1//---------------------------------------------------------------------------------
2//
3// Little Color Management System
4// Copyright (c) 1998-2017 Marti Maria Saguer
5//
6// Permission is hereby granted, free of charge, to any person obtaining
7// a copy of this software and associated documentation files (the "Software"),
8// to deal in the Software without restriction, including without limitation
9// the rights to use, copy, modify, merge, publish, distribute, sublicense,
10// and/or sell copies of the Software, and to permit persons to whom the Software
11// is furnished to do so, subject to the following conditions:
12//
13// The above copyright notice and this permission notice shall be included in
14// all copies or substantial portions of the Software.
15//
16// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23//
24//---------------------------------------------------------------------------------
25//
26
27#include "lcms2_internal.h"
28
29
30//----------------------------------------------------------------------------------
31
32// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33typedef struct {
34
35 cmsContext ContextID;
36
37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38
39 cmsUInt16Number rx[256], ry[256], rz[256];
40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data
41
42
43} Prelin8Data;
44
45
46// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47typedef struct {
48
49 cmsContext ContextID;
50
51 // Number of channels
52 cmsUInt32Number nInputs;
53 cmsUInt32Number nOutputs;
54
55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance
56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57
58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid
59 const cmsInterpParams* CLUTparams; // (not-owned pointer)
60
61
62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer)
64
65
66} Prelin16Data;
67
68
69// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70
71typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits!
72
73#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74
75typedef struct {
76
77 cmsContext ContextID;
78
79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0)
80 cmsS1Fixed14Number Shaper1G[256];
81 cmsS1Fixed14Number Shaper1B[256];
82
83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that)
84 cmsS1Fixed14Number Off[3];
85
86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255
87 cmsUInt16Number Shaper2G[16385];
88 cmsUInt16Number Shaper2B[16385];
89
90} MatShaper8Data;
91
92// Curves, optimization is shared between 8 and 16 bits
93typedef struct {
94 cmsUInt32Number nCurves; // Number of curves
95 cmsUInt32Number nElements; // Elements in curves
96 cmsUInt16Number** Curves; // Points to a dynamically allocated array
97
98} Curves16Data;
99
100
101// Simple optimizations ----------------------------------------------------------------------------------------------------------
102
103
104// Remove an element in linked chain
105static
106void _RemoveElement(cmsContext ContextID, cmsStage** head)
107{
108 cmsStage* mpe = *head;
109 cmsStage* next = mpe ->Next;
110 *head = next;
111 cmsStageFree(ContextID, mpe);
112}
113
114// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
115static
116cmsBool _Remove1Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature UnaryOp)
117{
118 cmsStage** pt = &Lut ->Elements;
119 cmsBool AnyOpt = FALSE;
120
121 while (*pt != NULL) {
122
123 if ((*pt) ->Implements == UnaryOp) {
124 _RemoveElement(ContextID, pt);
125 AnyOpt = TRUE;
126 }
127 else
128 pt = &((*pt) -> Next);
129 }
130
131 return AnyOpt;
132}
133
134// Same, but only if two adjacent elements are found
135static
136cmsBool _Remove2Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
137{
138 cmsStage** pt1;
139 cmsStage** pt2;
140 cmsBool AnyOpt = FALSE;
141
142 pt1 = &Lut ->Elements;
143 if (*pt1 == NULL) return AnyOpt;
144
145 while (*pt1 != NULL) {
146
147 pt2 = &((*pt1) -> Next);
148 if (*pt2 == NULL) return AnyOpt;
149
150 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
151 _RemoveElement(ContextID, pt2);
152 _RemoveElement(ContextID, pt1);
153 AnyOpt = TRUE;
154 }
155 else
156 pt1 = &((*pt1) -> Next);
157 }
158
159 return AnyOpt;
160}
161
162
163static
164cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
165{
166 return fabs(b - a) < 0.00001f;
167}
168
169static
170cmsBool isFloatMatrixIdentity(cmsContext ContextID, const cmsMAT3* a)
171{
172 cmsMAT3 Identity;
173 int i, j;
174
175 _cmsMAT3identity(ContextID, &Identity);
176
177 for (i = 0; i < 3; i++)
178 for (j = 0; j < 3; j++)
179 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
180
181 return TRUE;
182}
183// if two adjacent matrices are found, multiply them.
184static
185cmsBool _MultiplyMatrix(cmsContext ContextID, cmsPipeline* Lut)
186{
187 cmsStage** pt1;
188 cmsStage** pt2;
189 cmsStage* chain;
190 cmsBool AnyOpt = FALSE;
191
192 pt1 = &Lut->Elements;
193 if (*pt1 == NULL) return AnyOpt;
194
195 while (*pt1 != NULL) {
196
197 pt2 = &((*pt1)->Next);
198 if (*pt2 == NULL) return AnyOpt;
199
200 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
201
202 // Get both matrices
203 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt1);
204 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt2);
205 cmsMAT3 res;
206
207 // Input offset and output offset should be zero to use this optimization
208 if (m1->Offset != NULL || m2 ->Offset != NULL ||
209 cmsStageInputChannels(ContextID, *pt1) != 3 || cmsStageOutputChannels(ContextID, *pt1) != 3 ||
210 cmsStageInputChannels(ContextID, *pt2) != 3 || cmsStageOutputChannels(ContextID, *pt2) != 3)
211 return FALSE;
212
213 // Multiply both matrices to get the result
214 _cmsMAT3per(ContextID, &res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
215
216 // Get the next in chain after the matrices
217 chain = (*pt2)->Next;
218
219 // Remove both matrices
220 _RemoveElement(ContextID, pt2);
221 _RemoveElement(ContextID, pt1);
222
223 // Now what if the result is a plain identity?
224 if (!isFloatMatrixIdentity(ContextID, &res)) {
225
226 // We can not get rid of full matrix
227 cmsStage* Multmat = cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
228 if (Multmat == NULL) return FALSE; // Should never happen
229
230 // Recover the chain
231 Multmat->Next = chain;
232 *pt1 = Multmat;
233 }
234
235 AnyOpt = TRUE;
236 }
237 else
238 pt1 = &((*pt1)->Next);
239 }
240
241 return AnyOpt;
242}
243
244
245// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
246// by a v4 to v2 and vice-versa. The elements are then discarded.
247static
248cmsBool PreOptimize(cmsContext ContextID, cmsPipeline* Lut)
249{
250 cmsBool AnyOpt = FALSE, Opt;
251
252 do {
253
254 Opt = FALSE;
255
256 // Remove all identities
257 Opt |= _Remove1Op(ContextID, Lut, cmsSigIdentityElemType);
258
259 // Remove XYZ2Lab followed by Lab2XYZ
260 Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
261
262 // Remove Lab2XYZ followed by XYZ2Lab
263 Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
264
265 // Remove V4 to V2 followed by V2 to V4
266 Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
267
268 // Remove V2 to V4 followed by V4 to V2
269 Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
270
271 // Remove float pcs Lab conversions
272 Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
273
274 // Remove float pcs Lab conversions
275 Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
276
277 // Simplify matrix.
