1 | /* |
2 | * jdarith.c |
3 | * |
4 | * Developed 1997-2012 by Guido Vollbeding. |
5 | * This file is part of the Independent JPEG Group's software. |
6 | * For conditions of distribution and use, see the accompanying README file. |
7 | * |
8 | * This file contains portable arithmetic entropy decoding routines for JPEG |
9 | * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). |
10 | * |
11 | * Both sequential and progressive modes are supported in this single module. |
12 | * |
13 | * Suspension is not currently supported in this module. |
14 | */ |
15 | |
16 | #define JPEG_INTERNALS |
17 | #include "jinclude.h" |
18 | #include "jpeglib.h" |
19 | |
20 | |
21 | /* Expanded entropy decoder object for arithmetic decoding. */ |
22 | |
23 | typedef struct { |
24 | struct jpeg_entropy_decoder pub; /* public fields */ |
25 | |
26 | INT32 c; /* C register, base of coding interval + input bit buffer */ |
27 | INT32 a; /* A register, normalized size of coding interval */ |
28 | int ct; /* bit shift counter, # of bits left in bit buffer part of C */ |
29 | /* init: ct = -16 */ |
30 | /* run: ct = 0..7 */ |
31 | /* error: ct = -1 */ |
32 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
33 | int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ |
34 | |
35 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
36 | |
37 | /* Pointers to statistics areas (these workspaces have image lifespan) */ |
38 | unsigned char * dc_stats[NUM_ARITH_TBLS]; |
39 | unsigned char * ac_stats[NUM_ARITH_TBLS]; |
40 | |
41 | /* Statistics bin for coding with fixed probability 0.5 */ |
42 | unsigned char fixed_bin[4]; |
43 | } arith_entropy_decoder; |
44 | |
45 | typedef arith_entropy_decoder * arith_entropy_ptr; |
46 | |
47 | /* The following two definitions specify the allocation chunk size |
48 | * for the statistics area. |
49 | * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least |
50 | * 49 statistics bins for DC, and 245 statistics bins for AC coding. |
51 | * |
52 | * We use a compact representation with 1 byte per statistics bin, |
53 | * thus the numbers directly represent byte sizes. |
54 | * This 1 byte per statistics bin contains the meaning of the MPS |
55 | * (more probable symbol) in the highest bit (mask 0x80), and the |
56 | * index into the probability estimation state machine table |
57 | * in the lower bits (mask 0x7F). |
58 | */ |
59 | |
60 | #define DC_STAT_BINS 64 |
61 | #define AC_STAT_BINS 256 |
62 | |
63 | |
64 | LOCAL(int) |
65 | get_byte (j_decompress_ptr cinfo) |
66 | /* Read next input byte; we do not support suspension in this module. */ |
67 | { |
68 | struct jpeg_source_mgr * src = cinfo->src; |
69 | |
70 | if (src->bytes_in_buffer == 0) |
71 | if (! (*src->fill_input_buffer) (cinfo)) |
72 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
73 | src->bytes_in_buffer--; |
74 | return GETJOCTET(*src->next_input_byte++); |
75 | } |
76 | |
77 | |
78 | /* |
79 | * The core arithmetic decoding routine (common in JPEG and JBIG). |
80 | * This needs to go as fast as possible. |
81 | * Machine-dependent optimization facilities |
82 | * are not utilized in this portable implementation. |
83 | * However, this code should be fairly efficient and |
84 | * may be a good base for further optimizations anyway. |
85 | * |
86 | * Return value is 0 or 1 (binary decision). |
87 | * |
88 | * Note: I've changed the handling of the code base & bit |
89 | * buffer register C compared to other implementations |
90 | * based on the standards layout & procedures. |
91 | * While it also contains both the actual base of the |
92 | * coding interval (16 bits) and the next-bits buffer, |
93 | * the cut-point between these two parts is floating |
94 | * (instead of fixed) with the bit shift counter CT. |
95 | * Thus, we also need only one (variable instead of |
96 | * fixed size) shift for the LPS/MPS decision, and |
