nItems / 3)) |
1201 | { |
1202 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly zeros." ); |
1203 | SuccessStatus = FALSE; |
1204 | } |
1205 | |
1206 | if (SuccessStatus && Poles > (nItems / 3)) |
1207 | { |
1208 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Degenerated, mostly poles." ); |
1209 | SuccessStatus = FALSE; |
1210 | } |
1211 | |
1212 | if (SuccessStatus) // Seems ok |
1213 | { |
1214 | for (i = 0; i < nItems; i++) |
1215 | { |
1216 | // Clamp to cmsUInt16Number |
1217 | Tab->Table16[i] = _cmsQuickSaturateWord(z[i + 1]); |
1218 | } |
1219 | } |
1220 | } |
1221 | else // Could not smooth |
1222 | { |
1223 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Function smooth2 failed." ); |
1224 | SuccessStatus = FALSE; |
1225 | } |
1226 | } |
1227 | else // One or more buffers could not be allocated |
1228 | { |
1229 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Could not allocate memory." ); |
1230 | SuccessStatus = FALSE; |
1231 | } |
1232 | |
1233 | if (z != NULL) |
1234 | _cmsFree(ContextID, z); |
1235 | |
1236 | if (y != NULL) |
1237 | _cmsFree(ContextID, y); |
1238 | |
1239 | if (w != NULL) |
1240 | _cmsFree(ContextID, w); |
1241 | } |
1242 | else // too many items in the table |
1243 | { |
1244 | cmsSignalError(ContextID, cmsERROR_RANGE, "cmsSmoothToneCurve: Too many points." ); |
1245 | SuccessStatus = FALSE; |
1246 | } |
1247 | } |
1248 | } |
1249 | else // Tab parameter or Tab->InterpParams is NULL |
1250 | { |
1251 | // Can't signal an error here since the ContextID is not known at this point |
1252 | SuccessStatus = FALSE; |
1253 | } |
1254 | |
1255 | return SuccessStatus; |
1256 | } |
1257 | |
1258 | // Is a table linear? Do not use parametric since we cannot guarantee some weird parameters resulting |
1259 | // in a linear table. This way assures it is linear in 12 bits, which should be enough in most cases. |
1260 | cmsBool CMSEXPORT cmsIsToneCurveLinear(cmsContext ContextID, const cmsToneCurve* Curve) |
1261 | { |
1262 | int i; |
1263 | int diff; |
1264 | cmsUNUSED_PARAMETER(ContextID); |
1265 | |
1266 | _cmsAssert(Curve != NULL); |
1267 | |
1268 | for (i=0; i < (int) Curve ->nEntries; i++) { |
1269 | |
1270 | diff = abs((int) Curve->Table16[i] - (int) _cmsQuantizeVal(i, Curve ->nEntries)); |
1271 | if (diff > 0x0f) |
1272 | return FALSE; |
1273 | } |
1274 | |
1275 | return TRUE; |
1276 | } |
1277 | |
1278 | // Same, but for monotonicity |
1279 | cmsBool CMSEXPORT cmsIsToneCurveMonotonic(cmsContext ContextID, const cmsToneCurve* t) |
1280 | { |
1281 | cmsUInt32Number n; |
1282 | int i, last; |
1283 | cmsBool lDescending; |
1284 | |
1285 | _cmsAssert(t != NULL); |
1286 | |
1287 | // Degenerated curves are monotonic? Ok, let's pass them |
1288 | n = t ->nEntries; |
1289 | if (n < 2) return TRUE; |
1290 | |
1291 | // Curve direction |
1292 | lDescending = cmsIsToneCurveDescending(ContextID, t); |
1293 | |
1294 | if (lDescending) { |
1295 | |
1296 | last = t ->Table16[0]; |
1297 | |
1298 | for (i = 1; i < (int) n; i++) { |
1299 | |
1300 | if (t ->Table16[i] - last > 2) // We allow some ripple |
1301 | return FALSE; |
1302 | else |
1303 | last = t ->Table16[i]; |
1304 | |
1305 | } |
1306 | } |
1307 | else { |
1308 | |
1309 | last = t ->Table16[n-1]; |
1310 | |
1311 | for (i = (int) n - 2; i >= 0; --i) { |
1312 | |
1313 | if (t ->Table16[i] - last > 2) |
1314 | return FALSE; |
1315 | else |
1316 | last = t ->Table16[i]; |
1317 | |
1318 | } |
1319 | } |
1320 | |
1321 | return TRUE; |
1322 | } |
1323 | |
1324 | // Same, but for descending tables |
1325 | cmsBool CMSEXPORT cmsIsToneCurveDescending(cmsContext ContextID, const cmsToneCurve* t) |
1326 | { |
1327 | _cmsAssert(t != NULL); |
1328 | cmsUNUSED_PARAMETER(ContextID); |