278 Opt |= _MultiplyMatrix(ContextID, Lut);
279
280 if (Opt) AnyOpt = TRUE;
281
282 } while (Opt);
283
284 return AnyOpt;
285}
286
287static
288void Eval16nop1D(cmsContext ContextID, register const cmsUInt16Number Input[],
289 register cmsUInt16Number Output[],
290 register const struct _cms_interp_struc* p)
291{
292 cmsUNUSED_PARAMETER(ContextID);
293 Output[0] = Input[0];
294
295 cmsUNUSED_PARAMETER(p);
296}
297
298static
299void PrelinEval16(cmsContext ContextID, register const cmsUInt16Number Input[],
300 register cmsUInt16Number Output[],
301 register const void* D)
302{
303 Prelin16Data* p16 = (Prelin16Data*) D;
304 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS];
305 cmsUInt16Number StageDEF[cmsMAXCHANNELS];
306 cmsUInt32Number i;
307
308 for (i=0; i < p16 ->nInputs; i++) {
309
310 p16 ->EvalCurveIn16[i](ContextID, &Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
311 }
312
313 p16 ->EvalCLUT(ContextID, StageABC, StageDEF, p16 ->CLUTparams);
314
315 for (i=0; i < p16 ->nOutputs; i++) {
316
317 p16 ->EvalCurveOut16[i](ContextID, &StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
318 }
319}
320
321
322static
323void PrelinOpt16free(cmsContext ContextID, void* ptr)
324{
325 Prelin16Data* p16 = (Prelin16Data*) ptr;
326
327 _cmsFree(ContextID, p16 ->EvalCurveOut16);
328 _cmsFree(ContextID, p16 ->ParamsCurveOut16);
329
330 _cmsFree(ContextID, p16);
331}
332
333static
334void* Prelin16dup(cmsContext ContextID, const void* ptr)
335{
336 Prelin16Data* p16 = (Prelin16Data*) ptr;
337 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
338
339 if (Duped == NULL) return NULL;
340
341 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
342 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
343
344 return Duped;
345}
346
347
348static
349Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
350 const cmsInterpParams* ColorMap,
351 cmsUInt32Number nInputs, cmsToneCurve** In,
352 cmsUInt32Number nOutputs, cmsToneCurve** Out )
353{
354 cmsUInt32Number i;
355 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
356 if (p16 == NULL) return NULL;
357
358 p16 ->nInputs = nInputs;
359 p16 ->nOutputs = nOutputs;
360
361
362 for (i=0; i < nInputs; i++) {
363
364 if (In == NULL) {
365 p16 -> ParamsCurveIn16[i] = NULL;
366 p16 -> EvalCurveIn16[i] = Eval16nop1D;
367
368 }
369 else {
370 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
371 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
372 }
373 }
374
375 p16 ->CLUTparams = ColorMap;
376 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16;
377
378
379 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
380 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
381
382 for (i=0; i < nOutputs; i++) {
383
384 if (Out == NULL) {
385 p16 ->ParamsCurveOut16[i] = NULL;
386 p16 -> EvalCurveOut16[i] = Eval16nop1D;
387 }
388 else {
389
390 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
391 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
392 }
393 }
394
395 return p16;
396}
397
398
399
400// Resampling ---------------------------------------------------------------------------------
401
402#define PRELINEARIZATION_POINTS 4096
403
404// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
405// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
406static
407cmsInt32Number XFormSampler16(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
408{
409 cmsPipeline* Lut = (cmsPipeline*) Cargo;
410 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
411 cmsUInt32Number i;
412
413 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
414 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
415
416 // From 16 bit to floating point
417 for (i=0; i < Lut ->InputChannels; i++)
418 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
419
420 // Evaluate in floating point
421 cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Lut);
422
423 // Back to 16 bits representation
424 for (i=0; i < Lut ->OutputChannels; i++)
425 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
426
427 // Always succeed
428 return TRUE;
429}
430
431// Try to see if the curves of a given MPE are linear
432static
433cmsBool AllCurvesAreLinear(cmsContext ContextID, cmsStage* mpe)
434{
435 cmsToneCurve** Curves;
436 cmsUInt32Number i, n;
437
438 Curves = _cmsStageGetPtrToCurveSet(mpe);
439 if (Curves == NULL) return FALSE;
440
441 n = cmsStageOutputChannels(ContextID, mpe);
442
443 for (i=0; i < n; i++) {
444 if (!cmsIsToneCurveLinear(ContextID, Curves[i])) return FALSE;
445 }
446
447 return TRUE;
448}
449
450// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
451// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
452static
453cmsBool PatchLUT(cmsContext ContextID, cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
454 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
455{
456 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
457 cmsInterpParams* p16 = Grid ->Params;
458 cmsFloat64Number px, py, pz, pw;
459 int x0, y0, z0, w0;
460 int i, index;
461
462 if (CLUT -> Type != cmsSigCLutElemType) {
463 cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
464 return FALSE;
465 }
466
467 if (nChannelsIn == 4) {
468
469 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
470 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
471 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
472 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
473
474 x0 = (int) floor(px);
475 y0 = (int) floor(py);
476 z0 = (int) floor(pz);
477 w0 = (int) floor(pw);
478
479 if (((px - x0) != 0) ||
480 ((py - y0) != 0) ||
481 ((pz - z0) != 0) ||
482 ((pw - w0) != 0)) return FALSE; // Not on exact node
483
484 index = (int) p16 -> opta[3] * x0 +
485 (int) p16 -> opta[2] * y0 +
486 (int) p16 -> opta[1] * z0 +
487 (int) p16 -> opta[0] * w0;
488 }
489 else
490 if (nChannelsIn == 3) {
491
492 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
493 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
494 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
495
496 x0 = (int) floor(px);
497 y0 = (int) floor(py);
498 z0 = (int) floor(pz);
499
500 if (((px - x0) != 0) ||
501 ((py - y0) != 0) ||
502 ((pz - z0) != 0)) return FALSE; // Not on exact node
503
504 index = (int) p16 -> opta[2] * x0 +
505 (int) p16 -> opta[1] * y0 +
506 (int) p16 -> opta[0] * z0;
507 }
508 else
509 if (nChannelsIn == 1) {
510
511 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
512
513 x0 = (int) floor(px);
514
515 if (((px - x0) != 0)) return FALSE; // Not on exact node
516
517 index = (int) p16 -> opta[0] * x0;
518 }
519 else {
520 cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
521 return FALSE;
522 }
523
524 for (i = 0; i < (int) nChannelsOut; i++)
525 Grid->Tab.T[index + i] = Value[i];
526
527 return TRUE;
528}
529
530// Auxiliary, to see if two values are equal or very different
531static
532cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
533{
534 cmsUInt32Number i;
535
536 for (i=0; i < n; i++) {
537
538 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided
539 if (White1[i] != White2[i]) return FALSE;
540 }
541 return TRUE;
542}
543
544
545// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
546static
547cmsBool FixWhiteMisalignment(cmsContext ContextID, cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
548{
549 cmsUInt16Number *WhitePointIn, *WhitePointOut;
550 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
551 cmsUInt32Number i, nOuts, nIns;
552 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
553
554 if (!_cmsEndPointsBySpace(EntryColorSpace,
555 &WhitePointIn, NULL, &nIns)) return FALSE;
556
557 if (!_cmsEndPointsBySpace(ExitColorSpace,
558 &WhitePointOut, NULL, &nOuts)) return FALSE;
559
560 // It needs to be fixed?