97 | * we can get away with any renormalization update |
98 | * of C (except for new data insertion, of course). |
99 | * |
100 | * I've also introduced a new scheme for accessing |
101 | * the probability estimation state machine table, |
102 | * derived from Markus Kuhn's JBIG implementation. |
103 | */ |
104 | |
105 | LOCAL(int) |
106 | arith_decode (j_decompress_ptr cinfo, unsigned char *st) |
107 | { |
108 | register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; |
109 | register unsigned char nl, nm; |
110 | register INT32 qe, temp; |
111 | register int sv, data; |
112 | |
113 | /* Renormalization & data input per section D.2.6 */ |
114 | while (e->a < 0x8000L) { |
115 | if (--e->ct < 0) { |
116 | /* Need to fetch next data byte */ |
117 | if (cinfo->unread_marker) |
118 | data = 0; /* stuff zero data */ |
119 | else { |
120 | data = get_byte(cinfo); /* read next input byte */ |
121 | if (data == 0xFF) { /* zero stuff or marker code */ |
122 | do data = get_byte(cinfo); |
123 | while (data == 0xFF); /* swallow extra 0xFF bytes */ |
124 | if (data == 0) |
125 | data = 0xFF; /* discard stuffed zero byte */ |
126 | else { |
127 | /* Note: Different from the Huffman decoder, hitting |
128 | * a marker while processing the compressed data |
129 | * segment is legal in arithmetic coding. |
130 | * The convention is to supply zero data |
131 | * then until decoding is complete. |
132 | */ |
133 | cinfo->unread_marker = data; |
134 | data = 0; |
135 | } |
136 | } |
137 | } |
138 | e->c = (e->c << 8) | data; /* insert data into C register */ |
139 | if ((e->ct += 8) < 0) /* update bit shift counter */ |
140 | /* Need more initial bytes */ |
141 | if (++e->ct == 0) |
142 | /* Got 2 initial bytes -> re-init A and exit loop */ |
143 | e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ |
144 | } |
145 | e->a <<= 1; |
146 | } |
147 | |
148 | /* Fetch values from our compact representation of Table D.3(D.2): |
149 | * Qe values and probability estimation state machine |
150 | */ |
151 | sv = *st; |
152 | qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ |
153 | nl = (unsigned char)(qe & 0xFF); qe >>= 8; /* Next_Index_LPS + Switch_MPS */ |
154 | nm = (unsigned char)(qe & 0xFF); qe >>= 8; /* Next_Index_MPS */ |
155 | |
156 | /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ |
157 | temp = e->a - qe; |
158 | e->a = temp; |
159 | temp <<= e->ct; |
160 | if (e->c >= temp) { |
161 | e->c -= temp; |
162 | /* Conditional LPS (less probable symbol) exchange */ |
163 | if (e->a < qe) { |
164 | e->a = qe; |
165 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
166 | } else { |
167 | e->a = qe; |
168 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
169 | sv ^= 0x80; /* Exchange LPS/MPS */ |
170 | } |
171 | } else if (e->a < 0x8000L) { |
172 | /* Conditional MPS (more probable symbol) exchange */ |
173 | if (e->a < qe) { |
174 | *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ |
175 | sv ^= 0x80; /* Exchange LPS/MPS */ |
176 | } else { |
177 | *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ |
178 | } |
179 | } |
180 | |
181 | return sv >> 7; |
182 | } |
183 | |
184 | |
185 | /* |
186 | * Check for a restart marker & resynchronize decoder. |
187 | */ |
188 | |
189 | LOCAL(void) |
190 | process_restart (j_decompress_ptr cinfo) |
191 | { |
192 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
193 | int ci; |
194 | jpeg_component_info * compptr; |
195 | |
196 | /* Advance past the RSTn marker */ |
197 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
198 | ERREXIT(cinfo, JERR_CANT_SUSPEND); |
199 | |
200 | /* Re-initialize statistics areas */ |
201 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
202 | compptr = cinfo->cur_comp_info[ci]; |
203 | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
204 | MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); |
205 | /* Reset DC predictions to 0 */ |