1329 | |
1330 | return t ->Table16[0] > t ->Table16[t ->nEntries-1]; |
1331 | } |
1332 | |
1333 | |
1334 | // Another info fn: is out gamma table multisegment? |
1335 | cmsBool CMSEXPORT cmsIsToneCurveMultisegment(cmsContext ContextID, const cmsToneCurve* t) |
1336 | { |
1337 | _cmsAssert(t != NULL); |
1338 | cmsUNUSED_PARAMETER(ContextID); |
1339 | |
1340 | return t -> nSegments > 1; |
1341 | } |
1342 | |
1343 | cmsInt32Number CMSEXPORT cmsGetToneCurveParametricType(cmsContext ContextID, const cmsToneCurve* t) |
1344 | { |
1345 | _cmsAssert(t != NULL); |
1346 | cmsUNUSED_PARAMETER(ContextID); |
1347 | |
1348 | if (t -> nSegments != 1) return 0; |
1349 | return t ->Segments[0].Type; |
1350 | } |
1351 | |
1352 | // We need accuracy this time |
1353 | cmsFloat32Number CMSEXPORT cmsEvalToneCurveFloat(cmsContext ContextID, const cmsToneCurve* Curve, cmsFloat32Number v) |
1354 | { |
1355 | _cmsAssert(Curve != NULL); |
1356 | |
1357 | // Check for 16 bits table. If so, this is a limited-precision tone curve |
1358 | if (Curve ->nSegments == 0) { |
1359 | |
1360 | cmsUInt16Number In, Out; |
1361 | |
1362 | In = (cmsUInt16Number) _cmsQuickSaturateWord(v * 65535.0); |
1363 | Out = cmsEvalToneCurve16(ContextID, Curve, In); |
1364 | |
1365 | return (cmsFloat32Number) (Out / 65535.0); |
1366 | } |
1367 | |
1368 | return (cmsFloat32Number) EvalSegmentedFn(ContextID, Curve, v); |
1369 | } |
1370 | |
1371 | // We need xput over here |
1372 | cmsUInt16Number CMSEXPORT cmsEvalToneCurve16(cmsContext ContextID, const cmsToneCurve* Curve, cmsUInt16Number v) |
1373 | { |
1374 | cmsUInt16Number out; |
1375 | |
1376 | _cmsAssert(Curve != NULL); |
1377 | |
1378 | Curve ->InterpParams ->Interpolation.Lerp16(ContextID, &v, &out, Curve ->InterpParams); |
1379 | return out; |
1380 | } |
1381 | |
1382 | |
1383 | // Least squares fitting. |
1384 | // A mathematical procedure for finding the best-fitting curve to a given set of points by |
1385 | // minimizing the sum of the squares of the offsets ("the residuals") of the points from the curve. |
1386 | // The sum of the squares of the offsets is used instead of the offset absolute values because |
1387 | // this allows the residuals to be treated as a continuous differentiable quantity. |
1388 | // |
1389 | // y = f(x) = x ^ g |
1390 | // |
1391 | // R = (yi - (xi^g)) |
1392 | // R2 = (yi - (xi^g))2 |
1393 | // SUM R2 = SUM (yi - (xi^g))2 |
1394 | // |
1395 | // dR2/dg = -2 SUM x^g log(x)(y - x^g) |
1396 | // solving for dR2/dg = 0 |
1397 | // |
1398 | // g = 1/n * SUM(log(y) / log(x)) |
1399 | |
1400 | cmsFloat64Number CMSEXPORT cmsEstimateGamma(cmsContext ContextID, const cmsToneCurve* t, cmsFloat64Number Precision) |
1401 | { |
1402 | cmsFloat64Number gamma, sum, sum2; |
1403 | cmsFloat64Number n, x, y, Std; |
1404 | cmsUInt32Number i; |
1405 | |
1406 | _cmsAssert(t != NULL); |
1407 | |
1408 | sum = sum2 = n = 0; |
1409 | |
1410 | // Excluding endpoints |
1411 | for (i=1; i < (MAX_NODES_IN_CURVE-1); i++) { |
1412 | |
1413 | x = (cmsFloat64Number) i / (MAX_NODES_IN_CURVE-1); |
1414 | y = (cmsFloat64Number) cmsEvalToneCurveFloat(ContextID, t, (cmsFloat32Number) x); |
1415 | |
1416 | // Avoid 7% on lower part to prevent |
1417 | // artifacts due to linear ramps |
1418 | |
1419 | if (y > 0. && y < 1. && x > 0.07) { |
1420 | |
1421 | gamma = log(y) / log(x); |
1422 | sum += gamma; |
1423 | sum2 += gamma * gamma; |
1424 | n++; |
1425 | } |
1426 | } |
1427 | |
1428 | // Take a look on SD to see if gamma isn't exponential at all |
1429 | Std = sqrt((n * sum2 - sum * sum) / (n*(n-1))); |
1430 | |
1431 | if (Std > Precision) |
1432 | return -1.0; |
1433 | |
1434 | return (sum / n); // The mean |
1435 | } |
1436 | |