561 if (Lut ->InputChannels != nIns) return FALSE;
562 if (Lut ->OutputChannels != nOuts) return FALSE;
563
564 cmsPipelineEval16(ContextID, WhitePointIn, ObtainedOut, Lut);
565
566 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
567
568 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
569 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
570 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
571 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
572 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 1, cmsSigCLutElemType, &CLUT))
573 return FALSE;
574
575 // We need to interpolate white points of both, pre and post curves
576 if (PreLin) {
577
578 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
579
580 for (i=0; i < nIns; i++) {
581 WhiteIn[i] = cmsEvalToneCurve16(ContextID, Curves[i], WhitePointIn[i]);
582 }
583 }
584 else {
585 for (i=0; i < nIns; i++)
586 WhiteIn[i] = WhitePointIn[i];
587 }
588
589 // If any post-linearization, we need to find how is represented white before the curve, do
590 // a reverse interpolation in this case.
591 if (PostLin) {
592
593 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
594
595 for (i=0; i < nOuts; i++) {
596
597 cmsToneCurve* InversePostLin = cmsReverseToneCurve(ContextID, Curves[i]);
598 if (InversePostLin == NULL) {
599 WhiteOut[i] = WhitePointOut[i];
600
601 } else {
602
603 WhiteOut[i] = cmsEvalToneCurve16(ContextID, InversePostLin, WhitePointOut[i]);
604 cmsFreeToneCurve(ContextID, InversePostLin);
605 }
606 }
607 }
608 else {
609 for (i=0; i < nOuts; i++)
610 WhiteOut[i] = WhitePointOut[i];
611 }
612
613 // Ok, proceed with patching. May fail and we don't care if it fails
614 PatchLUT(ContextID, CLUT, WhiteIn, WhiteOut, nOuts, nIns);
615
616 return TRUE;
617}
618
619// -----------------------------------------------------------------------------------------------------------------------------------------------
620// This function creates simple LUT from complex ones. The generated LUT has an optional set of
621// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
622// These curves have to exist in the original LUT in order to be used in the simplified output.
623// Caller may also use the flags to allow this feature.
624// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
625// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
626// -----------------------------------------------------------------------------------------------------------------------------------------------
627
628static
629cmsBool OptimizeByResampling(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
630{
631 cmsPipeline* Src = NULL;
632 cmsPipeline* Dest = NULL;
633 cmsStage* mpe;
634 cmsStage* CLUT;
635 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
636 cmsUInt32Number nGridPoints;
637 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
638 cmsStage *NewPreLin = NULL;
639 cmsStage *NewPostLin = NULL;
640 _cmsStageCLutData* DataCLUT;
641 cmsToneCurve** DataSetIn;
642 cmsToneCurve** DataSetOut;
643 Prelin16Data* p16;
644
645 // This is a lossy optimization! does not apply in floating-point cases
646 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
647
648 ColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
649 OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
650
651 // Color space must be specified
652 if (ColorSpace == (cmsColorSpaceSignature)0 ||
653 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
654
655 nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
656
657 // For empty LUTs, 2 points are enough
658 if (cmsPipelineStageCount(ContextID, *Lut) == 0)
659 nGridPoints = 2;
660
661 Src = *Lut;
662
663 // Named color pipelines cannot be optimized either
664 for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src);
665 mpe != NULL;
666 mpe = cmsStageNext(ContextID, mpe)) {
667 if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE;
668 }
669
670 // Allocate an empty LUT
671 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
672 if (!Dest) return FALSE;
673
674 // Prelinearization tables are kept unless indicated by flags
675 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
676
677 // Get a pointer to the prelinearization element
678 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(ContextID, Src);
679
680 // Check if suitable
681 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
682
683 // Maybe this is a linear tram, so we can avoid the whole stuff
684 if (!AllCurvesAreLinear(ContextID, PreLin)) {
685
686 // All seems ok, proceed.
687 NewPreLin = cmsStageDup(ContextID, PreLin);
688 if(!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, NewPreLin))
689 goto Error;
690
691 // Remove prelinearization. Since we have duplicated the curve
692 // in destination LUT, the sampling should be applied after this stage.
693 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_BEGIN, &KeepPreLin);
694 }
695 }
696 }
697
698 // Allocate the CLUT
699 CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
700 if (CLUT == NULL) goto Error;
701
702 // Add the CLUT to the destination LUT
703 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, CLUT)) {
704 goto Error;
705 }
706
707 // Postlinearization tables are kept unless indicated by flags
708 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
709
710 // Get a pointer to the postlinearization if present
711 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(ContextID, Src);
712
713 // Check if suitable
714 if (PostLin && cmsStageType(ContextID, PostLin) == cmsSigCurveSetElemType) {
715
716 // Maybe this is a linear tram, so we can avoid the whole stuff
717 if (!AllCurvesAreLinear(ContextID, PostLin)) {
718
719 // All seems ok, proceed.
720 NewPostLin = cmsStageDup(ContextID, PostLin);
721 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, NewPostLin))
722 goto Error;
723
724 // In destination LUT, the sampling should be applied after this stage.
725 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_END, &KeepPostLin);
726 }
727 }
728 }
729
730 // Now its time to do the sampling. We have to ignore pre/post linearization
731 // The source LUT without pre/post curves is passed as parameter.
732 if (!cmsStageSampleCLut16bit(ContextID, CLUT, XFormSampler16, (void*) Src, 0)) {
733Error:
734 // Ops, something went wrong, Restore stages
735 if (KeepPreLin != NULL) {
736 if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_BEGIN, KeepPreLin)) {
737 _cmsAssert(0); // This never happens
738 }
739 }
740 if (KeepPostLin != NULL) {
741 if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_END, KeepPostLin)) {
742 _cmsAssert(0); // This never happens
743 }
744 }
745 cmsPipelineFree(ContextID, Dest);
746 return FALSE;
747 }
748
749 // Done.