206 | entropy->last_dc_val[ci] = 0; |
207 | entropy->dc_context[ci] = 0; |
208 | } |
209 | if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
210 | (cinfo->progressive_mode && cinfo->Ss)) { |
211 | MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); |
212 | } |
213 | } |
214 | |
215 | /* Reset arithmetic decoding variables */ |
216 | entropy->c = 0; |
217 | entropy->a = 0; |
218 | entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
219 | |
220 | /* Reset restart counter */ |
221 | entropy->restarts_to_go = cinfo->restart_interval; |
222 | } |
223 | |
224 | |
225 | /* |
226 | * Arithmetic MCU decoding. |
227 | * Each of these routines decodes and returns one MCU's worth of |
228 | * arithmetic-compressed coefficients. |
229 | * The coefficients are reordered from zigzag order into natural array order, |
230 | * but are not dequantized. |
231 | * |
232 | * The i'th block of the MCU is stored into the block pointed to by |
233 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
234 | */ |
235 | |
236 | /* |
237 | * MCU decoding for DC initial scan (either spectral selection, |
238 | * or first pass of successive approximation). |
239 | */ |
240 | |
241 | METHODDEF(boolean) |
242 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
243 | { |
244 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
245 | JBLOCKROW block; |
246 | unsigned char *st; |
247 | int blkn, ci, tbl, sign; |
248 | int v, m; |
249 | |
250 | /* Process restart marker if needed */ |
251 | if (cinfo->restart_interval) { |
252 | if (entropy->restarts_to_go == 0) |
253 | process_restart(cinfo); |
254 | entropy->restarts_to_go--; |
255 | } |
256 | |
257 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
258 | |
259 | /* Outer loop handles each block in the MCU */ |
260 | |
261 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
262 | block = MCU_data[blkn]; |
263 | ci = cinfo->MCU_membership[blkn]; |
264 | tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; |
265 | |
266 | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
267 | |
268 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
269 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
270 | |
271 | /* Figure F.19: Decode_DC_DIFF */ |
272 | if (arith_decode(cinfo, st) == 0) |
273 | entropy->dc_context[ci] = 0; |
274 | else { |
275 | /* Figure F.21: Decoding nonzero value v */ |
276 | /* Figure F.22: Decoding the sign of v */ |
277 | sign = arith_decode(cinfo, st + 1); |
278 | st += 2; st += sign; |
279 | /* Figure F.23: Decoding the magnitude category of v */ |
280 | if ((m = arith_decode(cinfo, st)) != 0) { |
281 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
282 | while (arith_decode(cinfo, st)) { |
283 | if ((m <<= 1) == 0x8000) { |
284 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
285 | entropy->ct = -1; /* magnitude overflow */ |
286 | return TRUE; |
287 | } |
288 | st += 1; |
289 | } |
290 | } |
291 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
292 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
293 | entropy->dc_context[ci] = 0; /* zero diff category */ |
294 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
295 | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
296 | else |
297 | entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
298 | v = m; |
299 | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
300 | st += 14; |
301 | while (m >>= 1) |
302 | if (arith_decode(cinfo, st)) v |= m; |
303 | v += 1; if (sign) v = -v; |
304 | entropy->last_dc_val[ci] += v; |
305 | } |
306 | |
307 | /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ |
308 | (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); |
309 | } |
310 | |
311 | return TRUE; |
312 | } |
313 | |
314 | |
315 | /* |
316 | * MCU decoding for AC initial scan (either spectral selection, |
317 | * or first pass of successive approximation). |
318 | */ |
319 | |
320 | METHODDEF(boolean) |
321 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
322 | { |
323 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
324 | JBLOCKROW block; |
325 | unsigned char *st; |
326 | int tbl, sign, k; |
327 | int v, m; |
328 | const int * natural_order; |
329 | |
330 | /* Process restart marker if needed */ |
331 | if (cinfo->restart_interval) { |
332 | if (entropy->restarts_to_go == 0) |
333 | process_restart(cinfo); |
334 | entropy->restarts_to_go--; |
335 | } |
336 | |
337 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
338 | |
339 | natural_order = cinfo->natural_order; |
340 | |
341 | /* There is always only one block per MCU */ |
342 | block = MCU_data[0]; |
343 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
344 | |
345 | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
346 | |
347 | /* Figure F.20: Decode_AC_coefficients */ |
348 | k = cinfo->Ss - 1; |
349 | do { |
350 | st = entropy->ac_stats[tbl] + 3 * k; |
351 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
352 | for (;;) { |
353 | k++; |
354 | if (arith_decode(cinfo, st + 1)) break; |
355 | st += 3; |
356 | if (k >= cinfo->Se) { |
357 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
358 | entropy->ct = -1; /* spectral overflow */ |
359 | return TRUE; |
360 | } |
361 | } |
362 | /* Figure F.21: Decoding nonzero value v */ |
363 | /* Figure F.22: Decoding the sign of v */ |
364 | sign = arith_decode(cinfo, entropy->fixed_bin); |
365 | st += 2; |
366 | /* Figure F.23: Decoding the magnitude category of v */ |
367 | if ((m = arith_decode(cinfo, st)) != 0) { |
368 | if (arith_decode(cinfo, st)) { |
369 | m <<= 1; |
370 | st = entropy->ac_stats[tbl] + |
371 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
372 | while (arith_decode(cinfo, st)) { |
373 | if ((m <<= 1) == 0x8000) { |
374 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
375 | entropy->ct = -1; /* magnitude overflow */ |
376 | return TRUE; |
377 | } |
378 | st += 1; |
379 | } |
380 | } |
381 | } |
382 | v = m; |
383 | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
384 | st += 14; |
385 | while (m >>= 1) |
386 | if (arith_decode(cinfo, st)) v |= m; |
387 | v += 1; if (sign) v = -v; |
388 | /* Scale and output coefficient in natural (dezigzagged) order */ |
389 | (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); |
390 | } while (k < cinfo->Se); |
391 | |
392 | return TRUE; |
393 | } |
394 | |
395 | |
396 | /* |
397 | * MCU decoding for DC successive approximation refinement scan. |
398 | */ |
399 | |
400 | METHODDEF(boolean) |
401 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
402 | { |
403 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
404 | unsigned char *st; |
405 | int p1, blkn; |
406 | |
407 | /* Process restart marker if needed */ |
408 | if (cinfo->restart_interval) { |
409 | if (entropy->restarts_to_go == 0) |
410 | process_restart(cinfo); |
411 | entropy->restarts_to_go--; |
412 | } |
413 | |
414 | st = entropy->fixed_bin; /* use fixed probability estimation */ |
415 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
416 | |
417 | /* Outer loop handles each block in the MCU */ |
418 | |
419 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
420 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
421 | if (arith_decode(cinfo, st)) |
422 | MCU_data[blkn][0][0] |= p1; |
423 | } |
424 | |
425 | return TRUE; |
426 | } |
427 | |
428 | |
429 | /* |
430 | * MCU decoding for AC successive approximation refinement scan. |
431 | */ |
432 | |
433 | METHODDEF(boolean) |
434 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
435 | { |
436 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
437 | JBLOCKROW block; |
438 | JCOEFPTR thiscoef; |
439 | unsigned char *st; |
440 | int tbl, k, kex; |
441 | int p1, m1; |
442 | const int * natural_order; |
443 | |
444 | /* Process restart marker if needed */ |