750
751 if (KeepPreLin != NULL) cmsStageFree(ContextID, KeepPreLin);
752 if (KeepPostLin != NULL) cmsStageFree(ContextID, KeepPostLin);
753 cmsPipelineFree(ContextID, Src);
754
755 DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
756
757 if (NewPreLin == NULL) DataSetIn = NULL;
758 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
759
760 if (NewPostLin == NULL) DataSetOut = NULL;
761 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
762
763
764 if (DataSetIn == NULL && DataSetOut == NULL) {
765
766 _cmsPipelineSetOptimizationParameters(ContextID, Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
767 }
768 else {
769
770 p16 = PrelinOpt16alloc(ContextID,
771 DataCLUT ->Params,
772 Dest ->InputChannels,
773 DataSetIn,
774 Dest ->OutputChannels,
775 DataSetOut);
776
777 _cmsPipelineSetOptimizationParameters(ContextID, Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
778 }
779
780
781 // Don't fix white on absolute colorimetric
782 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
783 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
784
785 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
786
787 FixWhiteMisalignment(ContextID, Dest, ColorSpace, OutputColorSpace);
788 }
789
790 *Lut = Dest;
791 return TRUE;
792
793 cmsUNUSED_PARAMETER(Intent);
794}
795
796
797// -----------------------------------------------------------------------------------------------------------------------------------------------
798// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
799// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
800// for RGB transforms. See the paper for more details
801// -----------------------------------------------------------------------------------------------------------------------------------------------
802
803
804// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
805// Descending curves are handled as well.
806static
807void SlopeLimiting(cmsContext ContextID, cmsToneCurve* g)
808{
809 int BeginVal, EndVal;
810 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2%
811 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98%
812 cmsFloat64Number Val, Slope, beta;
813 int i;
814
815 if (cmsIsToneCurveDescending(ContextID, g)) {
816 BeginVal = 0xffff; EndVal = 0;
817 }
818 else {
819 BeginVal = 0; EndVal = 0xffff;
820 }
821
822 // Compute slope and offset for begin of curve
823 Val = g ->Table16[AtBegin];
824 Slope = (Val - BeginVal) / AtBegin;
825 beta = Val - Slope * AtBegin;
826
827 for (i=0; i < AtBegin; i++)
828 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
829
830 // Compute slope and offset for the end
831 Val = g ->Table16[AtEnd];
832 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases
833 beta = Val - Slope * AtEnd;
834
835 for (i = AtEnd; i < (int) g ->nEntries; i++)
836 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
837}
838
839
840// Precomputes tables for 8-bit on input devicelink.
841static
842Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
843{
844 int i;
845 cmsUInt16Number Input[3];
846 cmsS15Fixed16Number v1, v2, v3;
847 Prelin8Data* p8;
848
849 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
850 if (p8 == NULL) return NULL;
851
852 // Since this only works for 8 bit input, values comes always as x * 257,
853 // we can safely take msb byte (x << 8 + x)
854
855 for (i=0; i < 256; i++) {
856
857 if (G != NULL) {
858
859 // Get 16-bit representation
860 Input[0] = cmsEvalToneCurve16(ContextID, G[0], FROM_8_TO_16(i));
861 Input[1] = cmsEvalToneCurve16(ContextID, G[1], FROM_8_TO_16(i));
862 Input[2] = cmsEvalToneCurve16(ContextID, G[2], FROM_8_TO_16(i));
863 }
864 else {
865 Input[0] = FROM_8_TO_16(i);
866 Input[1] = FROM_8_TO_16(i);
867 Input[2] = FROM_8_TO_16(i);
868 }
869
870
871 // Move to 0..1.0 in fixed domain
872 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
873 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
874 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
875
876 // Store the precalculated table of nodes
877 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
878 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
879 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
880
881 // Store the precalculated table of offsets
882 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
883 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
884 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
885 }
886
887 p8 ->ContextID = ContextID;
888 p8 ->p = p;
889
890 return p8;
891}
892
893static
894void Prelin8free(cmsContext ContextID, void* ptr)
895{
896 _cmsFree(ContextID, ptr);
897}
898
899static
900void* Prelin8dup(cmsContext ContextID, const void* ptr)
901{
902 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
903}
904
905
906
907// A optimized interpolation for 8-bit input.
908#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
909static CMS_NO_SANITIZE
910void PrelinEval8(cmsContext ContextID, register const cmsUInt16Number Input[],
911 register cmsUInt16Number Output[],
912 register const void* D)
913{
914 cmsUInt8Number r, g, b;
915 cmsS15Fixed16Number rx, ry, rz;
916 cmsS15Fixed16Number c0, c1, c2, c3, Rest;
917 int OutChan;
918 register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
919 Prelin8Data* p8 = (Prelin8Data*) D;
920 register const cmsInterpParams* p = p8 ->p;
921 int TotalOut = (int) p -> nOutputs;
922 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
923 cmsUNUSED_PARAMETER(ContextID);
924
925 r = (cmsUInt8Number) (Input[0] >> 8);
926 g = (cmsUInt8Number) (Input[1] >> 8);
927 b = (cmsUInt8Number) (Input[2] >> 8);
928
929 X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
930 Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
931 Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
932
933 rx = p8 ->rx[r];
934 ry = p8 ->ry[g];
935 rz = p8 ->rz[b];
936
937 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]);
938 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]);
939 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]);
940
941
942 // These are the 6 Tetrahedral
943 for (OutChan=0; OutChan < TotalOut; OutChan++) {
944
945 c0 = DENS(X0, Y0, Z0);
946
947 if (rx >= ry && ry >= rz)
948 {
949 c1 = DENS(X1, Y0, Z0) - c0;
950 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
951 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
952 }
953 else
954 if (rx >= rz && rz >= ry)
955 {
956 c1 = DENS(X1, Y0, Z0) - c0;
957 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
958 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
959 }
960 else
961 if (rz >= rx && rx >= ry)
962 {
963 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
964 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
965 c3 = DENS(X0, Y0, Z1) - c0;
966 }
967 else
968 if (ry >= rx && rx >= rz)
969 {
970 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
971 c2 = DENS(X0, Y1, Z0) - c0;
972 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
973 }
974 else
975 if (ry >= rz && rz >= rx)
976 {
977 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
978 c2 = DENS(X0, Y1, Z0) - c0;
979 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
980 }
981 else
982 if (rz >= ry && ry >= rx)
983 {
984 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
985 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
986 c3 = DENS(X0, Y0, Z1) - c0;
987 }
988 else {
989 c1 = c2 = c3 = 0;
990 }
991
992 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
993 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
994
995 }
996}
997
998#undef DENS
999
1000
1001// Curves that contain wide empty areas are not optimizeable
1002static
1003cmsBool IsDegenerated(const cmsToneCurve* g)
1004{
1005 cmsUInt32Number i, Zeros = 0, Poles = 0;
1006 cmsUInt32Number nEntries = g ->nEntries;
1007
1008 for (i=0; i < nEntries; i++) {
1009
1010 if (g ->Table16[i] == 0x0000) Zeros++;
1011 if (g ->Table16[i] == 0xffff) Poles++;
1012 }
1013
1014 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables
1015 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros
1016 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles
1017
1018 return FALSE;
1019}
1020
1021// --------------------------------------------------------------------------------------------------------------