445 | if (cinfo->restart_interval) { |
446 | if (entropy->restarts_to_go == 0) |
447 | process_restart(cinfo); |
448 | entropy->restarts_to_go--; |
449 | } |
450 | |
451 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
452 | |
453 | natural_order = cinfo->natural_order; |
454 | |
455 | /* There is always only one block per MCU */ |
456 | block = MCU_data[0]; |
457 | tbl = cinfo->cur_comp_info[0]->ac_tbl_no; |
458 | |
459 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
460 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
461 | |
462 | /* Establish EOBx (previous stage end-of-block) index */ |
463 | kex = cinfo->Se; |
464 | do { |
465 | if ((*block)[natural_order[kex]]) break; |
466 | } while (--kex); |
467 | |
468 | k = cinfo->Ss - 1; |
469 | do { |
470 | st = entropy->ac_stats[tbl] + 3 * k; |
471 | if (k >= kex) |
472 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
473 | for (;;) { |
474 | thiscoef = *block + natural_order[++k]; |
475 | if (*thiscoef) { /* previously nonzero coef */ |
476 | if (arith_decode(cinfo, st + 2)) { |
477 | if (*thiscoef < 0) |
478 | *thiscoef += m1; |
479 | else |
480 | *thiscoef += p1; |
481 | } |
482 | break; |
483 | } |
484 | if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ |
485 | if (arith_decode(cinfo, entropy->fixed_bin)) |
486 | *thiscoef = m1; |
487 | else |
488 | *thiscoef = p1; |
489 | break; |
490 | } |
491 | st += 3; |
492 | if (k >= cinfo->Se) { |
493 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
494 | entropy->ct = -1; /* spectral overflow */ |
495 | return TRUE; |
496 | } |
497 | } |
498 | } while (k < cinfo->Se); |
499 | |
500 | return TRUE; |
501 | } |
502 | |
503 | |
504 | /* |
505 | * Decode one MCU's worth of arithmetic-compressed coefficients. |
506 | */ |
507 | |
508 | METHODDEF(boolean) |
509 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
510 | { |
511 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
512 | jpeg_component_info * compptr; |
513 | JBLOCKROW block; |
514 | unsigned char *st; |
515 | int blkn, ci, tbl, sign, k; |
516 | int v, m; |
517 | const int * natural_order; |
518 | |
519 | /* Process restart marker if needed */ |
520 | if (cinfo->restart_interval) { |
521 | if (entropy->restarts_to_go == 0) |
522 | process_restart(cinfo); |
523 | entropy->restarts_to_go--; |
524 | } |
525 | |
526 | if (entropy->ct == -1) return TRUE; /* if error do nothing */ |
527 | |
528 | natural_order = cinfo->natural_order; |
529 | |
530 | /* Outer loop handles each block in the MCU */ |
531 | |
532 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
533 | block = MCU_data[blkn]; |
534 | ci = cinfo->MCU_membership[blkn]; |
535 | compptr = cinfo->cur_comp_info[ci]; |
536 | |
537 | /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ |
538 | |
539 | tbl = compptr->dc_tbl_no; |
540 | |
541 | /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ |
542 | st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; |
543 | |
544 | /* Figure F.19: Decode_DC_DIFF */ |
545 | if (arith_decode(cinfo, st) == 0) |
546 | entropy->dc_context[ci] = 0; |
547 | else { |
548 | /* Figure F.21: Decoding nonzero value v */ |
549 | /* Figure F.22: Decoding the sign of v */ |
550 | sign = arith_decode(cinfo, st + 1); |
551 | st += 2; st += sign; |
552 | /* Figure F.23: Decoding the magnitude category of v */ |
553 | if ((m = arith_decode(cinfo, st)) != 0) { |
554 | st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ |
555 | while (arith_decode(cinfo, st)) { |
556 | if ((m <<= 1) == 0x8000) { |
557 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
558 | entropy->ct = -1; /* magnitude overflow */ |
559 | return TRUE; |
560 | } |
561 | st += 1; |
562 | } |
563 | } |
564 | /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ |
565 | if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) |
566 | entropy->dc_context[ci] = 0; /* zero diff category */ |
567 | else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) |
568 | entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ |
569 | else |
570 | entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ |
571 | v = m; |
572 | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
573 | st += 14; |
574 | while (m >>= 1) |
575 | if (arith_decode(cinfo, st)) v |= m; |
576 | v += 1; if (sign) v = -v; |
577 | entropy->last_dc_val[ci] += v; |
578 | } |
579 | |
580 | (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; |
581 | |
582 | /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ |
583 | |
584 | if (cinfo->lim_Se == 0) continue; |
585 | tbl = compptr->ac_tbl_no; |
586 | k = 0; |
587 | |
588 | /* Figure F.20: Decode_AC_coefficients */ |
589 | do { |
590 | st = entropy->ac_stats[tbl] + 3 * k; |
591 | if (arith_decode(cinfo, st)) break; /* EOB flag */ |
592 | for (;;) { |
593 | k++; |
594 | if (arith_decode(cinfo, st + 1)) break; |
595 | st += 3; |
596 | if (k >= cinfo->lim_Se) { |
597 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
598 | entropy->ct = -1; /* spectral overflow */ |
599 | return TRUE; |
600 | } |
601 | } |
602 | /* Figure F.21: Decoding nonzero value v */ |
603 | /* Figure F.22: Decoding the sign of v */ |
604 | sign = arith_decode(cinfo, entropy->fixed_bin); |
605 | st += 2; |
606 | /* Figure F.23: Decoding the magnitude category of v */ |
607 | if ((m = arith_decode(cinfo, st)) != 0) { |
608 | if (arith_decode(cinfo, st)) { |
609 | m <<= 1; |
610 | st = entropy->ac_stats[tbl] + |
611 | (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); |
612 | while (arith_decode(cinfo, st)) { |
613 | if ((m <<= 1) == 0x8000) { |
614 | WARNMS(cinfo, JWRN_ARITH_BAD_CODE); |
615 | entropy->ct = -1; /* magnitude overflow */ |
616 | return TRUE; |
617 | } |
618 | st += 1; |
619 | } |
620 | } |
621 | } |
622 | v = m; |
623 | /* Figure F.24: Decoding the magnitude bit pattern of v */ |
624 | st += 14; |
625 | while (m >>= 1) |
626 | if (arith_decode(cinfo, st)) v |= m; |
627 | v += 1; if (sign) v = -v; |
628 | (*block)[natural_order[k]] = (JCOEF) v; |
629 | } while (k < cinfo->lim_Se); |
630 | } |
631 | |
632 | return TRUE; |
633 | } |
634 | |
635 | |
636 | /* |
637 | * Initialize for an arithmetic-compressed scan. |
638 | */ |
639 | |
640 | METHODDEF(void) |
641 | start_pass (j_decompress_ptr cinfo) |
642 | { |
643 | arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; |
644 | int ci, tbl; |
645 | jpeg_component_info * compptr; |
646 | |
647 | if (cinfo->progressive_mode) { |
648 | /* Validate progressive scan parameters */ |
649 | if (cinfo->Ss == 0) { |
650 | if (cinfo->Se != 0) |
651 | goto bad; |
652 | } else { |
653 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
654 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) |
655 | goto bad; |
656 | /* AC scans may have only one component */ |
657 | if (cinfo->comps_in_scan != 1) |
658 | goto bad; |
659 | } |
660 | if (cinfo->Ah != 0) { |
661 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
662 | if (cinfo->Ah-1 != cinfo->Al) |
663 | goto bad; |
664 | } |
665 | if (cinfo->Al > 13) { /* need not check for < 0 */ |
666 | bad: |
667 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
668 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
669 | } |
670 | /* Update progression status, and verify that scan order is legal. |
671 | * Note that inter-scan inconsistencies are treated as warnings |
672 | * not fatal errors ... not clear if this is right way to behave. |
673 | */ |
674 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
675 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
676 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
677 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
678 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
679 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