1022// We need xput over here
1023
1024static
1025cmsBool OptimizeByComputingLinearization(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1026{
1027 cmsPipeline* OriginalLut;
1028 cmsUInt32Number nGridPoints;
1029 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1030 cmsUInt32Number t, i;
1031 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1032 cmsBool lIsSuitable, lIsLinear;
1033 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1034 cmsStage* OptimizedCLUTmpe;
1035 cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1036 cmsStage* OptimizedPrelinMpe;
1037 cmsStage* mpe;
1038 cmsToneCurve** OptimizedPrelinCurves;
1039 _cmsStageCLutData* OptimizedPrelinCLUT;
1040
1041
1042 // This is a lossy optimization! does not apply in floating-point cases
1043 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1044
1045 // Only on chunky RGB
1046 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE;
1047 if (T_PLANAR(*InputFormat)) return FALSE;
1048
1049 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1050 if (T_PLANAR(*OutputFormat)) return FALSE;
1051
1052 // On 16 bits, user has to specify the feature
1053 if (!_cmsFormatterIs8bit(*InputFormat)) {
1054 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1055 }
1056
1057 OriginalLut = *Lut;
1058
1059 // Named color pipelines cannot be optimized either
1060 for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, OriginalLut);
1061 mpe != NULL;
1062 mpe = cmsStageNext(ContextID, mpe)) {
1063 if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE;
1064 }
1065
1066 ColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
1067 OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
1068
1069 // Color space must be specified
1070 if (ColorSpace == (cmsColorSpaceSignature)0 ||
1071 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1072
1073 nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
1074
1075 // Empty gamma containers
1076 memset(Trans, 0, sizeof(Trans));
1077 memset(TransReverse, 0, sizeof(TransReverse));
1078
1079 // If the last stage of the original lut are curves, and those curves are
1080 // degenerated, it is likely the transform is squeezing and clipping
1081 // the output from previous CLUT. We cannot optimize this case
1082 {
1083 cmsStage* last = cmsPipelineGetPtrToLastStage(ContextID, OriginalLut);
1084
1085 if (cmsStageType(ContextID, last) == cmsSigCurveSetElemType) {
1086
1087 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(ContextID, last);
1088 for (i = 0; i < Data->nCurves; i++) {
1089 if (IsDegenerated(Data->TheCurves[i]))
1090 goto Error;
1091 }
1092 }
1093 }
1094
1095 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1096 Trans[t] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
1097 if (Trans[t] == NULL) goto Error;
1098 }
1099
1100 // Populate the curves
1101 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1102
1103 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1104
1105 // Feed input with a gray ramp
1106 for (t=0; t < OriginalLut ->InputChannels; t++)
1107 In[t] = v;
1108
1109 // Evaluate the gray value
1110 cmsPipelineEvalFloat(ContextID, In, Out, OriginalLut);
1111
1112 // Store result in curve
1113 for (t=0; t < OriginalLut ->InputChannels; t++)
1114 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1115 }
1116
1117 // Slope-limit the obtained curves
1118 for (t = 0; t < OriginalLut ->InputChannels; t++)
1119 SlopeLimiting(ContextID, Trans[t]);
1120
1121 // Check for validity
1122 lIsSuitable = TRUE;
1123 lIsLinear = TRUE;
1124 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1125
1126 // Exclude if already linear
1127 if (!cmsIsToneCurveLinear(ContextID, Trans[t]))
1128 lIsLinear = FALSE;
1129
1130 // Exclude if non-monotonic
1131 if (!cmsIsToneCurveMonotonic(ContextID, Trans[t]))
1132 lIsSuitable = FALSE;
1133
1134 if (IsDegenerated(Trans[t]))
1135 lIsSuitable = FALSE;
1136 }
1137
1138 // If it is not suitable, just quit
1139 if (!lIsSuitable) goto Error;
1140
1141 // Invert curves if possible
1142 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1143 TransReverse[t] = cmsReverseToneCurveEx(ContextID, PRELINEARIZATION_POINTS, Trans[t]);
1144 if (TransReverse[t] == NULL) goto Error;
1145 }
1146
1147 // Now inset the reversed curves at the begin of transform
1148 LutPlusCurves = cmsPipelineDup(ContextID, OriginalLut);
1149 if (LutPlusCurves == NULL) goto Error;
1150
1151 if (!cmsPipelineInsertStage(ContextID, LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, TransReverse)))
1152 goto Error;
1153
1154 // Create the result LUT
1155 OptimizedLUT = cmsPipelineAlloc(ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1156 if (OptimizedLUT == NULL) goto Error;
1157
1158 OptimizedPrelinMpe = cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, Trans);
1159
1160 // Create and insert the curves at the beginning
1161 if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1162 goto Error;
1163
1164 // Allocate the CLUT for result
1165 OptimizedCLUTmpe = cmsStageAllocCLut16bit(ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1166
1167 // Add the CLUT to the destination LUT
1168 if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1169 goto Error;
1170
1171 // Resample the LUT
1172 if (!cmsStageSampleCLut16bit(ContextID, OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1173
1174 // Free resources
1175 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1176
1177 if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
1178 if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
1179 }
1180
1181 cmsPipelineFree(ContextID, LutPlusCurves);
1182
1183
1184 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1185 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1186
1187 // Set the evaluator if 8-bit
1188 if (_cmsFormatterIs8bit(*InputFormat)) {
1189
1190 Prelin8Data* p8 = PrelinOpt8alloc(ContextID,
1191 OptimizedPrelinCLUT ->Params,
1192 OptimizedPrelinCurves);
1193 if (p8 == NULL) return FALSE;
1194
1195 _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1196
1197 }
1198 else
1199 {
1200 Prelin16Data* p16 = PrelinOpt16alloc(ContextID,
1201 OptimizedPrelinCLUT ->Params,
1202 3, OptimizedPrelinCurves, 3, NULL);
1203 if (p16 == NULL) return FALSE;
1204
1205 _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1206
1207 }
1208
1209 // Don't fix white on absolute colorimetric
1210 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1211 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1212
1213 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1214
1215 if (!FixWhiteMisalignment(ContextID, OptimizedLUT, ColorSpace, OutputColorSpace)) {
1216
1217 return FALSE;
1218 }
1219 }
1220
1221 // And return the obtained LUT
1222
1223 cmsPipelineFree(ContextID, OriginalLut);
1224 *Lut = OptimizedLUT;
1225 return TRUE;
1226
1227Error:
1228
1229 for (t = 0; t < OriginalLut ->InputChannels; t++) {
1230
1231 if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
1232 if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
1233 }
1234
1235 if (LutPlusCurves != NULL) cmsPipelineFree(ContextID, LutPlusCurves);
1236 if (OptimizedLUT != NULL) cmsPipelineFree(ContextID, OptimizedLUT);
1237
1238 return FALSE;
1239
1240 cmsUNUSED_PARAMETER(Intent);
1241 cmsUNUSED_PARAMETER(lIsLinear);
1242}
1243
1244
1245// Curves optimizer ------------------------------------------------------------------------------------------------------------------
1246
1247static
1248void CurvesFree(cmsContext ContextID, void* ptr)
1249{
1250 Curves16Data* Data = (Curves16Data*) ptr;
1251 cmsUInt32Number i;
1252
1253 for (i=0; i < Data -> nCurves; i++) {
1254
1255 _cmsFree(ContextID, Data ->Curves[i]);
1256 }
1257
1258 _cmsFree(ContextID, Data ->Curves);
1259 _cmsFree(ContextID, ptr);
1260}
1261
1262static
1263void* CurvesDup(cmsContext ContextID, const void* ptr)
1264{
1265 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1266 cmsUInt32Number i;
1267
1268 if (Data == NULL) return NULL;
1269
1270 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1271
1272 for (i=0; i < Data -> nCurves; i++) {
1273 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1274 }
1275
1276 return (void*) Data;
1277}
1278
1279// Precomputes tables for 8-bit on input devicelink.
1280static
1281Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1282{
1283 cmsUInt32Number i, j;
1284 Curves16Data* c16;
1285
1286 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1287 if (c16 == NULL) return NULL;
1288
1289 c16 ->nCurves = nCurves;
1290 c16 ->nElements = nElements;
1291
1292 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1293 if (c16->Curves == NULL) {
1294 _cmsFree(ContextID, c16);
1295 return NULL;
1296 }
1297
1298 for (i=0; i < nCurves; i++) {
1299
1300 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1301
1302 if (c16->Curves[i] == NULL) {
1303
1304 for (j=0; j < i; j++) {
1305 _cmsFree(ContextID, c16->Curves[j]);
1306 }
1307 _cmsFree(ContextID, c16->Curves);
1308 _cmsFree(ContextID, c16);
1309 return NULL;
1310 }
1311
1312 if (nElements == 256U) {
1313
1314 for (j=0; j < nElements; j++) {
1315
1316 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], FROM_8_TO_16(j));
1317 }
1318 }
1319 else {
1320
1321 for (j=0; j < nElements; j++) {
1322 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], (cmsUInt16Number) j);
1323 }
1324 }
1325 }
1326
1327 return c16;
1328}
1329
1330static
1331void FastEvaluateCurves8(cmsContext ContextID, register const cmsUInt16Number In[],
1332 register cmsUInt16Number Out[],
1333 register const void* D)
1334{
1335 Curves16Data* Data = (Curves16Data*) D;
1336 int x;
1337 cmsUInt32Number i;
1338 cmsUNUSED_PARAMETER(ContextID);
1339
1340 for (i=0; i < Data ->nCurves; i++) {
1341
1342 x = (In[i] >> 8);
1343 Out[i] = Data -> Curves[i][x];
1344 }
1345}
1346
1347
1348static
1349void FastEvaluateCurves16(cmsContext ContextID, register const cmsUInt16Number In[],
1350 register cmsUInt16Number Out[],
1351 register const void* D)
1352{
1353 Curves16Data* Data = (Curves16Data*) D;
1354 cmsUInt32Number i;
1355 cmsUNUSED_PARAMETER(ContextID);
1356
1357 for (i=0; i < Data ->nCurves; i++) {
1358 Out[i] = Data -> Curves[i][In[i]];
1359 }
1360}
1361
1362
1363static
1364void FastIdentity16(cmsContext ContextID, register const cmsUInt16Number In[],
1365 register cmsUInt16Number Out[],
1366 register const void* D)
1367{
1368 cmsPipeline* Lut = (cmsPipeline*) D;
1369 cmsUInt32Number i;
1370 cmsUNUSED_PARAMETER(ContextID);
1371
1372 for (i=0; i < Lut ->InputChannels; i++) {
1373 Out[i] = In[i];
1374 }
1375}
1376
1377
1378// If the target LUT holds only curves, the optimization procedure is to join all those
1379// curves together. That only works on curves and does not work on matrices.
1380static
1381cmsBool OptimizeByJoiningCurves(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1382{
1383 cmsToneCurve** GammaTables = NULL;
1384 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1385 cmsUInt32Number i, j;
1386 cmsPipeline* Src = *Lut;
1387 cmsPipeline* Dest = NULL;
1388 cmsStage* mpe;
1389 cmsStage* ObtainedCurves = NULL;
1390
1391
1392 // This is a lossy optimization! does not apply in floating-point cases
1393 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1394
1395 // Only curves in this LUT?
1396 for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src);
1397 mpe != NULL;
1398 mpe = cmsStageNext(ContextID, mpe)) {
1399 if (cmsStageType(ContextID, mpe) != cmsSigCurveSetElemType) return FALSE;
1400 }
1401
1402 // Allocate an empty LUT
1403 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
1404 if (Dest == NULL) return FALSE;
1405
1406 // Create target curves
1407 GammaTables = (cmsToneCurve**) _cmsCalloc(ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1408 if (GammaTables == NULL) goto Error;
1409
1410 for (i=0; i < Src ->InputChannels; i++) {
1411 GammaTables[i] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
1412 if (GammaTables[i] == NULL) goto Error;
1413 }
1414
1415 // Compute 16 bit result by using floating point
1416 for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1417
1418 for (j=0; j < Src ->InputChannels; j++)
1419 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1420
1421 cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Src);
1422
1423 for (j=0; j < Src ->InputChannels; j++)
1424 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1425 }
1426
1427 ObtainedCurves = cmsStageAllocToneCurves(ContextID, Src ->InputChannels, GammaTables);
1428 if (ObtainedCurves == NULL) goto Error;
1429
1430 for (i=0; i < Src ->InputChannels; i++) {
1431 cmsFreeToneCurve(ContextID, GammaTables[i]);
1432 GammaTables[i] = NULL;
1433 }
1434
1435 if (GammaTables != NULL) {
1436 _cmsFree(ContextID, GammaTables);
1437 GammaTables = NULL;
1438 }
1439
1440 // Maybe the curves are linear at the end
1441 if (!AllCurvesAreLinear(ContextID, ObtainedCurves)) {
1442 _cmsStageToneCurvesData* Data;
1443
1444 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, ObtainedCurves))
1445 goto Error;
1446 Data = (_cmsStageToneCurvesData*) cmsStageData(ContextID, ObtainedCurves);
1447 ObtainedCurves = NULL;
1448
1449 // If the curves are to be applied in 8 bits, we can save memory
1450 if (_cmsFormatterIs8bit(*InputFormat)) {
1451 Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 256, Data ->TheCurves);
1452
1453 if (c16 == NULL) goto Error;
1454 *dwFlags |= cmsFLAGS_NOCACHE;
1455 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1456
1457 }
1458 else {
1459 Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1460
1461 if (c16 == NULL) goto Error;
1462 *dwFlags |= cmsFLAGS_NOCACHE;
1463 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1464 }
1465 }
1466 else {
1467
1468 // LUT optimizes to nothing. Set the identity LUT
1469 cmsStageFree(ContextID, ObtainedCurves);
1470 ObtainedCurves = NULL;
1471
1472 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageAllocIdentity(ContextID, Src ->InputChannels)))
1473 goto Error;
1474
1475 *dwFlags |= cmsFLAGS_NOCACHE;
1476 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1477 }
1478
1479 // We are done.