680 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
681 | if (cinfo->Ah != expected) |
682 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
683 | coef_bit_ptr[coefi] = cinfo->Al; |
684 | } |
685 | } |
686 | /* Select MCU decoding routine */ |
687 | if (cinfo->Ah == 0) { |
688 | if (cinfo->Ss == 0) |
689 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
690 | else |
691 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
692 | } else { |
693 | if (cinfo->Ss == 0) |
694 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
695 | else |
696 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
697 | } |
698 | } else { |
699 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
700 | * This ought to be an error condition, but we make it a warning. |
701 | */ |
702 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
703 | (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) |
704 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
705 | /* Select MCU decoding routine */ |
706 | entropy->pub.decode_mcu = decode_mcu; |
707 | } |
708 | |
709 | /* Allocate & initialize requested statistics areas */ |
710 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
711 | compptr = cinfo->cur_comp_info[ci]; |
712 | if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { |
713 | tbl = compptr->dc_tbl_no; |
714 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
715 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
716 | if (entropy->dc_stats[tbl] == NULL) |
717 | entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
718 | ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); |
719 | MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); |
720 | /* Initialize DC predictions to 0 */ |
721 | entropy->last_dc_val[ci] = 0; |
722 | entropy->dc_context[ci] = 0; |
723 | } |
724 | if ((! cinfo->progressive_mode && cinfo->lim_Se) || |
725 | (cinfo->progressive_mode && cinfo->Ss)) { |
726 | tbl = compptr->ac_tbl_no; |
727 | if (tbl < 0 || tbl >= NUM_ARITH_TBLS) |
728 | ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); |
729 | if (entropy->ac_stats[tbl] == NULL) |
730 | entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) |
731 | ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); |
732 | MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); |
733 | } |
734 | } |
735 | |
736 | /* Initialize arithmetic decoding variables */ |
737 | entropy->c = 0; |
738 | entropy->a = 0; |
739 | entropy->ct = -16; /* force reading 2 initial bytes to fill C */ |
740 | |
741 | /* Initialize restart counter */ |
742 | entropy->restarts_to_go = cinfo->restart_interval; |
743 | } |
744 | |
745 | |
746 | /* |
747 | * Module initialization routine for arithmetic entropy decoding. |
748 | */ |
749 | |
750 | GLOBAL(void) |
751 | jinit_arith_decoder (j_decompress_ptr cinfo) |
752 | { |
753 | arith_entropy_ptr entropy; |
754 | int i; |
755 | |
756 | entropy = (arith_entropy_ptr) |
757 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
758 | SIZEOF(arith_entropy_decoder)); |
759 | cinfo->entropy = &entropy->pub; |
760 | entropy->pub.start_pass = start_pass; |
761 | |
762 | /* Mark tables unallocated */ |
763 | for (i = 0; i < NUM_ARITH_TBLS; i++) { |
764 | entropy->dc_stats[i] = NULL; |
765 | entropy->ac_stats[i] = NULL; |
766 | } |
767 | |
768 | /* Initialize index for fixed probability estimation */ |
769 | entropy->fixed_bin[0] = 113; |
770 | |
771 | if (cinfo->progressive_mode) { |
772 | /* Create progression status table */ |
773 | int *coef_bit_ptr, ci; |
774 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
775 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
776 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
777 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
778 | for (ci = 0; ci < cinfo->num_components; ci++) |
779 | for (i = 0; i < DCTSIZE2; i++) |
780 | *coef_bit_ptr++ = -1; |
781 | } |
782 | } |
783 | |