1480 cmsPipelineFree(ContextID, Src);
1481 *Lut = Dest;
1482 return TRUE;
1483
1484Error:
1485
1486 if (ObtainedCurves != NULL) cmsStageFree(ContextID, ObtainedCurves);
1487 if (GammaTables != NULL) {
1488 for (i=0; i < Src ->InputChannels; i++) {
1489 if (GammaTables[i] != NULL) cmsFreeToneCurve(ContextID, GammaTables[i]);
1490 }
1491
1492 _cmsFree(ContextID, GammaTables);
1493 }
1494
1495 if (Dest != NULL) cmsPipelineFree(ContextID, Dest);
1496 return FALSE;
1497
1498 cmsUNUSED_PARAMETER(Intent);
1499 cmsUNUSED_PARAMETER(InputFormat);
1500 cmsUNUSED_PARAMETER(OutputFormat);
1501 cmsUNUSED_PARAMETER(dwFlags);
1502}
1503
1504// -------------------------------------------------------------------------------------------------------------------------------------
1505// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1506
1507
1508static
1509void FreeMatShaper(cmsContext ContextID, void* Data)
1510{
1511 if (Data != NULL) _cmsFree(ContextID, Data);
1512}
1513
1514static
1515void* DupMatShaper(cmsContext ContextID, const void* Data)
1516{
1517 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1518}
1519
1520
1521// A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1522// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1523// in total about 50K, and the performance boost is huge!
1524static
1525void MatShaperEval16(cmsContext ContextID, register const cmsUInt16Number In[],
1526 register cmsUInt16Number Out[],
1527 register const void* D)
1528{
1529 MatShaper8Data* p = (MatShaper8Data*) D;
1530 cmsS1Fixed14Number l1, l2, l3, r, g, b;
1531 cmsUInt32Number ri, gi, bi;
1532 cmsUNUSED_PARAMETER(ContextID);
1533
1534 // In this case (and only in this case!) we can use this simplification since
1535 // In[] is assured to come from a 8 bit number. (a << 8 | a)
1536 ri = In[0] & 0xFFU;
1537 gi = In[1] & 0xFFU;
1538 bi = In[2] & 0xFFU;
1539
1540 // Across first shaper, which also converts to 1.14 fixed point
1541 r = p->Shaper1R[ri];
1542 g = p->Shaper1G[gi];
1543 b = p->Shaper1B[bi];
1544
1545 // Evaluate the matrix in 1.14 fixed point
1546 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1547 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1548 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1549
1550 // Now we have to clip to 0..1.0 range
1551 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1552 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1553 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1554
1555 // And across second shaper,
1556 Out[0] = p->Shaper2R[ri];
1557 Out[1] = p->Shaper2G[gi];
1558 Out[2] = p->Shaper2B[bi];
1559
1560}
1561
1562// This table converts from 8 bits to 1.14 after applying the curve
1563static
1564void FillFirstShaper(cmsContext ContextID, cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1565{
1566 int i;
1567 cmsFloat32Number R, y;
1568
1569 for (i=0; i < 256; i++) {
1570
1571 R = (cmsFloat32Number) (i / 255.0);
1572 y = cmsEvalToneCurveFloat(ContextID, Curve, R);
1573
1574 if (y < 131072.0)
1575 Table[i] = DOUBLE_TO_1FIXED14(y);
1576 else
1577 Table[i] = 0x7fffffff;
1578 }
1579}
1580
1581// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1582static
1583void FillSecondShaper(cmsContext ContextID, cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1584{
1585 int i;
1586 cmsFloat32Number R, Val;
1587
1588 for (i=0; i < 16385; i++) {
1589
1590 R = (cmsFloat32Number) (i / 16384.0);
1591 Val = cmsEvalToneCurveFloat(ContextID, Curve, R); // Val comes 0..1.0
1592
1593 if (Val < 0)
1594 Val = 0;
1595
1596 if (Val > 1.0)
1597 Val = 1.0;
1598
1599 if (Is8BitsOutput) {
1600
1601 // If 8 bits output, we can optimize further by computing the / 257 part.
1602 // first we compute the resulting byte and then we store the byte times
1603 // 257. This quantization allows to round very quick by doing a >> 8, but
1604 // since the low byte is always equal to msb, we can do a & 0xff and this works!
1605 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1606 cmsUInt8Number b = FROM_16_TO_8(w);
1607
1608 Table[i] = FROM_8_TO_16(b);
1609 }
1610 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0);
1611 }
1612}
1613
1614// Compute the matrix-shaper structure
1615static
1616cmsBool SetMatShaper(cmsContext ContextID, cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1617{
1618 MatShaper8Data* p;
1619 int i, j;
1620 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1621
1622 // Allocate a big chuck of memory to store precomputed tables
1623 p = (MatShaper8Data*) _cmsMalloc(ContextID, sizeof(MatShaper8Data));
1624 if (p == NULL) return FALSE;
1625
1626 // Precompute tables
1627 FillFirstShaper(ContextID, p ->Shaper1R, Curve1[0]);
1628 FillFirstShaper(ContextID, p ->Shaper1G, Curve1[1]);
1629 FillFirstShaper(ContextID, p ->Shaper1B, Curve1[2]);
1630
1631 FillSecondShaper(ContextID, p ->Shaper2R, Curve2[0], Is8Bits);
1632 FillSecondShaper(ContextID, p ->Shaper2G, Curve2[1], Is8Bits);
1633 FillSecondShaper(ContextID, p ->Shaper2B, Curve2[2], Is8Bits);
1634
1635 // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1636 for (i=0; i < 3; i++) {
1637 for (j=0; j < 3; j++) {
1638 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1639 }
1640 }
1641
1642 for (i=0; i < 3; i++) {
1643
1644 if (Off == NULL) {
1645 p ->Off[i] = 0;
1646 }
1647 else {
1648 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1649 }
1650 }
1651
1652 // Mark as optimized for faster formatter
1653 if (Is8Bits)
1654 *OutputFormat |= OPTIMIZED_SH(1);
1655
1656 // Fill function pointers
1657 _cmsPipelineSetOptimizationParameters(ContextID, Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1658 return TRUE;
1659}
1660
1661// 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1662static
1663cmsBool OptimizeMatrixShaper(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1664{
1665 cmsStage* Curve1, *Curve2;
1666 cmsStage* Matrix1, *Matrix2;
1667 cmsMAT3 res;
1668 cmsBool IdentityMat;
1669 cmsPipeline* Dest, *Src;
1670 cmsFloat64Number* Offset;
1671
1672 // Only works on RGB to RGB
1673 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1674
1675 // Only works on 8 bit input
1676 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1677
1678 // Seems suitable, proceed
1679 Src = *Lut;
1680
1681 // Check for:
1682 //
1683 // shaper-matrix-matrix-shaper
1684 // shaper-matrix-shaper
1685 //
1686 // Both of those constructs are possible (first because abs. colorimetric).
1687 // additionally, In the first case, the input matrix offset should be zero.
1688
1689 IdentityMat = FALSE;
1690 if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 4,
1691 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1692 &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1693
1694 // Get both matrices
1695 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
1696 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix2);
1697
1698 // Input offset should be zero
1699 if (Data1->Offset != NULL) return FALSE;
1700
1701 // Multiply both matrices to get the result
1702 _cmsMAT3per(ContextID, &res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1703
1704 // Only 2nd matrix has offset, or it is zero
1705 Offset = Data2->Offset;
1706
1707 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1708 if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
1709
1710 // We can get rid of full matrix
1711 IdentityMat = TRUE;
1712 }
1713
1714 }
1715 else {
1716
1717 if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 3,
1718 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1719 &Curve1, &Matrix1, &Curve2)) {
1720
1721 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
1722
1723 // Copy the matrix to our result
1724 memcpy(&res, Data->Double, sizeof(res));
1725
1726 // Preserve the Odffset (may be NULL as a zero offset)
1727 Offset = Data->Offset;
1728
1729 if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
1730
1731 // We can get rid of full matrix
1732 IdentityMat = TRUE;
1733 }
1734 }
1735 else
1736 return FALSE; // Not optimizeable this time
1737
1738 }
1739
1740 // Allocate an empty LUT
1741 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
1742 if (!Dest) return FALSE;
1743
1744 // Assamble the new LUT
1745 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageDup(ContextID, Curve1)))
1746 goto Error;
1747
1748 if (!IdentityMat) {
1749
1750 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1751 goto Error;
1752 }
1753
1754 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageDup(ContextID, Curve2)))
1755 goto Error;
1756
1757 // If identity on matrix, we can further optimize the curves, so call the join curves routine
1758 if (IdentityMat) {
1759
1760 OptimizeByJoiningCurves(ContextID, &Dest, Intent, InputFormat, OutputFormat, dwFlags);
1761 }
1762 else {
1763 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve1);
1764 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve2);
1765
1766 // In this particular optimization, cache does not help as it takes more time to deal with
1767 // the cache that with the pixel handling
1768 *dwFlags |= cmsFLAGS_NOCACHE;
1769
1770 // Setup the optimizarion routines
1771 SetMatShaper(ContextID, Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1772 }
1773
1774 cmsPipelineFree(ContextID, Src);
1775 *Lut = Dest;
1776 return TRUE;
1777Error:
1778 // Leave Src unchanged
1779 cmsPipelineFree(ContextID, Dest);
1780 return FALSE;
1781}
1782
1783
1784// -------------------------------------------------------------------------------------------------------------------------------------
1785// Optimization plug-ins
1786
1787// List of optimizations
1788typedef struct _cmsOptimizationCollection_st {
1789
1790 _cmsOPToptimizeFn OptimizePtr;
1791
1792 struct _cmsOptimizationCollection_st *Next;
1793
1794} _cmsOptimizationCollection;
1795
1796
1797// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1798static _cmsOptimizationCollection DefaultOptimization[] = {
1799
1800 { OptimizeByJoiningCurves, &DefaultOptimization[1] },
1801 { OptimizeMatrixShaper, &DefaultOptimization[2] },
1802 { OptimizeByComputingLinearization, &DefaultOptimization[3] },
1803 { OptimizeByResampling, NULL }
1804};
1805
1806// The linked list head
1807_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1808
1809
1810// Duplicates the zone of memory used by the plug-in in the new context
1811static
1812void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1813 const struct _cmsContext_struct* src)
1814{
1815 _cmsOptimizationPluginChunkType newHead = { NULL };
1816 _cmsOptimizationCollection* entry;
1817 _cmsOptimizationCollection* Anterior = NULL;
1818 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1819
1820 _cmsAssert(ctx != NULL);
1821 _cmsAssert(head != NULL);
1822
1823 // Walk the list copying all nodes
1824 for (entry = head->OptimizationCollection;
1825 entry != NULL;
1826 entry = entry ->Next) {
1827
1828 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1829
1830 if (newEntry == NULL)
1831 return;
1832
1833 // We want to keep the linked list order, so this is a little bit tricky
1834 newEntry -> Next = NULL;
1835 if (Anterior)
1836 Anterior -> Next = newEntry;
1837
1838 Anterior = newEntry;
1839
1840 if (newHead.OptimizationCollection == NULL)
1841 newHead.OptimizationCollection = newEntry;
1842 }
1843
1844 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1845}
1846
1847void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1848 const struct _cmsContext_struct* src)
1849{
1850 if (src != NULL) {
1851
1852 // Copy all linked list
1853 DupPluginOptimizationList(ctx, src);
1854 }
1855 else {
1856 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1857 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1858 }
1859}
1860
1861
1862// Register new ways to optimize
1863cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1864{
1865 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1866 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1867 _cmsOptimizationCollection* fl;
1868
1869 if (Data == NULL) {
1870
1871 ctx->OptimizationCollection = NULL;
1872 return TRUE;
1873 }
1874
1875 // Optimizer callback is required
1876 if (Plugin ->OptimizePtr == NULL) return FALSE;
1877
1878 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1879 if (fl == NULL) return FALSE;
1880
1881 // Copy the parameters
1882 fl ->OptimizePtr = Plugin ->OptimizePtr;
1883
1884 // Keep linked list
1885 fl ->Next = ctx->OptimizationCollection;
1886
1887 // Set the head
1888 ctx ->OptimizationCollection = fl;
1889
1890 // All is ok
1891 return TRUE;
1892}
1893
1894// The entry point for LUT optimization
1895cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1896 cmsPipeline** PtrLut,
1897 cmsUInt32Number Intent,
1898 cmsUInt32Number* InputFormat,
1899 cmsUInt32Number* OutputFormat,
1900 cmsUInt32Number* dwFlags)
1901{
1902 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1903 _cmsOptimizationCollection* Opts;
1904 cmsBool AnySuccess = FALSE;
1905
1906 // A CLUT is being asked, so force this specific optimization
1907 if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1908
1909 PreOptimize(ContextID, *PtrLut);
1910 return OptimizeByResampling(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1911 }
1912
1913 // Anything to optimize?
1914 if ((*PtrLut) ->Elements == NULL) {
1915 _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1916 return TRUE;
1917 }
1918
1919 // Try to get rid of identities and trivial conversions.
1920 AnySuccess = PreOptimize(ContextID, *PtrLut);
1921
1922 // After removal do we end with an identity?
1923 if ((*PtrLut) ->Elements == NULL) {
1924 _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1925 return TRUE;
1926 }
1927
1928 // Do not optimize, keep all precision
1929 if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1930 return FALSE;
1931
1932 // Try plug-in optimizations
1933 for (Opts = ctx->OptimizationCollection;
1934 Opts != NULL;
1935 Opts = Opts ->Next) {
1936
1937 // If one schema succeeded, we are done
1938 if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1939
1940 return TRUE; // Optimized!
1941 }
1942 }
1943
1944 // Try built-in optimizations
1945 for (Opts = DefaultOptimization;
1946 Opts != NULL;
1947 Opts = Opts ->Next) {
1948
1949 if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1950
1951 return TRUE;
1952 }
1953 }
1954
1955 // Only simple optimizations succeeded
1956 return AnySuccess;
1957}
1958
1959cmsBool _cmsLutIsIdentity(cmsPipeline *PtrLut)
1960{
1961 return !PtrLut || PtrLut->Eval16Fn == FastIdentity16;
1962}
1963